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We consider the rectangular Ising model on a half-plane of in6nite extent and study some of the con-
sequences connected with the presence of the boundary. Only the spins on the boundary row are allowed
to interact with a magnetic 6eld g). The method of PfaKans is employed to obtain exact expressions for
the partition function, It is found that the free energy is the sum of two terms, one of which is independent
of@ and proportional to the total number of lattice sites, while the other depends on@ and is proportional
to the number of lattice sites on the boundary. This separation makes it possible to de6ne various thermo-
dynamic quantities associated with the boundary. In particular, the boundary magnetization is shown
to be discontinuous, in the ferromagnetic case, at zero magnetic Geld for temperatures below the bulk
critical temperature T.. This discontinuity, which is the spontaneous boundary magnetization, goes to
zero as (1—T/T, )"as T~T, . For T= T—„the discontinuity is of course absent, and the boundary
magnetization behaves as —@In@for small/I. The boundary susceptibility at zero magnetic Geld in the
ferromagnetic case exhibits a logarithmic singularity at T=T„both above and below transition. An
interesting feature is that the ferromagnetic boundary magnetization, although discontinuous for T& T„
may be analytically continued beyond the point @=0. We interpret this as a hystersis phenomenon which
we study in detail by computing the probability distribution function for the average boundary spin.
The correlation function for two spins, both on the boundary row, is also obtained exactly and its asymptotic
behavior is given. Finally, we derive an expression for the magnetization in any row and explicitly evaluate it
for the second row, i.e., the row next to the boundary.

j.. INTRODUCTION

I.THOUGH a great deal of effort has been spent
.4 on the two-dimensional Ising model, the amount

of exact results is remarkably limited. For the case of
the rectangular lattice without magnetic held, Onsager
and Kaufman' have given the free energy per lattice
site and also the correlation functions for spins at Gnite
distances. In particular, it is readily observed that the
expression for the two-spin correlation function becomes
rapidly more and more complicated as'. the separation
between the two spins increases. It is for this reason
that it is quite dificult to obtain, as 6rst accomplished

by Yang, ' the spontaneous magnetization, which is

closely related to the limiting value at in6nite separa-
tions of the two-spin correlation function. On the
contrary, the exact expression for the four-spin correla-
tion function

&~e,e&e,t&~,sr&~,sr+r)

at zero magnetic Geld, for example, does not become
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more complex as M and E increases. Indeed, as is
well known, the amount of work in writing down the
correlation of an even number of spins depends mainly
on the minimum distance D on the lattice which is
required to join the spins pairwise. This distance
is

I
~

I + I
&

I
for (&o,o&~,ar)»d is 2 &» (&.&) . Rough&y

speaking, the expression for the correlation is simple
when the spins are grouped into nearby pairs.

It is the purpose of this paper to study an aspect of
the two-dimensional Ising model where this pairing
plays no role. The specific case to be considered is the
Ising model on a half-plane of infinite extent. Ke are
primarily interested in the correlation of spins near
the boundary. In the simplest case, when two spins
are both located on the boundary rom, their correlation
can be expressed in terms of a single integral, no
matter what the distance is between these two spins.
Accordingly, it is completely straightforward to calcu-
late both the spontaneous magnetization and indeed
the entire asymptotic series. Thus, this calculation
follows a rather different route from that of the corre-
sponding quantities for the usual two-dimensional Ising
model. ' ' In the present case, D is reinterpreted to be
the minimum distance on the lattice which is required
to join the spins either to each other or to any point
outside the semi-infinite lattice. Thus, a=2 for any
two widely separated spins on the boundary row.

s T.T. Wu, Phys. Rev. 149, 380 (1966).This paper is hereafter
referred to as I.
436
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It is interesting and also convenient to let the spins
on the boundary row interact with a magnetic Geld.
In Sec. 2, we formulate the problem with a finite
number of rows and columns with the periodic bound-

ary conditions applied in the horizontal direction only.
By the method of using PfaSans, '~ the partition
function can be expressed in terms of a determinant.
Since this determinant is nearly cyclic in the variable
referring to the columns of the lattice, it can be written
as a product of determinants, each of which turns out
to have nonvanishing elements only if the two indices
differ by 1 or zero. This evaluation of the partition
function, and hence the free energy, is given in Sec. 3.
When the number of rows and columns is large, the
free energy is approximately, with exponentially small
errors, the sum of a term proportional to the total
number of lattice sites and a term proportional to the
number of lattice sites on the boundary. From this we

may identify the free energy of the bulk as given by
Onsager, ' the free energy of the boundaries at zero
magnetic Geld, and the additional free energy of the
boundary due to the presence of the magnetic Geld

Lsee Eq. (3.27) 7. The boundary entropy and specific
heat are obtained in Sec. 4 by diGerentiating this free
energy with respect to temperature. It is found that,
contrary to the corresponding bulk quantities, the
boundary entropy per boundary site has a logarithmic
singularity and the specific heat contains a pole term
when the temperature is equal to the bulk critical
temperature.

We can also differentiate this free energy with
respect to" the magnetic field @ to obtain the magnet-
ization /Pi of the boundary row. This is carried out in

Sec. 5. If the interaction between nearest neighbors on
the same row is antiferromagnetic in the sense that an
antiparallel neighboring pair of spins has lower energy
than a parallel pair, this boundary magnetization so
obtained is an analytic function of T and @ except
when T=T,. Here, T, means the bulk critical tempera-
ture of the infinite Ising model without magnetic Geld.
In particular, T, is independent of @. In the ferro-
magnetic case where a parallel neighboring pair on the
same row has lower energy, then the boundary magnet-
ization is analytic in T and @ except

T=T.
and

T(T, and @=0. (1.2)

We discuss this ferromagnetic case in more detail.
Across the line defined by (1.2), K& has a discontinuity
associated with spontaneous magnetization. Near T=
T„ this spontaneous magnetization is proportional to
(1—T/T, )'I', which is to be compared with the eighth
root behavior found by Yang' in the bulk case. At

P. %.Kasteleyn, Physica 2V', 1209 (1961);H. ¹ V. Temper-
ley and M. E. Fisher, Phil. Mag. 6, 1061 (1961).

s E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys.
4, 308 (1963).

T=T. and if @ is small, Ki is proportional to —@in@.
The boundary susceptibility at zero magnetic field
shows a logarithmic singularity as T~T, both from
above and below; this is to be contrasted with the
usual power behavior in the bulk case, obtained
numerically by Baker.' In Sec. 5, we also give the
behavior of /Pi when T is near T, and @ is small.
Even though Ri is discontinuous across the line (1.2),
for fixed T(T„Ki has the important property that
it can be analytically continued in g& beyond this line.
This analytically continued function becomes equal to
9Ri itself for some finite value of @, which of course
depends on T. At least part of the analytically con-
tinued curve may be identiGed with a hysteresis loop.

In order to better understand this interesting phe-
nomenon of the hysteresis loop, we compute in Sec. 6
the probability distribution function for the average
boundary spin. This probability distribution function
has the properties that (i) its dependence on @ is
simple [see Eq. (6.13)7, and (ii) it can be expressed
simply in terms of the partition function for complex
values of @ t see Eq. (6.1)7. By the latter property,
it can be evaluated by the method of steepest descent.
It is verified that at @=0 it has two maxima below
the critical temperature, as expected from the existence
of spon. taneous magnetization. When g& is positive and
small, both maxima are present but the distribution
function is exponentially larger at one of the maxima,
say the right one, than at the other, say the left one.
When @ is decreased to negative values with

1 O ~

still
suKciently smaB, the distribution is much larger at
the left maximum given by 'PPi, the analytic continua-
tion of Ri gives the position of the lesser maximum at
the right. As @ is further decreased, the position of
this lesser maximum moves to smaller average values
of the boundary spins; it reaches zero at some negative
value of @, say —@. For O( —@, even though
further analytic continuation of K& is possible, the
distribution function shows only one maximum, with
the previous lesser maximum appearing only as a
shoulder. We conclude that the portion of the analytic
continuation of Ki with

~ O ~
(@,can be identified

with the hysteresis loop.
A possible physical interpretation of this mathe-

matical result is as follows. For a system in thermo-
dynamic equilibrium with T&T, and 9/0, the average
values of the boundary spins is almost certainly close
to PPi, these are the stable states. As O is reduced from
a small positive value to a small negative value, this
average value changes sign. Since it is de.cult to make
transition between states of these opposite values of
average boundary spin, it takes a very long time to
reach thermodynamic equilibrium even after 9 is made
negative. For a time (short compared with the time
needed to approach this equilibrium), the average value

6 G. A. Baker, Phys. Rev. 124, 768 (1961);C. Domb and M. F.
Sykes, J. Math. Phys. 2, 63 (1961); J. W. Essam and M. E.
Fisher, J. Chem. Phys. 38, 802 (1963).
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of the boundary spins for the system refuses to change
sign; instead, it follows the position of the lesser maxi-
mum. These are the metastable states. The long lifetime
of the metastable states is clue to the small value of
the distribution function between the two maxima.
When @ reaches —O„ these metastable states can
become completely unstable and beyond that, the
behavior of the system depends on the atomic mecha-
nism and cannot be deduced by statistical considera-
tions alone. Two possible hysteresis loops are shown in
Figs. 6 and 9. Note that, for this interpretation, we
have introduced the concepts of quantum-mechanical
transition and of time, both foreign to the Ising model.

So far, all the results can be derived from a knowledge
of the partition function alone. In Sec. 8, we turn to
the question of the two-spin correlation functions. It is
then not sufficient to know the partition function only,
and we use the PfaKan method of calculating averages
of spin products. For this purpose, we must be able to
compute certain elements of the inverse of the matrix
whose PfaKan gives the partition function. For the
same reason that the partition function is easily ob-
tained, these inverse matrix elements are not hard to
get, as shown in Sec. 7. In all cases with T&T., the
correlation functions of two spins on the boundary row
approach their limiting values exponentially. However,
in the ferromagnetic case below T„ the rate of the
exponential fall-off depends on whether

~ @ ~

is above
or below the value at which the analytic continuation
of )Pi meets Ri itself. Furthermore, for T=T, and

@=0, this correlation function approaches zero as the
inverse of the separation, instead of the inverse fourth
root for the bulk case as sho~n in J. For T= T, but
@&0, it falls off as the inverse fourth power of the
separation. The behavior for large separation but
E

~
1—T/T,

~

fixed and of order 1 is also studied.
In Sec. 9, we make some remarks about the thermo-

dynamic averages of spins not on the boundary rom.

A great deal of exact calculations can be carried out in
a straightforward, though tedious, manner, but we
make no attempt to do this systematically. We mention
here only one result. The spontaneous magnetization on
the row next to the boundary, in the ferromagnetic
case, is found to be also proportional to (1—T/T, )'~'
as T—+T,—.It is believed that this behavior holds for
any fixed row from the boundary.

The results are summarized in Sec. 10.

2. FORMULATION OF THE PROBLEM

The system to be studied in this paper is a two-
dimensional, rectangular Ising model with cyclic
boundary conditions imposed in the horizontal direc-
tion only. The lattice has 2 BR rows and 2 X columns
and interacts with a magnetic field @ applied to one
of the two boundary rows (defined to be the first row) .
We use German letters to denote quantities pertaining
to the boundary. The Hamiltonian for this system is

&j,4&j+1,1' 8 Q 01,ky (2 1)
j=1 k=X+1

where each 0. is equal to +1 or —1, j and k label,
respectively, the row and column of the lattice site
with k=K+1 identified with k= —%+1, and Ei(E4)
is the horizontal (vertical) interaction energy between
neighboring spins, The 6rst row does not interact with
the 20Kth row. In (2.1), the magnetic moment factor
for the spins on the first row has been absorbed in @.
We shall be interested in the limit OR—+~ and X~~
where the cylinder becomes a semi-infinite half-plane;
only in this limit will a phase transition occur.

With (2.1), the partition function is

expL Q g PE1&j,Nj,3+1+ Q
1 k=++1

0j,ko j+1,k 01,k

= (cosllPE )4Kmr(coshPER) 2K(2BR i) (coshP@) 2si

(2.2)

zi= tanhPEi,

z4= tanhPE4,

z= tanbpg. (23)

If the sum over 0 =~1 is carried out, the result is~

Z = (2 coshPEi) 4~(coshPEq) ~&~ @(coshP@)~
Q zpz24z"E, ~, (2.4)

geOo&

7 R. B. Potts and J. C. YVard, Progr. Theoret. Phys. (Kyoto)
ra, 38 (1955).
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where S„,„ is the number of figures that can be drawn
on the lattice with the following properties. First, each
bond between nearest neighbors may be used, at most,
once. Secondly, the figure contains p horizontal bonds
and q vertical bonds. Thirdly, let e;I, be the number of
bonds with the site ( j, k) as one end; then, forj)1, e;&

is even, i.e., e;&=0, 2, or 4. And lastly, r is the number
of e» which is odd. An example with p =12, q =14, and
r =4 is shown in Fig. 1(a) .

We wish to express the sum in (2.4) in terms of an
appropriate PfaKan. ' ' To do so, we first note that if z
is zero, then in the sum it is sufFicient to keep only the
terms with E~~, which is the number of closed polygons
with p horizontal bonds and q vertical bonds. The
factor zpz&& is taken into account by associating a
factor zl with each horizontal bond and a z2 with each
vertical bond, as shown in Fig. 2. This procedure may
also be followed for the case of general z by adding a

I

2l
I

Fxe. 2. Lattice with weights
z1 and z2. 2 I

2l
I

21

I I
I

22' 22I
I

Zi I Zl I

221 22I
I I
I I

1 21

I

2 I
I
I

Zl

Z21
I
I

Z=-', (2 coshPEr)'~+(coshPEs)'~i~ "(coshPO)'st Pf5,

(2.5)

where the antisymmetrical matrix 5 is given by

function for closed polygons on the lattice of Fig. 3(a) .
The solution is immediately given in terms of the
PfaKan for the dimer problem of Fig. 3(b). More
explicitly, '

R
R 0

I. U D
1 —1

(a)

5(j, k;j, k) =
0 1

U 1 —1 0 1

0

(2.6a)

for 0&j&29R and. —X+1&k&K,

0 zg 0 0'
(b)

5(j, k;j, k+1) =—5r (j,k+1;j, k) =
0 0 0 0

0 0 0 0

0 0 0 0

(c) (2.6b)

Fzo. 1. An example of a Ggure with p=12, q=14, and r=4.

zeroth row of sites connected to the first rom of sites
by vertical bonds of weight z. The sites in this zeroth
row are a'iso connected to each other by bonds of
weight 1 between nearest neighbors, as shown in Fig.
3(a). Each figure on the original lattice counted in

E„,„corresponds, because of the cyclic boundary con-
dition in the horizontal direction, to two closed polygons
on the lattice in Fig. 3(a). These polygons that corre-
spond to the example of Fig. 1(a) are shown in Figs.
1(b) and 1(c). Each of the closed polygons has p
horizontal bonds not including those on the zeroth
row, and p+r vertical bonds, of which r are between
the zeroth row and the erst row. That there are two
closed polygons is clear from the example of Fig. 1; in
case r=0, either aB the bonds on the zeroth row are
used or none is used. We have thus reduced the problem
of evaluating (2.4) to that of finding the generating

Fro. 3{a). Lattice represent-
ing a half-plane of Ising spins
interacting with a magnetic
Geld applied to the boundary
row; (b) oriented half-plane
lattice of Ising spins used to
compute the matrix 5.
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for 1&j&20R and —K+1&k(K—1

5(0 k 0 k+1) =—K~(0, k+1;0, k) =

$0 1 0 0

0 0 0 0

0 0 0 0

i 0 0 0 0

By (2.2), we get in particular for 7=1
Ki ——P ' lim (2K) '(8/8@) h&Z.

