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The nature of spin-type zero sound, “paramagnetic spin waves” (PSW’s), in free-electron gases is studied
by means of the time-dependent Hartree-Fock approximation. The importance of attractive interactions
is emphasized. A short-wavelength cutoff in the spectrum at microwave or low infrared frequencies is found.
The effect of the application of magnetic fields is studied. The frequencies are shifted by the Larmor preces-
sion. Some branches of the spectrum are effectively eliminated; others are strengthened and split. Spin
wave fronts travel in helices about magnetic field lines. PSW’s are damped by electron collisions with crystal
imperfections. The relaxation time is identical with the relaxation time as determined by the dc conductivity.
Electron-electron collision damping is also studied and found to be negligible by comparison. The observa-
tion of Landau-damped modes is considered and conditions where this is possible are indicated. A boundary
condition is found : A surface must be at an antinode of the spin density. A microwave, “thin”-film resonance
experiment is suggested. The strength of the resonance lines is considered. An expression for power dissipation

at PSW resonance is derived.

1. INTRODUCTION

HE problem of the low-lying excitations of a gas of
interacting Fermions has been discussed by
Landau.! Distinct from well-known excitations—quasi-
particles, ordinary or “first” sound, and plasma oscilla-
tions—he has discovered a class of boson-like collective
modes which he calls “zero sound.” Silin? has further in-
vestigated these oscillations, including some aspects of
their behavior in magnetic fields. Gor’kov and Dzyalo-
shinskii? have considered the effects of anisotropic Fermi
surfaces.

There are two types of zero sound. One is a propa-
gating distortion of the shape of the Fermi surface; in
anisotropic systems, it is chiefly a transverse current
density wave. The second type is a spin-density wave.
The term “spin-density wave,” however, has had prior
application to a rather different phenomenon in Fermi
gases,? a long range, stationary magnetic ordering. To
make specific reference to the second type of zero
sound, we shall use the term ‘‘paramagnetic spin wave”
(PSW).

Since Landau’s discovery a decade ago, there has
been no experimental detection of these modes in
metals. It is the purpose of this paper to provide addi-
tional information about enough properties of zero
sound in metals to make a successful experimental
search reasonably probable.
¥ Whether or not zero-sound excitations are possible
for a given system depends upon the density, and the
functional form of the particle interactions. The condi-
tions are different for the two types of modes. Silin has
shown that the existence of the first type of zero sound
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requires that the interaction between electrons in states
close together on the Fermi surface be sufficiently large
compared to the interaction of widely separated states.
His calculations indicate that this criterion is unlikely
to be met in simple metals. Similarly, Gor’kov and
Dzyaloshinskii find that the interaction strength must
exceed a certain rather high threshold, or the Fermi
surface must be sufficiently distorted for zero sound to
propagate. In the latter case, propagation can occur
only along or near crystal symmetry directions.

The conditions for the existence of the spin type of
modes are not so stringent. The above authors find
solutions to their equations whenever the exchange
interactions are repulsive, or attractive and larger than
a certain threshold. We shall see that solutions of the
latter case occur only in unusual situations or in inter-
action strength ranges where the gas is ferromagneti-
cally unstable.

Thus an experimental search for zero sound would
have the highest probability of success if directed
towards paramagnetic spin waves in materials with
repulsive exchange interactions. Repulsive exchange
interactions imply attractive direct interactions. There-
fore, likely materials for the detection of zero sound
exhibit superconductivity, and such detection would
provide independent justification of the hypothesis of
attractive interactions among Fermi-surface electrons
of superconductors in the normal state.

