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We consider the rectangular Ising model on a half-plane of infinite extent and study some of the con-
sequences connected with the presence of the boundary. Only the spins on the boundary row are allowed
to interact with a magnetic field §. The method of Pfaffians is employed to obtain exact expressions for
the partition function. It is found that the free energy is the sum of two terms, one of which is independent
of  and proportional to the total number of lattice sites, while the other depends on§ and is proportional
to the number of lattice sites on the boundary. This separation makes it possible to define various thermo-
dynamic quantities associated with the boundary. In particular, the boundary magnetization is shown
to be discontinuous, in the ferromagnetic case, at zero magnetic field for temperatures below the bulk
critical temperature T.. This discontinuity, which is the spontaneous boundary magnetization, goes to
zero as (1—T/T,)Y? as T—T.—. For T=T,, the discontinuity is of course absent, and the boundary
magnetization behaves as —DIng for small §. The boundary susceptibility at zero magnetic field in the
ferromagnetic case exhibits a logarithmic singularity at T'=T,, both above and below transition. An
interesting feature is that the ferromagnetic boundary magnetization, although discontinuous for 7'< T,
may be analytically continued beyond the point §©=0. We interpret this as a hystersis phenomenon which
we study in detail by computing the probability distribution function for the average boundary spin.
The correlation function for two spins, both on the boundary row, is also obtained exactly and its asymptotic
behavior is given. Finally, we derive an expression for the magnetization in any row and explicitly evaluate it
for the second row, i.e., the row next to the boundary.
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1. INTRODUCTION

LTHOUGH a great deal of effort has been spent
on the two-dimensional Ising model, the amount
of exact results is remarkably limited. For the case of
the rectangular lattice without magnetic field, Onsager
and Kaufman! have given the free energy per lattice
site and also the correlation functions for spins at finite
distances. In particular, it is readily observed that the
expression for the two-spin correlation function becomes
rapidly more and more complicated asthe separation
between the two spins increases. It is for this reason
that it is quite difficult to obtain, as first accomplished
by Yang? the spontaneous magnetization, which is
closely related to the limiting value at infinite separa-
tions of the two-spin correlation function. On the
contrary, the exact expression for the four-spin correla-
tion function

(1.1)

at zero magnetic field, for example, does not become
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more complex as M and N increases. Indeed, as is
well known, the amount of work in writing down the
correlation of an even number of spins depends mainly
on the minimum distance D on the lattice which is
required to join the spins pairwise. This distance
is| M | 4 | N | for (0,002, ) and is 2 for (1.1). Roughly
speaking, the expression for the correlation is simple
when the spins are grouped into nearby pairs.

It is the purpose of this paper to study an aspect of
the two-dimensional Ising model where this pairing
plays no role. The specific case to be considered is the
Ising model on a half-plane of infinite extent. We are
primarily interested in the correlation of spins near
the boundary. In the simplest case, when two spins
are both located on the boundary row, their correlation
can be expressed in terms of a single integral, no
matter what the distance is between these two spins.
Accordingly, it is completely straightforward to calcu-
late both the spontaneous magnetization and indeed
the entire asymptotic series. Thus, this calculation
follows a rather different route from that of the corre-
sponding quantities for the usual two-dimensional Ising
model.2? In the present case, D is reinterpreted to be
the minimum distance on the lattice which is required
to join the spins either to each other or to any point
outside the semi-infinite lattice. Thus, D=2 for any
two widely separated spins on the boundary row.

3T. T. Wu, Phys. Rev. 149, 380 (1966). This paper is hereafter
referred to as I.
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1t is interesting and also convenient to let the spins
on the boundary row interact with a magnetic field.
In Sec. 2, we formulate the problem with a finite
number of rows and columns with the periodic bound-
ary conditions applied in the horizontal direction only.
By the method of using Pfaffians,*® the partition
function can be expressed in terms of a determinant.
Since this determinant is nearly cyclic in the variable
referring to the columns of the lattice, it can be written
as a product of determinants, each of which turns out
to have nonvanishing elements only if the two indices
differ by 1 or zero. This evaluation of the partition
function, and hence the free energy, is given in Sec. 3.
When the number of rows and columns is large, the
free energy is approximately, with exponentially small
errors, the sum of a term proportional to the total
number of lattice sites and a term proportional to the
number of lattice sites on the boundary. From this we
may identify the free energy of the bulk as given by
Onsager,! the free energy of the boundaries at zero
magnetic field, and the additional free energy of the
boundary due to the presence of the magnetic field
[see Eq. (3.27)7]. The boundary entropy and specific
heat are obtained in Sec. 4 by differentiating this free
energy with respect to temperature. It is found that,
contrary to the corresponding bulk quantities, the
boundary entropy per boundary site has a logarithmic
singularity and the specific heat contains a pole term
when the temperature is equal to the bulk critical
temperature.

We can also differentiate this free energy with
respect to the magnetic field $ to obtain the magnet-
ization My of the boundary row. This is carried out in
Sec. 5. If the interaction between nearest neighbors on
the same row is antiferromagnetic in the sense that an
antiparallel neighboring pair of spins has lower energy
than a parallel pair, this boundary magnetization so
obtained is an analytic function of T and £ except
when T=T,. Here, T, means the bulk critical tempera-
ture of the infinite Ising model without magnetic field.
In particular, 7. is independent of §. In the ferro-
magnetic case where a parallel neighboring pair on the
same row has lower energy, then the boundary magnet-
ization is analytic in T and § except

T=T.
and
T<T, and $=0. (1.2)

We discuss this ferromagnetic case in more detail.
Across the line defined by (1.2), I has a discontinuity
associated with spontaneous magnetization. Near T =
T., this spontaneous magnetization is proportional to
(1—T/T.)4?, which is to be compared with the eighth
root behavior found by Yang? in the bulk case. At

4P, W. Kasteleyn, Physica 27, 1209 (1961); H. N. V. Temper-
ley and M. E. Fisher, Phil. Mag. 6, 1061 (1961).

5 E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys.
4, 308 (1963).
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T=T,and if  is small, I, is proportional to —H InP.
The boundary susceptibility at zero magnetic field
shows a logarithmic singularity as 7—7, both from
above and below; this is to be contrasted with the
usual power behavior in the bulk case, obtained
numerically by Baker® In Sec. 5, we also give the
behavior of Iy when T is near T, and O is small.
Even though 9% is discontinuous across the line (1.2),
for fixed T<T., P has the important property that
it can be analytically continued in $ beyond this line.
This analytically continued function becomes equal to
P itself for some finite value of $, which of course
depends on T. At least part of the analytically con-
tinued curve may be identified with a hysteresis loop.

In order to better understand this interesting phe-
nomenon of the hysteresis loop, we compute in Sec. 6
the probability distribution function for the average
boundary spin. This probability distribution function
has the properties that (i) its dependence on § is
simple [see Eq. (6.13)7, and (ii) it can be expressed
simply in terms of the partition function for complex
values of  [see Eq. (6.1)]. By the latter property,
it can be evaluated by the method of steepest descent.
It is verified that at $=0 it has two maxima below
the critical temperature, as expected from the existence
of spontaneous magnetization. When  is positive and
small, both maxima are present but the distribution
function is exponentially larger at one of the maxima,
say the right one, than at the other, say the left one.
When 9 is decreased to negative values with | § | still
sufficiently small, the distribution is much larger at
the left maximum given by 9%; the analytic continua-
tion of 9% gives the position of the lesser maximum at
the right. As § is further decreased, the position of
this lesser maximum moves to smaller average values
of the boundary spins; it reaches zero at some negative
value of 9, say —9.. For < —., even though
further analytic continuation of % is possible, the
distribution function shows only one maximum, with
the previous lesser maximum appearing only as a
shoulder. We conclude that the portion of the analytic
continuation of M with | $ | <H. can be identified
with the hysteresis loop.

A possible physical interpretation of this mathe-
matical result is as follows. For a system in thermo-
dynamic equilibrium with 7'< T, and $5£0, the average
values of the boundary spins is almost certainly close
to Py; these are the stable states. As § is reduced from
a small positive value to a small negative value, this
average value changes sign. Since it is difficult to make
transition between states of these opposite values of
average boundary spin, it takes a very long time to
reach thermodynamic equilibrium even after § is made
negative. For a time (short compared with the time
needed to approach this equilibrium), the average value

¢ G. A. Baker, Phys. Rev. 124, 768 (1961) ; C. Domb and M. F.

Sykes, J. Math. Phys. 2, 63 (1961); J. W. Essam and M. E.
Fisher, J. Chem. Phys. 38, 802 (1963).
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of the boundary spins for the system refuses to change
sign; instead, it follows the position of the lesser maxi-
mum. These are the metastable states. The long lifetime
of the metastable states is due to the small value of
the distribution function between the two maxima.
When § reaches —§., these metastable states can
become completely unstable and beyond that, the
behavior of the system depends on the atomic mecha-
nism and cannot be deduced by statistical considera-
tions alone. Two possible hysteresis loops are shown in
Figs. 6 and 9. Note that, for this interpretation, we
have introduced the concepts of quantum-mechanical
transition and of time, both foreign to the Ising model.

So far, all the results can be derived from a knowledge
of the partition function alone. In Sec. 8, we turn to
the question of the two-spin correlation functions. It is
then not sufficient to know the partition function only,
and we use the Pfaffian method of calculating averages
of spin products. For this purpose, we must be able to
compute certain elements of the inverse of the matrix
whose Pfaffian gives the partition function. For the
same reason that the partition function is easily ob-
tained, these inverse matrix elements are not hard to
get, as shown in Sec. 7. In all cases with T#T,, the
correlation functions of two spins on the boundary row
approach their limiting values exponentially. However,
in the ferromagnetic case below T, the rate of the
exponential fall-off depends on whether | § | is above
or below the value at which the analytic continuation
of Py meets P itself. Furthermore, for T'=7, and
$=0, this correlation function approaches zero as the
inverse of the separation, instead of the inverse fourth
root for the bulk case as shown in I. For T'=T, but
970, it falls off as the inverse fourth power of the
separation. The behavior for large separation but
N | 1—T/T.| fixed and of order 1 is also studied.

In Sec. 9, we make some remarks about the thermo-
dynamic averages of spins not on the boundary row.

Z= Z P8

o=41
21 M1
=> exp[ > Z 13E10':,kt7:.1w-1+ >
o1 1 =0+
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A great deal of exact calculations can be carried out in
a straightforward, though tedious, manner, but we
make no attempt to do this systematically. We mention
here only one result. The spontaneous magnetization on
the row next to the boundary, in the ferromagnetic
case, is found to be also proportional to (1—T/T,)!?
as T—T,—. It is believed that this behavior holds for
any fixed row from the boundary.
The results are summarized in Sec. 10.

2. FORMULATION OF THE PROBLEM

The system to be studied in this paper is a two-
dimensional, rectangular Ising model with cyclic
boundary conditions imposed in the horizontal direc-
tion only. The lattice has 2 9 rows and 2 9T columns
and interacts with a magnetic field § applied to one
of the two boundary rows (defined to be the first row).
We use German letters to denote quantities pertaining
to the boundary. The Hamiltonian for this system is

2om N
=—EIE Z T§,k075 k41

7=1 k=—91+1
2M—1

—E ), Z Tik0i1— D Z ok

=1 k=—91+1

(2.1)

where each ¢ is equal to 41 or —1, 5 and k label,
respectively, the row and column of the lattice site
with £=9+1 identified with k=—91+1, and E,(E)
is the horizontal (vertical) interaction energy between
neighboring spins, The first row does #of interact with
the 291tth row. In (2.1), the magnetic moment factor
for the spins on the first row has been absorbed in .
We shall be interested in the limit 9— o and 9t— o
where the cylinder becomes a semi-infinite half-plane;
only in this limit will a phase transition occur.
With (2.1), the partition function is

€N

> BEwjscinst+ Z 13\‘@01 r]

=1 k=J+1

= (coshB Ey) % (coshB E,) 23— (coshB$H) 2

X [H H (1+21<TJ,WJHI)IH

=1 k=91

o=x11 7=1 k=—31+1

where
z1= tanhBE,,

z= tanhBE,,

and

z= tanhB9. (2.3)

N N

H (1420540 531,6) JL H1(1+201.k)]}, (2.2)

If the sum over o==1 is carried out, the result is’
Z= (2 coshBE;) ™ (coshBE,) L@M-D (coshB$H) FN
Z 21°2% Npgr,  (2.4)

2,47

. Potts and J. C. Ward, Progr. Theoret. Phys. (Kyoto)
13 38 (1955)
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where N4 is the number of figures that can be drawn
on the lattice with the following properties. First, each
bond between nearest neighbors may be used, at most,
once. Secondly, the figure contains p horizontal bonds
and ¢ vertical bonds. Thirdly, let e;z be the number of
bonds with the site ( 7, £) as one end; then, for 7> 1, ej
is even, i.e., =0, 2, or 4. And lastly, 7 is the number
of ey, which is odd. An example with p=12, ¢=14, and
r=4 is shown in Fig. 1(a).