5K )+~00

More generally, however, a knowledge of the free
energy is insuKcient to determine +z for J)1. To
find $}g, note that

os,p=oi,o(oi,oop, o) (op.oos,o) ' ' (oz—i,ooz,o) ~ (2.11)

for —%+1&k &K-1,

5(j, X;j, —++1)
0 0 0 0

0 0 0 0

We therefore define a 8X(2DR+1) X8X(29R+1) matrix
(2.6c) y~) by

5~(j, ——%+1;j, K) =-5(j, 0;j, 1) (2.6d)

for 0&j&29R,

b«)(j 0 j+1 0) =
0 0 0 z2 '—z2

5(j, k;j+1,k) =—K~(j+1,k;j, k) =

0 0 0 0

0 0 0 0

0 0 0 z2

0 0 0 0

(2.6e)

6«)(j+1,0;j, o) =

0 0 0

0 0

0 0

0 0

0

(2.12)

for 1&j&2OR and —01+1&k&01,,

5(0, k;i, k) = —Sr(i, k;0, k) =

oooo
0 0 0 0

0 0 0 z

0 0 0 0

(2.6f)

for 1&j&J—j.,

6«)(0, 0; 1, 0) =

0 0 0 0

0 0 0 0

0 0 0 s' —s

0 0 —(s2 '—ss) 0

for —K+1&k&K, and all the other elements of 5 are
zero. In (2.6d), an extra minus sign is introduced in the
weight for the bonds between the (—X+1)th column
and the Xth column; as is well known, this is required
to make the PfaKan count correctly for a lattice with
cyclic boundary conditions. Using tht connection be-
tween PfaS.ans and determinants, we Gna)ly obtain

6«) (1, 0; 0, 0) =

0 0 0
' 0 0

0 0

0 0

0

0

(2.13)

0 0 —(s '—s) 0
Z2 1(2 coshPE )svKK(coshP~) px(29K 1)

and all other elements of b(~' are zero. In terms of b(~',
X (coshPN detK. (2.7) 9' is given by

Kg —— lim (og,o),
QR,K~

(2.8)

which is, of course, independent of k. More explicitly,

Rg —— lim Z 'go.q, pe eo.
OR,X~~ o

2 C. Domb, Advan. Phys. 9, 149 (1960).

(2.9)

In Appendix A, we give an alternative deviation which
is more physical but mathematically less satisfactory.

We proceed to discuss the expectation values of
various products of 0-'s. The simplest case is the mag-
netization on the 7th row for J&1,

~g =ss2~ ' lim Pf (@+8«))/Pf(g)
8K,K~I

=&ss2 'L lim det(1+5 '6& ))g'' (2.14)
OR,%~Co

A knowledge of 8 ' is therefore needed; this problem of
finding the inverse of 5 is studied in Sec. 7.

Spin-spin correlation functions are not much more
complicated. Explicitly,

(ogoog N)=+s'so+ ' 'p lim det{1+g—'6«~'~&) @~2,
9R,X~~

(2.15)

where 8« ~'N) is deined, similar to Eqs. (2.12) and



4(25K+1) matrix defined by

E I U DE. 0 1+zge" —1 —1

(2.13), by
00 0 0

0 0 0 0
8&~ ~' ~& ( j, k; j+1,k) = I. —1—zge-"

0 0 0 sg '—s2 (3.3a)~~.~(8) =
0 1

00 0 0
and 0D

for 1&j&25R,00 0

1+e" —1 —10 0
B&~"~&( j+1,k;j, k) =

—e se0 0
(3.3b)~flo,o(8) =

0 0 —(zo '—zo) 0 0

0(2.16)

0 0 0 0

0 0 0 0

0 0 0 s2

0 0 0 0

for 1&j&J—1 when k=0 and 1&j&J'—1 when k=S

0 0 0 (3.3c)+~.~+~(8) = 18~+—~ ~ (8) =

0 0 0 0
5&~ ~'~& (0, k 1, k) =

0 0 0 s' —s for 1&j&29R—1,
0 0 0 0

0 0 0 0

0 0 0 z

0 0 0 0

00 0 0

0 So,i(8) = —Si,o'(8) = (3.3d)0 0

0 0
8&~~'~&(1 k 0 k) = (2.17)

0 0
and all the other matrix elements are zero. Since both
6( ~ and 8( ~ '~' have only nonvanishing matrix ele-
ments for rows and columns labeled by U and D, it is
convenient to eliminate all rows and columns labeled

by R and 1. in 8(8). For this purpose, let Z(8) be the
4(20K+1) &&4(20K+1) matrix with

0 0 0

0 0 —(z '—z) 0~

for 4 =0 or E, and all the other elements of b(~ ~' ~' are
zero. Note that the number of nonvanishing elements
of 8&~ ~'~) is independent of E

Higher-order correlation functions can be easily
written down in the same form.

0 0
(3.4a)3. PARTITION FUNCTION (1+zge") ' (1+z&e "') '

This section is to be devoted to the evaluation of
detS, which appears on the right-hand side of (2.7).
We first note that 5 is nearly cyclic in the horizontal
direction; accordingly,

—(1+ze") ' (1+zie "') ' 0 1

for 1&j&25R,
0 0

0 0det5=11o det8(8),

where the product is over the values

8=i (2N —1)/(2x)

(3.1) ~ (8) (3.4b)
(1+e") ' (1+e ") ' 1 0

—(1+e"')-~ (1+e-")-' 0 1
(3.2)

and all other matrix elements are zero. Let

(3.5)with m=1, 2, 3, ~, 2K, and 8(8) is a 4(25K+1) X '(8) =&(8)+(8) '

THEORY OF TOEPI. ITZ DETERMINANTS



S. M. McCOY AND T. T. WU 162

then by (3.3) and (3.4), 8'(8) is given by

0 1+sic"'

for 1&j&25R,

—1—age "

2izi sine
I

1+sic@
I

' (1—zio)
I
1+sic"

I

(1—zi')
I 1+z '

I

' —»z»ine
I
1+»e'

I
'~

(3.6a)

So,o'(8) =
—1—e"

2i sine
I
1+e"

I

'

—2i sine
I
1+e@I '

(3.6b)

and all the other matrix elements are identical to those for 1&j&29R,
of 8(8).Because of (3.6), it is convenient to introduce
the symbols G,o(8) =

—c 0
(3.8b)

a=2iz, sinS
I
1+s,e" I-',

6= (1—s,')
I
1+s,e" I-'

(3.7a)

(3.7b)

0 c

0 0
&~.~+i(8) = -@~+i, (8) = (3.8c)

(3.7c)
for 1&j&29R—1,

db

c=2i sine
I
1+e o

I

'

and the 2(25K+1) X2(29K+1) matrix K(8) define y

s2 0

0 0

D U
D —a fi

@o,i(8) = —Ki,or(8) = (3.8d)
s 0

(3.8a) and again all the other elements are zero. More
explicitly, the matrix @(8) is of the following form:

0 c

6 s2

—Zg (3.9)

~ —a

—6 ag

and detg is given by

det5=1IoLI 1+e*' I'
I

1+sic"' I~ detK(8) g. (3.10)

Let +(8) be the determinant of the 2(++1))&
2(n+1) matrix of the form (3.9), and X)„(8) be the
corresponding (2n+1) X (2m+1) determinant with the

(3.12a)
Z2 Z2Z~ —1 (8)sod„(8) —AZ2

last row and last column removed; then

detK(8) =(Koza(8) . (3.11)
The recurrence relations for 5„(8) and X)„(8) are

&(8) —a'+5' azo K. r(8)
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fox e& 1, and

Kt(g)

st)t(g)

—a'+I)' as @(8)
(3.12b)

z22 z'ss '2()(g)

with the eigenvalues

&= I1+zte"
I

's2(1 —«t*)~

}t'=
I
1+ste+ I 's2(1 —sts)n ' (3.14)

together with the boundary conditions

Kp(g) =—c' and X)p(g) =—c. (3.13)

where n is the larger root'in magnitude of the quadratic
equation

(1+sts) (1+z22) —st(1 —z22) (e*'+e ")
—ss(1 —zts) (n+n —') =0. (3.15)

The 2X2 matrix that appears in (3.12) is Hermitian More explicitly, o( is given by

o(=rzs 1(1—S 2) —t

x {(1+sts) (1+z22) —st(1 —s22) (e@+e +)+ (1—z22) I (1—nte@) (1—crte @)(1—(22 'e") (1—(22 'e "''l ]'(2}, (3.16)

where

~2 =st(1—
I ss I) /(1+ I ss I)

~=st '(1—
I

ss I)/(1+ I zs I) (3»)
The normalized eigenvector with the eigenvalue ) of
(3.14) is

(3.18a)

and

t)'= {2211—(V—X) '(ss'+a2 —6') j}'I'sgn(ias2). (3.19)

Note that

1)/t) 2 (z2 }t)/ (ftzs) &(ts2/ (zs }t ) (3 20)

With Eqs. (3.18)—(3.20), the equations (3.12) with
the boundary condition (3.13) can be solved to give
explicitly, for n&0,

(r„(g) = }(nt)2(—C2 jzsss —tet)'/t—)) —}t'nn'2 (C2+jssss—tet)/t)'),

while that with the eigenvalue X' is
and for n&l,

(3.21)

where

{2
I I+ (}tp }t)

—1(s22+a2 f)2) ]}1/2

(3.18b)
Z2X)„(g) = i}(nt)"—(C'n/t)' is'Z2 —C)

+.2} '"i)'(C't)'/t)+is'zs 'C) . (3.22)

The substitution of (3.21) and (3.11) int, o (3.10)
gives that

Since

detg=IIp{4 I
1+e@I 'sin'8

I 1+zte" I'~}(~In'(I —ss'ss 'c 't)'/t))+cr ' t)"(I+sz'z 'c '&/t)')]} (323)

and
114

I
1+e"

I
=2 (3.24)

11e I
2 sing I =4,

(3.23) can be simplified and the substitution into Eq. (2.Z) gives

(3.25)

Z'= (2 coshPEt)"xst(coshPE2)4~( s '&(coshP@)4~

XIIp{I 1+stepp I4~})~I l)2(1—sssz2 'c 't)'/n)+n 4~i)"(1+issss 'c 'n/t)') j}. (3.26)

So far, the calculation is valid for any BR and K. We now take the limit of large 5K and large K for fixed T/ T,.
We can therefore drop the term proportional to o( 4~ in (3.26) and Z is given approximately by

where

—p ' lnZ 49RKP+4K5p+2Ktt'(@),

p= —p 'Iln (2 cosbppscoshppo)+(4s) sf dplno 1+ssss(sk(p))I

(3.2'/)

(3.28)

The sr in this paper is not related to that of B. M. McCoy and T. T. Wn, Phys. Rev. 155s 438 (1967}.This paper is here-
after referred to as II.
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2{is+{)(@)= 8—' —}8cosh(}E + }n coshd{8+(4 ) f 'd8 lr [s'(1—zs's, 'c 'o'/o) j (3.29)

Physically, Ii is the bulk free energy per site, $0 is the boundary free energy per boundary site in the absence of
the magnetic field, and g(Q) is the increase in boundary free energy per boundary site interacting with the mag-
netic 6eld. Thus, $0 is independent of O and P(0) is zero. Accordingly,

{is=—',P ' —ln coshdE + (4rr) 'f dlt inn' (3.30)

{1{(@)= —8 ' lr coshdd)+(4z) 'f ddln(1 —ds's 'c 'n'/o)

By (3.19), (3.7), and (3.14), Eq. (3.30) is more explicitly

(3.31)

{),=—8 '(—lncoshdE, +(4 ) fd8ln'-, '{1+ '(1—sd) '( — ') '[(}+ed)(1—z,') —2z, (}-{-zd)coed])) .

(3.32)
Similarly, by (3.20), (3.14), and (3.15), Eq. (3.31) is

I'

{i(@)= —8 '
{ ln cosh{}@+(4z) ' 88 }n{l—zzrrsz r

{
1+e'r {' [zs(1+s,'+2zr coed) —(1—sd)oj ')) (3 33)

The free energy i5'o in the absence of a magnetic field is considered in detail in the next section, while
the quantity Q(@), or more precisely 5'(Q), is studied in Sec. 5.

4. BOUNDARY FREE ENERGY AND SPECIFIC HEAT (@=0)

In this section we discuss the thermodynamics of the boundary in the absence of a magnetic 6eld;
more speci6cally, we study the boundary free energy as given by (3.32) together with the boundary entropy and
boundary specific heat, both of which are essentially derivatives of $0 with respect to the temperature T. The
interesting features are to be found i~ the vicinity of the critical temperature T, : there the boundary entropy is
unbounded while the boundary specific heat has a singularity of the form (T,—T) '. These features are not
possible for the corresponding bull& properties, and remind us very strongly that we are dealing with boundary
effects. They are also closely connected with the large fluctuations at 7=T„already mentioned in Sec. 8(G) of I.

Equation (3.32) can be simpli6ed by using (3.16) and (3.17):

, {'
5'0 ———2P

'
~

—ln. coshP++ (4n.) '

X d8ln-{1+[1+, , —(,+, ') coed][(1—e")(1—,e ")(1—,'ee)(1—,'e e)] "'))

'8 ' —In coshdE +—(-4z) fdd ln-'[2+8'(8}+8 '(8) j (4.1)

where it follows from (4.1) that

(4.2) E, -8 '
Ih coshdEs —(2 ) 'J dd ln-', [1+=8(8)j

is de6ned to be positive, at 8=m if s~ &0 and at 8=0 if
si&0. Equation (4.2) is to be compared with (1.10)
of I. Since

(4 3)

(4 4)

Equation (4.4) is the desired result.
We begin with a qualitative discussion of $0 as given

by (4.4). First, as may be expected, 50 is 6nite, non-
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negative and independent of the signs of Ei and Eo. and
The behavior of Pp in some simple limiting cases is as
follows.

(a) T—&0 for fixed Ei and Eo. In this case,

Qp-+ipP ' ln coshPEp. (4.17)

s is the result for the one-dimensional Ising model,
and may indeed be written down without calculation.

(f) Eo~0 for fixed Ei and T. In this case, so~0,

(4.18)

(4.5)

(4 6)

(4.7)

(4.8)

(4 9)

sy~ sgnE))

so—& sgnEo,

ng—&0,

ng—&0,

Ay=0, 2 =By)

and Eqs. (4.16) and (4.17) hold; i.e., 5'p—&0.