In the following, we are concerned exclusively with
paramagnetic spin waves. We shall rederive a number
of the earlier results and discuss some differences.
Section II sets forth the general method of attack.
Spin-density distributions, the frequency-wavelength
relations, and the nature of the one-electron wave
functions are derived for a simplified model. Section TII
is a calculation of the effects of external magnetic fields.
In Secs. IV and V, we derive expressions for the damp-
ing rate due to several different processes. In Sec. VI, we
derive a boundary condition, suggest a possible experi-
ment, and determine a sensitivity criterion.
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We shall treat the electron gas in the approximation
of time-dependent, self-consistent fields. We consider
first an unexcited state in which there is no magnetiza-
tion. If this system is driven by an externally imposed
field, it will respond magnetically at the external fre-
quency and wavelength. Each electron in the system
“sees” the external field and, through its interactions
with the remaining electrons, an additional, response
field. The electron then contributes to the response field
experienced by the others. The nature of the magnetic
response thus involves the interactions and is very
complicated. To reduce this complexity, we replace the
true interaction operators with the Hartree-Fock oper-
ator, giving an “averaged” interaction. This allows us
to treat one electron at a time, greatly simplifying the
problem.

If we divide the response by the magnitude of the
applied driving field, we obtain the magnetic suscep-
tibility. Where a finite “response” is possible in the
absence of any driving field, we have a normal mode
of the system. In this case the susceptibility is infinite,
and this circumstance, or its close approximation is our
chief concern. A very large susceptibility implies a very
small transverse electric field, and we shall, therefore,
neglect the effects of transverse electric fields and
currents.

In the approximation of the replacement of the true
interactions with the Hartree-Fock operator, and the
neglect of crystal imperfections, magnetic oscillations
may be self-sustaining. When these approximations are
given up by the introduction of scattering, the energy of
excitation is bled away in the scattering events and the
system relaxes to the unexcited state. This process
proceeds according to the frequency and efficacy of the
collisions.

The effectiveness of a collision in dissipating energy
of excitation depends upon the degree to which the
colliding electron participates in the collective motion,
and this, in turn, depends on the velocity of the electron
relative to the phase velocity of the collective wave.
The participation is greatest, and with it the dissipation,
when these velocities match.

The presence of electrons with velocities to match the
wave is the necessary condition for “Landau damping.”
In fact, the dissipation is so much stronger under these
conditions that when the electron interactions with the
collective wave are treated in perturbation theory, the
damping becomes singular and the “wave” ceases to
exist.

It is possible, however to go beyond first-order per-
turbation theory in the treatment of the electron-
collective wave interaction. In fact in the time-depend-
ent Hartree-Fock approximation used here, the inter-
action may be treated to all orders. If we then study the
dissipative effects of arbitrarily weak scattering, as is
done _in Secs. V and VI, we find that the decay life-
time for collective spin wave is independent of the fact
of Landau damping. Now the regime of arbitrarily
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weak scattering is the same as the regime of arbitrarily
strong external driving field, in so far as the damping
problem is concerned; this is discussed in Appendix B.

The treatment which we present here then suggests
the interesting possibility that in materials of suffi-
ciently high quality and long scattering lifetime, or with
sufficiently high driving amplitudes, resonances may
be excited and narrow lines observed against the back-
ground of the continuum of single particle excitations.
Of course, the material quality must always be suffi-
ciently high that the required illuminating power levels
do not destroy samples or produce other obscuring
nonlinearities. We must emphasize that our results do
not predict the vanishing of Landau damping under
ordinary conditions of low driving power. Rather, the
energy absorption of Landau damping appears as the
initial stage of the establishment of the excited, polar-
ized, oscillating condition from which our calculation
begins, and unless energy can be supplied faster than
the collisions can drain it away, no resonances will be
seen.

The calculations which follow use single particle
wave functions in which the self-consistent fields are
incorporated ab initio. This leads naturally to a single
treatment of damping for both weakly damped and
Landau-damped frequency-wavelength conditions. It
also provides a natural structure of basis functions for
the study of the dynamics of the collision process
carried out in Appendix B. The procedure is entirely
equivalent to working with a density matrix which is
diagonal in the presence of the excitation.

II. THE DISPERSION RELATION

The basic Hamiltonian is well known.