We wish to express the sum in (2.4) in terms of an
appropriate Pfaffian.*® To do so, we first note that if 2
is zero, then in the sum it is sufficient to keep only the
terms with V4, which is the number of closed polygons
with p horizontal bonds and ¢ vertical bonds. The
factor 2Pz is taken into account by associating a
factor z; with each horizontal bond and a 2 with each
vertical bond, as shown in Fig. 2. This procedure may
also be followed for the case of general z by adding a

l___] I____! first row
0

(a)

(b)

O

(c)

F16. 1. An example of a figure with p=12, ¢=14, and r=4.

zeroth row of sites connected to the first row of sites
by vertical bonds of weight 2. The sites in this zeroth
row are also connected to each other by bonds of
weight 1 between nearest neighbors, as shown in Fig.
3(a). Each figure on the original lattice counted in
N pqr corresponds, because of the cyclic boundary con-
dition in the horizontal direction, to fwo closed polygons
on the lattice in Fig. 3(a). These polygons that corre-
spond to the example of Fig. 1(a) are shown in Figs.
1(b) and 1(c). Each of the closed polygons has p
horizontal bonds not including those on the zeroth
row, and p-r vertical bonds, of which 7 are between
the zeroth row and the first row. That there are two
closed polygons is clear from the example of Fig. 1; in
case =0, either all the bonds on the zeroth row are
used or none is used. We have thus reduced the problem
of evaluating (2.4) to that of finding the generating
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] 2z Z Zp)
. . . | ! 1
F1c. 2. Lattice with weight:

2 a,nd:.V VEBNE T T 7 4 i G

1 2 Zz: 22: Zz: 22:

1 1 1 1
7 Z Z Z

function for closed polygons on the lattice of Fig. 3(a).
The solution is immediately given in terms of the
Pfaffian for the dimer problem of Fig. 3(b). More
explicitly,®

Z =%(2 coshBE;) M (coshB Ey) 20@M—D (coshBH) 2 P,

(2.5)
where the antisymmetrical matrix ¥ is given by
R L U D
R’_ 0 1 -1 —17]
L|-1 0 1 -1
QI(]) k;j, k) = (263.)
U 1 -1 0 1
DL 1 1 -1 O_J
for 0<7<29M and —N+-1<k<N,
FO z 0 0_1
0 00O
A, k3 g, k+1) =—=AT (4, k+1;5, k) =
0 00O
L0 0 0 0|
(2.6b)
; -
Zp1 Z; Zz) 23|
i ! !
31 g Zy 1 4
Z Zpl Zpl Zpl

NN
avava’s
N
N
hAAAA = = e = e
N
N
hAAAA = -

Fic. 3(a). Lattice represent-
ing a half-plane of Ising spins
interacting with a magnetic (a)
field applied to the boundary
row; (b) oriented half-plane
lattice of Ising spins used to
compute the matrix .
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for 1<5<291 and —N+1<k<N—1,
[0 1 0 O_\
0 00O

%(0, k50, k1) =—AT(0, +1;0, %) =
0000

0 0|
(2.6¢)

| 0 O

for —N+1<k<IN—1,
QI(]: m';j: —9’(—!—1)

=—U?(j, —N+1;7, ) =—A(4,0;7,1) (2.6d)
for 07529,
ro 0 0 07
000 0
A, ks j+1, k) ==UT(j+1, k5, k) =
000 2
Lo 00 0]

(2.6¢)
for 1<7<291 and —9N+1<k<N,
[0 0 0 O]
0000
N0, k;1,k)=—AT(1,%k;0,%) = (2.6f)
0 0 0 =z
10 0 0 0|

for —N+1<k(<9, and all the other elements of I are
zero. In (2.6d), an extra minus sign is introduced in the
weight for the bonds between the (—91+1)th column
and the 9tth column; as is well known ? this is required
to make the Pfaffian count correctly for a lattice with
cyclic boundary conditions. Using tht connection be-
tween Pfaffians and determinants, we finally obtain

Z*=1%(2 coshBE,) ¥ (coshBE;) @M1

X (coshBH)#N detd. (2.7)

In Appendix A, we give an alternative deviation which
is more physical but mathematically less satisfactory.
We proceed to discuss the expectation values of
various products of ¢’s. The simplest case is the mag-
netization on the Jth row for J>1,
EIRJ =

lim (a'_;,k), (28)

IM, N>
which is, of course, independent of 2. More explicitly,

EDEJ = lim Z7 Z O'J,oe_ﬁs. (2.9)

MAN»>0 o=+l

8 C. Domb, Advan. Phys. 9, 149 (1960).
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By (2.2), we get in particular for J=1

Pu=p"1 lim (290)71(8/09) InZ.  (2.10)
M, N>

More generally, however, a knowledge of the free
energy is insufficient to determine I, for J>1. To
find My, note that

07 ,0=01,0(01,002,0) (02,003,0) * * * (6y—1,0070). (2.11)

We therefore define a 891 (2914-1) X891 (291+1) matrix
3D by

0 0 0 0 ]
0 00O 0
69 (4,0;5+1,0) =
0 0 0 zl—z
000 o0 |
and
[0 0 0 0]
00 0 0
69 (5+1,0;7,0) = (2.12)
00 0 0
| 0 0 —(z1—2z) 0]
for 15T -1,
[0 0 O 0 ]
000 0
5(J)(0: 05 1: 0) = )
0 0 0 zl—3
| 0 0 0 _|
[0 0 0]
00 0 0
6v(1,0;0,0) = , (2.13)
00 0 0
0 0 —(s1—3) o]

and all other elements of ) are zero. In terms of §¢,
M, is given by®7

My=z27"1 lim PF(A+8W) /PE)
I, N>

=tzz/"[ lim det(14YA16W) 2,
IM, N>
A knowledge of ! is therefore needed; this problem of
finding the inverse of U is studied in Sec. 7.
Spin-spin correlation functions are not much more
complicated. Explicitly,
(07000 wYy=22H 7" lim det(149~1507"0) e,
m

>0

(2.14)

(2.15)
where 8V+7''™ is defined, similar to Eqs. (2.12) and
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(2.13), by
[0 0 O 0 7
000 0
BTN, b 1, B) =
0 0O 22—1—22
o000 o |
and
[0 0 0 0]
00 0 0
8 (41, ki, B) =
0 0 0 0
L._O 0 —(22_1—'2-'2) 0_
(2.16)

for 1<j<J—1when k=0 and 1<j<J'—1 when k=N,

[0 0 0 O _l

000 O
VI (0, k; 1, E) =

00 0 zt—3

000 0 |
and

0 0 0 07}

00 0 0
ST (1 k3 0, k) = (2.17)

00 0 0

10 0 —(z1—2) 0]

for £=0 or N, and all the other elements of §¥+/":M are
zero. Note that the number of nonvanishing elements
of ¢¥+/V) is independent of N.

Higher-order correlation functions can be easily
written down in the same form.

3. PARTITION FUNCTION

This section is to be devoted to the evaluation of
detd, which appears on the right-hand side of (2.7).
We first note that ¥ is nearly cyclic in the horizontal
direction; accordingly,

detd =II, detB(6), 3.1)
where the product is over the values
0=1ir(2n—1) /(290) (3.2)

with n=1, 2, 3, -+, 297, and B(6) is a 4(2M+1) X
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4(29+-1) matrix defined by

R L U D
R 0 1+ze? —1 —17]
L| —1—ze™?® 0 1 -1
B;,;(0) = (3.3a)
U 1 —1 0 1
D L 1 1 -1 o
for 1<j< 291,
B 0 14e? —1 —17]
—1—e® 0 1 -1
DBo,o(0) = , (3.3b)
1 -1 0 1
L1 1 -1 o]
0 0 0 O]
000 O
Bj,i41(0) = —Bjp,i7(0) = (3.3c)
0 00 22
000 0]
for 17529 —1,
FO 0 0 0]
00 0O
Bo,1(0) = —B1,i7 (6) = , (3.3d)
0 0 0 2
[0 0 0 0

and all the other matrix elements are zero. Since both
§“ and 6Y+"'M have only nonvanishing matrix ele-
ments for rows and columns labeled by U and D, it is
convenient to eliminate all rows and columns labeled
by R and L in B(6). For this purpose, let £(8) be the
4(29M+1) X4(29+1) matrix with

B 1 0 0 07}

0 1 00
;.0 = (3.4a)
(1421t (14ze®)t 1 0
| —(1+ze?) (14zme@) 0 1]
for 155291,

B 1 0 0 0

0 1 00
z0,0(9)= )
(146 (1+e®)= 1 0

| — (et (14e9 0 1]
and all other matrix elements are zero. Let

B'(6) =Z(0)B(0);

(3.4b)

(3.5)
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then by (3.3) and (3.4), ¥'(6) is given by
0 14-21% -1 -1 ]
—1—ze 0 1 —1
B;.i'(0) = (3.62)
0 0 2iz sind | 14z1e? [ — (1—22) | 14-20¢® |2
) 0 (1—22) | 14ze® |2 —2iz sinf | 14-21e? |2
for 1< <291,
T 0 14e® —1 —1 7
—1—e?* 0 1 -1
Bo,o' (0) = ) (3.6b)
0 0  2ising|14e? |2 0
| o 0 0 —2i sinf | 14-¢? |2_|
and all the other matrix elements are identical to those for 1<7<291,
of B(6). Because of (3.6), it is convenient to introduce —¢ 0
the symbols Co,0(0) = ) (3.8b)
a=2iz sinf | 1+ze? |2, (3.7a) 0 ¢
o 0 0
b= (1—Z12) l 1+2.6? l 2, (37b) @j,j-;—l(a) = —@j+1,jT(9) = [ ] (38(3)
¢=2i sinf | 14¢” |2, 3.7 2 0
isinf | 14| S 1<j<20m—1,
and the 2(2917+1) X2(291+1) matrix €(f) defined by 0 0
D U §o,1(8) = —C1,7(0) = [ ] , (3.8d)
D —a b z 0
G;;(0) = (3.8a) and again all the other elements are zero. More
UL-b a explicitly, the matrix €(8) is of the following form:
[—c 0 7]
0 ¢ 2z
—z —a b
—b a %2
—Z —a b ) (3.9)
—b a 2
—a b
- =b aj
and detd is given by last row and last column removed; then
. . det(8) =G (6). 3.1
detA =II[| 1+€? 2| 14-2¢? [% detC () ]. (3.10) etC(6) =G (6) (3.11)

Let €.(0) be the determinant of the 2(n-+1) X
2(n+1) matrix of the form (3.9), and D, (6) be the
corresponding (2n+1) X (2#+1) determinant with the

The recurrence relations for €,(8) and D,() are

] (3.12a)

] I:—a2+62 azZ:H: ()]
- —Q3% 29 2501 (0)

l: S.(0)
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for n>1, and with the eigenvalues

GO [-e48 w[ &) g it Pal-ade
[22@1(9)] ) |: —az; 222] [2222“1@0(0)] > (S:420) N= I 1+ze? 1_2 z(1—z)a™, (3.14)
where o is the larger root? in magnitude of the quadratic
together with the boundary conditions equation
(1422) (1422 —z(1—27) (e +e )
—z(1—22) (et 1) =0. (3.15)

The 2X2 matrix that appears in (3.12) is Hermitian More explicitly, « is given by

©

Co(@) =—c and Dy(8) =—c. (3.13)

a=}e71(1—50)

X { (1422) (1422%) —21(1—2%) (e?+e ) + (1 —22) [(1 —ne?) (1—ane™?) (1—az%e®) (1—ay”e™™) w2}, (3.16)

where and
ar=zn(1—|z|)/(1+|2]) v ={3[1— (N —N) (2> +0a2—0?) ]}V sgn(daz). (3.19)
and Note that

o=5(1=|z|)/(1+ | 2]). (3.17)

The normalized eigenvector with the eigenvalue A of

v/v =i(22—\)/(az) =iaz/(22—N).  (3.20)

(3.14) is With Egs. (3.18)-(3.20), the equations (3.12) with
_ the boundary condition (3.13) can be solved to give
b explicitly, for >0,
, 3.18
v’ (3-18a) €., (0) = —A\"02(c2— iz 1ev’ /v) —A'"02( 2122 lev V'),
while that with the eigenvalue N’ is (3.21)
and for n>1,
—iblj — e 2( 20/t — 70201
(3.18b) 2D, (0) = —i\'2(2/v —iz%z )
) .
| b _| +iNm2 (' /ot ). (3.22)
where The substitution of (3.21) and (3.11) into (3.10)
v={3[1+ " =) (2> +0a2—1b?) J}12 ives that
g
detd=TIo{4 | 14¢? |2 sin% | 1+-21e® SN 2(1—iz25~ 1’ /o) +o 02 (14-iz e o/v') ]} (3.23)
Since
I | 1462 | =2 (3.24)
and
I, | 2 sinf | =4, (3.25)

(3.23) can be simplified and the substitution into Eq. (2.7) gives
2%= (2 coshBE;) ™™ (coshfB Ey) @D (coshBH) %
XIp{| 14-z1e® [FNBR p2( 11—z’ /v) +o 92 (1412 c o /v') ]}, (3.26)

So far, the calculation is valid for any 91 and 91. We now take the limit of large 9 and large 9 for fixed T'5 7.
We can therefore drop the term proportional to o™ in (3.26) and Z is given approximately by

— B InZ~AMNEF 49+ 291F (D), (3.27)
where

=—g"1 {ln (2 coshBE; coshBE,) + (4w)~! "dB In[| 14-2z:€® |2 (0) ]} s (3.28)

9 The « in this paper is not related to that of B. M. McCoy and T. T. Wu, Phys. Rev. 155, 438 (1967). This paper is here-
after referred to as II.
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and v
28+ (P) =—61 [~ In coshBE,+ In coshBH -+ (4x)~* Tdﬁ In[v2(1—4iz%: ¢’ /v) ]] . (3.29)

Physically, F is the bulk free energy per site, o is the boundary free energy per boundary site in the absence of
the magnetic field, and F(P) is the increase in boundary free energy per boundary site interacting with the mag-
netic field. Thus, o is independent of § and F(0) is zero. Accordingly,

Fo= —38 [~ In coshBEs+ (4m) [~ do hmz] (3.30)

and

-

F(H)=—5"1 [ln coshBH+ (4r) 1 Td() ln(l—izzzz“c’ln'/b)] . (3.31)
By (3.19), (3.7), and (3.14), Eq. (3.30) is more explicitly
Fo=—36"1 (—— In coshBEy+ (4n)~! rd(i Ind{1421(1—22)Ha—a™)[(1422) (1—22) — 2z (1+222) cosO]}) .

(3.32)
Similarly, by (3.20), (3.14), and (3.15), Eq. (3.31) is

F(H)=—p"1 (ln coshBH+ (4m)t _x d0 In{1—z2z12,1 | 1+€? |2 [2a(1+22+22 cosd) — (1—z2) a]—1}> . (3.33)

The free energy o in the absence of a magnetic field is considered in detail in the next section, while
the quantity F(9), or more precisely F'(9), is studied in Sec. 5.

4. BOUNDARY FREE ENERGY AND SPECIFIC HEAT ($=0)

In this section we discuss the thermodynamics of the boundary in the absence of a magnetic field;
more specifically, we study the boundary free energy as given by (3.32) together with the boundary entropy and
boundary specific heat, both of which are essentially derivatives of {, with respect to the temperature 7. The
interesting features are to be found ia the vicinity of the critical temperature T%: there the boundary entropy is
unbounded while the boundary specific heat has a singularity of the form (7,—Z7)~. These features are not
possible for the corresponding bulk properties, and remind us very strongly that we are dealing with boundary
effects. They are also closely connected with the large fluctuations at T'="T,, already mentioned in Sec. 8(G) of I.

Equation (3.32) can be simplified by using (3.16) and (3.17):

Fo=—16"1 <— In coshBEx+ (4m)~!

X/W d h’l‘% { 1+[1+OL10L2_1"— (aﬁ—ag‘l) COSG][(I —a;ew) (1 ——ale“”) (1 —ag"le“’) (1 ——ag‘le“i") ]'—1/2}>

=—3p" { — In coshBE,+(4m)~? f d9 Ini[2+46(0) +$‘1(0)]} ) (4.1)

where it follows from (4.1) that
(1—ae®) (1—agle) ]1/2 - }
0) = 42) Fo=38141 hBE,— (27)~'[ dflni[1 0 .
3(0) [(1_0[16_,.6)(1__052_18,],) (4.2)  Fo=3p7"{In coshBE,— (2m) B 03[ 1+6(6) ]

is defined to be positive, at == if >0 and at §=0 if (44)
£<0. Equation (4.2) is to be compared with (1.10) Equation (4.4) is the desired result.
of I. Since We begin with a qualitative discussion of {5 as given

(0)p(—0) =1, (4.3) by (4.4). First, as may be expected, o is finite, non-
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negative and independent of the signs of F; and E,.
The behavior of o in some simple limiting cases is as
follows.

(a) T—0 for fixed E; and E,. In this case,

2r— sgnky, (4.5)
2> sgnky, (4.6)
ar—>0, (47)
ag—->0, (48)
$(0)——e % sgnEy, (4.9)
and
o3 | B | (4.10)
(b) T— for fixed E; and E,. In the case, —0,
$(8) =1+0(8), (4.11)
and
Fo—0. (4.12)
(c) Er— for fixed E; and T. Here z1—1,
a1~a2< 1, (413)
d(0)—>—e?(1—ae®) /(1—oue®), (4.14)
and ’
Fo—16[In coshBE,— Ini (1+a1) ]=3% | E2|. (4.15)

(d) Ey—o for fixed Ey; and T. This case is very
similar to (a); in particular, (4.6)-(4.10) hold.
(e) Er—0 for fixed E; and T. In this case, z—0,

al——->0, Otz'_l—‘)o,

$(6)—1, (4.16)

Fo=18"1 (ln coshBEp+inm™!