The rest of this section is devoted to an analysis of
the behavior of Qp when T is near T,. Since there is no
magnetic field, Pp depends only on the magnitudes of
E~ and E2, but not on their signs. Therefore, without
loss of generality, we assume both Ei and Eo to be
positive. With this convention, n2 = 1 when T=T,. An
inspection of (4.4) with (4.2) then indicates that the
expansion of Pp for O.o near 1 may contain terms pro-
portional to the following: 1, (1—ao) ln

~
1—no ~, 1—np,

(1 n&)—' ln
~

1—no ~, (1—no)', etc. We are only inter-
ested in the terms containing the logarithms, since they
are responsible for the singularities in the boundary
entropy

$(B)—+—e P sgnEi,

e.-l I Eo I. (4.10)

(b) T +~ for—fixed Ei and Eo. In the case, P~O,

~(B) =1+0(~), (4.11)

(4.12)—+0.

(c) Ei~~ for fixed Eo and T. Here sinai,

(4.13)

(4.14)

cL]~exp+ 1) (4.19)8= Bgp/BT—
$(tt)-+—e "'(1—nie") /(1 —aie "),
and

and the speci6c heat

c„= TBgp/BT— (4.20)

gp—+-',P 'Lln coshPE2 —ln-', (1+ixi)]=-',
) Eo ). (4.15) The computation of these required terms is rather

complicated. The Grst step is to change the variable of
integration to

(d) Eo-+op for fixed Ei and T. This case is very
similar to (a); in particular, (4.6)—(4.10) hold.

(e) E~-+0 for fixed Eo and T. In this case, si~0,
eg—+0, a2 ~0,

ip = (e"—1)/(e" +1), (4.21)

e(B) 1,
so that the path of integration is changed from the

(4.16) unit circle to the imaginary axis. The result is

where

&OO

5p=-'P '~ ln coshPEo+Ar ' dpp(1 —co ) 'in-', {1+L(ri—cp) (ro —oi) (ri+oi) '(ro+co) 'O'I I ~,l $CG )

r'= (1—~')/(1+~*)

(4.22)

(4.23)

for o=i, 2. In (4.22), the square root is equal to 1 as p&~+ipp. It is convenient to redefine the square root by
the value at or =0. Thus

&m

go ——-',P '
~

ln coshPEo+irr ' do&(1 —oi') ' 1n-', {1+L(ri—co) (r+co) (ri+&o) '(r —oi) 'j'~o)
~—$00

for T&T„and

( $QO

go ——-,'P-'
I

ln coshPEo+i~-' dop(1 —pp')-' ln-'{1—
t (ri —pi) (r—oi) (riyM)-'(r+oi)-']" I ~

(4.24a)

(4.24b)

for T(T,. In (4.24), the square roots are defined to be 1 at &p=0, and

r =ro sgil(T. T). —

The second step is to continue analytically in r, taken to be a complex variable. Define discQp by

discQo =go(re'") —ao(r)

(4.25)

(4.26)

We consider the case T)T, first. Both so(r). and Sp(re'~') are given by (4.24a) with the contours of integration
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shown in Fig. 4(a) and Fig. 4(b), respectively. Accordingly,

discs'p ——rpjP s do)(1 —o)P) in{ j,+L(rg —o)) {T+pp) (rr+o)) l(r —o)) ~j IP} (4.27)

where the contour of integration is shown in Fig. 4(c), which was first used by Pochammer" nearly a century ago.
It follows immediately from (4.27) that
dlsct fp=SP

d(p(ln{1+L(rr —(p) (r+o)) (rl+o)) (r—o)) lj IP}—ln
I

1 I (r& o)) (r-}-o))(T&+et))-l(r &) ljl P I).

In the form (4.28), it is straightforward to expand into a power series in r; the two leading terms are

(4.28)

dlsc5'p=iP-'& 'r
I dg{lnL1+(1+g)' '(1—g) 'I'g —ln

I
1 (1+g)' '(1 g)

—rl r dg{g(1/g) (1 g) I 1+(1+g)v (1 g)

(4.29)

The integrals on the right-hand side of (4.29) are easily evaluated; the Grst one is found to be pr, while the second
one is —-',x. Therefore

dls cf tp1p $T+prl T +O(r ))
for T) T,. This implies that Qp is, for small positive r, of the form

5'p = Taylor series in r+ (2x.P) 'Pr+ p rl 'T +0(r )j lnr.

To obtain the corresponding result for T&T„ it is convenient to introduce the function

&m

pr = p r((ocosbpro+(rr r drr(1 —«') rlo-, ((+D r —or)(c—ro)(cr+or) '( +o) 7I') I.
$(O

(4.30)

(4.31)

(4.32)

which differs from gp of (4.24b) only in the sign of the
square root. It is easily verified that Sp+5'p is analytic
in v for sufficiently small v. Therefore, it follows from

It remains to substitute (4.35) into Eqs. (4.19) and
(4.20). Let zl, and zp, be the values of zl and zp when
2 =T„so that

ap = Taylor series inr+(2xP) ' ~1c ~2c lac (4.36)

that
XLT—pr& 'T'+O(r') j lnr (4.33)

gp= Taylor series in r —(2sP) '

XLr —-', rl 'r'+O(r') j Inr (4.34)

for T&T,. Note that the imaginary part of each of the
logarithms in {4.24) and (4.32) has been taken to be
less than z in magnitude. By Eq. (4.25), (4.31), and
(4.34) can be combined in the form

Theo it is easily verided that, for T near T„
rp ——L(kr) —'—(kr )-'g

X {sl—Elp(1 —zl,) (zl,+zp, ) (1—zp.) '

XL(ur)- —(ur, )- j+OL(r —r,) 7}, (4.37)

st= (1—zp, ) '{El(1—zl,)++(1—zp, )j. (4.38)

Accordingly, since at T=T,
pe = Taylor series in rp —(2xp)

—'
Tl= (1—zl.)/(zl. +zp.), (4.39)

XLTR prl rp+O(rp )]ln
I » I (435)

p I( 1 —L 2) (1 T/T )
for both T&T, and T&T,. Note that the Taylor
series to be used in (4.35) is different for T& T, and
for T&T,. %e shaO return to this point later in this
section.

X {a—xzp(1 —Tlr.) +OL(r-r.)'l} (4 40)

"See, for example, L. J. Slater, Generahee(f Hyf)ergepraetrec
Functions (Cambridge University Press, Caxnbridge, England,
1966), pp. 22-23.
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where

e2 (~Te) (1 z2e) (zle+z2e) {3+1(1 zle)

+2ElZg(1 —s2e)+Zp(1 —s2,)'/(1 —sl,) }. (4.41)

The results for the entropy and the specific heat are thus

8=—(2m.T.) 'sl ln ( 1—T/T,
~
+0(1), (4.42)

and

c.=—(2n.)
—'Lsl(T —T,)

—'

+s2T, ' ln ) 1—T/T,
~ j+0(1). (4.43)

Note that sl is positive so that 8 is unbounded from
above for T near T,. This and the singularity of c„are
already discussed at the beginning of this section.

These singularities can be easily understood in the
following way. Suppose, in an infinite, two-dimensional
Ising lattice, we change the interaction between a pair
of nearest-neighbor spins —an impurity bond. The
change of free energy due to this impurity bond is

easily expressed, in terms of the two-spin correlation
function (ee,oeo,l). Near the critical temperature, the
resulting changes in entropy and speciic heat exhibit
precisely the kinds of singularities of (4.42) and (4.43) .

We write down more explicity the singularities of 8
and e„ for the special case Ej and E2'.

p= —k(22r) 'Lln(1+02) )Lln )
1 T/T—,

~
+0(1)j,

(4 44)
c.=k(22r) 'Dn(1+@2)j{(1—T/T, ) '

—AX 'Lln(1+&2) )gin I
1 T/Te I)+0(1)}. (4 45)

Equation (4.42) does not quite tell the whole story.
It should be supplemented by

limPS(T, +8T) —8(T,—8T) g = —2isg/T, . (4.46)

This "latent heat" is not understood by the authors.
In spite of the peculiarities of the boundary entropy

exhibited in this section we will proceed to a discussion
of the boundary magnetization and hysteresis.

S. MAGNETIZATION AND HYSTERESIS

Attention is next focused on the additional boundary free energy due to the presence of a magnetic field, as
given by (3.33). More precisely, we shall consider the magnetization Ki of the first row. The substitution of
(3.33) and (3.27) into (2.10) gives that

~i= —6'(O)

=s+ (4nr) '(1—s2) (8/Bs) d8 in{1—s2sls2 l
~

1+e@ ~2 Ls2(1+si2+2sl cos8) —(1—si2) a] '}

=s+ (2n.) '(1—s ) szl d8 )
1+e" t' Lz'si )

1+ee2 ~' —s2'(1+sl'+2» cos8) +s2(1—sl') ag '.

Clearly, Kl~i as @-+ec.
lt is useful to rewrite (5.1) in the following two ways. First, by (3.15),

Ri=z+(22r) '(1-s')z d8$ —z2(1 —sl)a+(1+sl))Lz2(1 —sl) (1—s')a —(1+sl) (s22—s') j '. (5 2)

Thus the integrand is singular if and only if

a= E(1+») (z"—z') j/E»(1 —zl) (1—z') 3.

Alternatively, a as given by (3.16} may be substituted into (5.1) to give

Kl=s+(22r) '(1—z') szl d8 { 1+e" ~' (s'sl ~ 1+e" )2 —',sl(1+ ( z2 ))'

(5 3)

X {(1+ala2) (e@+e "') —2(al+a2) —2L(1—ale@) (1—ale "') (1—a2e@) (1—a2e @)jl~2}) '. (5.4)

(5 5)

(5.6)

At least when T(T„that is, { al j (1 and { a2 { (1, the last factor in (5.4) can be further factored to give

9Jll ——z+ (2%) (1—s )4z d8
~
1+e+

I (el62)

where
Ol =2z(1+e+) —(1+

~
s2 ~) {((1—ale@) (1—a2e@))'I' —eNL(1 —ale @)(1—a2e ")f12},

82=2z(1+e "') —(1+ ( s2{){{(1—ale +) (1—a2e ~)g'~' —e "L(1—ale@) (1—a2e+)]'I } (5.7)
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with both square roots defined to be positive at 8=0 and s.. The right-hand side of (5.5) may be expressed as a
partial fraction

Kt ——z+(2~)-'(1—s') d8L(1+e*')e;r+(1+e-")es-']. (5.8)

This form is needed for purposes of analytical continuation.
We study in some detail the location of the singularity of the integrand as given by (53).Let r be the value

of e+"' such that (3.15) and (5.3) are both satisfied. Therefore

r+t 1—zl l(1 zrs) 1(1+zl2) (1+z22) (1+st) s(zs2 zs) Lzl(1 z 2) (1 —z2) ]—1

2s(1 zl)2(1 zs) Lzr(1 zs2) (z22 zs) ]—1

where
=2{(1—nrns)' —2(nr+ns)ns' —ns']/L(1 —ntns)' —2(1+ nrn)ns'+ns'],

ns=2z/(1+
I zs I).

(5.9)

(5.10)

With the additional condition
I
r I &1, (5.9) gives, with an appropriate choice of sign,

r —L(1—ntns) —2 (1+ntns) ns +ns ]
X (L(1 nlns) 2 (nl+ns) n3 n3 ]+2{n3 I ns (1 nl) (1 n2) ]I (11nl) (1+n2) ns (1 nlns) ]j ) (5 11)

II.(1+ }(z'—')]/L (1—) (1—')] I
&1.

Since
I

s I &1, (5.12) holds if and only if either

z'&
I

zs I (1—nt)/(1+nr) (5.13)

The qualitative motion of t is of interest. In the e~

plane, n has four branch points at ny, ng ', a2, and n2 '.
Ke de6ne the cut plane for e" by joining these branch
points pairwise along the real axis; thus the unit circle
does not intersect the branch cuts unless

I ns I
=1. In

this cut plane,
I

n
I

&1. Therefore, by (5.3), there is a
pair of singular points at g and t ' in the cut pLane if
and only if

(5.16), it is zero unless T&T, and Et&0. We consider
only this case. Expansion about 0=0 gives

n zs(1 —zr) '(1+st)

X{1+st(1—zss)I zss(1+sr}'—(1—zr)'] '8sj (5.18)

from (3.15) or (3.16), and hence

Kg(0+}= lim(2s. ) 's d8
e-&0 —00

X {zs+zlzssLz22(1+zl)s —(1 zl) 2]—182}—1

=-'zt '"
I

zs
I

'I z '(1+sr)' —(1—s ) ']'i' (5 19)

or
T&T„

This is the desired result. In terms of Et and Es, (5.19)
1s

cosh2PEs —coth2PEt 'is

cosh2PEs —1
z'& Iz I (1— )/(1+n). (5.14) Kr(0+) = (5.20)

Accordingly, in the cut plane, z is real; moreover,
This vanishes at the critical temperature as (T, T)'", —

0&tyng&1

when (5.13) holds and

0&n2&x'& 1 (5.16)
PLANE

CONTOURS

OF
INTEGRATION

PLANE

when (5.14) holds. In (5.16), r=1 if s=0.
With this information on r, it is clear that Kr is an

analytic function of @ except when T&T, and @=0.
We proceed to study the behavior of Kr near @=0
and also the analytic continuation of Kr as a function
of

A. Spontaneous Magnetization

The boundary spontaneous magnetization is dined
to be

(o}

SRANGM

GUTS

CONTOUR OF
INTEGRATION

Kt(0+) = lim Kt(@). (5.17)
GUTS

(c)
0~0+

By (5.1), it is zero unless r—+1 in this limit. That is by,
Pro. 4. The contours of integration for Qe(r}, 5'0(re'~'},

and disc ge.
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as compared with the eighth root for the bulk sponta-
neous magnetization of Yang. ' As may be expected,
the boundary spontaneous magnetization Ki(0+) is
less than the bulk value. The result is plotted in Fig. 5
for the case Ei ——+. It is conjectured that, for zs&0
and g) =0+, R~(Kg~i, and as J~ao, Rg approaches
the bulk spontaneous magnetization. We shall return
to this point in Sec. 9.

The boundary magnetic susceptibility at zero Geld
can also be obtained from (5.1). Note that in (5.17)
the limit @~0+ is taken after the thermodynamic
limit 5K~~. In Appendix B, we study the behavior of
Ki for small Q and large but finite OIL It is shown that
in this case Ki is continuous but varies extremely
rapidly for @ of the order of $zs '(1—zi) (1+zi) ']4~.

I.O

0.9—

0.8—

0.7—

0.6—

0.5—

04—

0.2—

0,1—

M

= BULK M

I I I I I I I I I

0.1 0.2 0.5 0.4 0,5 0.6 0.7 0.8 0.9 I.O
T/Tc

BEHAVIOR ~EAR CRITICAL TEMpERATURE Fin. 5. Comparison of R and bulk magnetization for Z =En
as a function of temperature.