H=Z_ p,~2+-§- Z V(ri—rj)—z 0 FCoxit . (1)

Here u is the electron magnetic moment and 3Cex is the
external magnetic field. The sums range over the elec-
trons of the system. We assume a solution of the time-
dependent Schrodinger equation for the whole system
in the form of a determinant of one-electron functions,
solutions of the equations®

hi¢i=ia¢‘5/at: (2)

hi= pi2+ Viee— 0izttFCex . (3)

We have taken # and #2/2m equal to 1. V. is formed
from the Hartree-Fock operator.

We assume a form for V, which describes a periodic,
moving field acting on the electron spin, and a constant,
homogeneous field which we lump together with the
externally applied field. It is convenient to give the
periodic field the character of a spiraling polarization
lying in the plane normal to the external field. Thus

where

5 See, for instance, A. D. McLachlan and M. A. Ball, Rev.
Mod. Phys. 36, 844 (1964).
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we try

Vee— ipICex=¢ (k) o+d (k)
o) {oitetwe i) (4

where e(k), d(k), and ¢(k) are to be determined. In
general, the various terms in (4) depend on the state
of the particle, which we shall label with the vector k.
If we temporarily ignore the orbital effects of the
external field, the solutions of (2) are

¢'i= o1 /2{A 1(k)ei(k—q) ‘ritiw ta
+A 2 (k)ei(k+Q) Ti—iw tﬁ}e—iEkt R (5)

where
Ex— (k+q)*+eto
A1(k)= ,
([ B (ke Qoo
¢
Ax(k)

(LB (ki eto Ty
Eym ok @[ 2K q—e— )T 2+d(K).  (6)

Here Q is the volume of normalization. The upper and
lower signs in FEy distinguish what we shall call upper
and lower branch states, respectively. The functions
have the property that

Art(R)=4s(k); Ast(k)=—A4: (k).

There is a different one-electron wave function for each
value of k consistent with periodic boundary conditions.
In the interest of symmetry between the spin-up and
-down parts of the wave functions and to simplify some
expressions, we have made an unconventional choice of
origin in the space of k; the states of lowest one-electron
energy will occur near k=-gq.

Let N different states be occupied. We form the seli-
consistent field acting on any one of them from the
Hartree-Fock operator

Vep(kr)= 20 [ ¢*(K 1) (K1) V (r—1r)dr's (k,r)

kocc'
- k? ¢* (k)¢ (k) V (r—1r")dr's (K,r) . (7)

The direct part of the interaction is a constant which
we may ignore. The exchange part has the form of a
potential like that of (4). That (7) and (4) shall be
identical requires

V(k—Kk)

c(k)=— 2 ——A1(k")4:(k),

koco!

V(k—K)

dk)=—3% ———,

koco’ 2Q

V(k—k")
e(k)=— { S ——(A2(K)—A42 (k'))} —u3Cox. (8)
Kkoco’ 2Q
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Here V(kk’) is the k—k’ Fourier component of the
interaction potential, ¥V (r—r’). These are the equations
of self-consistency. They are a slight generalization of
the self-consistent equations of Ref. 4, in which w=0.

Our one-electron states have no definite spins. There
is a component of spin in the z direction proportional
to A*—A42. This is very nearly =1 for most states. We
shall refer to spin “up” or “down” on the basis of the
sign of this quantity. There is also a component of spin
in the x-y plane which follows the spiraling self-
consistent field. This component is equal to —A414.,.
We shall refer to this quantity as the polarization of
the state.

The spiraling parts of all the lower band states are in
phase. The upper band state polarizations are similarly
in phase with themselves, but shifted by = with respect
to the lower band. More general wave functions can be
formed ; these are discussed in Appendix B.

Associated with the periodic disturbance of wave
vector 2q and frequency 2w is an energy gap at those
states for which ki?>—ky?= 2. States at or near this gap
are in resonance with the oscillation and are completely
polarized by it; their z-spin component disappears.
States away from the gap are more or less polarized
according to their proximity.

The location of the gap depends on the relation of
o to q. When the plane of the gap intersects the Fermi
surface and resonating states are occupied, we shall call
the mode ‘“Landau damped.”