—jo

where

7i=(1—as)/(1+4)
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and
Fo—36" In coshBE,. (4.17)

This is the result for the one-dimensional Ising model,
and may indeed be written down without calculation.
(f) E>—0 for fixed E; and T'. In this case, 20—0,

(4.18)

a=ag =g,

and Eqs. (4.16) and (4.17) hold; i.e., F—0.

The rest of this section is devoted to an analysis of
the behavior of o when T is near 7. Since there is no
magnetic field, o depends only on the magnitudes of
E; and E,, but not on their signs. Therefore, without
loss of generality, we assume both E; and E; to be
positive. With this convention, as=1 when T'=T,. An
inspection of (4.4) with (4.2) then indicates that the
expansion of §o for a; near 1 may contain terms pro-
portional to the following: 1, (1—ap) In | 1—ae |, 1 —a,
(1—a2)?In | 1—ay |, (1—a2)?, etc. We are only inter-
ested in the terms containing the logarithms, since they
are responsible for the singularities in the boundary
entropy

S=—03%/0T (4.19)

and the specific heat
¢o=—T3Fo/dT2. (4.20)

The computation of these required terms is rather
complicated. The first step is to change the variable of
integration to

w=(e"—1)/(eP+1), (4.21)

so that the path of integration is changed from the
unit circle to the imaginary axis. The result is

® dw(1—w?) 1 In{14+[(11—w) (ro—w) (T1+w)_1(7’2+w)—1]112}> , (4.22)

(4.23)

for i=1, 2. In (4.22), the square root is equal to 1 as w—z=iw . It is convenient to redefine the square root by

the value at w=0. Thus

Fo=16"1 (ln coshBEy+in—1

—100

for T>T,, and

Fo=161 (In coshBEy+in1 f ® do(1—=a?) = In

—1t

‘indw (1= In} {14+ [(11—w) (r4w) (11+w) “l(r—w)‘1]1/2}> (4.24a)

H1-[(n—0) (r—a) (‘rx+w)“1('r+w)‘1]”2}) (4.24b)

for T<T,. In (4.24), the square roots are defined to be 1 at w=0, and

r=rp5gn(T—T).

(4.25)

The second step is to continue analytically in 7, taken to be a complex variable. Define disco by

discFo=Fo (rers) — o (7).

(4.26)

We consider the case T'> T, first. Both To(z). and %o(-re”"). are given by (4.24a) with the contours of integration
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shown in Fig. 4(a) and Fig. 4(b), respectively. Accordingly,

disc=4i8 " [ da (1~ In{ 14+ (ra—0) (r-+a) (rhe) (r—a) 1),

(4.27)

where the contour of integration is shown in Fig. 4(c), which was first used by Pochammer® nearly a century ago.

It follows immediately from (4.27) that
discFo=18"1r"1

X[ do(n{1-4H{(n—0) (r+e) (n-+e) (r=e) 1) = In | 1=[(r=a) (r+o) (o) (r—a) 32 ).

(4.28)

In the form (4.28), it is straightforward to expand into a power series in 7; the two leading terms are

disc%(,:iﬁ‘lw_"r( 1aloc{ln[1+(1+x)1/2(1—x)~1/2]— In | 1— (14x)¥2(1—x)"12 |}
-1

7 [ " di (1) V2 (1= )L 1 (1) Y2 (1 — )12

+a(1+a) (1 —2) V21— (14x)2(1—x) 21} +0(Tz)) .

(4.29)

The integrals on the right-hand side of (4.29) are easily evaluated; the first one is found to be , while the second

one is —3w. Therefore

discFo=18"[r+3ri ?+0(%) ]

(4.30)

for T> T,. This implies that { is, for small positive 7, of the form

Fo= Taylor series in 7+ (278) " [r+3m72+0(7%) ] Inr.

(4.31)

To obtain the corresponding result for 7'< T, it is convenient to introduce the function

Fo =161 (ln coshBE,+ir!

—i®

which differs from o of (4.24b) only in the sign of the
square root. It is easily verified that Fo+Fo~ is analytic
in 7 for sufficiently small 7. Therefore, it follows from

Fo~= Taylor series in 7+ (278) !

X[r=3r 7 4+0(%) ] Inr  (4.33)
that
Fo= Taylor series in 7— (2m8)~
X[r—4rr7?+0(%) JInr  (4.34)

for T<T.. Note that the imaginary part of each of the
logarithms in (4.24) and (4.32) has been taken to be
less than 7 in magnitude. By Eq. (4.25), (4.31), and
(4.34) can be combined in the form

Fo= Taylor series in 72— (278) 2
X[T —%1‘1—11'22-{-0(7'23)] In I T2 l (435)

for both 7>7T, and T'<T.. Note that the Taylor
series to be used in (4.35) is different for 7> T, and
for T<T.. We shall return to this point later in this
section.

"mda.»(l—wz)"1 In}{14+-[(n—w) (r—w) (11+w)_1(7+w)‘1]1/2}) . (4.32)

It remains to substitute (4.35) into Egs. (4.19) and
(4.20). Let 21, and 2 be the values of z; and 2; when
T=T., so that

1 — 21— 29c— 21622 =0. (4.36)
Thean it is easily verified that, for T near T,
re=[(RT) ' — (kTe)™"]
X {s1— B (1—21) (z1c+220) (1—22) 72
X[L(;T) 71— (RT)J+OL(T—T.)%]}, (4.37)
where
s1=(1—200) [E1(1—210) +Ea(1—22) ]. (4.38)
Accordingly, since at T=T.
m1= (1—2) / (21c+22) , (4.39)
B (re—Friry?) = (1-T/T)
X {s1—3s:(1=T/T.)+O[(T—T.)*]}, (4.40)

10 See, for example, L. J. Slater, Generalized Hypergeometric
Functions (Cambridge University Press, Cambridge, England,
1966), pp. 22-23.
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where

s2=(kTe) (1 —22c) 2(21c4220) {3E2 (1—21c)
F2EE(1—20) + E2(1—200)%/ (1—210) }.  (4.41)

The results for the entropy and the specific heat are thus

S=—(2rT) 1 In|1-T/T. | +0(1), (4.42)
and
&=~ (27)[s:s(T—Tc)™
+5:Ts ' In | 1=T/T. |]4+0(1). (4.43)

Note that s, is positive so that & is unbounded from
above for T near T.. This and the singularity of ¢, are
already discussed at the beginning of this section.
These singularities can be easily understood in the
following way. Suppose, in an infinite, two-dimensional
Ising lattice, we change the interaction between a pair
of nearest-neighbor spins—an impurity bond. The
change of free energy due to this impurity bond is

THEORY OF TOEPLITZ DETERMINANTS

447

easily expressed in terms of the two-spin correlation
function {goe00,). Near the critical temperature, the
resulting changes in entropy and specific heat exhibit
precisely the kinds of singularities of (4.42) and (4.43).

We write down more explicity the singularities of &
and c, for the special case E; and E,:

S=—kQ2r) " [In(14+v2) [In | 1—T/T. | +0(1) ],
(4.44)
6=k(2r)[In(14v2) J{(1=T/T,)
—3VI[In(14+v2) [In | 1=T/T. [J+0(1)}. (4.45)

Equation (4.42) does not quite tell the whole story.
It should be supplemented by

Em[S(To-8T) —&(To—8T) J= —3s1/To.  (4.46)
3T-0

This “latent heat” is not understood by the authors.

In spite of the peculiarities of the boundary entropy
exhibited in this section we will proceed to a discussion
of the boundary magnetization and hysteresis.

5. MAGNETIZATION AND HYSTERESIS

Attention is next focused on the additional boundary free energy due to the presence of a magnetic field, as
given by (3.33). More precisely, we shall consider the magnetization M of the first row. The substitution of

(3.33) and (3.27) into (2.10) gives that
P=—-F' ()

=24 (4r)1(1—22) (6/6.2)/1r d0 In{1—g22571 | 1+€® |2 [22(14-22422 cosb) — (1 —22) o]}

=z+(27r)*1(1—zz)zz1/7d0 | 14-¢ |2 [3%; | 1+e? |2 —22 (142124221 cosh) +22(1—22) L

Clearly, P—1 as $—o .

(5.1)

It is useful to rewrite (5.1) in the following two ways. First, by (3.15),

My=2-+ (21r)‘1(1—-z"’)z/:d0[—22(1—21)a+(1+21) Tz(1—2) (1= a—(142) (2*—2?) ]

Thus the integrand is singular if and only if

a=[(142) (2’—2") J/[(1—2) (1-7) ].

(5.2)

(5.3)

Alternatively, o as given by (3.16) may be substituted into (5.1) to give

L

Ma=z4+2r)(1—22) 22| df|14+e? 2 (2% | 14¢® |2 =12 (1+ | 22 |)2

X { (1+0110£2) (e“’—l—e‘”) —2(a1+a2) —2[(1'—(116’:") (1 —ale""’) (l—aze"") (1 —age_"") ]”2} )—1.

(5.4)

At least when T<T,, that is, | a1 | <1 and | p | <1, the last factor in (5.4) can be further factored to give

n

Pa=2+2r)L(1—22)4z| db| 14-€? |2 (8:82) 7, (5.5)
where
8,=2z(14¢") — (14 | 22 |) {{(1 —c1e®) (1 —pe®®) J2—eP[ (1 —cne™¥) (1—ope~®) ]2}, (5.6)
and
8=2z(14€¢%) — (14| 22|) {[ (1 —cue™®) (1 —croe~®) J2— €[ (1 —c16®) (1 —age®) J2}, (8.7
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with both square roots defined to be positive at =0 and =. The right-hand side of (5.5) may be expressed as a

partial fraction

Dy =a+ (2m) (1) [ DL (1+eer+ (e eit].

(5.8)

This form is needed for purposes of analytical continuation.
We study in some detail the location of the singularity of the integrand as given by (5.3). Let t be the value
of e+% such that (3.15) and (5.3) are both satisfied. Therefore

=2 (1—22) 1 (1422) (1422%) — (1421 2 (22 —2%) [z (1 —2?) (1—22) ]
— 5 (1—m)* (1= ) [sa(1—22) (a2 =) T

=2[(1 —a1a2)2—2(a1+a2) a32—a34:|/|:(1—a1a2)2—2(1+a1a2) a32+a34:|,
az=2z/(14+ | z|).

where

(5.9)

(5.10)

With the additional condition | t | <1, (5.9) gives, with an appropriate choice of sign,

r= E( 1 -—alaz) 2-2 ( 1 —I—a1a2) a32+a34]_1

X ([(1—cu02)2—2 (artas) a?—as* |2 {as?{ e — (1 —as) (1 —ae) JTL(1+01) (1+ae) e — (1 —aaas) *1}12). (5.11)

The qualitative motion of r is of interest. In the e
plane, « has four branch points at a1, ax™, oy, and ey ™
We define the cut plane for ¢? by joining these branch
points pairwise along the real axis; thus the unit circle
does not intersect the branch cuts unless | @ | =1. In
this cut plane, | @ | > 1. Therefore, by (5.3), there is a
pair of singular points at ¢ and t~* in the cut plane if
and only if

| L1420 (2*—2H) 1/ [m(1—20) (1—2) ] | 2 1.
Since | z | <1, (5.12) holds if and only if either

(5.12)

22 | 2| (1—a)/(1+a) (5.13)
or

T<T,, E >0,
and

2< |z | (1—as)/(14ae). (5.14)

Accordingly, in the cut plane, v is real; moreover,

0<t/y<1 (5.15)
when (5.13) holds and
0<a,<2<1 (5.16)

when (5.14) holds. In (5.16), r=1 if z=0.

With this information on 1, it is clear that 9% is an
analytic function of § except when I'<T, and $=0.
We proceed to study the behavior of 9t near =0
and also the analytic continuation of 9% as a function

of .
A. Spontaneous Magnetization

The boundary spontaneous magnetization is defined
to be
N (04) = lim D (H). (5.17)
90+

By (5.1), it is zero unless r—>1 in this limit. That is by,

(5.16), it is zero unless T<T. and E;>0. We consider
only this case. Expansion about §=0 gives

aNZz(l—ZD—_] (1+Zl)
X { 1+2.'1(1 —222) [222(1‘*‘21)2—' (1—21) 2]—162}
from (3.15) or (3.16), and hence

(5.18)

W (04) = lim(2m) 2|  do

z->0
X (e oo (1421) = (1—2) 2 ]02)
=122 | 2 [ eg2(1421) 2= (1—2) ]2 (5.19)

This is the desired result. In terms of E; and E,, (5.19)
is

cosh28E,— cochBEl]W
Pu0+) = . (5.20
1(0+4) [ cosh2BF,—1 ( )
This vanishes at the critical temperature as (T.—T)?,
w PLANE CONTOURS W PLANE
OF
INTEGRATION
T
-7 -T T \T,— -7_"_/ _@ T
BRANCH
CuTS
(a) (b)

CONTOUR OF

INTEGRATION
\ .
T T
| \__T _/ |
BRANCH

cuTS
(c)

Fic. 4. The contours of integration for Fo(r), Folre?™),
and disc o.
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as compared with the eighth root for the bulk sponta-
neous magnetization of Yang.? As may be expected,
the boundary spontaneous magnetization 0% (0+) is
less than the bulk value. The result is plotted in Fig. 5
for the case Ey=ZFE,. It is conjectured that, for 2,>0
and =01, M;<M 41, and as J—oo, Ny approaches
the bulk spontaneous magnetization. We shall return
to this point in Sec. 9.

The boundary magnetic susceptibility at zero field
can also be obtained from (5.1). Note that in (5.17)
the limit $—0-4 is taken after the thermodynamic
limit 9M— 0. In Appendix B, we study the behavior of
I for small H and large but finite 9. It is shown that
in this case %% is continuous but varies extremely
rapidly for § of the order of [z (1—zy) (14211 ]9%.