We apply essentially the same procedure to study
the behavior of Ri when 2' is near T, and @ is positive
and small. We shall consider only the ferromagnetic
case where E~&0. The basic idea is still to expand
about 8=0, but the actual computation is somewhat
less straightforward than that of spontaneous magnet- where

Ki Ki"'+KP', (5.21)

ization. Consider Grst T&T„we neglect throughout
terms in Ki of order z. Then it follows from (5.4) that

Ki&'& = (2a.) 'zzi d8
~
1+e")' I iszt(1+

~
zs ))'L(1—nie+) (1—nie ")(1 arse"—) (1 use —")j")'' (5.22)

Ri&s& = (2m) 'zzi d8
)

1+e's ~' L (z'zi
)
1+e"P —4zt(1+ [ zs ))

s
f (1+nins) (e 0+e ")—2(ni+ns)

—2$(1 —rrte@) (1 —ore
—~') (1 —o,e~~) (1—o,e—@)/Is I

)-i
—(rszi(1+ ~

zs ~)
s [(1—nte@) (1—nie ~) (1 nse") —(1 otse "—) j"') ']

These two parts are to be approximated diGerently. Since 0.2 is close to I,

(5.23)

Rio&~8z 'z(1+
~

zs ~)
s d8L(1 —nse@) (1—use @)] 'Is

0

= 16z z(1+
~

zs ~) (1+os) Et'2nsi~ (1+ms) g —2z zzs i ln(1 —ns), (5.24)

where Z denotes the complete elliptic integral of the first kind. In order to compute Ki&'& approximately, we
expand all e"' into power series for small 8:

R,&»~2z —'z d8L(4z' —st(1+
~
z, ~)s I (],—oi) (1—rr,) —(1—~,) L(1—os)s+8'g'~'I) —'

—(-'(1+ I zs I)' (1—~i) L(1—~s) s+89") 'j (5 25)

A change of variable reduces the right-hand. side of integral in (5.26) can be approximately evaluated
(5.25) to

OO (1—p) d8(p —1+ cosh8) '
Ki&'& 2z 'zzs '(1—p) d8(p —1+ cosh8) ' (5 26) 0

0 = (2y)-»s~ —lnL1+-', i z, i Iij+O(1). (5.28)
where

p=2zs
I zs I

'(1—o. ) i (52') In (5.28), the coefficient of p in the logarithm is
arbitrary; it has been chosen to make (5.29) below

Note that p can take any real positive value. The simple. The desired result follows immediately from
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@)0 to negative values of @.Let Kr', defined for some
nonpositive @, be such that Rt(g)) with g))0 and
K&'(@) with @&0taken together be analytic at @=0.
That this analytic continuation is possible can be most
easily seen from (5.8), where II& and IIs each has at
most one zero in the cut e+ plane. For O small, eq has
a zero outside the unit circle namely the r of (5.11),
while 52 has a zero outside the unit circle, namely r '.
After analytic continuation to negative small values of

Z'= [Z, &I-a,i (+a,

Fn. 6. Hysteresis loop for the magnetization on the Grst rove.
Solid curve gives gP&, while the dotted curve shows its analytic
continuation.

and, still as before,

(5.33)

Eqs. (5.21), (5.24), and (5.26) —(5.28):

For @(0,the difference between Kr and PPt' is due to
the residues at t and t '; more explicitly,

L(1+st) (zs —z ) —zss(1 —zt) s(1—zs) sj. (5.35)(5.29)

PPt'(@) —Pgr(@) =2z(r '—r) '(1—z') —'z '(z' —z') —'
K&~ [ zs [-"'(1—as) 't' sgnz —2s —'z

[
zs [

—' ln(1 —ns+z')

for T&T,. The computation is virtually identical in
the case T)T,. Equations (5.21)-(5.23) hold without
modification, and (5.24) is also valid if ns is replaced
by ns '. So far as K&&@ is concerned, the main change is
the appearance of 1+ coshtl instead of —1+ cosh8
The result is

(5.30)

for T&T,.
As z—+0+, (5.29) agrees with (5.19) and exhibits

the square-root behavior explicitly. At T=T„ it follows
from either (5.29) or (5.30) that

(5.31)

Thus the boundary magnetic susceptibility is not hnite
at T=T,. More generally, we get from (5.29) and
(5.30) that

BRr/8@ [o s= —2s 'P cothPEg ln [ 1—ns [+O(1)
(5.32)

both above and below the critical temperature. In
other words, the boundary magnetic susceptibility at
zero Geld has a logarithmic singularity at the critical
temperature. This is qualitatively different from the bulk
magnetic susceptibility, as obtained by numerical com-
putation by Baker.6

C. HYSTERESIS

%e return once more to the ferromagnetic case
below critical temperature, i.e., T&T, and E~&0. As
seen above, Kt is an analytic function of @ for all

@&0, and Kr is discontinuous at Q=O. We discuss
here the analytic continuation of ggr, since Kr is odd,
it is sufficient to consider the continuation of r for

When —@ is small, the right-hand side of (5.35) is
positive and decreases with decreasing Q. It reaches
zero, as seen from (5.12) and (5.14), at

z'=
[ zs [ (1—~s)/(1+~s) (5.36)

Substitution into (5.36) then gives

Is[ [zs [. (5.38)

Thus, in this limit of zero temperature, the hysteresis
loop becomes a square, as shown in Fig. 7. Note that
the limit T~O of the analytic continuation of Kt(@)
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I'go. g. Hysteresis loop @t zero temperafurg,

The situation is thus as shown schematically in Fig. 6.
It is natural to interpret this 6gure as a hysteresis

loop. From (5.36), this loop shrinks to the single
point @=K=0as T~T, .As T +0, [ zs—[is—close to 1,
and hence by (3.17)

(5.37)
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is different from the analytic continuation of

limKg (@).

6. DISTRIBUTION FUNCTION

We consider further in this section the ferromagnetic
case where T&T, and E1&0.Even though it is natural
to identify the loop of Fig. 6 with hysteresis, the
situation is actually much more involved. In order to
get some more insight into the meaning of K~' ob-
tained by analytic continuation, we consider the dis-
tribution function in the limit of zero magnetic Geld
for a given 0 such that Ko is an integer less than %
(b is the Kronecker delta) .

(
x 0&o &Rg(0+); (6 8)

FxG. 8. Logarithm of the distribution function in the absence
of a magnetic GeM.

0 =Rg'(p) . (6 g)

b( Q og, g
—2oto) ) then the point of steepest descent is shifted to the

analytic continuation of Rq. That is, (6.5) is still valid
provided that we note that the point of steepest descent= (4%) (exp(27l'ik (4K) ( O'I. ,g 2%0') j)

H—2%+1 k—%+1

=(4X) 'Z(0) ' g exp( vriko)—Z(2mikP 'X '). Thus, for (6.8), (6.7) tates the form
k=2gL+1

(6.1)
C C C (6.10)

—iP(2s) ' &«xp I
—2&&2~+5'u) 3f (6 2)

Therefore, . the function K(o) de6ned by

+(0) = lim(2K) 'inLlim(8( g oq, q
—2Ko))g (6.3)

can be obtained from (6.2) by the method. of steepest
descent. First let

then
a)Rg(0+), (64)

K(0') = —pL&~+5'(p) )0, (6.5)

where the right-hand side is evaluated at the point of
steepest descent

a+5'(P) =0

0 =Kg(&) (6.6)

by (5.1). Therefore, if we identify 0 with K& and $
with gl (6.5) is

It is important to note that this distribution function
is nom-negative. I et 5K and X be very large; then by
(3.27), which is applicable even to complex @,

(S( P, ,—2X-))
~$5+1

2X
-(4X)-' g e. pI —ik- —2+PS(-,'i'-Z;) I

k=29j+1

where P is the analytic continuation of g. For sim-
plicity, we shall use (6.7), with 0&R&&1, to mean
both (6.'7) and (6.10). In particular, differentiation
with respect to Kq gives

NBj&R&=—p@.
Thus

K=K'=0 (6.12)

at @=0, i.e., R~=(0+}.In other words, the distri-
bution does have a maximum at o=K~(0+). The
curve gg(o) is sketched in Fig. 8. Note the discon-
tinuity of K'(o) at 0 =0, as given by (6.11).

When a magnetic 6eld is present, we can still de6ne
K(0, P) through (6.3) . This is very simply related to
K(o) =K(0, 0) through

+(o, @)=+(0)+P@o—const, (6.13)

where the constant, which is independent of o, is
determined by the condition

max&(o, @)=0.
—l(f(1

With reference to Fig. 8, we see that, for
~ @ ~

not too
large, ZB(o, @) has two maxima, located at 0, and o ~,

say, with 0,)o g. For @)0, the right maximum at o, is
larger, while for Q &0, the left maximum at 0 ~ is larger.
For @)0,by (6.11) and (6.13), o„ is located at the
point where

R&(@)=0,. (6.15)

Similarly, for @&0 and
I 8 I s»anciently small. a„

satisaes
+=K(92&) = —P(@K&+g}. (6.7) Kg'(g) =0,.
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Finally, we remark that, as seen from (6.3), the
limit 5K~00 has been taken before the limit %~~.
Some of the results of this stction depend on this order
of taking limits in a way which will be made precise
in a separate communication.

7. INVERSE MATRIX

FIG. 9. Alternative hysteresis loop for the magnetization on
the hrst romp.

However, as seen from Fig. 8, the right maximum
disappears after o, reaches 0. For values of Sg such
that pal'(@) (0, K(o, @) has only one maximum, . In
other words, if and only if

93h'(g) )0 (6.17)

this analytic continuation is closely related to the
secondary maximum of the distribution function.

The discussion in the Introduction about the hystere-
sis loop is based on the results of this section. In
particular, in the absence of any mechanism to prevent
the metastable state from becoming unstable at

~ O ~

=
@„ the hysteresis loop takes on the form shown in
Fig. 9, instead of that of Fig. 5. Any loop intermediary
between those shown in Fig. 6 and Fig. 9 is possible.
However, as T—&0, that of Fig. 7 remains.

We write down K(0) for T near T, and o small
from (5.29), (5.30), and (6.7):

K(0) 2r 'z'
~

z2
i

—'1n(~ 1—a2 ~+z') (6.18)

where 8(0) is defined by (3.3) and 0 by (3.2).
We may easily find the elements of 8 ' in the U, D

subspace by relating these elements to the elements of
K 'LK given by (3.9)$. We first remark that if we
rearrange the rows and columns of 8', 8, and K (as
defined in Sec. 3) so that all Z, I. rows (columns)
precede all U, D rows (columns) and call the resulting
4(25K+1) X4(25K+1) matrices,

41 &12

h22 h21 4
and (7 2)

where each entry is a 2(29K+1) X2(292+1) matrix,
then we may write, using Eq. (3.5),

f111 h12 hll h12

To use the results of Sec. 2 to evaluate correlation
functions and magnetizations in an arbitrary row, we
need to evaluate the matrix elements of 5 ' in the
subspace determined by 8~~ ~' ~&. In this subspace, the
rows (columns) of 8 ' may only be labeled by U or D.
We first note that because 8 is nearly cyclic in the
horizontal direction,

&t '(i, »i', &') =(1/») Z '" '"L~ '(8) j ', (7 1)

with the parameter z determined from

i
0

i
=

i z2i '"(1—n2)'' —22r 'z
i z2| 'ln(1 —n2+z2)

f21 h22 0 622' t21 1

—42' 'h12&22 '

for T(T„and from
(6.19) 0

~ (7 3)

with
K((r) 22r 'Z'

~
Z2

~

—'inZ,

~
0

(
= —42r-'Z

[ 22 [-' lns.

~

o.
i

= —22r
—'z

~
z2

i

—' in(n2 —1+z')

for T&T,. In particular, at T=T„
(6.21)

(6.22)

l=U, D, I'= U, D. (7.4)

We now compute 5 ' from the formula

LK- j,l,; 1.——cofactor K;.1.,;1/detK. (7.5)

The matrix K is just 622' with U and D interchanged,
so we have from (7.3) the relation

In other words, at T=T.,
K(0) ~

i
z [

0'/ln
i

0 i, (6.23)

or, from (6.3), roughly

(a( p ~, ,—2Xe))-exp(2~X[z2)~/in ~a~) (6.24)

To evaluate these cofactors, we define the 2nX2n
determinant g„ to be the determinan. t obtained from
K„by striking out the first two rows and columns.
Similarly, we define X)„ to be the (222 —1) X(222—1)
determinant obtained from X)„by striking out the first
two rows and columns. We evaluate E„and Q exactly
as we did in Sec. 3 and find

for small 0. Thus, even at the critical temperature, the
distribution function does not deviate too much from a
Gaussian.

(3 =1@."+'0'9,'"

j).=z -'iYb(lb. "—V") .
(7.6a)

(7.6b)
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Because K has only three nonvanishing diagonals, forj)0
we Gnd. for j&j'&1

jD,j'D j'D,jD

ljn, ov [~ joUiD

=scS s2 22sK i+I/RGK (7.7e)

=—s2~"f)~"22sK pA'-I/4sK, (7.7a) [+ '],v.ov=-[8 'jov, ,v'
' VjU= — ' 'U V*

=s2 "f) "Ko~j&j/@Z8,

gU,j 'D j8D,yV

=s2 "f) "+'522K jKj-I/GsK, .

for j&j'& 1

(7.7b)

(7.7c)

= —zcf).z2 1522K j/@20K,

[8 lov, ov CK22K/K2SKe

[~'3ji).0)2 =0e

[~'joi),OD= —c ',

and for all j
[~'lv, »=0.

(7.7f)

(7.7g)

(7.7h)

(7.7i)

(7.7i)
yD,j'U = j'U,jD

= —z2~8'6~j'-IX)2sK IX) '/KosK; (7.7d)
For Axed j, k, j' and k' as BK~ and %~00, @re have
for j&j'&1

5 I ( j, k; j, k )o))= —5 I(j, k; j, k)i)I)

(22()
—I (g eeo(k ke)~j—~ sz z

—I(1 —
z 2)—1(eeo e

—i8) (~—I ~)—I

,(., „, , (e"—1) (e"+1) '+is's2 In/t)'

(e"—1) (e"+1) ' is's —Ir) /b—

8 '( j, k; j', k') UU = —5 '( j', k'; j, k) Uv

= (2 ) fd8 ee. ee 'eeee" 'e,ee '(1—eee) '(e"' —e e) (
—' —ee)-'

(7.8a)

(e"—1) (e"+1)—'+ee'e —
'e/e')

1—n 2"
(e"—1) (e"+1) ' iz's I—n'/t)

5 '( j, k; j', k') Ul) = —8 '( j', k'; j, k)nv

(7.8b)

(22r)
—I $0 eio(k k&)~jI jz —1(1 z—„2)

——1((2—I (2)
—I[ 1+z 2+ot—lz

) 1+sleio ~2j

for j&j'&1

5 I( j, k;j, k )DU= —5 I( j, k; j, k)UD

, ((e(8—) (e"+1)—I+isoz2 IO/t)'

&(e"—1)(e"+1)-'—isoz It)'/))
(7.8c)

= (2m) ' dg e"(k k')(Ij' js2 '(1 sI2) I(a ' 0(—) '[1 sI2 —s2(2
~
1+z—le'8 ~—2]

for j&1

(ei8 1) (e(8+.1)—I+.izoz —ln/t)
X 1—cx 'j'

(e"—1) (e*'+1) ' is's In'/—t)

5 '( j k 0, k') 1)v = —5 I(0e k';j ) k) UI)

(7.8d)

(g~) —I dg ei8(kkI)&z~ jI1[-z (ei8 —1-)-(ei8+ 1)—IS/n~ iz2)-I (7.8e)
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K '( j d& 0 d&') = (2 ) 'f dd ee' "'sss ' 'r(s' —1) (e"'+&) '—ds'ss 's'/sj-

=—5 '(0, k'; j, k)pp, (7.8f)

5 '(0 k 0 k')ip ——(2m) ' d8e"&" "&p(e" 1—)(e"+1) ' i—z'zg 'b'/o5 ' (7 8g)

i(j k'P k')»=0

K '(0 d'0 d )ss '—(2=«) 'f ddsc&~"'(e"+1)(es—&) '
for all j&0

5 i( j, k; 0, k )pg) =0.

