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Multiplying this out and using the recurrence relations for modified Bessel functions, we hand

(Q Q)~5g 2+sr—2z —2(f z 2)szs(z 2 z2)
—s ($ r)—2(r-I $)

—2

)&(1—crl)'1V—' t'Es(t) d$ p'EI($) tsE—Is(t)+E It4 g—(3Es(t) —tEI(t) ) d( p'EI($)
t

El—(t-) (4t Kl(t) Eo(t)—)$+'O(X ) ~ (D2)

When T)T„ananalogous calculation gives the more accurate version of (8.85) of
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By inspecting these equations, we see that as 1~0 the terms of order E ' remain Gnite while the terms of order
vanish. This vanishing of the next leading order term at T=T, has already been seen in the bulk problem as

presented in I where, while the leading term in S~ is proportional to X ~, there is no S 53' term and the next
nonvanishing term is of order E '".
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The critical or Curie temperature of the anisotropic rectangular Ising ferromagnet is known from Onsager's
exact solution to vanish asymptotically as

hT,/2 I ~[ln(1/rt) —lnln(1/g) j '+. ~ .,

when g =I„/I„the ratio of exchange energies for bonds parallel to the y and z axes, approaches zero. An
extension of the Peierls argument yields a simple interpretation of this slow decrease and provides, from
Grst principles, a rigorous lower bound of precisely the same asymptotic form. For the anisotropic simple
cubic lattice, a lower bound, also of this asymptotic form, is established in terms of s = (I„+I,)/I .

l. INTRODUCTIOE

~ 1HE problem of the Ising ferromagnet of spin -',..with nearest-neighbor interaction has been studied.
extensively. It is well known that the one-dimensional
model in the presence of an external magnetic Geld

*Research supported in part by the National Science Founda-
tion.

$ Alfred P. Sloan Research Fellow.

and various two-d. imensional mod. els in zero field are
exactly soluble. ' In particular, the spontaneous mag-
netization below the critical point has been calculated
for both square and "rectangular" lattices. ' '

' L. Onsager, Phys. Rev. 05, 117 (1944). A convenient review.
article has been written by G. F. Newell and K. W. Montroll,
Rev. Mod. Phys. 25, 353 (1953).' C. N. Yang, Phys. Rev. 85, 808 (1952).

3T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod.
Phys. 36, 856 (1964).
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Fn. 1. Curie temperature of an anisotropic Ising ferromagnet
on a square lattice as a function of J„/J. The upper curve is
the exact result using Eq. {2) and the lower curve is the modified
Peierls estimate from the bound (11).

where the first sum is over nearest-neighbor pairs joined
by a bond parallel to the x axis, and the second over
such pairs joined by a bond parallel to the y axis. The
exact transition or Curie temperature T, obtained by
Onsager for this case, and given by the equation

(sinh2 J,/k T,) (sinh2 J„/kT,) = 1,

has the interesting feature that it decreases only very
slowly if J, remains constant and J„decreases to zero.
The situation is shown by the upper curve in Fig. 1.
For J„=103J„T,has decreased to only about g its
value at J„=J . As 37= J„/J,approaches zero, one

4 R. Peierls, Proc. Cambridge Phil. Soc. 32, 477 (1936).
() R. B. Griffiths, Phys. Rev. 136, A437 (1964). We are in-

debted to D. G. Kelly for pointing out a minor error in this paper.
The summations in Eqs. (13) and (14) should be over the values
b= 2, 3, 4, ~ ~ ~ instead of b =4, 6, 8, ~ ~ ~ since there is no require-
ment that the borders be closed. The final estimate on the right
side of (14) is correspondingly altered.

R. L. Dobrushin, Teoriya Veroyatnostei i ee Primeneniya 10,
209 (1965) )English transl. : Theory Probability Appl. (USSR)
10, 193 (1965)g.' J. Ginibre, A. Grossman, and D. Ruelle, Commun. Math.
Phys. 3, 187 (1966).