B. BEHAVIOR NEAR CRITICAL TEMPERATURE

We apply essentially the same procedure to study
the behavior of Iy when T is near T, and $ is positive
and small. We shall consider only the ferromagnetic
case where E;>0. The basic idea is still to expand
about =0, but the actual computation is somewhat
less straightforward than that of spontaneous magnet-
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Fic. 5. Comparison of i and bulk magnetization for E,= E,
» as a function of temperature.

ization. Consider first T<T,; we neglect throughout
terms in P of order z. Then it follows from (5.4) that

D~ O 4P @, (5.21)

where

D0 = o)tz ] 147 ! (hea(1 |2 ) [(1—ene®) (1—ene®) (1—ase) (1—ang ) T}, (5.22)

-

and

L

M@= (27) 2z | db | 14e? [2[ (% | 14¢? 2 =521+ | 2 )2 { (1 4-ouas) (e?+67) —2(uta2)

— 20 (1—0e®) (1 —ane) (1—ae®) (1—ane—) Ji2} )L

—Ga(1+ | 2 )2 [(1—ae®) (1—ane™®) (1—ane®) (1—ane™®) J2) 1],

(5.23)

These two parts are to be approximated differently. Since o is close to 1,

M DO~8r 1z (14 I 2 [)—erdo[(l—agei") (1—one™®) ]—1/2
0

=167"12(14 | 22 |)2(14ce) K[ 2052 (1) U]~ —277 1225  In(1—as),

(5.24)

where K denotes the complete elliptic integral of the first kind. In order to compute 4@ approximately, we

expand all ¢ into power series for small :

PO~ 275 f_ (42— (14 | 2 ) { (1—an) (1—as) — (1— ) [ (1 —as) 262012} )2

A change of variable reduces the right-hand side of
(5.25) to

MO~ 2722 (1— ) f “d8(p—1+ coshd), (5.26)
0

where

p=22| 25 |"1(1—a) L. (5.27)

Note that p can take any real positive value. The

=G+ 2D A=) [(1—a)*+7])]. (5.25)

integral in (5.26) can be approximately evaluated

(1—p)/°°do(p—1+ coshg) L
0

=(2p)or— In[1+3 | 2 | p]+0(1). (5.28)

In (5.28), the coefficient of p in the logarithm is
arbitrary; it has been chosen to make (5.29) below
simple. The desired result follows immediately from
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Egs. (5.21), (5.24), and (5.26)~(5.28) :
P~ | 22 |7H2(1—ap) V2 sgnz—2171z | 2, |2 In(1—ap+2?)
(5.29)

for T<T.. The computation is virtually identical in
the case 7> T.. Equations (5.21)—(5.23) hold without
modification, and (5.24) is also valid if @ is replaced
by as7!. So far as Pt @ is concerned, the main change is
the appearance of 14 coshf instead_of —1+- coshd
The result is

my\/ —27 1z | 20 l—" In ( 1 -—ag"‘+z2)

for T>T..

As 2904, (5.29) agrees with (5.19) and exhibits
the square-root behavior explicitly. At T'=T, it follows
from either (5.29) or (5.30) that

My~—4r72 |2 [In|z].

(5.30)

(5.31)

Thus the boundary magnetic susceptibility is not finite
at T=T,. More generally, we get from (5.29) and
(5.30) that

MU/ |g—0=—27"18 cothBE; In | 1—ay | +0(1)
(5.32)

both above and below the critical temperature. In
other words, the boundary magnetic susceptibility at
zero field has a logarithmic singularity at the critical
temperature. This is gualitatively different from the bulk
magnetic susceptibility, as obtained by numerical com-
putation by Baker.®

C. HYSTERESIS

We return once more to the ferromagnetic case
below critical temperature, i.e., 7<7. and £,>0. As
seen above, I is an analytic function of  for all
D0, and M, is discontinuous at H=0. We discuss
here the analytic continuation of 9%; since I is odd,
it is sufficient to consider the continuation of I for

M. McCOY AND T. T. WU

162

>0 to negative values of . Let Iy°, defined for some
nonpositive , be such that P (H) with >0 and
Pae(H) with <0 taken together be analytic at H=0.
That this analytic continuation is possible can be most
easily seen from (5.8), where 8; and 8, each has at
most one zero in the cut e? plane. For § small, 8; has
a zero outside the unit circle namely the t of (5.11),
while 8; has a zero outside the unit circle, namely 1.
After analytic continuation to negative small values of
9,

> 1, (5.33)

and, still as before,

81(x) =8:(r1) =0. (5.34)
For $<0, the difference between 9 and Ie is due to
the residues at r and t™; more explicitly,
M (D) =DM (D) =2z(r—1) 1 (1—2%) a7 (22 —22) 2
XL(1421) 2 (22— 2%) 2— 22 (1—21)2(1—20) 2], (5.35)

When —9 is small, the right-hand side of (5.35) is
positive and decreases with decreasing $. It reaches
zero, as seen from (5.12) and (5.14), at

2= |z| (1—a)/(14a).

The situation is thus as shown schematically in Fig. 6.

It is natural to interpret this figure as a hysteresis
loop. From (5.36), this loop shrinks to the single
point =M =0 as T—T,—. As T—0, | 2, | is close to 1,
and hence by (3.17)

(5.36)

2a2~1-— l 29 [. (5.37)
Substitution into (5.36) then gives
lz|~] 2] (5.38)

Thus, in this limit of zero temperature, the hysteresis
loop becomes a square, as shown in Fig. 7. Note that
the limit 7—0 of the analytic continuation of 9% ()

I'16. 7. Hysteresis loop at zero temperature,
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is different from the analytic continuation of

Lm0 (D).

6. DISTRIBUTION FUNCTION

We consider further in this section the ferromagnetic
case where T'< T, and E;>0. Even though it is natural
to identify the loop of Fig. 6 with hysteresis, the
situation is actually much more involved. In order to
get some more insight into the meaning of P%° ob-
tained by analytic continuation, we consider the dis-
tribution function in the limit of zero magnetic field
for a given ¢ such that 91G is an integer less than N
(8 is the Kronecker delta).

N

6( 2 01—290))

Te=—9+1
2N RN

E+1(exp[21rik’(4$51)“( > lal,k—zsrca)])

= (40)!
k/=—231 I3+

2J
=(40)1Z(0)t Y. exp(—mwiks) Z(ArikBOT).
k=—291+1
(6.1)

It is important to note that this distribution function
is non-negative. Let N and I be very large; then by
(3.27), which is applicable even to complex 9,

N
(G 20 o14—295))
=—91+1
29I
~40)1 Y exp{—miks —20BF (3wikG9TT) )
F=—201+1
ir/B
~—if(2r)? ﬁdSexp{—Zf)"cﬁEE&Jr%(E)]}, (6.2)

—1/)

Therefore, the function B (¢) defined by
i
B(5) = lim (290) " In[ lim (3( D, o14—295) )] (6.3)
N->o0 Moo k=—91+1

can be obtained from (6.2) by the method of steepest
descent. First let

629}21(0_*—))

BW(e) =—BLE+T(E) Jo, (6.5)

where the right-hand side is evaluated at the point of
steepest descent

(6.4)
then

7+ (§) =0
¢=Du(£) (6.6)

by (5.1). Therefore, if we identify & with 9% and £
with §, (6.5) is

BW=T(P) = —B(SP+F) .

or

(6.7)
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Fic. 8. Logarithm of the distribution function in the absence
of a magnetic field.

Secondly, let
0<<PUu(0+); (6.8)

then the point of steepest descent is shifted to the
analytic continuation of ¢. That is, (6.5) is still valid
provided that we note that the point of steepest descent
is now at

6'=9R1°($) . (6.9)
Thus, for (6.8), (6.7) takes the form
B=[(Ds) = —L(SM+F°), (6.10)

where §° is the analytic continuation of §. For sim-
plicity, we shall use (6.7), with 0<9%4<1, to mean
both (6.7) and (6.10). In particular, differentiation
with respect to I gives

OBW/oDy = —BP. (6.11)
Thus

W=LW®W’ =0 (6.12)

at $=0, ie.,, P1=(0+). In other words, the distri-
bution does have a maximum at ¢=%%4(0+). The
curve W(s) is sketched in Fig. 8. Note the discon-
tinuity of ' (¢) at =0, as given by (6.11).

When a magnetic field is present, we can still define
BW (s, D) through (6.3). This is very simply related to
B(7) =BW(s, 0) through

B(5, O) =W(¢) +BH7— const, (6.13)

where the constant, which is independent of &, is
determined by the condition

max W(s, ) =0.

~1<5<1

(6.14)

With reference to Fig. 8, we see that, for | § | not too
large, (5, ) has two maxima, located at G, and &,
say, with ¢,> ;.. For §>0, the right maximum at 4, is
larger, while for § <0, the left maximum at , is larger.
For $>0, by (6.11) and (6.13), &, is located at the
point where

M (9) =6+ (6.15)
Similarly, for $<0 and | $| sufficiently small, &,
satisfies

Mo (D) =6+ (6.16)
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F1c. 9. Alternative hysteresis loop for the magnetization on
the first row.

However, as seen from Fig. 8, the right maximum
disappears after G, reaches 0. For values of  such
that P (H) <0, W(s, H) has only one maximum. In
other words, if and only if

M () >0, 6.17)

this analytic continuation is closely related to the
secondary maximum of the distribution function.

The discussion in the Introduction about the hystere-
sis loop is based on the results of this section. In
particular, in the absence of any mechanism to prevent
the metastable state from becoming unstable at | § | =
9., the hysteresis loop takes on the form shown in
Fig. 9, instead of that of Fig. 5. Any loop intermediary
between those shown in Fig. 6 and Fig. 9 is possible.
However, as 7—0, that of Fig. 7 remains.

We write down (¢) for T near T, and & small
from (5.29), (5.30), and (6.7):

W) ~r 122 |z [P In(| 1—a2 | +22), (6.18)
with the parameter z determined from
|6 | =2 [2(1—a)?—2r7"2 | 2 [ In(1—as+2?)
(6.19)
for T<T,, and from
|6 | =—2r"% |2 In(aa—1+2?)  (6.20)
for T>T.. In particular, at T'=T,
BW(5)~277122 | 2 | Ingz, (6.21)
with
|| =—4r2| 2 [ Ins. (6.22)
In other words, at =T,
W)~ | 2| 6/In|é]|, (6.23)

or, from (6.3), roughly

RN

G Y. o14—295) )~ exp (27N | 25| 62/In | ¢ |) (6.24)
=0T+

for small . Thus, even at the critical temperature, the

distribution function does not deviate too much from a

Gaussian.
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Finally, we remark that, as seen from (6.3), the
limit 90— has been taken before the limit 9—co.
Some of the results of this stction depend on this order
of taking limits in a way which will be made precise
in a separate communication.

7. INVERSE MATRIX

To use the results of Sec. 2 to evaluate correlation
functions and magnetizations in an arbitrary row, we
need to evaluate the matrix elements of ! in the
subspace determined by §¢+//-™, In this subspace, the
rows (columns) of ! may only be labeled by U or D.
We first note that because ¥ is nearly cyclic in the
horizontal direction,

A (4, ks 7', ) = (1/290) ;em’“ LB 0) Jiry,  (7.1)

where B(6) is defined by (3.3) and 6 by (3.2).

We may easily find the elements of B~ in the U, D
subspace by relating these elements to the elements of
G '[€ given by (3.9)]. We first remark that if we
rearrange the rows and columns of ¥/, B, and T (as
defined in Sec. 3) so that all R, L rows (columns)
precede all U, D rows (columns) and call the resulting
4(29m+1) X4(29+41) matrices,

by be' b by 10
, , and , (7.2)
0 by By B tn 1

where each entry is a 2(29t+1) X2(297+1) matrix,
then we may write, using Eq. (3.5),

[fln 512]_‘ [ﬁu’ bu'-‘-l“[l 0]
|13 ) 0 by tn 1]
bt =By |[1 O
= . (71.3)
0 By |t 1

The matrix € is just by’ with U and D interchanged,
so we have from (7.3) the relation

[%—ljjl,j’ll=[@—l]jl.jlll l: U’ D,
We now compute € from the formula

[€1;1,5:r = cofactor Gjrir j1/det@.

!=U,D. (14)

(7.5)

To evaluate these cofactors, we define the 2#X2#n
determinant €, to be the determinant obtained from
€, by striking out the first two rows and columns.
Similarly, we define ©, to be the (2n—1) X (2n—1)
determinant obtained from ©, by striking out the first
two rows and columns. We evaluate €, and D, exactly
as we did in Sec. 3 and find

-@n — b2)\n+bl2}\’n’
Dn=21i"D(A"—2"").

(7.62)
(7.6b)
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Because € has only three nonvanishing diagonals,
we find for 7>7'>1

B ip,ip=—[B " ]yp,i0*

= — 2/ b " Doy 1Cjr—1/Com,  (7.7a)
(B w.jv=—[B"Jv.w*

=270 G Do/ Caom, (7.7b)
(B Jw.ip=—[Bip.w*

=2y b "Gy r—1/Coom; (7.70)

for j>7'>1
(B . sv=—[B)iv.p*
= — 2" 0 o110 /Coom;  (7.7d)
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forj>0
B ipw=—[B w.p*
=200 D41/ Coom, (7.7¢)
[:%"l]ﬂ] 0 == [SB" l:loU.jv*
= —2cb%" Com—i/ Cam, (7.79)
(B oo = — ¢Caom/Cosr, (7.79)
[(BJip.0p=0, (7.7h)
(B Jp,op=—c", (7.71)
and for all §
[B]v,0=0. (7.75)

For fixed 7, k, /' and %’ as M— and 91—, we have
for j>5'>1

=—(2m)[ O eBEH) g =izt (1—2) L (e — ) (o —ar) !

-7

A4, k35, K oo=—U7(F, K5 j, B)wu

=(27)!

-

5 [1—a—w ((eiB—l) (e‘9+1)'1+iz222“1b/n’>] ,

A4, ks 7', K )up=—U (4, k5 4, k) pv

X |- oo
for j>45'>1
A4, ks ', K )pu=—U(7', k' 4, k)up

o

for j>1
A1( 4, k; 0, ) pu=—UA"1(0, ¥'; 4, k)up

(e—1) (ei"+1)"1+iz222”1b/b')] (7.8)
(6" —1) (" + 1) — izt 0 /v/ |’ e
df e® i —igz1(1—292) 7L (e — ) (a1 —ar)
(e —1) (e#+1)—1— izt '/ (7.85)
=(2m)~ / "0 et iz (1 —22) (o —a) [ — 142’401z | 14ze? |2]
(e7—1) (ef”+1)-1+iz2zf1b/b’)] : (7.8¢)
(e®—1) (e¥+1)"1—iz%2' v/ |’ '
= 2m) [ db 0600 i1 (1— )= (0 — ) [ s | 1269 [7]
(e?—1) (e?+1)"1—iz% ' /v/ |’ (78d)
=—(2m) " eP*H) g~ g5 (e? —1) (e®+1) "0 /v —iz2] 7, (7.8¢)

-
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A7, %; 0, K )yu=(2m)1 f df e¥t g1~ (e¥—1) (e®+41)~1—iz% 10" /o ]!

=—9%1(0, ¥'; 7, k)vu, (7.8f)
A0, £; 0, &) yy=(2m)1 / ido eI (e —1) (eP4-1)"1—iz% ' /o], (7.8g)
A-1( 4, k;0, ¥)pp=0, (7.8h)
A-1(0, k; 0, &) pp=— (2) "dojeiﬂw—w (eP4-1) (e —1)1; (7.81)
for all j>0 '
A-1( 4, k; 0, ) yp=0. (7.8))

In the above, v/v’ is given by (3.20). We note in particular that
A(4, k5 7', B)pp=UA"(J, k; 7', k)vu=0, (7.9)

and that as j/—co, the elements of (7.8) approach the corresponding inverse elements of the bulk problem as
given by Montroll, Potts, and Ward.?
In Appendix C we compute all elements of B! as M— <, using a Weiner-Hopf technique.