In the above, b/b' is given by (3.20) . We note in particular that

(7.8h)

(7.8i)

(7.8j)

@ i( j, k; j', k)» ——p i( j, k; j', k) z& =0, (7 9)

and that as j'~~, the elements of (7.8) approach the corresponding inverse eleinents of the bulk problem as
given by Montroll, Potts, and Ward.

In Appendix C we compute all elements of 8 ' as OR—+~, using a Weiner —Hopf technique.

8. BOUNDARY SPIN-SPIN CORRELATION

We may now use the considerations of Sec. 2 to calculate

(8.1)

for the special case J=J'= i. De6ne y to be the nonzero submatrix of 0&" '; then

10
D

10 D 0

1N D 0

00 U z-~ —z

1N

0

00
U

—(z-'-z)

ON
U
0

—(z-'-z)
(8 2)

ON U 0 z' —z

Define A to be the elements of I: ' in the subspace defined by y; then

& '(1, 0; 1s N)» @ '(1s o; o, 0)i~~ @ '(1s ps ps N)»

g-'(1, N; 1,0)»

g '(0, 0;1, 0)pg) 5 '(0, 0;1,N)pg)

5-'(1,N; 0, 0)a~ 5 '(1, N; 0, N)o~

5 '(0, 0;0, N)pp
(8 &)

5—'( , 0N1, 0) z)ir5-'( ,0N1, N) iJo5-'(O, N;0, 0)~U

Then (2.15) may be re-expressed as the product of two Pfaffians:

&i.i(» 8)
=&z'Pf(y '+C}) Pf(y)

=&(1—z2)'(pK '(1 0;0, 0)g)p —(z ' —z) 'y —5 '(1 0;1,N)Dg)g '(0, 0;O, N)irp —Lm '(1, N 0 0)o y} (84)
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Using the explicit forms of the matrix elements of 5 ' found in the last section, we have

s(1—s')
+Sz,z(N, @)= sz d8 ) 1+e" (' (zzz

(
1+zze" P —z'zz

)
1+e"~z-zz(1 —zzz)n) '—z

2g

2

—(1—z)' — d8e' z
I
1+e+ Izs&(@'

I
1+z~e@l' zzz&11+e@

I zz(1 —zq')n) '
2'

(2zr) ' d8 e'~'zq(e+ —1) (e "+1)(zzz
)

1+zze@ ~' —z'z~
)
1+e" ~' —zz(1 —zq') n) '

X (2zr)
—

d8 e; (eiz+1) (e~ 1)—i

XL1+zzsz I
1+el lz (szz

I
1+zqe+ I' zzsz

I
1+e" lz zz(1 —zzz)n) g (8.5)

where the erst term is recognized as Kz . If @~~, the right-hand side of (8.5) goes to 1; so, since we know that
Sz,z(N, @) must go to 1 when Q~~, the plus sign must be chosen in (8.5) when @ is large. Because S~,z(N, g))
is a continuous function of @, this consideration determines the correct sign in (8.5) for all @ unless there is an

O for which Sz,z(N, Q) vanishes. This only occurs at 6xed N when the lattice is antiferromagnetic and T& T,.
In this case, when @ is small, Sq, q tends to alternate in sign. The plus sign in (8.5) still holds but now we will
determine it by continuity from T=0, where Sz,z(N, g) = (—1)~ as is explicitly shown later.

Before considering asymptotic expansions, it is instructive to consider a number of simple limiting cases. To do
this in a systematic fashion and also because it clearly exhibits the several types of exponential behavior as E—+~,
we will shift the contours of integration of the integrals with a term e'~' in the integrand from the unit circle to
the contour I' which goes around the branch-cuts of n inside the unit circle. In doing this, we pick up contributions
from the poles at ezz=1, —1, and r. The form of Sq, q now depends on whether or not r is in the cut e"-plane as
determined by (5.13) and (5.14). We also rationalize the denominators in (8.5) and obtain the following forms
for the correlation where i =e" and we use the following notation:

~~z=4zz(1 —zP) (2zrz) ' di (f'z —1) '(Q'r ' —1) 'P '(r 'f 1)n '—
r

m~z=4zz (zz zz)'z'(zz -z') —' (2zri) 'd| i
—+'(P—1)—'(f —r) —'(r 'f ' —1)—'n

r

(2zrz) I di ~)~if 1(i'~2 1) 1(i'~ r) 1(r li ~ 1 1) ln 1

(2~z) ' di P(P 1) '(t —r) '(t 'V—' —1) 'n '

=,=s,(1—z,z) (2 i)-z df' f'& '(f' «) (r--'i '—1)--'(i+1)—(i —1)-' -';
r

if T&T, and s'&
~

zz
~

(1—nq)/(1+nq), then

Sg z(N gl) Kz +r zzP(—1+zz) '(s' —zz ) '—zz'( 1—z&) '( 1—z') ') (1—z') 'z '(z' —zz') '(r ' —r)

XL(1—zz) zz'(1+zz) —"zj+zL(1—zz)' —zzz(1+z&)'1(r —1) '(r ' —1) '(zzz —z) 'zz z~~z+Rz

(8.6)
if T&T„Ex&0, and either z'&

) zz ( (1—nz) /(1+nz) or z'&
) zz ) (1 nz) /(1+nz—), then

Sz,z(N, g)) =PPP —r z'L(1+zz)'(z' —zzz)' —zz'(1 —zz)'(1 —z')'](1—z') '(s' —zz') '(t' '—r) 'sz 'gz+Zz, (8.7)
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if T& T, and z'&
( zz ( (1-ag)/(1+up), then

Sl1(N g) =K12+z2&(1—zl)2 —z22(1+zl)21(r —1) 1(r 1) 1(z2' z) z&: 2+

if T&T„Eq&0, and
~

zq ) (1—&2)/(1+&2) &z &
( z2

~
(1—~i)/(1+~i), then

Si,i(N, @)=KB+.3,

if T&T„E~&0,and z'&
~

z2
~

(1—n~)/(1+n~), then

S (N @=K'—z'( —1)~(z'—z') 'z '(r+1) '(r '+1) 'Pz'(1 —z)' —(1+z)'j
X {(r—1) ~(r 1 1)—1E(1 zl) 2 z22(1+zl) 2 (1 z2)

—
1(z~2 z2)

—lrN

XL (z 2—z2) 2 (1+z~) 2—
z22 (1—z2) 2 (1—z~) 2jj+

+rNz2L(1+zl) 2(z2 z2) 2 z2~(1 —zl) 2(1 z2)2j

X (1 z ) z1 (z~—zz ) (r —r) L(1—zx) —z2 (1+») Alj

+z2E(1 zl) z2 (1+zl) 2$(r 1)—1(r—1 1) 1(z22 z2)
—

2zl Z2+~~3

and if T&T„E~&0,and z'&
) z2 [ (1 n~)—/(1+n~), then

Sg,g(N, @)=Kg—z'( —1)~(z '—z') 'zg '(r+1)—'(t-'+1) 'Lz22(1 —zg)' —(1+zg)'j

X ( (r-1) '(r ' —1) 'L(1—»)'—z2'(1+»)'1+=4I

+z2E(1 zl) 2 z22(1+z ) 2](r 1)
—1(r—1 1)—1(z 2 z2)

—
2zl 2 ~2+ ~8

where it is convenient to note that

(r—1) (r '—1)zq(1 —z') (z' —z2') =—z'f(1 —zq)' —z2'(1+st) 2+4zg j
(1+1)(r +1)zy(1 —z ) (z zez) —z2(1+zl) 2 z2z2~(1 zl) 2 4zlz2 .

(8.8)

(8.9)

(8.10)

(8.11)

(8.12a)

(8.12b)

We now consider several limiting cases.
(i) E&~~ . In this case, T&T, and az ——n2&0. Therefore, (8.7) holds and, using (5.1) for K&, we easily see that

limey, g(N, @)=1.
@1~ao

(8.13)

(ii) Ez—&—~ . In this case, T&T, and nz ———(1—
) z2 ~) (1+( z& I) '. Therefore, (8.11) always holds and we have

S.(»Z) =(—1)". (8.14)

(iii) Ez~+ ~. In this case, T& T„n~ n2 0, —a—nd ——r = (1—
~

z ))(1+) z () '. If E~&0, (8.7) holds and

lim Sg,g(N, Q) =1.

If E~&0, (8.11) holds and
lim Sg,g(N, @)= (—1)

(8.15a)

(8.15b)

(iv) E&~0. For this limit, it is easier to use (8.5) directly to see that

limSg, g(N, @)=z'.
Jl1-+0

(8.16)

(v) T~O. In this limit, r-+0, nq nq=O. If E~&0, then (8.7) holds, none of the "integrals contributes and
Sq,q(N, @)=1. If E~&0, then if

~ @ ~
&2

~
Eq (+E2, then limr o(z' —zP) i '= ~ and Sq,~(N, @)= 1. If

~ @ ~
&2

[ E~ ]+E2, then limp 0(z'—z~') r '=4 and S~,~(N, e) = (—1)~. If [ @ [
=2

) E~ [+&, then limp 0(z' —z22) r—'=8
and Sg,g(N, @)=-', (1+(—1)N).

(vi) +-+0. In this limit, we have reduced the vertical bond strength to zero, T&T„a~——n2 '=zq and (8.6)
holds. The integrals vanish and we have

(1—z~) (1+»)&

S~~( 0) 4 2 +(1 )2 1 2+ (8.17)

This is the spin —spin correlation function for the one-dimensional Ising model. It agrees with the one-dimensional
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calculation of Sec. 5 of II if we note that
limr=) ~,

EgM
(8.18)

where )},+, )}, are defined by (5.9& of II.
(vii) @-+0.The behavior of 9Pi(Q) in this limit has already been obtained in (5.19).Therefore,
(a) if T& T„Eq. (8.8) holds and

S,,,(i}T, 0}= —Ig-'(r —s,}(2'} 'f d-d }'NQ' —1}-'-'

(b) if T(T, and Ei)0, (8.7) holds and

(8.19a)

Si,i(N, 0) =dz2 'si '[sp(1+si)' —(1—zi)'g —
z& '(si '—si) (2zi) ' dt p(f' 1)—'a ';

r
and

(c) if T&T, and Ei(0, (811) holds and

(8.19b)

Si,i(N, 0) = —( —1) -sl 's2 [(1—si)'s2' —(1+zi)'g —
sm

—'(zl —sl) (2') ' df' p(f' —1) n . (8.19c)
r

We now turn to the question of the behavior of Si,i(N, @ for large N. There are many special cases and we
make no claim to completeness. We 6rst consider the regions in which

N ~1—T/T, )&&1

N (1—s'(1+n,)(1—n,)-' t z, )
')»1.

(8.20)

(8.21)

In this region, as the expressions (8.6)-(8.11) show, the correlation function approaches its limiting value expo-
nentially rapidly. We wi11 compute the asymptotic series multiplying the exponential for the several regions
(8.6)-(8.11) and explicitlv exhibit the first few terms. The method used closely follows Sec. 3 of I. We then will
consider the region where T is near T, but where (8.21) still holds by assuming that N is such that N

~
1—T/T.

~

is axed and of order 1. In this case, the correlation functions do not approach their limiting value exponentially
but only as an inverse power of F. The coe%cients of the 6rst few powers of F will be evaluated as functions of
N ) 1 T/T, ~. We n—ext examine the case where Q =0 and N ~ 1—T/T„Iis of order ,1.Here, we obtain approxi-
mations to the simpler expressions (8.19). Finally, we consider the case where T=T, and Ns is fixed and of order 1.

a. r)r„wi1 —r,/V i»1
From (5.15), when r is in the cut e~ plane, ( r ]& ~ ni ). Furthermore, 0& t ni (

&
) a~ '

) &1, so that each
integral in (8.6) and (8.8) is of order n~ ~. Thus, for all values of Q, we have

Si,i(N, g) =:KP+s'[(1—si)' —sg'(1+si)'g(r —1)—'(r-' —1) '(s2' —s') '
agX; (1—,)(2 &- df. t

—
(1 —1) (t.+1)-'(t —r)- (P'r ' —1)-'

(8.22)

where =.
' is defined as in I. We now call fi nmt and w——rite

ag '
(2z)—i if' gN i(f 1) Q.—+1)—(t r)—i(t—.ig i 1) i[(1 nil ) (1 ni

—1) (1 n2 1$) (n2 if—i 1)'jilz
e1

1

2n2 z dgf 1(n2 fi 1) (n2 t 1+1). (n2 pl r) . (n6 |1) f 1
ayeg

X[(1 aln2 1 1) (1 aln2$1 ) (1 n2 1 1) (f 1 1)g
De6ne as in I

xi——(1—ni/ng)-'(1+ni/ag),

xm= (1—ning) '(1+ning),

x}}= (aP —1),'(a/+1) .

(8.23)

(8.24)

(8.25)

(8.26)
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We further dehne from (5.23)
$,=(ng —1) '(+2+1) = r2—',

xs ——(1—a2r) '(1+nnr),

xg=(1—Anl ) ~(1+Apl ').

(8.2'1)

(8.28)

(8.29)

Then we may write the right-hand side of (8.23) as

(&—zl
l~2

—&—&~—&(x&+1)—&/2(~+1) —&/&($3+1)—&/2$ —
&($5 1) ($6 1) df'f N—&(1+!z)

—&/2(1 fz)&/2I&
~ I

(830)
&1+fi)

where

(8.32)

We expand R(g') in a power series as

m(&) =gm. &-, (8.33)

which we substitute into (8.32). The lower limit of integration in (8.32) if it is not 1, may always be extended to
zero without altering the asymptotic series. Integrating term by term, we obtain

(1—ty'
df f' '(1+t )- (1-f ) l0+&iI

5&(g) = (1+$4') (1+x4 'g) '(1—xsg) '(1—$6g) 'L(1+x') (1—egg) (1+x')j'". (8.31)

We will be able to reduce many of our asymptotic expressions to forms similar to (8.30). It is thus convenient
to consider the following generalization:

I 1—
gdu" (1+f )- (1-f )~ I

&1+f )

='. Qg„F(/!/'+1) F(n+q+1) LF(n+q+2+E') j-'2-"-~F(N+p, n+q+1; E+n+q+2; —,'). (8.34)

In (8.34), the sum over n is to be interpreted in the sense of an asymptotic series and we have used Euler s integral
representation of the hypergeometric function F."We may now rearrange the series to obtain the result

df'h"'(1+a) '(1—t') ~~
I

U.+ti/

=:1P!g2 —~F(m+P) F(m+q+1) LF(E'+m+q+2)P'+%„LF(P+n) (m n)!j--'. (835)
tnt=4 nM

In the present case, we de6ne I„&by

&I.(» = Pm..&-, (8.36)

where the first few terms are

50&=1,

gg& —$4 $4 +x/+$6+2($$ ~+$3)p

N2& =x4 '+$52+x/ —-,'($P+xP+$32) —1+(xg—xg ') (xg+xg)+xg$6

+-', (x4—x4 '+x6+xe) (xz—~+$3) —-', ($'~—x'$8+~$3).