8 R. L. Dobrushin (private communication).
3 R. B. Griffiths& J.Math. Phys. 8, 478, 484 (1967).

NIi' Many years ago Peierls' gave a simple argument for
the existence of spontaneous magnetization in the two-
dimensional square lattice. The argument was modified

by GrifBths' and independently by Dobrushin' to pro-
vide a rigorous proof, which could be generalized im-
mediately to a simple cubic lattice. Recently the argu-
ment has been extended to more general cases by
Ginibre, Grossman, and Ruelle, ~ by Dobrushin, and
by GriKths. '

In this paper we are concerned with the "rectangular"
Ising lattice in which the spins (0;=&1) lie on a simple
square lattice but the interaction Hamiltonian is

K= —Jgg~(r;(r; J„+3(rso—i),

Since the Peierls argument yields a lower bound on
the spontaneous magnetization, it also yields a lower
bound T„onthe Curie temperature, the temperature
above which no spontaneous magnetization exists. We
shall show firstly that for the "rectangular" lattice a
simple modification of the Peierls argument yields a
lower bound (lower curve in Fig. 1) which has the
form (3) as r)-+0, apart from a factor of sr multiplying
the right-hand side. The argument, discussed in Sec. II,
also provides physical insight into the reason for the
slow decrease of T,.

A refinement of the combinatorial estimate entering
the Peierls argument is discussed in Sec. III. The re-
vised lower bound to the critical temperature, obtained
with the aid of the generating function for random
walks with no irrimediate reversals, has the precise
form (3) as r)

—+0 (with no extra factor of —,') .
The behavior of the critical temperature of an Ising

ferromagnet on a simple cubic lattice as both J„and
J, go to zero, J, remaining constant, is discussed in
Sec. IV. It is shown that a lower bound of the form (3)
is valid with r) set equal to (J,+J„)/J,and it is
surmised that this form is in fact asymptotically exact.
This conclusion is confirmed rigorously in a following
paper" where general upper bounds for T. are estab-
lished.

II. MODIFIED PEIERLS ARGUMENT

Consider'a lattice measuring QEXQE unit cells
containing E spins. In any of the 2N possible configura-
tions the + and —spins may be separated into con-
nected sets by means of noninteracting borders drawn
on the dual lattice which is also a square lattice (Fig. 2) .
LIn Ref. 5 the borders were assigned on orientation,
but this is clearly unnecessary —see Refs. 6, 7.] We
shall, for convenience, consider only configurations for
which the 4(QE) —2 spins on the boundary of the
square are constrained to be +, in which case the
borders separating + and —spins form closed poly-
gons on the dual lattice. If E denotes the number
of —spins in any configuration, the Peierls argument
consists essentially in showing that at low enough tem-
peratures,

X '(1V )(-' —e

where e is a positive constant independent of E, and
the angular brackets denote a thermal average:

(g)—Tr Ies xf/3T}/Tr {e x()3T—} (5)—
In fact (4) is equivalent to saying that the ratio

of + to —spins exceeds —, in the limit of an infinite
system; that is, there is a net spontaneous magnetiza-

"M. E. Fisher, following paper, Phys. Rev. 160, 480 (1967).



162 ANISOTROPIC ISING LATTICES. I

tion per spin. It has been shown elsewhere" that the
result (4) indeed indicates a spontaneous magnetiza-
tion in the thermodynamic sense of a discontinuity in
the curve of magnetization versus field. The somewhat
unusual boundary conditions are a convenience and
not a necessity in carrying out the argument, as was
shown in Ref. 5. (See also Ref. 7.) It should be noted
that for a "lattice gas" these boundary conditions cor-
respond to the natural requirement that the system
be bounded by "hard walls. "

Consider a particular border i constructed with n, (i)
"vertical" lines perpendicular to the x axis (and hence
intersecting J, bonds) and n„(i) "horizontal" lines
perpendicular to the y axis. The operator X; is 1 if
this border occurs in a particular configuration and
zero otherwise. Since the border encloses at most
~n, (i)n„(i) spins, and since each minus spin is found
within at least one border, Ã in a particular configu-
ration has a bound

(6)

++++++
+ + +
++ —++—
+ + ——+—

P

+ —+ + ——
++ ——++
++++++ +

Y

Fzo. 2. A configuration for a square containing S=49 spins in
which the 24 boundary spins are all +.