8. BOUNDARY SPIN-SPIN CORRELATION

We may now use the considerations of Sec. 2 to calculate

S50/ (N, ) ={os000x5) (8.1)

for the special case J =J'=1. Define y to be the nonzero submatrix of §@:1:M; then

10 1N 00 oN
D D U v _
10 D[ 0 0 —(z1—3) 0
iIN D 0 0 0 —(z1—2)
y= (8.2)
00 U|zt—z O 0 0
ON UL 0 zl-—z 0 0 _]
Define Q to be the elements of A~! in the subspace defined by y; then
B 0 A1(1,0; 1, N)pp  A(1,0;0,0)py AX(1,0; 0, N)py ]
A1(1,N;1,0)pp 0 A1(1,N;0,0)pv A1(1,N;0,N)pu
Q= . (8.3)
QI_I(O) 0: 1: O)UD 2[_1(0: 0: 1) N)UD 0 QI—I(O’ 0; 01 N)UU
|90, 731,00u0 (0, N3 1, N)up 20,30, 0)uw o

Then (2.15) may be re-expressed as the product of two Pfaffians:
€11V, 9)
— 42 Pi(y14+9Q) Pi(y)
=4 (1—23)2{[A1(1,0;0,0) py— (z1—2) " —A1(1,0; 1, N) ppA~1(0, 0; 0, N) yyr —[A*(1, N; 0, 0) pr P} (8.4)
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Using the explicit forms of the matrix elements of A~ found in the last section, we have
2(1—2?)
2r

t 4 2
£V, O) = [ 21| dO| 14e% |2 (22 | 14-21e% |2—2% | 14-e® |2_22(1—Z12)a)_1—z:|

2

—(1—2?)2 {[i/rdﬂ N | 14-e% |2 23 (222 | 142167 |2—3%21 | 14-¢® l2—-zg(1—212)a)_1]
- [(2#)”’[*(10 €Nz (e —1) (e ¥41) (22 | 1+z1e® |2—2%, | 1+€? ]2—z2(1—zl2)a)"1]
X (2m)~? ,rdé)e“”(e”+1)(ei”—l)—1

X[+ | 14e? |2 (22| 14216 [2—3% | 14+6? 12—22(1—212)(1)—1]} , (8.5)

where the first term is recognized as 2. If $— o, the right-hand side of (8.5) goes to 1; so, since we know that
&1,1(V, ) must go to 1 when H— 0, the plus sign must be chosen in (8.5) when 9 is large. Because S;,1(N, 9)
is a continuous function of §, this consideration determines the correct sign in (8.5) for all § unless there is an
9 for which &;,(N, 9) vanishes. This only occurs at fixed N when the lattice is antiferromagnetic and T<T.
In this case, when 9 is small, &, tends to alternate in sign. The plus sign in (8.5) still holds but now we will
determine it by continuity from 7'=0, where &, (N, $) =(—1)¥ as is explicitly shown later.

Before considering asymptotic expansions, it is instructive to consider a number of simple limiting cases. To do
this in a systematic fashion and also because it clearly exhibits the several types of exponential behavior as N— o,
we will shift the contours of integration of the integrals with a term €% in the integrand from the unit circle to
the contour I" which goes around the branch-cuts of « inside the unit circle. In doing this, we pick up contributions
from the poles at ¢é¥=1, —1, and t. The form of &;; now depends on whether or not t is in the cut e#-plane as
determined by (5.13) and (5.14). We also rationalize the denominators in (8.5) and obtain the following forms
for the correlation where { =¢?® and we use the following notation:

Er=dm (1) (2mi) [ & (22— 1) (= )RV (g = Do,
T

Iq

=) (2r0) 1| (6 =1) (D700 =) (1),
Erm (57— 2) o) {[izﬁ)—l [t -y
x [ ariy [ gmesier- (e -1 -y |

- [ @ fae-nre-vme v},

Eima(1—2) (2mi)~ [ de 291 (=0 (= DG HD = 1)
r

if T>T.and 22> | 22| (1—a1)/(1+a1), then
S1a(N, §) =M2+rV22[ (1+421)2(22—2%) 2— 22 (1 —21) 2(1—22) 2] (1 —22) "Ly 2 (22— 2?) 3 (v 1 —1) 2
X[(1—21)2—22(14-21)2— E1 J+22[ (1 —21) 2 — 2> (14-21) 2] (v — 1) 71 (v 71— 1) 7 (202 — 22) 2 2yt Es;

(8.6)
if T<T., E;>0, and either 22> | 2| (1—a1)/(14a1) or 22< | 2| (1—ap)/(14-02), then

G11(N, ) =M —tV2 (1+421) (22— 2%) 2 — 2> (1 —21) (1 —22) 7] (1 —22) "L (R2—2?) 3 (v 1 —v) o 25+ 5s;  (8.7)
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if T>T,and 22< | 52| (1—a1)/(14en); then

S1a(W, §) =D+ (1—2) "~z (142 (t— )7 (= 1) ') o 2Bt By, (88)
if T<T,, Ex>0, and |z | (1—as)/(14a) <22< | 2| (1—ew)/(1+as), then )
G11(, O) =D2+Es; (8.9)

if T<T., <0, and 22> | % | (1—a1)/(14a1), then
Bua(, §) =D —s2(— )Y (5 —2) 52 (r-+ ) (1) [ (1) (148)7]
X { (t— 1)1 (11— 1) (1 —2) 2= 22 (1-F-21) P — (1 —22) (g — ) 1Y
XL (=) (1) =5 (1)1 —5) T £
FoV2 (1+421)2(22—2) *—2*(1—21) 2 (1—2%)7]
X (1—2%) "1 2(s2—2) 3 (v —1) [ (1—21) *—2*(1+21) 2 — E1 ]
+22[ (1—21)2—22(1421) 2] (v —1) (v 72— 1) 71 (2® —22) 2 2En+Es; (8.10)
and if T<T,, E;:<0, and 22< | 22| (1—a1)/(14eu), then :
GV, §) =D —2(— DV (2P —2) 2 (r+1) 7 (1714 1) [z (1—2) *— (1+21)%]
X (1) (= 1) (=22 (12 T2

+22L(1—21)—22(1+20) 2] (x— 1)1 (v — 1) 7 (52 —2%) % 2Ep+ B, (8.11)
where it is convenient to note that
(r=1) (r1—1)z(1—22) (2—2?) = — 22 (1 —21) 2 — 22 (1421) 2+ 42127 ] (8.12a)
and
(r41) (r74-1) 21 (1 —22) (22—292) =22(1421) 2—2%22 (1 —21) 2— 42120%. (8.12b)

We now consider several limiting cases.
(i) Er— . In this case, I'< T, and ay=a>0. Therefore, (8.7) holds and, using (5.1) for Iy, we easily see that

lim &1 (N, ) =1. (8.13)
E1»>®
(ii) Er—>— . In this case, T<T, and acy=—(1—| 22 |) (14| 22 ). Therefore, (8.11) always holds and we have
lim &,,(&, §) =(—1)¥. (8.14)
Ej»—» .
(iii) Ey—=k . In this case, T<T., ax=a2=0, and r=(1—]| z|)(14+] 2 |)~L. If E;>0, (8.7) holds and
lim &,1(N, ) =1. (8.15a)
Eot
If £,<0, (8.11) holds and
lim @1,1(N, @) = (— l)N. (8.15]3)
Eg9>4

(iv) E;—0. For this limit, it is easier to use (8.5) directly to see that
lim@l,l(N, -@) =22 (816)

E1-0
(v) T—0. In this limit, t—0, ax~az=0. If E;>0, then (8.7) holds, none of the-integrals contributes and
G11(N, ) =1. If E:<0, then if | § |>2 | Ei |+ Ez, then limp,o(22—22) 1= and &11(V, ) =1. If | $ | <2
| E1 |+ E,, then limp,o(22—22)r1=4 and &, (N, ) =(—1)¥. If | § |=2| E1 |+ E;, then limp.o(2—22) 1 1=8
and €11(N, §) =1 (1+(=1)¥).
(vi) Ey—0. In this limit, we have reduced the vertical bond strength to zero, T>T,, ci=as =z and (8.6)
holds. The integrals vanish and we have

: _ (1~z2>(1+zl>2[ 2 N(lm)e] |
;:Ijlogl,l(N, @) = 42221—}-(1—21)2 1—2 +‘L‘ 1+21 . (8.17)

This is the spin—spin correlation function for the one-dimensional Ising model. It agrees with the one-dimensional




162 THEORY OF TOEPLITZ DETERMINANTS 457

calculation of Sec. 5 of II if we note that
lime=X\_/\, (8.18)

E2-0

where Ay, A_ are defined by (5.9) of TI.
(vil)) $—0. The behavior of M1(P) in this limit has already been obtained in (5.19). Therefore,
(a) if T>T,, Eq. (8.8) holds and

G11(NV, 0) = —25 (a1 —2) (2m1)~ fdﬁ' -1 (8.19a)
r .
(b) if T<T, and E;>0, (8.7) holds and
S11(IV, 0) =La 22122 (1+21)2— (1—2) ] — 2t (s —2) (2m8) = [ dg 9 (2= 1) 1o (8.19b)
r

and
(c) if T<T. and E;<0, (811) holds and

G114V, 0) = — (= D)V 2 (1 —21) %2 — (1421) 2] — 25 (ar L —21) (2wd) L[ dg ¢V (2—1)"t. (8.19¢)
r

We now turn to the question of the behavior of &11(N, §) for large N. There are many special cases and we
make no claim to completeness. We first consider the regions in which

N|1=T/T.|>1 (8.20)
and v
N 1=22(14a2) (1=ap) | 2 [ | > 1. (8.21)

In this region, as the expressions (8.6)-(8.11) show, the correlation function approaches its limiting value expo-
nentially rapidly. We will compute the asymptotic series multiplying the exponential for the several regions
(8.6)-(8.11) and explicitly exhibit the first few terms. The method used closely follows Sec. 3 of I. We then will
consider the region where T is near T, but where (8.21) still holds by assuming that N is such that N | 1—T/T, |
is fired and of order 1. In this case, the correlation functions do not approach their limiting value exponentially
but only as an inverse power of N. The coefficients of the first few powers of N will be evaluated as functions of
N | 1—T/T. 1. We next examine the case where §=0 and N | 1—T/T., | is of order 1. Here, we obtain approxi-
mations to the simpler expressions (8.19). Finally, we consider the case where T'= T, and N2?is fixed and of order 1.

A . T>T,N|1-T,/T|>1

From (5.15), when r is in the cut ® plane, | v |< | oy |. Furthermore, 0< | &y | < | a5~ | <1, so that each
integral in (8.6) and (8.8) is of order a;~V. Thus, for all values of §, we have

G11(N, §) =M 422 (1—21)2—22(1+21) 2] (r— 1) (r71—1) (32 —22) 2
et (1= 207 e 291 (=) (1) =0 e - 1)

XL —anf) (1—ot™) (1—0™8) (o1 —1) I, (8.22)

where = is defined as in I. We now call {1=a{ and write

@enf” de =D D7) =D)L —and) (T—and™) (T—as ™) (a1 —1) T2

al

=%o V7~ / dfi(or1—1) (1) o T — 1) "ot —£1) 1Y

atroe2

X1 =aes™1) (1 —ononti™) (1—a2y) (371 —1) U2 (8.23)

Define asin I
1= (1—or/az) 1 (14as/aws), (8.24)
%= (1—anas) 1 (1+auen) (8.25)

2s=(a?—1)"1(az2+1). (8.26)
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We further define from (5.23)

2= (0g—1)Hapt+1) = —757, (8.27)

X5 = (l—azr)‘l(l-f-agr) N (8.28)
and

Xe= (l—azr"l)—l(l-{—azr“l) . (8.29)

Then we may write the right-hand side of (8.23) as

1 —
bt e ) 1) b 1) i (g 1) (o) a1 (), 830)
alag 1

where
As (1) = (14agm) (142 n) (1 —25) "2 (1—2en) 7L (14-xm) (1—29m) (1+4-25m) JV2 (8.31)

We will be able to reduce many of our asymptotic expressions to forms similar to (8.30). It is thus convenient

to consider the following generalization:
1 1—¢
e (1 —r(1— (——) 8.32
J e ARCE AL G (8.32)

We expand R () in a power series as

Rn) = gﬂtnn", (8.33)

which we substitute into (8.32). The lower limit of integration in (8.32) if it is not 1, may always be extended to
zero without altering the asymptotic series. Integrating term by term, we obtain

f I (1) (1— ) R (i;ii)

= imnI‘(N’-l-l) T'(n+q+1) [T (n+q+24+N") 27 ?F (n+p, n4q+1; N+n+q+2;3). (8.34)
n=0

In (8.34), the sum over # is to be interpreted in the sense of an asymptotic series and we have used Euler’s integral
representation of the hypergeometric function F.! We may now rearrange the series to obtain the result

b 14
[ @ ey ()

=N ’!iz"”"’l‘(m+1>) T'(m+g¢+1)[T(V ’+m+q+2)]"Z=:09?n[F(i>+n) (m—n) 1] (8.35)
m=0 n:

In the present case, we define > by

As(n) = i%o"l", (8.36)
poar)
where the first few terms are
No>=1, (8.37)
1> = 24— a5 w5+ 26+ 3 (21— 22+x3), (8.38)
Wos = 2222062 — L (w2 2+ 252) — 14 (wa— 2 ™) (ws+-6) 2050
+3 (ma— x5 06) (01— 2a+45) — % (1% — 21s-0%3) (8.39)

We now may specialize (8.35) to (8.30) and obtain
S11(N, ) =M+ (1—21) 2~z (142) ] (r— D) (7 = D7 (22 —2*) o *(1-27)
Yoy V1 (o 1) 712 (o0 1) 72 (a4 1) 20 (05— 1) (w6 —1)

X292 (N —1) 1S [T (N+3+m) T (m+3) r(m+%)2ﬂ"§2[n>[(m—n) IP(n+3) ] (840)
m=0

‘B Higher Transcendental Functions, edited by A. Erdélyi (McGraw-Hill Book Company, Inc., New York, 1953), Vol. I, p. 59.
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This is the desired asymptotic expansion for 7> T'.. For completeness, we write down the first three terms-as N—w,
S11(V, §)~M+22[ (1—21) 2 =22 (142) 2] (r—1) 71 (71— 1) (2 —22) 22 2(1 —2?)
X o N V2 (o 4-1) 712 sy 1) =12 (254 1) 120 (25— 1) (w5 —1)

X273N-#2 {14 (3/4N) Un>+(5/32N?) [6Uz>—1]+O(N?) }. (8.41)
For this asymptotic series to be valid, we must have N>>%;5 which implies the restrictions
N> (8:42)
and
N> | wtas | = | 2(1—an?) (1—aat) 1 (1—apr )72 |. (8.43)

For all values of , both of these requirements are satisfied if NV is much larger than (7/T.—1)~1. We may there-
fore let $—0 and find that the leading term multiplying the exponential is N=%2, which is to be compared with
the N—12 behavior of the spin-spin correlation function for two spins in the same row at H=0 in the bulk case
above T, which was found in I.