We now inay specialize (8.35) to (8.30) and obtain

(8.37)

(8.38)

(8.39)

P»(+ @)—'PP&2+s2L(1,—z&)2 z2(1+sl)2j(r 1)-1(~1 1)-1(@2 zR) lsl ~(1—sP)

Xcxg " 'm '($$+1) '"(~+1) '/'($8+1) '"$4 '($$—1)(xg—1)

X2 ~/I(N —1)!gPF (X+g+m) P'F (m+$) F(m+$)2 QI &L(te—n)!F(n+y) j- (8.40).
'~ Higher Transcendental FNncgoes, edited by A. Erddlyi (McGraw-Hill Book Company, Inc., New Pork, 1953),PpJ. I, p, $9,
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This is the desired asymptotic expansion for T& T,.For completeness, we write down the 6rst three terms as X~,
+1,1(+ @)~K12+z2L( 1 zl) 2 z22( 1+zl)2](r '1)—l (r—1 1)

—l'(z22 z2)
—

2zl '2( 1 z22)

X42
—3/—llr—l/2(gl+1)-l/2(X2+1) —l/2'(X3+1) —l/2g4 —l(g3 1) (x3 1)

X2 3/2X 3/2{1+ (3/4$) Ki)+(5/32E2) L652)-1]+O(E ') I.
For this asymptotic series to be valid, we must have X))Q» which implies the restrictions

X)&x3

Ã»
i
x3+x3

i

=
i
2(1—n22) (1—432r)

—'(1—n2r-') —' i.

(8.41)

(8.42)

(8.43)

For all values of @,both of these requirements are satisled if 1V is much larger than (T/T. —1) '. We may there-
fore let @~0and find that the leading term multiplying the exponential is E "', which is to be compared with
the S I behavior of the spin-spin correlation function for two spins in the same row at L!t=0 in the bulk case
above T, which was found in I.

B. T&T„Zi&0, XL1-T/T, ]»1
When T& T, and El&0, there are two cases. If z'&

i

z'
~
(1—n2)/(1+n2), then (8.7) holds. By (5.16), we see

that t is real and 0&F2&v&1. Therefore, we retain the leading exponential terms to 6nd

Sii(N, @)=. R32—4r~(r '—r) '(1—z') '(z' —z22) 'z'(zl '—1)z2L(1+zi)2(z2—z')' —z22(1 —z)'(1—z')']

X(2 ') ' df'l" '(P—1) '(Q'r ' —1) '(l'r ' —1)
r

We proceed as in the previous case to obtain an asymptotic expansion to the integral

(8.44)

(223)-' df' f~ '(i'2 1-)-'(f-'t-' —1)-'(fr-'-1)n-'

z2 l(1—zl2)
—l(1—z22) ~23/X4 l(gl+1) —l/2(g +1)—»2( —g3—1)—l/2(g4 —1)2(g —1) (X3+ 1)—l

/1

mid-

ii i
// '(1 —i')3/2(1+i )»2@

,/ 41+pl

where tl=n2 'l and

g&o&(3t) =L1—X43/] 'Ll —x4 '3/] '{1+x33/] 'L1+x3l/] {L1+X23/]{ 1—xll/]L1 —
X33/] I'/2.

Expand 5&&"(g) as

(8.45)

(8.46)

@("'(n)= Q@.("'n", (8.47)

where the first few terms are

53&
"l =1,

Ni((" =-, (x2—xl —x3) +x4+x4 ' —x,+x,,

52(('l =x4 +x4 '+X3 —
3 (x3 +xi +X3') +1+(x4+x4 ') (x3—x3)

X3X3+ (X4+X4 X3+X3)2 (X2 Xl X3) 4 (Xlx3+X3X3 Xlx3) ~

We then use (8.35) to obtain

Sl,i(X, O) =Ki'+lr 'nor~(t ' —r) '(1—z') '(z' —z2') 'z'zl '(1—22')

XL(1+zl) 2(z2—z 2) 2—z22(1 —zl) 2(1—z2) 2] (xi+ 1)—l/2(g2+1) —l/2

X ( x3 1) '/2(1 —x4) '(x3—1) (x3+1) '2"'x4 '(E—1) !

(8.48)

(8.49)

(8.50)

X +2~F(m+~2) F(m+—')LF(%+3+2/3)] 'QS &"&fF(i2+33) (333—33)!] '. (8.51)
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Explicitly, for large E, this becomes

+1,1(+ @)~K12+~2NrN(t 1 r)
—2(1 »2)

—1(»2 »22)
—

3»2zl 2(1 »22)

X[(1+zl)'(»' —»2') '—»2'(1 —»1) '(1—z') '](xi+1) '"(x2+1) "'
X ( g3 1)—1/2 (1 g3) 2 (g3—1) (g3+ 1)-12—

1/22r
—1/2/ —3/2

X I 1+(3/41V) gi &'i+ (5/32K') (6@2(o'—1) +O(jwj' ') }.
For this asymptotic expansion to be valid, we must have

(8.52)

(8.53)
,which holds if (8.20) and (8.21) are obeyed.

We may let @—&0 without violating (8.53) and find that the leading term in the series multiplying the exponen-
tial is E 3/', exactly as it was for T)T, at @=0.This is to be contrasted with the Ã ' behavior that the analo-
gous term in the bulk correlation function below T, at H=O exhibits, as was derived in I.

If z )
~

»2
~

(1—a2)/(1+n2), then (8.7) or (8.9) holds. In either case, the terms of leading exponential order
are given by

+1,1(+ @)
'

gp 2+4»22(zl 1 »1) 2»2(»22 »2)
—2

(2x2)-' dl- P"(r' 1) '(f--r-)-'(~'f-' )-'-

X (2 2)- df'i' (t" —1)-(f—' r)-(~—f' ' 1)--——

(2~2)-' df'f (p—1)-'(|—r)-'(r-p —1)-~- (8 54)
r ]

The three integrals in (8.54) diBer only in the power of f in the integrand and clearly all have the same leading
order term. To display the cancellation that occurs, we erst write

(22r3) ' df' f"(f' 1) '(0 —r) '(r —'r' 1) '0/ '—
r

d|'ll 1"(01+1) "'(1—t 1 jl/'@('21
I I (8 55)
/1 —f 11

(1+|'1j
X (x4—1) (x3+1) (x3+1) (22r)

a1/ag

where

~ N+2(1 z 2)z —1(1 z 2)—lg —1(g +1)—1/2(x +1)—1/2( g 1)—1/2

1

We now write

and

5&i2'(r/) =[1—g 1/] '[1—x4 'r/] '[1+x31/] '[1+x31/] 'I[1+g2r/][1 —xi'/][1 —x;1/]}'".

fN+I [1 (1 f )]gN

l.N—1=fN[1 —(1

(8.56)

(8.57)

(8.58)

Using (8.55), (8.57), and (8.58), we are able to write (8.54) as

61,1(1V, g) =Kl'+n'»1 '»2(»2.—2 »') '(1 —»2'l-'n2'N—+'g, '(x,+1)——'(g2+1) —'( —x3—1) '(x4 —1)'(x3+1)'(x3+1)'
/'1 —t,) ' 1—f'1't

X dflfl"-'(4+1)-"'(1—il)"'@ "'
I I @it "(4+1)-'"(1—f )'"@ "'

al/ . &1+i1j a&/a2 1+/ lj

1 1 f 1 (1 11—
drill" '(t 1+1) '"(1—t 1)'"@("' dolt N(| /1) —3/2(1 —f )3/2g(121

~

az/a3 1+f1 ay/a3 &1+pi

(8.59)
We now expand g&/2' (1/) as

(2) (~) Q)J (2)~n (8,60)
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where the first few coeKcients are

5()&(2) =1,

81& g4+x4 x3 x3+ 2 (g2 gl g3) )

@2&(2) g42+g4—2+g32+g42 3 (xl2+x22+x32)+ 1—(x4+g4 ') (g3+g4) +g3g3

+ (X4+X4 g3 g3) 2 (g2 Xl X3) 4 (glg2+X2X3 glg3)

(8.61)

(8.62)

(8.63)

We may now apply (8.35) and obtain

Sl,l(X, Sj)~Kl'+2r 'zl '(z2' —z') 'z'(1 —z2')2n2'N+'g4 '(xi+1) '(x2+1) '( —x3 —1) '(x4 —1) (x3+1)'(x3+1)'

XI[(1V—1)!Q2 ~ »'I'(m+ —', ) r(m+27)[I'(xV+m+72)] 'gpf„&(')[I'(23+n) (m —22)!] ']

X[E!+2=»2r (m+-'2) r (m+-2') [I'(E+m+-'2) ] 'QS &(')[I'(q+I) (m —23)!] ']

OO tn

—[(S—1)!Q2»'I'(m+ —)I'(m+ —)[I'(S+m+—)] 'gpf &(2'[I'(-,'+23) (m —22)!] l]

X[1V!g2 —"'I'(m+-', ) I'(m+-,') [I'(X+m+2)] 'QS„&(')[I'(2+I) (m —22)!] ']}. (8.64)

For large E, the first two terms of this expansion explicitly are

+1,1(+ O)~K1 +z (1—z22)24222N+4zl 2(z22 z2)
—

2x4
—2(gl+1) (x2+1)-l(—g, 1)—1(g4 1)4(g3+1)2(g6+1)

X2r '2 2X 33(2+5/ '52&(2&+0(E ') }. (8.65)

C. T&T„Ey&0

In this case, (8.10) or (8.11) holds, depending on the strength of @.For both cases, the terms of leading exponen-

tial order are given by

Sl,l(+ @) ~ +12 z2( 1)N(z22 z2)-2zl (r+1)—l(r—l+1) [z2 (1—zl)2 (1+zl)2]

+zz(i zlz)(2') It(('.( l(-g zz)
—l(z—

(
—z f)-l((+1)((—1) z

r

+z'[(1—zl)' —z,2(f+zl)2](r —1) '(r ' —1) '(z22 —z') 'z2(zl '—1)

x(2 2) ' OP'(0 1')(i+1—) '(0 r) '(l 'r—' 1) '— (8.66)

We obtain asymptotic expansions to the two integrals exactly as in the ferromagnetic cases, to obtain

Sl l(1V, y) =: Kl2 —z'( —1)N (z22 —z2)-2zl-2(ry1)-'(r-'y1)-'[z22(1 —zl) '—(1+zl)']
X ~(r-1)- (.—-1)-[(1-.,) —.:(1+.,) ]
+n "+'(1—z2') (xi+1)—'I'(x2+1) 'i'( —1—x3)

—'I'x4(x3+1) (x3+1)
OO m

X2 @22r '(Q —1)!+2~1'(m+-2, ) r(my2') [r(g+—23ym)] '+8„&("[I'('2+22)(m —22)!] '}
tlP=O nM

+ (2 N+lz2[(1 —zl) 2 z22(1+zl) 2](r 1)—1(r—1 1)—1(z22 z2)
—

2zl 2(1 z22)

X(xi+1) li2(g2+1) ll2( —1—g3) lizg4 l(x3+1) (g311)2
CG m

X (E—1)!Q2 I'(m+22) r(mar')[r(sr+'z2+'m)] lZ~ &'2'[r(z+23) (m —()3)!] (8.67)
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S«(&)=[1—X4
—&j[1—X4&j- [1+x»j-[1+~&g- I[1+a~j[1—g»][1—g»gI

(1)~n

nM
(8.68a)

S((2)(}&)=[1—X4}&][1—x4 '2/] '[1+X32/] '[1+x»] 'I[1+X2}&][1—xl}&j[1—X3}&]I'/2

In particular,

aIld

(2)~n
n=4

S3((})—1

Sl( X4 +X4, X3 X3+2 (X2 gl g3) )

S2( X4'+X3'+X4' —3 (X2 +gi +X3 ) —1—(*4—x4 ') (x3+x3)

+XSX6+2 (X4 X4 XS X3) (X2 gl X3) 4 (Xlg2+X2X3 glx3) ~

So "'=1,
Sl( X4 X4 X3 X3+2 (X2 gl X3) )

(8.68b)

(8.69a)

(8.69b)

(8.69c)

(8.69d)

(8.69e)

S2((2) =x4 2+X32+X32—-,3(X22+xl'+X32) —1+(x4—x4 ') (x3+x3)

+X3X3+(X4 X4 X3 X3) 2 (X2 gl X3) 4 (gig2+X2X3 Xlg3) ~ (8.69f)

The two series to be expanded in (8.67) are each of the form of the series expanded in (8.40), so we immediately
6nd that the first three terms of the asymptotic series are

Sii(il/', @)~K22—z2( —1)N(z22 —z') 2zl 2(r+1) '(r '+1) '[z22(1 —zl)2 —(1+zl)'j
)& [(r—1) '(r '—1) '[(1—zl)2 —z22(1+zl)21

+.422N+l(1 —z22) (gl+1)-l/2(g +1)—l/2( —1—X3)
—»2X4(g3/1) (X3+ 1)}r

—i/22 —3/2

&&X '/'[1+ (3/4E) Sl(('&+ (5/32lP) (6S2((')—1)jI

+~ N+lz2[(1 z ) 2 z 2(1+z )2j(r 1)
—1(r—l 1)—l(z 2 z2)

—2z 2(1 z 2)

x (gl+1)—l/2(g +1)-l/2( 1 g3)
—l/2X4-i(X3+] ) (g +1)2r

—l/22-3/2

X)V '/'[1+ (3/4E-) Sl(('&+ (5/32K') (6S2(( )—1)j. (8.70)

This series is valid under the restriction (8.20) .

D. T near T,

All of the asymptotic series found so far are valid only when Ã»
~

1—T/T,
~

'. We now consider the limit that
T~T, (n2~1) such that lV

~

1 T/T,
~

remains fix—ed and of order 1. We first consider T(T, and El) 0. Then
(8.9) or (8.7) holds. We consider only the case that z2&

~
z2

~
(1 n)/(21—+n ). 2Then the term involving rN is

exponentially small in (8.7) compared with the other terms and may be dropped. Therefore, both (8.7) and (8.9)
reduce to (8.54) which may be written using (8.57) and (8.58) as

Si,i(N, O) =Kl'+2r —'Zl '(1—Z2') 'Z'(Z2' —Z') —'

r e fN($2 1)—1(f- r) —1(r lt—1 1)—l[(1—exit ) (1 (22|
—1) (1 422

—if ) (422 if—1 1)jl/2

A'2

ddt l(f—1) (1+1) l(t —r) '(r ill —1) l[(1 oil) (1—ail—l) (1—n2 lf) (a/2 lPl 1)hl/2—

(8.71)
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All integrals in this expression are of the form

To approximate this integral, make the change of variables

Then (8.72) becomes

(I—a1) (1—aq)

ns '(ns —1)"+' d][1—(1—ns) Q)}(P's(1—r) '(r ' —1) '(1—ng)
1

X[1—(1—ns) sG 'L1—((1—ns) (1—r) 'j '[1+0(1—ns) (r ' —1) '3 '

XL(—1+()(1+nsB (1+&ni(1—ns) (1—ni) ') (1—$(1—ns) (1—ni)-')]' Is. (8.74)
Berne

t= (1—ns)N

which is the Gxed quantity of order i. Then, correct to terms of second order, and we have

f1—(1—ns) Q"~z-'&[1—-'tsPN —'j.