a particular sequence. It is evident that 0. cannot
exceed 2n. Finally, we should divide by n+m since a
particular type of polygon may be drawn by starting
at any one of the n+m points separating consecutive
segments. The resulting bound is

An argument identical to that in Ref. 5 yields the
bound

2'"(n+m) !
pn, m &

(n+m) n!m!
(10)

(X;)&exp{ 2$J—n (i)+J„ny(i)j/kTI (7)

for the thermal average of X;.
The borders, which are closed polygons, may be

divided into types j having identical shape and orien-
tation. If there are p(n, m) types with n, (j)=n and.

n„(j)=m, then there are at most EP(n, m) borders
of the corresponding class. The thermal expectation of
(6), together with the bound (7), yields

1V '(X )&x'g gnmp(n, m) x"y~,
n m

where

x= exp( —2 J,/kT), y=exp( 2J„/kT). (9—)

We now seek a suitable simple bound for p(n, m) . A
border or polygon with a particular shape and orienta-
tion may be laid out segment by segment, each segment
connected to its predecessor, for example in a sequence
(xxyxyyyxx ~ ~ ), where x and y denote segments
perpendicular to their respective axes joining nearest-
neighbor points on the dual lattice. Given n x segments
and m y segments, there are (n+m)!/n!m! possible
sequences. More than one border may be associated
with any sequence. In particular, if a y segment follows
an x segment there are two ways to place the former:
toward positive or negative values of x. The same
freedom arises when an x segment follows a y segment.
But when an x segment follows an x there is but one
possible place for the second segment. If n is the num-
ber of times the sequence changes from x to y or vice
versa, then at most 2 borders may be associated with

» R. B. GrifBths, Phys. Rev. 152, 240 (1966).

If this is inserted in (8) and nm/(n+m) is replaced
by the larger quantity e the bound will only be weak-
ened. Similarly the surrunation may be extended to
run over all integers from 0 to ~ with the result

S '(E ) & x(1—y —4x) —'. (11)

If the right-hand side of this inequality is equated to —,

and solved for the temperature T, we obtain the bound
T„for the exact critical temperature which is plotted
in Fig. 1. For small g= J„/J this bound has the form
(3) except that the right-hand side of the equation is
multiplied by the factor 2. Apart from this factor of
—', our simple argument has provided a lower bound
to T, when p approaches zero quite similar to the
exact result. Inspection of the bound (10) for the
number of polygons yields some physical insight into
the slow logarithmic decrease of the critical tempera-
ture. In particular, the number of types of possible
polygons or borders for a particular value of n+m
becomes very small as e decreases. Putting it another
way, and somewhat imprecisely, the entropy associ-
ated with borders for a axed n+m becomes very small
as n decreases. This rejects the fact that in construct-
ing a section of border containing only y segments
there is no choice as to how to place succeeding seg-
ments once the first has been laid down. The remainder
then simply follow along a straight line parallel to the
x axis. In order to introduce additional freedom, or
"entropy, " in laying a border, it is necessary to intro-
duce x segments, a procedure relatively costly in energy
for J&)J„.Thus the free energy (energy minus T
times the entropy) required to lay out a border (again
we are speaking imprecisely) decreases rather slowly
as J„is "turned off," since the gain in lowering the
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energy by using lots of y segments is offset by the
corresponding decrease in entropy. One expects that
the greater the free energy required to insert regions
of reverse magnetization into the spontaneously mag-
netized state, the higher will be the Curie temperature
at which spontaneous magnetization disappears.

III. IMPROVED LOWER BOUND FOR T,

One may ask why the ratio T„/T, approaches —,
'

rather than 1 as g
—+0 and whether the estimate de-

rived above might not be improved. VVe shall show
that the bound (10) for the number of polygons in-

volves a serious overestimate since in deriving it no use
was made of the fact that the borders must form closed

6gures. For example, a closed border certainly involves
only an even number of both x and y segments. If one
still uses (10) but extends the summation in (8) only
over positive even integers m and n then one obtains
a new bound T„'satisfying T„'/T,~f as g~0. How-

ever, much better results are possible as we shall now
show.