B. T<T., E;>0, N[1—T/T.J>1

When T'<T, and E;:>0, there are two cases. If 22< | 22 | (1—as)/(14a2), then (8.7) holds. By (5.16), we see
that t is real and 0<a,<t<1. Therefore, we retain the leading exponential terms to find

S11(N, 9) =M2—4r¥ (r1—1)2(1—22) 1(22—2:2) ~%2(512— 1) 2o (1421) 2(22—22) 2— 22 (1 —21) 2(1 —22) 2]
X (Q2r)7 dy V- (- (v -1 e (8.44)
r
We proceed as in the previous case to obtain an asymptotic expansion to the integral

(2ri) [ df $¥-1(g2— ) A= D g — et
r

= “;—.1 22—1(1—zlz)’*l(l——222)a2Nx4”'1(x1+1)‘1/2(:»2—{—1)'1/2(——xs—l)“llz(x4—1)2(x5—1) (xe-*—l)—‘l
™

! 1—¢ B
N— —_ / -1/ 1)
X e A (1 =) V2 (14-§1) VU4 (1 | g,1) , (8.45)

where {1=a5"'¢ and
AP () =[1—2en [ 1= I L1420 T [ 1+wen ] { {14 L1 —xm L1 —2an ]} 2. (8.46)
Expand AP () as

AD () = 3Py, (8.47)
=0
where the first few terms are
Noc P =1, (8.48)
Wi ® =3 (% — a1 —x3) +24+24" — 25+, (8.49)
Mo ® =w@+2 24 22— § (22422 +232) + 14 (xst2) (x6—25)
— w526+ (a2 — a5+ x6) 3 (22— 21— 203) — F (Xrota 203005 — 20123) (8.50)

We then use (8.35) to obtain
S11(NV, ©) =M2+1 oV tV (v —1) "2(1—22) "L(22—%?) %252 (1 —222)
X1+ =) =52 (1—) (1 =) (- ) M2 )72
X (== 1) 7121 —2) (55— 1) (2e-+1) 7123 (N — 1) |

X 352770 (mA-4) T (m+3) [V +3+m) ]"iﬂm‘l’fl‘(%"i-ﬂ) (m—n) ] (8.51)
m=0 n=0
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Explicitly, for large N, this becomes
GV, ©)~ M2+ eV (71— 1) 2(1—22) "1 (22—25%) 2% 2(1—2?)
XL(14-21)2(22—2%) 2— 202 (1 —21) 2(1 —22) 7] (21 +1) ~V2(2p 1) 112
X (—a3—1)712(1—24) 2(w5— 1) (we+ 1) 12~ V2g— 2N —3/2

X{14-(3/4N) U<+ (5/32N%) (6 —1) +O(N9) }. (8.52)
For this asymptotic expansion to be valid, we must have
N> | x|
and
N>, (8.53)

which holds if (8.20) and (8.21) are obeyed.
We may let $—0 without violating (8.53) and find that the leading term in the series multiplying the exponen-
tial is N7%72, exactly as it was for 7> T, at $=0. This is to be contrasted with the N2 behavior that the analo-
gous term in the bulk correlation function below T, at H=0 exhibits, as was derived in I.
If 22> |22 | (1—an)/(14as), then (8.7) or (8.9) holds. In either case, the terms of leading exponential order
are given by

S11(N, ) =M -4z (21— 21) 222 (22— 22) 2
X {[(ZMI)" [r d §N+l(r2—1)-1<r—r>-1(r1;—1—1)—1a—1]

X [(zm')— fr d?'?'”"(s"z—1)“((’—0‘1(1:‘15“"1—1)”1a—1]

- [(27ri)‘/rd§' KN(s“z—1)"1(s‘—r)”l(r‘li“—l)'la“]z} . (8.54)

The three integrals in (8.54) differ only in the power of { in the integrand and clearly all have the same leading
order term. To display the cancellation that occurs, we first write

(2mi)7 | &g ¢V (P-1D) 7)Y =) e
r

. _a2N+2(1_222)z2—1(1__212)——lx4—1(x1+1)—1/2(x2+1)—1/2(__xa__ 1)—-1/2

1 f—
X (wa—1)2(ws+1) (a6+1) (2m) 2 diiei (1) 72 (1 =) V2D (i_l_i:l) (8.55)
aylas {1
where
A® () =[1—am ] [1 =2 I 1+ T [1+2en I { {1 +2on (1 —2m J[1—xan ]} 2, (8.56)
We now write
P =1-(1-) K" (8.57)
and
V="M= (1—=¢1) ] (8.58)

Using (8.55), (8.57), and (8.58), we are able to write (8.54) as
&11(N, ©) =M+ 721222 (222 — 22) "2(1—222) 202V M2 (1) (g +1) 1 —as— 1)~ (s — 1) 4(25+1) 2(x6+1) 2

1 11— 1 1—6
N— —5/2(1 — / 2) g . —! — /! (
x{[ R (e ) (L) L (1, +§1)][ R (1 +a>]

e G svos o]
- dese N1 1)-512( 1 — ) 3129[ @ eV (£4-1)-52(1 — £)3/29] @ .
[ it SN (1) 2 (1 —6) 32« (1+§'1 " SV (FH1) 752 (1—¢)3 A« s

(8.59)
We now expand A® () as

A () = 3%, O, (8.60)
=)
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where the first fgw coefficients are

2I0<(2) = 1, (8.61)
W ® =yt —w5— 25+ (02— 21— %), (8.62)
and
Ao ® =242 252+ w62 — § (w2222 +28%) +1— (wat-wi) (05+6) +st
+ (@@ — 25— %) 3 (va— 21— ) — 1 (w02 +2a3—2%3) « (8.63)

We may now apply (8.35) and obtain
S11(NV, ©)~MP+722 2 (2 —2%) 22 (1 —22) 2oV a2 (r+1) 7 (a0 +1) 71 (— 25— 1) 7 (s — 1) *(ws+1) 2(26+1)?

X([QV=1) 1352 (n+) T+ OOV T Z:)azn<<2>[r<%+n> (m—n) (1]
XN 275D (m4-5) T (m+3) [T (N +-m+§) T 32 LT (§+12) (m—) 1]
m=0 n=0

LW =) 32T () Tom+) [ (W T 90 <PLE ) (=) 1]

XN 27m5T (m+§) T (m+§) [T (V+m+H T S 9L (§+n) (m—n) T}. (8.64)
m=0 n=0
For large N, the first two terms of this expansion explicitly are
S11(NV, §)~MrP+-22(1—2) %tV Hzr 2 (29— %) " 2(2+1) 7 (1) 7 (— s — 1) 7 (o — 1) 4 (45+1) *(w6+1)2

Xa 127 N-33{ 2+ 5N U1 P4-0(N72) }. (8.65)

C. T<T, E:<0

In this case, (8.10) or (8.11) holds, depending on the strength of §. For both cases, the terms of leading exponen-
tial order are given by

S11(N, §) =M—22(—1)¥ (2*—22) 22 2(v+1) 7 (r7 4+ 1) [’ (1—2)*— (1+21)]

x { (=) (= D) (12— (1))

an(1—52) (20 & PG ) G HD (r—n—la—l}
o (1) =22 (142) D (1= 1) (= ) =) (a2~ 1)

X(Zwi)‘fdf E-D D) =) e (8.66)
r
We obtain asymptotic expansions to the two integrals exactly as in the ferromagnetic cases, to obtain
S11(NV, ©) =MPE—22(— 1)V (52 —22) 2o 2 (v+1) (v +1) [z (1 —21) *— (1+=) %]
X{ (=) (=) [(1—2)*—2z*(1+z)*]
Fo 1 (1—222) (1) "2 (x24+1) 2 ( — 1 —23) 204 (a05+-1) (a06+-1)

X273 (N —1) !gZ*ml‘(m-{-%) L'(m~+3) [T (N+§+m) ]—lé%né”tr(ﬂn) (m—n) 1]}

Fo¥ 22 (1—21) 2 —22(14+21) 2] (r— 1) (r71—1) (22— 2%) % 2(1—22?)
X (214 1) 712 (a0 1) 712 — 1 —205) 7207 (w54+-1) (we+-1) 272271

X(N-1) 1202"”1‘(7%-*-%) L'(m+3)[T(N+§+m) I ‘gﬁ&m‘”[l‘ (F+n) (m—n) 117, (8.67)
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where

B® () =[1 =25 ][ 1 —xa ][ 142 [ 14-aen ] {[ 1422 J[1— 2 J[1—xan ]} 12
_ i%Ka),,n (8.68a)

and :

B2 () =[1 —m][l —x M ] [ aeen T 1 2een T7H{ {1 2o L1 — e L1 —wgn ]} 112

=3B, (8.68b)
n=0
In particular,

BocW =1, (8.692)
Bi<® = —xs as—ws— x5+ 5 (t2—21—23), (8.69b)

B ® = w4252 +x62 — 5 (022 +-252) —1— (wa—247) (054+26)
Fwswe+5 (X — 2 — a5 —x6) (43— 21— w3) — (X1@2F-wows—21203), (8.69¢)
Bc®=1, (8.69d)
B1<? = x4 —wy— 05— w65 (2 — 21— 13),, (8.6%)

and

Bac® =x a5 062 — § (%> 22 +23%) — 1+ (2 —247") (a05+2%6)
Fwsst (21— 24— 25— 5) 3 (X2 — 21— ) — & (Xa¥a+Xoits— 415) . (8.691f)

The two series to be expanded in (8.67) are each of the form of the series expanded in (8.40), so we immediately
find that the first three terms of the asymptotic series are

B1a(N, §) e —22(— ) (5= 2) 272 (1-H) () (1) = (142)?]
X (1= )= D)L (1—m)* =2 (142)?]
F a1 —252) (1) 712 (o024 1) 72 ( — 1 —205) 204 (2054 1) (1) 71227502
X N1+ (3/4N) B0+ (5/32V%) (6Ba® —1) ]}
Fo 2 (1—21) 2 =22 (1421) 2] (r—1) 71 (r 71— 1) "1 (22 —2%) 22 (1 —25)
X (@1 +1) 72 (2004 1) 72 (— 1 —25) 7207 (251 (1) w2275
XNV 14 (3/4N)Brc®+ (5/32N?) (6B2c®—1)]. (8.70)
This series is valid under the restriction (8.20).

D. Tnear T,

All of the asymptotic series found so far are valid only when N>> | 1—T/T, |~1. We now consider the limit that
T—T.(ag—1) such that N | 1—T/T, | remains fixed and of order 1. We first consider T<T, and F;>0. Then
(8.9) or (8.7) holds. We consider only the case that 22> | 2z | (1—a2)/(14-as). Then the term involving t¥ is
exponentially small in (8.7) compared with the other terms and may be dropped. Therefore, both (8.7) and (8.9)
reduce to (8.54) which may be written using (8.57) and (8.58) as

S (N, '5:)) %93212—{—1‘%’2(1—@2) 252 (222—Z2) -2
X {[ f “e e (1= 1) (=) (= )L (=) (1—as ) (1—ars) (ag“lg"'l—l)]m]

X[ «zds“i‘”—l(f—l) E+D7E-—)? =D —od) (T—a™) (1—ar™%) (az"li"‘—l)]”?]
—[ agdi'§N(s“+1)“1(s“—r)'1(r“‘§’“—1)"1[(1—a1§)(l—ali'"‘)(l—az’li') (az"‘é‘“—l)]”’]

X | [Tt o406 —0 e )= (=) (1) (ar - 3
(8.71)
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All integrals in this expression are of the form
as .
[ de )@= =D (1 —e) (T—ag™) (1= ™) (e X1 —1) 2. (8.72)
al

To approximate this integral, make the change of variables

E=(1-¢)/(1—a). (8.73)
Then (8.72) becomes

(U—ay) (—ag) ™!
et (an—1)2[ &1~ (1= e (1= 1) 7 (1= 1) (1)
1

X[1=(1—en) 3t [1-£(1—a2) (1—1) ] [1+£(1—a) (1 —1) 7]
XL(=148) (1+auf) (I4H-far(1—ap) (1—a) ™) (A—E(1 =) (1—an) 1) ]2 (8.74)

Define
t=(1-)N (8.75)
which is the fixed quantity of order 1. Then, correct to terms of second order, and we have ‘
[1—(1—ap)E}V~e (132N "], (8.76)

If we require | 1—1 | > 1—ay, we may expand the rest of the integrand as a power series in (1—a3) to obtain

(—a1)(1—a2) ™!
a7 (= 1) (1= 1) (1= 1) (1) [ & g (= 1)1
1

X{1+(1—a)§—3P8N"+5 (e— 1) E(E+1)7+0((e2—1)D)}.  (8.77)

We may replace the upper limit by infinity without changing the asymptotic expansion. The integrals may then
be evaluated as Bessel functions. In particular, when #=0, (8.72) has the expansion

a1 (1=ap) B (1—1) (v = 1) (1—aa) { Ka(§) 1= 3 N[ Ko (f) +Ki(f) +tKo(2) ]} (8.78)
When #n=—1, (8.72) has the expression

—-(af‘—l)-§—(1—r)"(r‘1—1)“1(1—a1){ LmdgKl(E)E"——%N“’tl(l(t)} . (8.79)

In the above, K, is the modified Bessel function of the third kind of order 7.2 When we replace N by N—1, we
obtain an additional correction term of order (1—az). Combining these expressions, we find that the first term
of the asymptotic expansion for &;,1(%, @) is

G1a(N, O)~Mit+72a2(1—22) %2 (2P —22) 24 (1—1) 2 (r 71— 1) 2(1—a)?
XN~ {Kz(f)ta RO P20 0 | (850)
¢
The integral in (8.80) may be expressed in terms of modified Struve functions.”® The term O(N-1) is given in
Appendix D. When ¢=0, this reduces to what one may simply obtain by letting a;=1 in (8.71) ; namely,
G11(V, O)~ Mm% (1—2") 22 (22 —2%) 2 (1—1) 2 (1 — 1) 2(1—22)2(V4+O(N-%)).  (8.81)

For (8.80) and (8.81) to hold, we need N> | 1—t [
We next consider T near T, but 7> T, and z not near zero. Then (8.6) or (8.8) holds. The terms with t¥ are
exponentially small and may be neglected. Using

(1=21)2—22(1+2)2=(1—2)*(1—as?), (8.82)
we see that the remaining terms in (8.6) or (8.8) have a leading order of N—% and all must be retained. Define
{=N1—as). (8.83)
In terms of this variable and the change of variable
F=01-¢)A—ay), (8.84)

12 See Ref. 11, Vol. II, chap. 7.
13 See Ref. 11 Vol. II p- 9.
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the calculation is almost identical with the 7<T, case. In particular, (8.77) holds if we omit the first factor of
a; ! and replace az by az7%.

S11(N, O)~ M2+ (1/27) 22(1—22) 22 (22— 22) 2 (r— 1) 2 (v 1—1)2(1—2)2(1 —aa) N4 K (¢)
(1= 2 2 (o — )2 (1= 1)~ (= 1)=2(1 ) N [m(z') / “dsm@)s—l——t'zm(z')] .

(8.85)

When T=T, (and ¢ =0), the second term in (8.85) vanishes and we obtain the same limit as we attained from
below 7. We note that in both these cases the leading order term is V=% This is to be compared with the result
to be obtained when $=0. Note also that Appendix D shows that in (8.81) and (8.85) the O(N-5) terms vanish
at T=T..