We can calculate a one-particle energy function by
taking the expectation of the total Hamiltonian and
finding the change in this expectation upon annihilating
a single particle. This function may be verified to be
(h:) or ((18/9t):), where (19/dt); acts only on the ith
state in the determinant. This function is

8(k)= Ex—w[ A (k)— 42 (K)]. &)

Figure 1 is a sketch of a surface over which the one-
particle energy is constant, all states within the surface
being occupied, and all states outside being empty. The

Fic. 1. Spin-down
and spin-up Fermi sur-
faces for a Landau-
damped PSW of large
wave vector and ex- ___.
aggerated amplitude.
The plus and minus

signs refer to the
choice of sign in Eq.
(10).
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F16. 2. Fermi sur-
faces for the un-
damped PSW.

dotted section contains the origin in & space. The solid
section is the energy-gap plane. The pieces of surface
enclosing like spin states have been grouped together.
The arrows indicate the up- or down-spin pieces; the
plus and minus signs refer to the sign choice in (6), the
lower and upper bands, respectively. The different
pieces of Fig. 1 of like arrows enclose states of like z
components of spin; the pieces labeled with like signs
enclose states of like spiraling components. The ampli-
tude of the disturbance is grossly exaggerated in the
figure. The true gap size would be of order 1/N.
Figure 2 depicts a situation in which the gap plane
does not intersect the Fermi surface.

To determine the relationship between q and w we
need to solve the system of coupled integral equations
in (8). To this end, it is convenient to introduce a new
variable, ¢.

sing=—2414.=c¢/[ k- q— ')+ %,

w'=wte.

(10)
It then follows that

cosp=A2—A2= 2k -q—o")/[(2k- q— ')+ ]2,

The sum of sing over the occupied states is twice the
polarization of the spin-wave mode, and since sing is
roughly proportional to ¢(k), the sum defines an average
of ¢(k) which we shall call ¢ and refer to as the “ampli-
tude.” We shall later show that the energy difference
between the excited PSW state and the ground state is
proportional to ¢ and to the volume of the system.
Therefore, for a fixed energy of excitation, ¢ goes to
zero as 1/N'2, and it is appropriate to study the
system of Egs. (8), in the limit of small c.

For modes which are not Landau damped, 42— A44?
=41 plus terms of order ¢ Adding d(k) and e(k)o,
then gives just the spin-interaction energy with the
external field plus the ordinary exchange energy, a part
of which represents a small correction to the external
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field. In particular, we have
V(k—K)
d(k)+e(k)o,= —poHex—3 ' ——— (11)
kl

The prime on the summation signifies summation only
over states of like spin. Now e¢(k) may be calculated
directly, and we have only a single integral equation in
¢(k) to solve. For Landau damped modes, |42—A422|
is different from 1 only in a layer of states with width
proportional to ¢. These add a correction term to e (k)
of order ¢, while the ¢-dependent term in e introduces
a ¢ correction term in the equation for c(k) (because
A14, is proportional to ¢), and thus for both damped
and undamped situations the integral equations
decouple in the limit of small ¢.

Let us consider the strong screening or “delta-
function” limit in which we take V(k,k)=7V,, a con-
stant. We have only constants for ¢(k), d(k), and e(k);
thus, c(k)=c, e(k)=e=u3Cest, and d(k)=d is a vacuous
constant.

Ve
c=——2 A:1(k") 4,k

koce”

s - (12)
- ‘ )
29 koco’ I:(Zk, . q—wl)2+62]1 /2

The choice of sign depends on the branch of states over
which the sum is taken; it is positive for the lower
branch and negative for the upper. The integrations of
(12) are easily performed. In the limit of small ¢, we
have.