(8.75)
I

(8.76)

If we require
~

1—r
~

& 1—ns, we may expand the rest of the integrand as a power series in (1-ns) to obtain

(1—Ng) (1—ag)

ns
—'(ns —1)"+'-'(1—r) —'(r-' —1) '(1—ng) d$ $nz $(($

—s1) lls

1

X{1+(1—ns)$ —st'PN '+ss (ns —1)$((+1) ~+O((ns —1)s)). (8.77)

We may replace the upper limit by in6nity without changing the asymptotic expansion. The integrals may then
be evaluated as Bessel functions. In particular, when I=0, (8.72) has the expansion

ns '(1—ns)sos(1 —r) '(t '—1) '(1—nx) {Ei(t)t '—sN—'[Es(t)+Es(t)+tE()(t))I. (8.78)

When ss= —1, (8.72) has the expression

—(as ' }) (} t—) '('-I' —}) '(1-——«g} d(E, (()(-' ,'N 'tE, (t)I . —-
t

(8.79)

In the above, E„is the modi6ed Bessel function of the third kind of order n."When we replace N by N —1, we
obtain an additional correction term of order (1—ns). Combining these expressions, we find that the first term
of the asymptotic expansion for S&,&(N, @) is

61,1(N g))~Rls+sr szs s(1 zss)szs(zss zs) —s (1 r)—s(g 1 1)—s(1 n )s

XN~ ~ Es(t) t' d)Eg($) P' t'Ess(t) +O—(N ') ~ . — (8.80)

The integral in (8.80) may be expressed in terms of modified Struve functions. "The term O(N ') is given in
Appendix D. When t =0, this reduces to what one may simply obtain by letting ns ——1 in (8.71); namely,

(N @)-gpss+,sr-sz,-s(1—zss)szs(zss —zs)-s(1 —r)-s(r-~ —1)-s(1—z s)s(N~+O(N~) ). (8.8].)

For (8.80) and (8.81) to hold, we need N&
~
1-r

~

'.
We next'"consider, T near T, but T& T, and z not near zero. Then (8.6) or (8.8) holds. The terms with r)}" are

exponentially"small and may be neglected. Using

(1—zl)' —zs'(1+zl)'= (1—z,)'(1—n, ), (8.82)

we see that the remaining terms in (8.6) or (8.8) have a leading order of N~ and all must be retained. Define

t' N(1-ns ').
In terms of this variable and the change of variable

"See Ref. 1j., Vol. II, chap. 7.
"See Rd. 11,Vol. II, p. 89.

(8.83)

(8.84)
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the calculation is almost identical with the T(T. case. In particular, (8.77) holds if we omit the first factor of
n2 ' and replace 0,& by 0.2 '.
Pqq(N @)~PPP+(1/2s.)z'(1—z22)z~ (zP —z') '(r —1) (r ' —1) '(1—zq)2(1 —nq)N t"E2(f)

+'E 2' 2(1 z22) 2zm(z~2 z2) —2x(r 1)-2(r 1 1)—2(1 &1)2N 4 f~((E2(((~) dg4($) t ~ fI2EP(f~)
~/

(8,85)

When T=T, (and t =0), the second term in (8.85) vanishes and we obtain the same limit as we attained from
below T,. Ke note that in both these cases the leading order term is E . This is to be compared with the result
to be obtained when @=0.Note also that Appendix D shows that in (8.81) and (8.85) the 0(N ') terms vanish
at T=T'

When O=0, the correlation functions reduce to the expressions (8.19).We expand these for the ferromagnetic
case near T,. When T& T„we have

6~,~(N, O) = —(2s.) 'z2 '(1—zms)zg '
ag '

df' i. (P—1) 'f(1—ng) (1—(x~') (1 nm
—'g) —(n —'i-' —1)]'I' (8.86)

Use the substitution (8.84) to reduce (8.86) to an integral similar to (8.72) with e= —1. Then,

+1,1(N, 0) = (4s') ~(1—Z22)zg
—

1s2 2(1—(xl)N—1 f d)E1($)pl N-lg((2El((( ) +O(N 2)-
~/

%hen T&T„an analogous calculation gives

Si,i(N, 0) =-,z2 'zg Pzm'(1+st)' —(1—zg) j+(4s) 's2 '(1—z2') zg '(1—(xg)N '

(8.87)

(8.88)

In particular, if T=T„
Sg,g(N, O) =(4s) '(1—zP) (1—zP)zg 's 'N '+0(N—'). (8.89)

so when @=0, the correlation functions near T, fall off much slower than when @NO. This should also be con-
trasted with the bulk correlation functions where, at T„S~is proportional to E 'I' as shown in I.

Qur 6nal remark about the spin —spin correlation functions will be to find the asymptotic behavior when T=T„
E~&0, and s is near zero, such that

(8.90)

is a constant of order 1. We may approach this case from either (8.8) or (8.9) . In either case, we have only the
product of integrals term (8.71), which with nq

——1 specializes to

(N @)=gP 2+s. 2z 2(1 z 2)zR(z 9 zm) 2

(8.91)

When O is near zero,
r~1+2z's (8.92)

We obtam the leading asymptotic term if we approximate all of the integrand that varies slowly at f'=1 by its
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value there. Therefore,

1 )
—1(1—2z zm

2 -'i —0) 'df gN(f —1
Z1

2 21z ~—
S

— 2 22 I ZQ)
—R(1 S )

1z 'S1 '(1—S:2)'S'(Zz' —S81,1(E,@) 1z+z s1 —.' ' ' '—s

Zl

2s2s —
1

— 2 —1i f.)-1—1—2s's ') '(1—2s'zm '1—df f.&(1 i-)—(f 1 —2z—'z, (8.93)

of variablesKema ek the change o

(8.90) to obtainand use
(8.94)

2 ~—s 1 2)2z M(1 s z)%1z is ms' 1—s2 j zu81,1(N, o) R12+z. s1 1— ) zu z
—2

0

d1'to &"(P+4s; ') '

0

that at T,which, if we note

X z2

0

er imi
'

to obtain

+1,1

2 ~
—2 —1 ~—1 4z2 2 — 2

2 2z 2(1 z~2

2 —~ —I e
— 2

=K1+1r 1
'

'—4Z2 'I e

an
'

cializes to

d$z &~(P+s2 ' z
0

8
'' I'( —'

esired resu t. xThis is the desi

11(E,O) z. s1 ' s

(8.95)

(8.96)

(8.97)

(8.98)

(8.99)I
—1 (1—

q 1-s12) =4,lz2 I

r 1,1(E, 0) at T=T,.i usy ol obtained fo

T ERIOR ROWSTION IN INTR

10 20

D

0

JO

D

0

D U
—(s '—z)

U

0D 010 ~ ~ ~

e result (8.89) prev1o

e
'

m of Sec. 2 with the

s exactly the resu . io

d (2 13)f 8&~ x
' '

on1 2.12) anb o
'

of &~&. ii, f m(.

U

elements of See. 7. e

~ ~ ~

inverse f See. 7

0

20 D 0 0 0 0 —(z2 '—s2)
~ ~ ~

0

JO
y(&)—

00

D 0

U s' —z

0

0

~ ~ ~

0

0

0

0

0

0

~ ~ ~ —(sm
—'—s2)

0
(9.1)

10 U 0 Z '—Z22 0 0 0 0

J—10 U 0 0

~ ~ ~

~ ~ ~

Z2 0 0 0



Calling «+ the nonzero submatrix of 5 ' in the subspace delned by y&~&, we have from (2.14),

Kz=&zsm~ ' PfLy& &g PfI y~~& '+« 'g (9.2)

where the sign (a) is chosen to make Kz have the same sign as does @s&~ '. We write this out explicitly as shown
in Kq. (9.3) on page 467.

We may simplify this if we note from Eqs. (7.8a), (7.8b), (7.8f), and (7.8g) that, because the integrands are all
odd functions of 8 when k =k',

5 '(j, k;p', k)&i) ——5-'( j, p;j', p)«=p.
Using this, the Pfa%an in (9.3) reduces to a determinant and we have

Kg=+(1—s') (1—s22)~ '

(9.4)

g—'(1 0; 0, 0)g)p+(e ' —s)-' PI i (1,0; 1, 0)nU 8 '(1, 0;J—1, 0)Dp

X det
R-'(2, 0; 0, 0)g&p 5 i(2 0;1,0)imp+(s2 i—z2) i ~ ~ ~

~ ~ ~

8 '(2) 0;J—1, 0)g&~

5 '(J, o;0, 0)nv 8 i(J, O;1, 0)i)p

t ~ ~

5—'(J 0 J—1, 0)i)p+(s2 '—z2) l

(9.5)

The question of spontaneous magnetization and hysteresis may be dealt, with just as in Sec. p. ~e see from
(7.8) that as Z&~0, all of the matrix elements are continuous except those in the first column which may be written
as

5 '( j 0;0, 0)nay=(2s) 'ssi d8
I

1+eN
I

n '+'pszi
I
1+e+

I
—si'(1+zi2+2zicos8)+z2(1 —sim)aj —'. (9.6)

The singularities of the integrand of (9.6) are exactly the same as those of (5.1). Therefore, the discussion of
Sec. 5 applies. In particular, if T)T„(9.6) will vanish as @~0;but if T(T, and @)0, (9.6) is discontinuous
as Q-+0 and, following (5.19), has the limit

where

limp '(j o o 0)„=v'zi "'I » I
'I»'(1+zi)2 (1 sl) g &(1) 'i+

g,~p+

0.(1) =zm(1+zi) (1—zi) '.

(9.7)

lim M2 ——~ (1—z2') lim I
A-'(1, 0; 0, 0)vi) (A '(2, 0; 1, 0)n~+ (»—i—z,)

—i)
y~+ @~0+

—@ '(2, 0; 0, 0)DUS '(1, 0; 1, 0)i)~). (9.8)
Using (9.7) and (7.8), we.find

Kz(0+) =&(1—s22) —si '~
I
» ' z' 1 si 2—i-z, »~2L~(+ ) ( )j

{
—2'2

~~-'@i/K~~+(ss '-ss) '+a (1—z)(1+a&) ' — de&
—

} (99]
2x 2K--

which reduces to

Furthermore, the factor of at &+ in the numerator of (9.6) does not affect the factorization of the denominator
made for j=1 in (5.8). Therefore, these matrix elements, and hence KJ itself, may be analytically continued
through g, =p ]ust as Ki was and the same sort of hysteresis behavior is observed in all rows.

While (9.5) may be used to compute Mz for any value of J, we content ourselves here with evaluating the
spontaneous magnetization in the second row. This is

si(1—s22) 1 ]K (0+) s '
I

z2
I

iI z'(1.+si)2—(1 s,)2ylm s,—i ~~,(e„ 1) (e „. 1)s2'(1 —sim) 2~ . j
' (9.10)
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As T—+T„ the brackets remains 6nite and nonzero so
the magnetization in the second row goes to zero as
T~T, as a square root, just as Ni does. We conjecture
that all K~ go to zero as (1—T/T )'" when T +T,—
for any Qxed J. We furthermore conjecture that
(for zp) 0), at @=0, Ptz as given by (9.5) monotoni-
cally approaches the spontaneous magnetization of the
bulk Ising model. The speci6c manner in which this
limit is obtained is an open question.

&0. SUMMARY

In conclusion, we wish to briefly summarize the
quantities of physical interest calculated in the text.
The partition function (3.26) has been computed and
both bulk and boundary terms in tht fret energy (3.27)
have been identified. The boundary entropy has been
found to be logarithmically divergent (4.42) at T„and
the boundary specie. c heat diverges at E, as a single pole
plus a logarithm (4.43). The boundary magnetization
for any g& is computed in (5.1), and below T, the spon-
taneous magnetization (5.19) is found to behave near
I', as (1—T/T, )'~'. The behavior of the boundary mag-
netization for small g near but below T, is given by
(5.29), while near but above T, it is given by (5.30).
The logarithmic singularity in the zero held suscepti-
bility at T, is given by (5.32). We conclude Sec. 5 with
an analytic continuation of 9Ai (5.35) which we tenta-
tively ascribe to a hysteresis phenomenon. This inter-
pretation is sharpened in Sec. 6, where we compute K,
the limit as X~oo of (2K) ' times the logarithm of the
probability distribution function of the average bound-
ary spin o. This function, at @=0, is shown to have
maxima at &Pli(0+). When we turn on the magnetic
field @,Q3 as given by (6.13) still has two maxima if Q
is small. These maxima are at the values of 0. given by
the two branches of the, hysteresis curve. However, when
one of these branches passes through zero magnetization,
the smaller maximum loses its identity and merges with
the larger maximum as may be seen from Fig. 8. When
T is near T, and o is small, the function@3 is explicitly
given by (6.18) . In particular, when T=T„ the
probability distribution function is given by (6.24)
which is not quite a Gaussian. In Sec. 8, some asymp-
totic limits of the correlation function of two spins on
the boundary row (8.5) are derived. In particular, for
E

~

1 T/T,
~

&&1, we h—ave the cases: (a) T)T, where
(8.41) holds; (b) T&T., Ei&0, and z' &

~
zp

~
(1—~p)

(1+ap) ' where (8.52) holds, T&T„Ei)0 and sp)
~

zp
~

(1—~p) (1+~p) ' where (8.65) holds; and (c) T&
T„Ei&0where (8.70) holds. When cV

~
1 T/T.