When $=0, the correlation functions reduce to the expressions (8.19). We expand these for the ferromagnetic
case near T,. When T> T, we have

a

SN, 0) =— (2m) "z *(1—2") s 2 dr ¢¥ (=17 [(1—ad) (1—ef™) (1—a7%) (= 1) ]2 (8.86)

al

Use the substitution (8.84) to reduce (8.86) to an integral similar to (8.72) with #=—1. Then,
S14(N, 0) = (4m) 1 (1—2?) 21'122'2(1—01)1\7'1:{" ALK () 1 —NT132K4 (V) +0(N-2)} . (8.87)
t’

When T'<T,, an analogous calculation gives
©1.(N, 0) =%z 2 [z (1+421)2— (1—21) "]+ (4m) 722 (1 —2%) 2 ' (1 — ) N

X {t/‘wdé EK () + N Utmdé ETKL(8) —%Kl(t)] +0(N’2)} . (8.88)

In particular, if T=T,,
S11(NV, 0) = (47) " (1—22?) (1 —22) a2 PN H-O(N9) 5 (8.89)

so when § =0, the correlation functions near T, fall off much slower than when $40. This should also be con-
trasted with the bulk correlation functions where, at T, Sy is proportional to N~1/* as shown in L.

Our final remark about the spin-spin correlation functions will be to find the asymptotic behavior when 7'="T,
E;>0, and z is near zero, such that

u=Nz? (8.90)

is a constant of order 1. We may approach this case from either (8.8) or (8.9). In either case, we have only the
product of integrals term (8.71), which with a;=1 specializes to

G1a(NV, ©) =M+ 22 (1 —2?) 2 (2?—22) 2

x{[ [ ar v+ 0= C a0 c-s 3
X[ [ 2 071602640 0= 1 -0 L1 =5) (=20 7]

~[[a overnma-n g-- e -n-L0-n0 -]

X /di DT A= =) (=) T [ —a) (5’—-21)]”2]]- (8.91)

When 9 is near zero, .
1R 14-25%,7 4. (8.92)

We obtain the leading asymptotic term if we approximate all of the integrand that varies slowly at {=1 by its
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value there. Therefore,
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irrt
G141V, O)~M2+72272(1—22) 2 (2P —2%) 2 (1 —22) % {I: / di ¢V (§—1—22%74) 1 (1—22% 5 —) “‘]

We make the change of variables
and use (8.90) to obtain

S11(N, ©)~IM24-72a 222 (1-22) 22574(1

@1,1(N, .f)) ~§D?12+1r—2zl‘2(1—222) 222_4(1—212) 2%22
< {[ /mdé e_eu(£2+4z2—z)—1] [u—l—— 452 / i B e—tu (&-2_}_422—2)—1] _ [ / * di et (22_{_422—2)_1]2}
0 0 0

x| [ds 96— 1e=1-2000) 11 =200 =) |

1
B U #A=0E -1—222Zz“i)-‘(1—2z2z2—1¢'—§>“1]2} .

E=7"%(1—Y)

— 2"12) 2

27 %(1—21)
i {[2'2 f dg e"“(£2+422‘2)‘1]
0

272 (1—21) 27—z 2
X [22 / d 2 e"E"($2+4zz‘2)'l] - [ / de & 6‘5"(52—{-42{2)_‘] } :
0 0

We may replace the upper limit by infinity to obtain

=M 2722 (1 —252) 2254 (1 — 292) A N1
% {/wdi e (24 22) " — 4z [/wdf e_Eu(Ez_1_2,.2—z)——1jl~ —u [/mdg £ e—fu(£2+22——2)_]j|"} .
0 0 0

This is the desired result. If now for fixed N we let $—0, then =0 and this specializes to
@1,1(N, 0)'\’11'_1231_2(1-—222)2 l 22 ]"3 (1—212) 2'1'1@]\7—1,

which, if we note that at T,

|20 [ |22 [ (1—2%) (1—21%) =4,

is exactly the result (8.89) previously obtained for &,,:(N, 0) at T=T..

9. MAGNETIZATION IN INTERIOR ROWS
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(8.93)

(8.94)

(8.95)

(8.96)

(8.97)

(8.98)

(8.99)

We obtain a formula for the magnetization in any interior row by combining the formalism of Sec. 2 with the
inverse elements of Sec. 7. Define y to be the nonzero submatrix of §¢. Explicitly, from (2.12) and (2.13),

y(J )=

10
10 D[ o0
20 0
JOo 0
00 gl—3z
10 0
J—10 UL O

20

0

JO
D
0

25—z

00
U

—(z'—32)

0

10
U
0

— (2 —2)

J—10
U
0

(9.1)
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Calling Q¢ the nonzero submatrix of Y in the subspace defined by ¥, we have from (2.14),
My== 232.1—1 Pf[y(l)] pr,(J)-l_*_Q(J):], (9.2)

where the sign (&) is chosen to make 9ty have the same sign as does $z’~*. We write this out explicitly as shown
in Eq. (9.3) on page 467.

We may simplify this if we note from Egs. (7.8a), (7.8b), (7.8f), and (7.8g) that, because the integrands are all
odd functions of § when k=%,

i)‘[——1(.7.7 k;j’; k)DD.:?I_I(j: k;jl; k)UU=O' (9-4)

Using this, the Pfaffian in (9.3) reduces to a determinant and we have

Mr==+(1—22) (1—22) 71

[9A~1(1,0;0,0)py+ (g1 —2)! A1(1,0;1,0)pr X A1(1,0;J—1,0)pr 7]
bl (2: 0) 0: O)DU QI~1(2; 0; 1; 0)DU+ (22—1'—22)_1 s QI_]'(Z, O,J—'l, O)DU
X det . . con .
. 21—1(]) 0; 0, O)DU 2[_1(-]: 0;1, O)DU tee 2[—1(]’ 0;J—1, 0)DU+ (32_1"'32)_1__J
(9.5)

The question of spontaneous magnetization and hysteresis may be dealt with just as in Sec. 5. We see from
(7.8) that as §—0, all of the matrix elements are continuous except those in the first column which may be written

as
A1(4,0;0,0)pu=(2m)zz| db | 1+e? |2 a1 2% | 1+e? [2—2? (1424221 cosh) +-2(1—z2) ]t (9.6)

The singularities of t}%e integrand of (9.6) are exactly the same as those of (5.1). Therefore, the discussion of
Sec. 5 applies. In particular, if 7> T, (9.6) will vanish as $—0; but if T<T, and £;>0, (9.6) is discontinuous
as §—0 and, following (5.19), has the limit

lim % 7, 0; 0, 0)pr =322 | 22 [7* [22*(1+21)?— (1 —21) ]2 (1) 71, 9.7

$-0*

where
Ot(l) =Zz(1+21) (1—21)-1.

Furthermore, the factor of a=#*! in the numerator of (9.6) does not affect the factorization of the denominator
made for j=1 in (5.8). Therefore, these matrix elements, and hence I itself, may be analytically continued
through =0 just as 9t was and the same sort of hysteresis behavior is observed in all rows.

While (9.5) may be used to compute M for any value of J, we content ourselves here with evaluating the
spontaneous magnetization in the second row. This is

lim My== (1—2?) lim [471(1, 0; 0, 0)un(472(2, 0; 1, 0)pr+ (251 —22) 1)
9-0* $-0+

—A7(2, 0; 0, 0)puA(1, 0; 1, O)pr]. (98
Using (9.7) and (7.8), we find pU Vo). (9.8)

Mo(0F) =2k (1—2) 3o~ | 2| Lo (1+)*— (1) T2
{—;% /;r D11/ G+ (2571 —22) 122 (1—21) (1422 él; /_: dﬂa_l} , (9.9)

which reduces to
_ 21(1—2?) 1
22 (1—22) 2

Mo(0) =3 | 2 |"1[z¥(1+21)2—(1—21)2]”2{22‘1 [ daa-l(e“—lj(e—fv-—n}. (9.10)
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(€6)

~

00 ‘1— 10 ‘T—Ni-R

2200 ‘1— 140 ‘1) I8

20(0 ‘1—140 ‘0)1-N&

—(B—1-2)+
2a(0 ‘T 1—r10 ‘N-R

a4 ‘1—10 ‘T)-Io

a0 ‘1—10 ‘1)1-J6

22(0 ‘70 ‘T—H-J8

22(0 ‘7 0 ‘1) I8
22(0 ‘10 ‘0)1-18

20 ‘140 ‘N1

—(%—1-%)+
24(0 ‘140 ‘7)1

24(0 ‘110 ‘1)-18

an(0 ‘0 {0 ‘T—)1-1

22(0 ‘0 40 ‘1) 18
2a(p ‘0 ‘0 ‘0)1-1¢

24(0 ‘0 ‘0 ‘£)1-J8

24(0 ‘0 ‘0 ‘T)-I8

—(E—2)+
aa(0 ‘00 ‘1)1

- (%—1-%2) —

a(Q‘ro1T—r-X

aa(g ‘10 ‘-1

an(p ‘[0 ‘0)r-1&

aqa(Q ‘£:0 ‘)R

aa()‘roc)-R

aa(y ‘£ ‘1) -5

an (‘g0 T—0)=R 920 T0T—10)-18

1~ (%—1-%2) —

an(p ‘g0 ‘1)l

aa(( ‘z ‘0 ‘0)r-J8

aqa(y‘cio ‘)i

aa(p ‘z 0 ‘TR

aqa(p ‘gz 0 ‘I-I8

an(p ‘140 ‘1)1

- (2—1-2) —
aa(p ‘1 ‘0 ‘0)-1
X

aqa(Q ‘1 ‘0 ‘N)I6

aa(p ‘110 ‘7)1

aqa(p ‘140 ‘1)1

1= (%3—1) (Z—1) F=YL



468

As T—T, the brackets remains finite and nonzero so
the magnetization in the second row goes to zero as
T—T. as a square root, just as INi does. We conjecture
that all I go to zero as (1—T/T,)Y? when T—T,—
for any fixed J. We furthermore conjecture that
(for 2,>0), at =0, M, as given by (9.5) monotoni-
cally approaches the spontaneous magnetization of the
bulk Ising model. The specific manner in which this
limit is obtained is an open question.

10. SUMMARY

In conclusion, we wish to briefly summarize the
quantities of physical interest calculated in the text.
The partition function (3.26) has been computed and
both bulk and boundary terms in tht fret energy (3.27)
have been identified. The boundary entropy has been

found to be logarithmically divergent (4.42) at T, and.

the boundary specific heat diverges at T as a single pole
plus a logarithm (4.43). The boundary magnetization
for any  is computed in (5.1), and below T, the spon-
taneous magnetization (5.19) is found to behave near
T.as (1—T/T,)Y2. The behavior of the boundary mag-
netization for_small § near but below T, is given by
(5.29), while near but above T it is given by (5.30).
The logarithmic singularity in the zero field suscepti-
bility at T is given by (5.32). We conclude Sec. 5 with
an analytic continuation of )t (5.35) which we tenta-
tively ascribe to a hysteresis phenomenon. This inter-
pretation is sharpened in Sec. 6, where we compute L8,
the limit as 91— of (291)~! times the logarithm of the
probability distribution function of the average bound-
ary spin . This function, at $=0, is shown to have
maxima at £=P¢(07). When we turn on the magnetic
field ©, W as given by (6.13) still has two maxima if H
is small. These maxima are at the values of ¢ given by
the two branches of the hysteresis curve. However, when
one of these branches passes through zero magnetization,
the smaller maximum loses its identity and merges with
the larger maximum as may be seen from Fig. 8. When
T is near T, and ¢ is small, the function 8 is explicitly
given by (6.18). In particular, when 7'=7,, the
probability distribution function is given by (6.24)
which is not quite a Gaussian. In Sec. 8, some asymp-
totic limits of the correlation function of two spins on
the boundary row (8.5) are derived. In particular, for
N |1-T/T. | >1, we have the cases: (a) I'> T, where
(8.41) holds; (b) T<T,, F5>0,and 2> < | 22 | (1—a)
(140a2)~* where (8.52) holds, T<T,, E;>0 and 2>
| 22| (1—ag) (14-02)~! where (8.65) holds; and (¢) T'<
T., E1<0 where (8.70) holds. When N | 1-T7/T. | is
of order 1, T is near 7, and  is away from zero, the
asymptotic expansions are given by (8.80) if T<T.
and by (8.85) if 7>T,.. When $=0, £,>0, and T is
near T, the asymptotic expansions are given by (8.87)
if 7> 7, and by (8.88) if I'<T,. If T'=T, and Nz* is
of order 1, the correlation function is asymptotically
given by (8.97). Lastly, we have derived a general
formula for the magnetization of any interior row (9.5)
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and explicitly evaluate the magnetization in the second
row at $=0 in (9.10).
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APPENDIX A

A more physical, but mathematically less satisfying,
way of computing the partition function (2.2) is to
modify the initial Hamiltonian by adding a term,

B4

—Es D 000041,
k=—31+1

and letting Ey—co. This means that we have added a
zeroth row of spins to our lattice. This row has infinite
strength bonds, so all the g, will have the same value
(defined to be +1). When any oo, is different from 1,
(A1) becomes infinitely larger than its ground state.
We may now write the magnetic field term in (2.1) as

%€
-9 2. o190k

E=—1+1

(A1)

(A2)

and so consider the following modified Hamiltonian,

2N—1
A .
= —EIL L 01— Ey 2, 2_, 0'; KOG,k
7=l k=J1+1 j=1 k=
N N
—9 2. owoor—Es 2, 60400k41, (A3)
B=—0L+ k=—OT+

in the limit Ey—. In this Hamiltonian, all inter-
actions are nearest neighbor and the problem of
computing the partition function for (A3) is obviously
solvable by Pfaffians as

Z' = (2 coshBE3)™(2 coshBE;) ®t
X (coshBE) *1@N=D (coshH) ™ P, (A4)

where 2l is given by (2.6) and we must take the Ez—
limit. This partition function is the same as (2.5)
except for a factor of 2 and the (infinite) factor con-
taining E3 whose contribution to the free energy is

—B*lalim (2 coshBE;)** = — lim 291E;,  (AS5)
L3> Eg»>

which is exactly the free energy one expects for 29T
infinite strength bonds. The partition function (A4)
does not contain the factor of % which (2.5) does
because in (A4) we have summed over both ag;=1
and oo,:= —1. Because these extra contributions to the
partition function are independent of both $ and T,
the modified Hamiltonian will give the same results as
the original Hamiltonian if we use it to compute
correlation functions. From' this point of view, the
magnetization in the Jth row is viewed as a spin-spin
correlation of ¢y,0 with ¢o0. The spin-spin correla-
tion &;.,7(N) is viewed as the four-spin correlation
(907,000,507, )-
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APPENDIX B

When the number of rows in our lattice is large but not infinite, we expect a behavior very much like the
half-plane case. However, a phase transition occurs and spontaneous magnetization occurs only in the half-
plane case. To make precise the manner in which the finite strip approaches the half-plane as 9t—w, we cal-
culate the boundary magnetization for large but finite 9. The formalism of Sec. 2 applies, and from (2.14) we
may immediately write

Pu=2z+(1-25)UA"(1, 0; 0, 0) py. (B1)
Using (7.7¢), this becomes

9)21-“—2-*— (1—25) (ZW)_IZ -/T df @@293}/@29}2

=2+ (1—22) (27) a2 fw do(1—a ) |-14-¢?: [2{z221| 14-¢? |2—-zf‘| 1+-21e® 2425 (1 —22) o

: +a’m[zzzl 14-ze® P—z(1—2) ot —2% | 14-¢? 2}-L.  (B2)

If we let SUE—-MO we recover (5.1). In that case, When T<T,, E,>0 and 0, the integral multiplying z diverges
asz'and spontaneous magnetization occurs. If we keep M ﬁmte, however, when T<T,, E;>0 and z—0, the inte-
gral multiplying z is finite so $t—0. When z is not zero, then when J)? is large enough so that

e w14 (1+21)"‘]m[222(1+21)2- (1—21)7], ' ' - (B3)

the terms proportlonal to & may be neglected and the boundary magnetization for the finite strip becomes
identical with the boundary magnetization of the:half-plane. Only very near $=0 will the boundary magneti-
zation of the strip be sensibly different from the boundary magnetization of the half-plane.