— 1672 1
Vo (290

2qkpy—2¢*— o’
x| [Qakriy— gto)] h‘l

—2qkpy—2¢*— o’
2qkr—2¢*+o’

[ Qb )= 2 —')] 1n|——-——
—2gk pt— 2¢*+o’

—-4qkm(2q2+w’)—4qkm(2q2——w’)} . (13)

The arrows labeling & refer to the spin-up and spin-
down Fermi spheres.

It is of interest to study (13) under the hypothesis
that the difference in Fermi wave vectors may be
neglected. We expand for small ¢ and find

n_ |14 ¢
To= =1—-In - ;
Vikr 2 =gl 3k(1—u2)?
wte
n= . (14)
qup
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This equation, without the term in ¢* and with e=0,
was presented by Landau.! Unless the disturbance is
Landau-damped (y<1), there are no solutions for
positive Vo, which means that the electron interactions
must be attractive. For the damped solutions,
Vo>4n?/kr. In this region of interaction strength,
however, the exchange energy “reward” for populating
one band at the expense of the other exceeds the
kinetic energy “cost.” Under these circumstances, the
gas is ferromagnetically unstable.
Equation (14) has the approximate solution

n=1=2¢"%, (15)

where
47 ¢ 1

Vokr kr* 3(1—n?)? .

f=1

Since our discussion is concerned with superconducting
materials, the quantities in (15) may be easily deter-
mined. The expression — Vokp/4n?, written in this way
to make explicit the dependence on electron density
through kr, is equal to the expression N (0)V appearing
in the BCS® theory of superconductors. (The two V’s
differ by a factor —Q; ours is independent of system
size.) We use the BCS expression for the critical
temperature

kT ¢=1.14%wpenye exp[ —1/N (0)V].

Since the Debye temperature and the critical tempera-
ture are directly measured, tabulated properties, the
equation may be easily inverted to give a value for
N@O)V.

Lead is a material with strong electron-phonon
coupling,” high transition temperature and low Debye
temperature. We find (47%/Vokr)pp=—2.7. Aluminum
is a material with weaker electron-phonon coupling,
lower transition temperature, and high Debye tempera-
ture. (47%/Vokr)ar=—5.9. These two numbers indicate
the range we may expect for our parameter.

These numbers can be used to evaluate §=|1—9]| at
¢=0. We have §=1.3X107% for Pb, and 6=1.9X10"8
for Al. We can use (13) to find the region where the
departure from linear behavior of «’ in ¢ becomes
significant. We approximate the maximum linear ¢
value by setting the ¢* correction term in (14) equal
to 1 and substituting the ¢=0 values of . The approxi-
mation indicates a linear spectrum in lead up to
¢=4.5X10"% kr and in aluminum up to ¢=6.6X10"° k.

In Fig. 3 we exhibit a complete spectrum, determined
numerically from Eq. (13). For larger values of V', the
curve extends to higher ¢ and the separation between
the branches increases. As Vo goes to 0 the curve shrinks
down into the origin. An interesting feature is the

(15

6 J. Bardeen, L. Cooper, and R. Schriefer, Phys. Rev. 108,
1175 (1957).

7 Therefore, Eq. (15a), a consequence of a weak-coupling
approximation, can only offer crude approximation for lead—this
is sufficient.
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F16. 3. PSW spectrum for the case of attractive interactions.
o' is one half the separation of the PSW frequency and the Larmor
frequency, I‘=41r2}) Vkr. Within the shaded areas is the region of
Landau damping.

maximum ¢ beyond which there are no PSW’s. Figure 3
is plotted for an exaggerated value of Vg, but we have
also studied curves for values appropriate to lead and
aluminum. We have found maximum ¢’s of 1.8 X 1073 &
for lead and 4.5X107% & for aluminum. These ¢’s are
consistent with those we estimated for the onset of the
‘“nonlinear” region. The term in ¢2 of (14) never attains
1. The departure of the curve from linear behavior and
the reversal occur very suddenly over a range of only
a few tenths of a percent of the total extent of the
curve.