~

is-
of order 1, T is near T„and @ is away from zero, the
asymptotic expansions are given by (8.80) if T&T,
and by (8.85) if T& T,. When @=0, Ei)0, and T is
near T„ the asymptotic expansions are given by (8.87)
if T)T. and by (8.88) if T&T,. If T= T, and Ez' is
of order 1, the correlation function is asymptotically
given by (8.97). Lastly, we have derived a general
formula for the magnetization of any interior row (9.5)

and explicitly evaluate the magnetization in the second
row at Q =0 in (9.10) .
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A more physical, but mathematically less satisfying,
way of computing the partition function (2.2) is to
modify the initial Hamiltonian by adding a term,

E3 Q 0o,oo p,&+1) (A1)
k=X+1

and letting E3~~. This means that we have added a
zeroth row of spins to our lattice. This row has infinite
strength bonds, so all the o-o,k will have the same value
(defined to be +1). When any op, p is different from 1,
(A1) becomes infinitely larger than its ground state.
We may now write the magnetic field term in (2.1) as

x
0 l,k00,k

k=5,+1

and so consider the following modified Hamiltonian,
20K X 23K—1

E1+ g p j,kgj, o+1 Ep + Q pj, io j+1,L
j=l k—g,+1 j=l k=+,+1

(A2)

X K

+ 0Lpiro, o Ep +—op, opp, i+i, (A3)
k=g,+1 k=++1

in the limit E3—+00. In this Hamiltonian, all inter-
actions are nearest neighbor and the problem of
computing the partition function for (A3) is obviously
solvable by PfaQians as

Z'= (2 coshPEp)'~(2 coshPEi) 4"'~

&& (coshPEp) '~i'~t "(coshP@)'~ Pfg, (A4)

—P ' ln lim (2 coshPEp) '~ = —lim 2atEp, (A5)
@3~co &3~co

which is exactly the free energy one expects for 2X
irifinite strength bonds. The partition function (A4)
does not contain the factor of p which (2.5) does
because in (A4) we have summed over both ap, p=l
and O-o, k

———1. Because these extra contributions to the
partition function are independent of both @ and T,
the modified Hamiltonian will give the same results as
the original Hamiltonian if we use it to compute
correlation functions. From this point of view, the
magnetization iri the Jth row is viewed as a spin —spin
correlation of cd,o with Oo,o. The spin —spin correla-
tion Sg,q(E) is viewed as the four-spin correlation
0~,&o,ooop0 J;x

where 5 is given by (2.6) and we must take the Ep—+m
limit. This partition function is the same as (2.5)
except for a factor of 2 and the (infinite) factor con-
taining E3 whose contribution to the free energy is
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APPENDIX 8'

When the number of-rows in our lattice is large but not infinite, we expect a behavior very much like the
half-plane case. However, a phase transition occurs and spontaneous magnetization occurs only in the half-
plane case. To make precise the manner in which the finite strip approaches the half-plane as OR-+oo, we cal
culate the boundary magnetization for large but finite OR. The formalism of Sec. 2 applies, and from (2.14) we
may immediately write

Using (7.7e), this becomes
Ki=s+(1—s')5 '(1, 0; 0, 0)pip. (B1)

Ki ——z+ (1—s') (2s.) 'z d8 52ssi/Kg~

=s+ (1—s') (2~) 's» d8(1 —n '~)
~

1+e@:)' frFsi
~

1+e@)'—»'
~

1+»e@~'+»(I —»2) ~

+0.—'sx[s22
)
1+»e" )'—s2(1—»') n ' —.s'si

)
1+a". P J

'. (32)
If we let &~~, we recover (5.1).In that case, when T(T„Ei)0 and s~0, the. integral multiplying s diverges
as s ' and spontaneous magnetization occurs. If we keep K finite, however, when 2'(T„Ei)0 and s-+0, the inte-
gral multiplying s is finite so Ri—+0. When s is not zero, then when R is large enough so that

s'»k» '[» '(1—») (I+») '3' [»'(1+»)' (1—»)'3 (B5)
1

the terms proportional to n '~ may be neglected arid the boundary magnetization for the 6nite strip becomes
identical with the boundary magnetization of the-half-plane. Only very near @=0will the boundary magneti-
zation of the strip be sensibly diGerent from the boundary magnetization of the half-plane.

Ke are interested in seeing in detail how spontaneous magnetization arises when T&T, as 5R—+~. We may
compute this behavior from (B2) for large OR by expanding the integrand about 8=0 and keeping the lowest-
order terms. Using (5.18), we obtain

Ki~s+(1 s')s[»'(I+»)' (1»)'3» 's& '(2') ' d8j[»'(1+»)' (1»)'3sPsi '

so that when z is small and 5K is large,

(s2+-'s,—i[s2(1+sii) (1—»)—']-'sx[z22(1+») '—(1—») 'j)+P j
—' (B4)

P}i~s+-', (1—s')»-'~'
~

s2
~

'[»'(1+»)' —(1—») ]i~ s

&& [s'+-'» '[»(1+») (1—») '3 ' [»'(1+»)'—(1—»)'ll '" (B5)

If OK—&~ and then s—+0, 9Jti clearly goes to the value of the spontaneous magnetization given by (5.19).Qn the
other hand, if OR is finite and s—&0, Ki does vanish. From (BS) we find that the susceptibility at zero field for
a large finite strip is

8&i/8@ le~=&f1+I » I i[»(1+») (1—zi) ']'~J (B6)

which becomes exponentially large as BR—+~.

APPENDIX C

and 1 equations. To solve the %einer-Hopf part of the
problem, define for j&1

The matrix 8 was partially inverted in Sec. 7. That (C2)

procedure can obviously be extended to give all inverse
elements. Here, we wish to present an a]ternative Furthermore, delne the Fourier transforms when

method of inverting 8 when OR—+~, using the Wiener-
Hopf technique. We start from the definition

(C3)

Z~flii[~ 3v =f8'~'
l 0

(Ci)

whei e I is the 4X4 identity matrix. Uj& 1 and)) I, then
8;,i=8, i depends on j l alone. There—fore, if j)2
and j' fixed, (C1) forms a set of coupled Weiner-Hopf
sum equations similar to those studied in I. These will
be solved subject to the restrictions imposed by the j=0 I'(5) '= ZI'i 'V'+'

(C4)

(C5)
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Both B (P)p and Y(P)p are (in the notation of I) + may find a factorization of B(8) in the form
functions. %e explicitly have

B($) =C 'fQ(P') 3-'Z- P'(~) j- D-', (Cg)

—1—age
"'

1+zie"'

0

(C6)

where C, E, and D are constant matrices and

0 0 0

0 1 0 0

0 0 (—a 0

0 0 0

(C9)

If we multiply (C1) for j&2 by P' ' and sum on j, we
obtain

B(8B '(&) '=I'(F') '+P' '(1—4, ) (C'0

for j'&1. Assume for the moment that, as in II, we

We may choose E and Q of this form because det
B(g) =0 only when P=n, a '. Clearly, E(P) is analytic
and nonsingular for g &1, while Q(Q') is analytic
and nonsingular for $ &1.Using this factorization,
we may write (C7) for P ~

=1 as

& 'P'(5) j 'D 'B '(8~' —LQ( ')CP' '(1—~~'.i) j+—t:Q(P')CI'(F')pl+
=CQ(V) CY '(1—~'. ) j-+CQ(P') CI'(V') 'l (C10)

The left-hand side is analytic for
i $ )&1. The right-hand side is analytic for [ t (&1 and goes to zero as ~~—:~.

Therefore, both sides are separately equal to zero. Now

LQ(P' )CI (P'); j =Q(0)CI (0); (C11)
d

0

0 P'-'

0 0 p' 't 1—(0' 't ') 'j/(p' —n) 0
(C12)

so we have
0

0 0

B ($)p =DP($) E ' Q(0) CF(0)p+

Therefore, for j&1,j'& 1,

0 j.

0 0

L1—(~ '&') "jl(P'—~)
CP'-i(1 —S;,i) . (C13)

(() '& (~') 'f t)k'(='L+(()3 '( 'LQ(f ')i '(Q(0)(:F(0) +(Q(( ')(" '&(:(I-s;,)),

where the integral is on the path
~ ( ~

=1.
The matrices D and C are easily obtained if we note that the factorization (Cg) defines C(D) to be that

matrix which, when multiplying B($) on the left (right), gives a common factor of ~'—a (g—) in the
third row (column). Such a matrix has the form,

0 0 0

0 1 O 0

Cg Cm Cg Cg

0 0 0
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800L8 ')oj +801L8 ')lj =1&oj (C19)

810/8 foj'+811L8 ]1j'+812L8 $2j' l~lj" (C20)

Considering only j'&1, these may be combined as

t 811 810/800( 801)(8 jl 'j+81$28 j2j' ~4j'y'

(C21)

into which we substitute (C14) and solve for F(0)j.
Consider first j'= i. Then we obtain

where the second equation comes from the skew-
Hermiticity of B($). The resulting set of homogeneous
equations has the solutions

Cl/C3 — sl '(e"—e ") 'Lzou(1+zle @)—(1—sle @)j,
(C16)

C2/Co=sl '(e@—e 0) 'Lzo(2(1+zle@) —(1—zlejo) ),
(C17)

C4/Co=zl '(eje e ~')

XLz2n (1+zle") (1+sle "') —1+sl']. (C18)

To determine F(0)j, we must make use of the j=0
and 1 equations of (C1) which, so far, have not been
used. There are
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we find

0 1+zle+

—1—sge-"

—C4Cg '@20. '

and as shown in Eq. (C26) .

0

(C25)

xL&(~)]-'c-'Lq(P') 3-'Q(0) cF(0)1=I. (c22)

We simplify the evaluation of this if we note that from
its definition (C2) if @=0, because 810 vanishes then,
then F(0)j=II)o,j. Thus, setting @=0 in (C22), we
obtain the identity

(2ro 'f&(L2)ii(-'+(0~V)L&(() j '

xc-'Lg(p )j- q(0) c=I. (c2s)
If we now call

(2 ')-' «r'L&(&) j-'C-'I Q(~') 3-'
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Therefore,

I'(0)1=C1 810C+Mj '+01Rj

(C27)

pRDR (1 pRDD) pRDr. (1—pRDD) pRDv (1 pRDD—) (1—pRDD)

where

so that

p= —z'(e"+1) (e"—1) ' (C28)

(C29)

When j &2, we proceed in the same fashion. Inserting (C14) into (C21), using the requirement that Y(0);
vanish at @=0and the identity (C23), we obtain

I'(0)~'=C1 —~10C~~?'~01Rj '~MC&ooj '&01(2~0) ' d(O'C&(6) j 'C 'CQ(6 ') j 'CQ(P')6' 'j+C

0 0 0 0

+10C+10j +01Rj 810C800j 801RCQ (0)
0 0 0 0

0 0 —n & 0
C, (C30)

0 0 0 0

which is to be used in (C14) .
To explicitly exhibit 8 ', define 8 by Eq. (C31) as shown on page 473.

Then we have for j&1,

0 0 0 0

(1—Z1 ) 1(~ 1—~)
0 0 0

CgC3 ' C2C3 ' 1 C4C3 '

0 0 0

+~" "p(1 pRDD) '—
~RD~DR ~RD~DL ~BD~DU +BDRDD

~LD~DB ~LDLL R LD~DU ~LD~DD

~UD~DR ~UD~D1 ~UD~DU ~UD~DD

~PD~D& +DD~DL ~DD+DU +DD~DD

(C33)
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and for j&j'&1,
1, —1 ., PT

0 0 0 0

22-1 (1 s12)
—1 (~—1 12) lrlj ~ j—lt 1

—I ~ 2jI— 0 0 0

CgC3 ' C2C3 ' 1 C4C3-'

To obtain L8 ']2;, we use

+n2 t "p(1—pkllll) '

o o o I

RRDRD L RRDRDU RRDRDD

RLDRDR RLDRDL RLDRDU RI DRDD

RUDRDR RUD RD L RUDRDU RUDRDD

RDDRDR RDDRDL RDDRDU RDDRDD

(C34)

to obtain

0

8~L8-']2,+8o1[8-'&U=&a;

gi8

(C35)

L8-'j; g„~ g@—1
~

'
—1+e "

1+s—i8 1—e"'

—1+e '2 1—e "
g
—i8 ei8

—1+e " —1+e"'

(1-~ "') '[8 ']ul, ;12

("—1) '[8 ']

(1—e-") '[8 ']111,;I.

(~i2 1)—1[8—1]

(1—~-")-'[8-']~ '
(g'2 —1)—'[8—'],n &

(1—e ") '[8 ']111 g)

(&"—1) '[8 '11D, a

(e@+1)(e+—1) '[8 ']ln, ;12 (e@+1)(e@—1) '[8 ']ln, ;z, (e +1)(e''—2 1) '[8 ']111,,~ (e@+1)(e'2—1) '[8 'Jln 11

(C36)

where, for j)1,8 ' is obtained from (C33) or (C34) and for j=O, 8 ' is obtained from (C36) with j=1. If
we note the relation,

(C37)

it will readily be seen that in the D, U subspace (C33), (C34), and (C36) specialize to (7.7) . We also remark that
8 may also be inverted by solving a set of coupled difference equations.

APPENDIX D

We give here the higher order terms in the asymptotic expansion of Cl, l(tV, @) for T near T, and H away from
zero that are mentioned in the text. .When T&T., we follow the procedure of Sec. 8D and retain the erst two
orders in E in the expansion of the integrals in (8.71). This gives

Sl,l(1V g&) ~K12+lr-2sl 2(1—s22) 2s2(s22 s2) —2 (1 r)-2(r—1 1)—2(1 121)2122 2( 1 12 ) 4

d& P'E, ($) ——'cV—'tE1(t) [ t 'E2(t) —-'2&V
—'(E,(t)+tE,(t))j

t

—Lt 'El(t) —2& '[ E2(t)+El(t)+tEo(t)]jLt 'El(t) P' 'LE2(t) —El(t) —«2(t)]] . (&1)
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Multiplying this out and using the recurrence relations for modified Bessel functions, we hand

(Q Q)~5g 2+sr—2z —2(f z 2)szs(z 2 z2)
—s ($ r)—2(r-I $)

—2

)&(1—crl)'1V—' t'Es(t) d$ p'EI($) tsE—Is(t)+E It4 g—(3Es(t) —tEI(t) ) d( p'EI($)
t

El—(t-) (4t Kl(t) Eo(t)—)$+'O(X ) ~ (D2)

When T)T„an analogous calculation gives the more accurate version of (8.85) of

81,1(+ @)~KI2+(2sr)
—Izs(l zl) 2(r ] )

—2(r—1 1)-2(l z22) (z22 zs) —2(1—col) zl 2+—

X {t'sE (t') —E-'t'4LE, (t')+-', t'E, (t') 1+O(E-') J

+sr—szl—s($ z 2)2zs(zs2 z2)-2 (l r) —s(r I ])—2(] czl)2+-4

&& t"Es(t') d$ $ IEI(()—t"El'(t')+/t/ 't"

y —-', (t'E, (t') +E,(t') ) dg p'EI(&) +-,'El(t') Es(t') +O(X—') . (D3)
tf

By inspecting these equations, we see that as 1~0 the terms of order E ' remain Gnite while the terms of order
vanish. This vanishing of the next leading order term at T=T, has already been seen in the bulk problem as

presented in I where, while the leading term in S~ is proportional to X ~, there is no S 53' term and the next
nonvanishing term is of order E '".
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The critical or Curie temperature of the anisotropic rectangular Ising ferromagnet is known from Onsager's
exact solution to vanish asymptotically as

hT,/2 I ~[ln(1/rt) —lnln(1/g) j '+. ~ .,

when g =I„/I„ the ratio of exchange energies for bonds parallel to the y and z axes, approaches zero. An
extension of the Peierls argument yields a simple interpretation of this slow decrease and provides, from
Grst principles, a rigorous lower bound of precisely the same asymptotic form. For the anisotropic simple
cubic lattice, a lower bound, also of this asymptotic form, is established in terms of s = (I„+I,)/I .

l. INTRODUCTIOE

~ 1HE problem of the Ising ferromagnet of spin -',..with nearest-neighbor interaction has been studied.
extensively. It is well known that the one-dimensional
model in the presence of an external magnetic Geld
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and various two-d. imensional mod. els in zero field are
exactly soluble. ' In particular, the spontaneous mag-
netization below the critical point has been calculated
for both square and "rectangular" lattices. ' '
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