Consider the case m=2, m&2, for which, clearly,
p(2, m) =1 (a rectangular polygon of width 1 and
height —,m). Inserting this in (8) yields

in (8) and replaces Nm/(I+m) by e, as before, the
result is

X '(X )&-,'x8Q(x, y)/8x,
where

(17)

Q(x, y) = Q Qq(e, m) x"y"
n m

(18)

is the generating function for the class of walks in
question. This may be calculated as follows.

Let q(n, m; k, l) be the number of random walks
with e vertical and m horizontal steps without immedi-
ate reversals commencing at the origin and terminating
at the point (k, 1) on a square lattice. (Consistent
with our previous terminology, we suppose the x axis
vertical and the y axis horizontal. ) The double generat-
ing function

Q(x, y; 8, P) =g g g Pq(m, m; k, l) x"y"e""e*4''
n sn r t

(19)

will be constructed by decomposing the walks into
classes according to the number and character of suc-
cessive sequences of similar steps. Thus the generating
function X for walks consisting only of vertical or x
steps is evidently

, , (1—8)2
A-'(N ) & —,'P, +R, ,,(x, 1—8), (12)

X(x 8) =xe*'+x'e"'+ ~ ~ +xe-"'+x'e-"'+. ~ ~ (20)

or

where
8=1—y,

g=x/8, (13)

and +,2(x, y) denotes the remaining sum for e)4,
m&2. For small g= J„/J'„82 J„/kTapproaches zero
for T on the order of T„and the first term on the
right side of (12) becomes a function of $ alone. We
shall show that the same holds for the remainder.
Consequently, for small 8 and q the bound becomes

X(x, 8) =2x(cos8 —x) P1—2x cos8+x'j-', (21)

and for horizontal or y steps alone,

F(y, p) =2y(co+ —y) Ll —2y co&+y'j-'. (22)

The total generating function may now be written
down by considering all possible sequences of x and y
steps so that

Q(x, y; 8, g) = 1+X+F+XF+FX+XFX+FXF

&-'P-)&~(~) (14) +XFXF+FXFX+XFXFX+FXFXF+.~ ..
Let (0 be the smallest solution of F(g) =-,'. Then a
lower bound To to T, is obtained from (14):

exp( —2J./kTo) &o(2J„/kTo),

and it is easily shown that T@ has the same asymptotic
form (3) as T„upto terms of order L

—1ngl ' inside
the braces.

To establish (14) generally, we argue as follows. The
number of different types of polygons p(e, m) is
(e+m) —' times N(n, m), the number of closed, self-
avoiding random walks of n vertical and m horizontal
steps commencing (and terminating) at the origin of
the dual lattice. Clearly e(N, m) is less than q(N, m),
the number of closed random walks in which immediate
reversals are forbidden, but in which all other self-
intersections are allowed. If one inserts

p(e, m) &(e+m) —'q(n, m)

U= 1+x'+y' —3x'y',

F=2x(1—y'), W= 2y(1—x'). (23)

For the symmetric case x=y=z this reduces to a for-
mula derived previously by quite diGerent arguments. "

The generating function Q(x, y; k, l) for all walks

~ C. Bomb and M. E. Fisher, Proc. Cambridge PhB. Soc. 54,
48 (1958).

(23)

Provided y is less than 1 and x is suKciently small,
the series (19) and (23) are absolutely convergent and
the latter may be summed in the form

(1+X)(1+F) (1—x') (1—y')
Q= (24)

1—XF U —V cos8—W co& '

with
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to the point k, / may be found by Fourier inversion

t see (19) and (18)g. In particular for the closed walks
with k= l=0, we have

Q(x, y) = (2ir) ' d8

2 (1—x') (1—y') 4VW

ir U' —(V—W)' U' —(V—W)'

where K is the complete elliptic integral of the erst
kind. LThe integral (26) may be evaluated using the
result

2'
(~/2ir) (8 Cco—@) '= (I3' C') 't—s (27)

0

valid provided
i
8 ) ) )

C (, a condition which is ful-
filled for any y&1 by choosing x less than some positive
function of y. The substitution s= —cos8 brings the
remaining integral into a standard elliptic form. 'sg

In the limit 8= 1—y ((1 and x (8/4, (26) becomes

2 [ gx/8
Q( )y) $1+4/qr/s [ 1+4/ 0 ( )

a fllIlctlo11 of )=x/8 alolle. Slllce K('w) ls continuously
di8erentiabie and increases monotonically to +eo as
m increases from 0 to 1, it is clear that

~(k) =xxL~Q(x, y)/»j=B(~Q/~k) (»)
will attain all values between 0 and +~ for f between
0 and ei. Thus there is a ge less than et for which F($s) =-,',
and the bound To is determined by (15) as q-+0. One
finds, in fact, (s~0.227.