Corresponding to the maximum in ¢, there is a maxi-
mum in @. For lead this comes at 3.6)X10~% Ep, of the
order of 50 meV. We expect a maximum in this cutoff
frequency for the case of lead as compared to other
elemental superconductors. The corresponding cutoff
comes at about 200 xV in aluminum. The terminating
frequency for lead falls in the far infrared; that for
aluminum is a high microwave frequency.

We shall see later that the maximum g is a sensitive
function of the paramagnetic polarization of the gas.
This offers the possibility of extending the frequency
range somewhat. The extension is more pronounced for
systems with weaker interactions. A field of 10 kG will
increase the maximum for aluminum by about 509.

Figure 4 shows two spectra with V, positive. As V is
decreased, the curve shrinks down and disappears into
the origin at Vo=4x%*/kp. This figure represents an
artificial situation, for, as we remarked, the paramag-
netic state is unstable for these interaction strengths.

III. MAGNETIC EFFECTS

We have already seen one effect of applying an
external magnetic field. The frequency of the modes,
@=2w, is shifted by 2e, the Larmor precession fre-
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Fi16. 4. PSW spectrum for the case of repulsive interactions.

quency. This, however, is the result of an earlier
specification. In Eq. (4), a form was assumed for the
effective one-electron potential in which the spiraling
polarization of the PSW was normal to the z direction
as defined by the external field. Two such PSW’s are
possible, a left-handed and;a right-handed spiral. A
third possibility, a mode with the polarization in the z
direction, does not lead to an exactly soluble self-
consistent problem as did the first two. It must be
treated in perturbation theory. The result is structurally
the same for the parallel as for the perpendicular
disturbance except that the former is not subject to the
Larmor precession; the frequency is unshifted by the
field.

A second effect of the application of an external field
is a Pauli paramagnetic polarization of the gas, a
preferential occupation of one spin-band relative to
the other. The modifications of the PSW spectrum
introduced by this effect are the same for both per-
pendicular and parallel modes.

The fractional polarization of the gas will be of the
order of the spin-up-spin-down energy differences com-
pared to the Fermi energy, a number in the neighbor-
hood of 10~¢ for readily available fields. Thus we may
expect that the gross features of the dispersion curves
are unaffected by the polarization and that the external
field may be treated as a perturbation. However, the
modes with energies comparable to or less than the spin
splitting may be profoundly altered, and in the long-
wavelength limit, the dispersion curves may be quite
different from those we have discussed up to now.

We treat (12) in the long-wavelength limit by ex-
panding in powers of ¢. In so doing, it is necessary to
assume a form for the expansion of w(g). We assume

-]
w'= 3 ajgtm
=0
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and try to determine the a;. This procedure succeeds
in two cases, m=0 and m=2, for which we find

wi'=(T'v—1)4(Er/€)¢,
472

e 4 Ep
w2'=——[— (Po'— 1)— __42; Fo= (16)
Po 3 €

o F

At ¢=0, the frequency of the first branch is just that
of a single spin precessing in the effective field, e. We
remarked in setting up the self-consistent field problem
that this effective field includes both the external field
and a correction due to the excess of electrons of one
spin. From (11) this correction is clearly equal to

VAN Vo Q Vok#? €
='——‘—~47rkF2Akp= Akp=— (17)
2Q 2Q 8x® 472 T

Hence the second branch at ¢=0 describes the preces-
sion of a magnetic moment in the uncorrected external
field. The first branch thus describes an excitation of a
single spin turned against the preferred direction of the
field, where the second branch gives the frequency of
the collective precession of the entire net spin of the
gas in the field. The first branch is Landau-damped and
the second is not.

In the absence of external fields, we found four
branches at ¢=0, two for both positive and negative
frequencies. Now the symmetry between plus and
minus frequencies is gone, and the number of branches
is reduced to.2.8 In Fig. 5 we show the dispersion
curves for ¢ small enough that polarization effects are
important, but with Akr<kr.