We are interested in seeing in detail how spontaneous magnetization arises when T'<T, as . We may
compute this behavior from (B2) for large 91 by expanding the integrand about =0 and keeping the lowest-
order terms. Using (5.18), we obtain

w&lNz—i— ( 1 —22) 2[222 ( 1 +Z1) 2— ( 1 —Zl) 2]21_122—2(_2’11')_1 f‘” d0{ [222 ( 1 +21) 2— (1 “‘21) 2]22221—1

(@12 [z (1421) (1—2) 7 9 2 (14-20) 2 — (1—21) 2] +62} 7, (B4)
so that when z is small and 91 is large,
Ma~z+3(1—22) 52 | 2 [[22 (1421) 2 — (1—21) 2 ]2
X {22 t+1a [ (1+2) (1—2) T2 (1421) 2~ (1—21) 2]}~12. (BS)

If M— o and then z—0, M, clearly goes to the value of the spontaneous magnetization given by (5.19). On the
other hand, if 9 is finite and z—0, I does vanish. From (BS5) we find that the susceptibility at zero field for
a large finite strip is

0P/ |o—0=B{1+| 2 [ [22(142) (1—20) 7 1}, (B6)
which becomes exponentially large as Ml—co. and 1 equations. To solve the Weiner-Hopf part of the
problem, define for <1
APPENDIX C
The matrix B was partially inverted in Sec. 7. That ' Yig= EBI”[%_IJ‘j" (C2)

procedure can obviously be extended to give all inverse .
elements. Here, we wish to present an alternative Furthermore, -define the. Fourier transforms when

method of inverting 8 when M— o, using the Wiener- ¥ l =1
Hopf technique. We start from the definition o

. B(%) =lZ By, (C3)
> BB =155, (C1)
=0 [
B! = 1], 81
where I is the 4X 4 identity matrix. Ifj>1and/>1, then - OF g[% Tt (CH

Bj,1=B;-1 depends on j—I alone. Therefore, if 7>2
and 5’ fixed, (C1) forms a set of coupled Weiner-Hopf
sum equations similar to those studied in I. These will V(E) = “”Y .

be solved subject to the restrictions imposed by the j=0 (D=2 Vipk . (©3)

and
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Both B71(£) ;- and Y (§); are (in the notation of I) 4+ may find a factorization of B(£) in the form

functions. We explicitly have B(§) =C-[Q() TMK-[P(H) "D,  (C8)
’_ 0 14ze” -1 -1 7] where C, K, and D are constant matrices and
—1—ze? 0 1 —1 1 0 0 07
B(&) = .
1 —1 0 14zt 01 0 O
R®I'=POI*= - (C9)
1 1 —1—zt 0 J 0 0 t—a 0
(C6) 00 o 1]
If we multiply (C1) for 722 by £ and sum on j, we

We may choose P and Q of this form because det
B(£) =0 only when £=a, a1 Clearly, P(£) is analytic
B(®)B(8) =Y (£2) jp+&"1(1—jr. c7) and nonsingular for | £ | <1, while Q(£) is analytic
®EH0), )t 1=0p0) - (C) and nonsingular for | £ | >1. Using this factorization,

for j/>1. Assume for the moment that, as in II, we we may write (C7) for | £ | =1 as

obtain

K[P(&) D' B7(8) y —[Q(E ) CE 1 (18,0 ) b —[Q(ENCY (571 5 J4
=[QE)Ce 1 (1=8; 1) I +[QECY (£ 4]~ (C10)

The left-hand side is analytic for | £ |<1. The right-hand side is analytic for | £ |[>1 and goes to zero as £&—.
Therefore, both sides are separately equal to zero. Now

. [QENDCY(EY) 4] =0(0)CY (0); (C11)
an
[ 0 0 0]
0 g1 0 0
[QEYE 1], = ) (C12)
0 0 FI-(aEN"](E~a) O
[ 0 o 0 g1
so we have
1 0 0 0]
01 0 0
B(£)y=DP(§)K{ Q(0)CY (0);+ Ct™1(1—8440) | . (C13)
0 0 [—(e¥N)")/(E*~a) O
[0 0 0 1|

Therefore, for j>1, 7/>1,

(B 1isr = (2mi) f & [BE) ICREN ITHOO0)CY (0) 4, +[Q(E)E L C(1=871)},  (Cl4)

where the integral is on the path | £ |=1.

The matrices D and C are easily obtained if we note that the factorization (C8) defines C(D) to be that
matrix which, when multiplying B(£) on the left (right), gives a common factor of £&1—a (£—a) in the
third row (column). Such a matrix has the form,

[[1 0 0 07
0 1 0 0
C= =D*, (C15)
G G G G
[ 0 0 0 1_|
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where the second equation comes from the skew- I

(C26)

Hermiticity of B(£). The resulting set of homogeneous — —/
equations has the solutions 3 )
= & |
Cy/Cs=—z1H(e?—e ) oo (1+ze?) — (1—217%) ], 2 tr =
(C16) [ [
. ) . . Z 8 T
Co/Ca=2"(e®—e ) oo (1+216¥) — (1 —2€%) ], T, T _ﬁ
v-(N N
(C17) T T T T 5
Cy/Cy=2z1(e?— %)L E gy -
. ‘ by Lo -
X [zo0:(1+216%) (1+216~%) — 14-2.2]. (C18) | -f <s| ! %I -
= s Tom
To determine ¥ (0) 5, we must make use of the j=0 ?)/.:, :I;\-)/L_'_J TB TS’I_I_,
and 1 equations of (C1) which, so far, have not been gX X § X
used. There are —
o & 1
Boo[ B Jos + B[ B e = Ldojr (C19) kY 5 T
and ‘l“ ‘I“ 3,
Bu[BJoy +BulB T+ BB Ty =Tory. (C20) = T F
3 3 3
Considering only j/>1, these may be combined as T T T
[Bu—B1o[Boo " Bor (B iy +Bre[ B Lo = 16457, j .T. E T
(C21) T T 2
= ¥ b

into which we substitute (C14) and solve for ¥(0) ;.

Consider first #/=1. Then we obtain !
o BN
(2ri)1 f dE{[Bu—Bro[Buw T Bon -+ Brut 2} L3 =
o, Y
0 - o,
X[BETCREDIQO)CY (0):=1. (C22) . T )
We simplify the evaluation of this if we note that from T E“E & t‘;’
its definition (C2) if =0, because By vanishes then, " I ‘f" K
then ¥(0);=168,;. Thus, setting =0 in (C22), we . 'L = - s
obtain the identity Ty Tl 7 L&
2l &7 3 =R
LR by & L&
(2mi)t f Bt +But?][B() T L B )
SL 2z X
XC[Q(EDTHQ(0)C=1. (C23) ToTS T T
If we now call sX &X g wX
/M
(2wi)Page [B(§) 'C[Q(EN T 3 =
& - ™
| N &
XQ(O)C=[Q( ) CBE) JmQO)C=R, (C24) - F e
we find T = IE‘ I
§ LI o
- 0 14-ze? -1 —17] [ w T Te
= | la T
—1—ze¥ 0 1 -1 T 12 T 1§
R1= ’,1 TB ’i Lﬁ; w ¥ %
1 —1  —CCilme 1 T+ % LT
2 = | T = 4+
Lt 1 -1 0_ =L 2o b Yo
e X wX 1 &X
(C25) - |

and as shown in Eq. (C26).
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Therefore,

where

so that
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Y(O) 1= [1 —%10[5-500]_15801R]_1
B 1 0 0 0 7]
0 1 0 0
= ) (€27
0 0 1 0
|_oRpr(1—pRpp)™ pRpr(1—pRop)™ pRpu(1—pRpp)™ (1—pRpp)~_]
p=—2(e"+1) (e"—1)7, (C28)
(B~ = (2mi)~ _7{ dt B (E) ICLQ () T7Q(0) CL1 —Buo[ Boo ' BroR (C29)

When j/>2, we proceed in the same fashion. Inserting (C14) into (C21), using the requirement that ¥ (0);
vanish at $=0 and the identity (C23), we obtain

Y (0) 5 =[1—B1[Buw] BRI Bio[Boo | Bon (2s) f dt E[B(H) IC o I [eEE T LC

=[1—B1[ B0 Bor R B[ Boo | B RCO(0)

which is to be used in (C14).

[0
0

0

| 0

To explicitly exhibit 8, define £ by Eq. (C31) as shown on page 473.
Then we have for j>1,

[58_1___]]',' =—z! ( 1 —2-’12) -1 (a—l — 01) -1 { R(O) - a“sz

C 1C 3—1

0

+e2=2p(1—pRpp) ™

0 0
0 0
C,

0 —a7

0 0 o0

0 0 0 T
0 0 0
CCit 1 CCst
o o o |
[“RepRor RepRp1
RipRpr RipRpr
RypRpr RuypRpr
LRDDRDR RppRpr,

RepRpu
RipRpy
RypRpy

RppRpy

(C30)
RrpRpp |
RipRpp
, (C33)
RupRpp
RppRpp_|




473

THEORY OF TOEPLITZ DETERMINANTS

162

(z£D)

(1£0)

B (p2—n?2)%s 2| @?2+1 | o241 —

o @241 | 10— —1 (p2—po)8—

(@-0"2+1) % —p % —T  (p0"%+1)-0%+p0%+T—

| (p9241) 1 0B — T2 —] (p9%24-1) 10— o2 —]
B (p-2—n2)'8 3| @941 | P —
o @B +T | 0B — 12— (p2—p?2)'8—

(p0841)1 0B — 92—  (p0"24T1)0%2, 2724-T—

ﬁ (09"841) 0% — 28— (@9184-1)0%— 0121 [(39%2—1) —¢(a2%4+1)7 - (% —1) — (o—10)%_|]

(9?"3+1) 2%+ T — (9—2"3+1) 0%+ 2%+1— "]
(p9"2+41) 0% — 0" —1 (p-2"341) 0%+ 0241 —

[e(p—2"2—1) =z (a-2"241)Z] X =
0 =2 —1) g2 (0—0)%%

Le(@92—1) —¢(9%24-1) ] X
- (58 —1) — 2 (0—10) %2 — 0_]

LGNgh3w x o (127) (0— 1 0) (B—T])%— = oY

£q Y dugep pue
(@?"24-1) 0%+ 08 4-T — (9—2"%41) 0%+ 92+ —"]
(02"841)1- 0% —uo"2—] (p—2"2+1) 1%+ 2" +T —

(o—10)B—  [((p-28—T1) —¢(p—2"341) ] (% —T)

o3
L (-3) g1 (-—3) Wy (0—P0)0(Jz—])%—=Y
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and for 7>7'>1,
By =—[B7]*

=~z (1—z2) (o —a) R { [—o?

C1Ca_1 C2C3'_1 1 C4C3—1

0 0 0 0

[ RepRpr RerpRpr RrpRpy RepRpp ]

o RipRpr RipRpr RipRpyv RipRpp
tarip(1—pRpp)~ . (C34)
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To obtain [B1]o;, we use
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(C36)

where, for j>1, 87! is obtained from (C33) or (C34) and for j=0, B is obtained from (C36) with j=1. If
we note the relation,

RDD =— iZ2_1DI/D = —22_ICZ_IC4C3_1, (C37)

it will readily be seen that in the D, U subspace (C33), (C34), and (C36) specialize to (7.7). We also remark that
B may also be inverted by solving a set of coupled difference equations.

APPENDIX D
We give here the higher order terms in the asymptotic expansion of &;,1(V, §) for T near 7T, and H away from

zero that are mentioned in the text. When T'<T,, we follow the procedure of Sec. 8D and retain the first two
orders in N7 in the expansion of the integrals in (8.71). This gives

S11(N, ©)~Me+r%2 (1 -2 %2 (22 —2) 2 (1—1) 2 (r 1) (1 — )’y (1 —a)*

{[ IRSG -%N-Izmu)] [ Kall) ~ AN (Kal)+EA() ]

—[ K () = 3N K2 (8) + K1 (8) +1Ko(8) JILKa (8) 5N LKL (8) — K1 (1) — 1Ko (2) JJ}- (D1)
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Multiplying this out and using the recurrence relations for modified Bessel functions, we find
G11(N, O)~MlP+r 2 (1—2) %P (2P —2*) 2 (1—1) 2 (v —1) 2

X (1—an) 2N—4{z31<2<t> [7 e e +3-m [f K=K [ de a0

“3Ky () (K () —Ko() >J+0<N~2>} . ()

When 7> T, an analogous calculation gives the more accurate version of (8.85) of

S1.1(N, )~ 4 (27) 2 (1—21)2(r—1)2(r 1= 1)2(1—22) (32 —2%) "2 (1 — ) 22N

X{#Ka(¢) =N LK(1) +50' Ku(¢) ]JH-O(N) }
22 (1= 22) 22 (22— 22) 2 (1—1) 2 (1 = 1) 2 (1 —ay) 2N

X{t’us(t') /m d&- E‘lKl(E) _tfzKlz(tl) + N1
t’

X[—%(t'Kl(t')-l-Kz(t') ) [ e +%K1<t'>1<o<t'>]+0<zv~2)} . (D3)

By inspecting these equations, we see that as #—0 the terms of order N~ remain finite while the terms of order
N-% vanish. This vanishing of the next leading order term at I'=T, has already been seen in the bulk problem as
presented in I where, while the leading term in Sy is proportional to N7V4 there is no N=%4 term and the next
nonvanishing term is of order N =94,
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The critical or Curie temperature of the anisotropic rectangular Ising ferromagnet is known from Onsager’s
exact solution to vanish asymptotically as

kTe/2Jo~[In(1/7) —Inln(1/9) T+,

when n=J,/J., the ratio of exchange energies for bonds parallel to the y and x axes, approaches zero. An
extension of the Peierls argument yields a simple interpretation of this slow decrease and provides, from
first principles, a rigorous lower bound of precisely the same asymptotic form. For the anisotropic simple

cubic lattice, a lower bound, also of this asymptotic form, is established in terms of = (J,+J.)/ J..

I. INTRODUCTION

HE problem of the Ising ferromagnet of spin ¥
with nearest-neighbor interaction has been studied
extensively. It is well known that the one-dimensional
model in the presence of an external magnetic field
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and various two-dimensional models in zero field are
exactly soluble.! In particular, the spontaneous mag-
netization below the critical point has been calculated
for both square and “rectangular” lattices.23
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