IV. THREE-DIMENSIONAL FERROMAGNET

Consider the general anisotropic Ising ferrornagnet
on a simple-cubic lattice wi. th nearest-neighbor inter-
actions J„J„,and J, corresponding to bonds parallel
to the x, y, and 2' axes, respectively. It is of interest to
ask how the critical temperature depends on J„and
J, when these are both much smaller than J,."The
usual Peierls aryunent~~ yields a lower bound for T,
which is of no help in estimating this asymptotic behav-
ior. In a direct attack, following our discussion of the
rectangular lattice, one would need a bound analogous
to (10) or (16) for the number p(l, m, n) of different
types of polyhedra with l, ns, and n faces perpendicular
to the x, y, and s axes, respectively. This combinatorial
problem is more dificult than for planar polygons and
we have not obtained any useful results.

's W. Grobner and N. Hofreiter, Integrattafel: Bestirarate Iate
grale (Springer-Verlag, Vienna, 1961), 3rd ed. , p. 47; A. Erdelyi
et al., Higher Transcendental Functions (Mcoravr-Hill Book
Company, Inc. , Near York, 1953), Vol. II, pp. 307-309.

'4 E. I.Nesis }Fiz.Tverd. Tela 7, 665 (1965) } (English transl. :
Soviet Phys. —Solid State 7, 534 (1965)g } has discussed the case
+here J,(&J~=J„.

We may, however, sidestep such a procedure by
using our bound for the two-dimensional lattice and
appealing to the theorem that the critical temperature
for finite J„andJ, is not less than the critical temperature
obtained when either of these parameters is equated to zero
(the other remaining fixed). ' But if, for example, J, is
equated to zero the simple-cubic lattice decomposes
into a set of identical square lattices and the critical
temperature is given by Onsager's result (2). Evi-
dently, therefore, there is a lower bound with the
asymptotic form (3) but with rt replaced by

rt'=maxI J„,J,I/J. .

Now clearly we have

rt') ,'(J„+J,)/-J, = ,'rt", -

(29)

(3o)

so that (3) remains a valid bound if it is replaced by
-,'y". This in turn may be replaced asymptotically by
p" since the resulting correction to T, is only of order
(1/in') ') within the braces in (3). Finally therefore
we have established a lower bound for the simple-cubic
lattice with the asymptotic form (3) but with

This is just what one would conclude following our
method for the rectangular lattice if the analogous argu-
ments could be pushed through in three dimensions.

It is natural to conjecture that, as in two dimensions,
this lower bound is of the same asymptotic form as the
exact critical temperature (which is not, of course,
known explicitly). In support of this conjecture we
may cite the results of the special molecular-Geld ap-
proximation of Stout and Chisholm's (appropriately
modified to the ferromagnetic case) in which the linear
chains parallel to the x axis are treated exactly while
the weaker interchain y and 2' interactions are approxi-
mated by an "eGective" magnetic 6eld. For the rectan-
gular lattice (J,=O) this procedure yields an approxi-
mate critical temperature T~ which has the asymptotic
form (3) but is always larger than the exact result. For
the simple-cubic lattice the method yields an approxi-
mate critical temperature which is again expected to
lie above the true value; it has the asymptotic form (3)
but with rt given by (31), as conjectured.

Of course, this is no proof since the molecular-6eld
result is not known to be an upper bound, although
this has always been observed "empirically. "In the fol-
lowing paper, "however, rigorous general upper bounds
for the critical temperature will be obtained. These
prove, in particular, that mean field theory provides
an upper bound and they conhrm the present conjec-
ture on the asymptotic behavior of T, for the simple-
cubic lattice when (J„+J,) / J,—+0.

'5 J. W. Stout and R. C. Chisholm, J. Chem. Phys. 30, 979
(1962).