Let us now consider the case of small external field
and g not necessarily small. We define A= (kpt—kri)/kr
and expand «’ in powers of N for fixed ¢. Equation (12)
is of the form F(\,q,0")=0, giving

dw’ oF ,9oF
. a/ a
We differentiate.
do’ —In[g:|+In|gs|
—= (2gkr)?,
d\  (2¢°—o') In|q1]| — (2¢*+w") In| ga|
where (18)
2¢kr—2¢"+o’ 2qkr—2¢*— o’
ZWEE Qo=—""T""—""".
—2qkr—2¢*+o’ —2qkr—2¢?— 0’

8 These results are in accord with some earlier calculations,
although differing in detail because of the different physical
situations. D. C. Mattis [Phys. Rev. 132, 2521 (1963)] has found
spin-wave excitations in a magnetized electron gas using a two-
band model. A. D. Brailsford (unpublished) has considered the
fully polarized single-band case. Both these authors find a spin-
wave branch, corresponding to w,’, and an optical branch corre-
sponding to w;’. Similarly they find that the two branches are the
opposite ends of a continuous curve. We are not in agreement
with Silin (Ref. 2) who finds two branches corresponding to =
our wy’. Unfortunately, Silin’s discussion is too scanty to allow us
to do more than note the discrepancy.
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Since we are considering N small and expanding about
A=0,
do’ do' do' Akp  do' e
Aw’:-—AX:—X:—— —_—_—————

an d\n  d\ kr d\ Ep

(19)

Equation (18) lacks transparency. We may examine it
in the region ¢<kp.

do’ (o' —2qk
PPN | Gl ) /
d\ (w'+2gkF)
4k pgw’ w'—2qk
( r o qF)). (20)
(4¢?k P2— ') (w'+2qkF)

The In terms may be removed by use of (13) to obtain

dw' I'o—l
— T e— ka2
ax To—1—9/(1—7%%)
~—2(0—1)(—1)ks2, (21a)
and by use of (14) we obtain
do’
-d;E:I:S(I‘o— 1) TV, (21b)

Thus the lowest-order effect of the electron polarization
on the frequency of a given mode is a ¢g-independent
shift proportional to the product of the Larmor fre-
quency and the term 4(T'y—1)e2TD, We have argued
that reasonable values for T'q are of the order —S5. The
region where this perturbation approach fails, where
Ao’ becomes comparable to «’, thus occurs at low radio-
frequencies for reasonable magnetic fields. In a field
of 10 kG, the frequency shift is about 2 Mc/sec. This
shift becomes of the same order of magnitude as the
frequency itself for wavelengths of the order of a meter.
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Fic. 6. PSW spectrum of the partially polarized gas with
repulsive interactions. The interaction strength and the polariza-
tion are exaggerated.

Therefore, for most purposes the frequency shift is
negligibly small, and the modifications in the details of
the dispersion curves at small ¢ may be ignored.

There is a subtler effect of the polarization which we
must consider, however. In Fig. 3 we show two branches
of the spectrum, and have indicated that there are
reflected branches in other quadrants, The first effect
of the magnetic field is to shift the spectrum by the
Larmor frequency; the second is the change of the
structure at low ¢ as in Fig. 5. The dashed lines show
the spectrum shifted by the Larmor frequency, but
with the electron polarization neglected. The solid lines
show the effect of a small dc polarization of the gas.
If we look at (21) we see that the effect of the polariza-
tion is to shift the Landau-damped branches, 7*<1,
one way, and the undamped branches the other. The
two branches with «'>0 move together and the other
two move apart. An estimate of value of ¢ below which
there are no modes >0 may be obtained from the
magnitude of the shift and the difference in slope of
the two branches. The shift, as we have just seen, is
very small, but so is the slope difference. There are no
modes for 0<w’<4|Ty—1|e. Unfortunately, the modes
wiped out by this effect were potentially the most
interesting experimentally. As we shall discuss, ob-
servation of PSW’s calls for unconventionally thick
films, and the nature of the remaining modes requires
still thicker films. Further, the number of observable
modes is limited whereas without this “wiping out”
effect, many more could have been studied.

As the polarization at fixed field is imagined increased,
the intersection of the two upper branches of Fig. 5
moves out, while at the same time the far limit of the
curve moves in and eventually there are no modes at
all on those branches. The separation of the lower
branches increases; the far limit correspondingly moves
to higher ¢ and |o|.

_ In Fig. 6 we show the gas spectrum for V¢>0. There
is a point of intersection of ¢=0 at v’ =0, w=e¢, for both
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signs of V. If the magnetic field is entirely the exchange
field of the electrons, then the second of the points for
V>0 is at w=0, and that branch is the much studied
spin-wave spectrum of the ferromagnetic electron gas.®

The magnetic field also affects the orbital motion of
the electrons. In the event that propagation of the
PSW is along the direction of the applied field, quantiza-
tion of the orbits may be carried out and the problem
of self-consistency solved exactly. For other directions
of propagation the two problems become badly tangled.
A simple approximation is possible, however.

To the kinetic-energy terms of the Hamiltonian — V2
we add the terms linear in the applied field. The effect
of these additional terms in Eq. (2) may be included
in the wave functions of (5) by taking time-dependent
gand k

) e3C . e3C
9z=—qy Gy=—"(z
me mc
. edC . eJC
ko=—ky; ky=——Fk.
me me
A&K)=0
Ek)=0. (22)

Thus the lowest orbital effect of the field is a rotation of
the entire electron gas about the field direction, PSW
and all, at the cyclotron frequency. The wave fronts of
the PSW rotate and in the laboratory frame have a
velocity equal to the sum of the ordinary phase velocity
and the tangential velocity of rotation about some fixed
point. By examining the relative sizes of the orbital
term included and the term in 3Ce,? (*?+%?) dropped, it
is easy to see that the condition for the validity of the
approximation is that the latter velocity shall be very
much smaller than the former. In this approximation,
the PSW propagating along the field is unaffected. The
PSW propagating across the field travels along a
circular arc.

IV. DAMPING

The self-consistent field approximation to the electron
interaction has permitted a simple treatment of the
dynamics of the spin density of an electron gas. Were
this not an approximation, a PSW excitation would
persist in time with unchanged amplitude. The neg-
lected parts of the interactions cause collisions and
rearrangements of the k-state occupation distribution.
The spin-wave amplitude changes in response to these
rearrangements. In general, we expect to find a PSW
amplitude decaying in time at a rate dependent on the
circumstances of the system.

The PSW has little effect on the majority of the
collisions. The electrons scatter, conserving wave
vector, energy, and spin, as if there were no spin wave

9 For a recent instance, see A. K. Rajagopal, Phys. Rev. 142,
152 (1966).
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present. In an occasional, anomalous collision, however,
the total k changes by 2q, the total single-particle
energy changes by 2w, and a spin is flipped. This
behavior suggests absorption or emission of a magnon.

We have not quantized the spin-density coordinate.
For the purpose of this discussion, however, we will
assume that it can be quantized, and that it is meaning-
ful so to regard it. We will use the anomalous collision
rate as a measure of the magnon scattering rate and so
calculate the damping as the net excess of absorption
over emission scatterings per unit time. This procedure
is more fully justified in Appendix B.

A number of different processes contribute to the
damping. Landau has calculated the damping from
two-particle collision processes using arguments about
the relationship between the damping and the classical
viscosity coefficient. We shall reconsider the question
in order to show that our use of the anomalous scatter-
ing rate leads to the same results and to show in more
detail how the scattering events lead to damping. We
will also treat the question of the damping due to single
electron scattering from magnetized and nonmagnetic
scattering centers.

We begin with the simplest case. At the point R we
assume a scattering center with which the electrons
interact according to the potential U(r—R). Golden
rule perturbation theory gives a rate for scattering
from k to k' (assuming initially that k is occupied and
K is not) proportional to

1
§| U(k—Kk)(41(k)4:1(K")

+42(K)42(k) %3 (Ex— Ew).  (23)
We note that E(k) is conserved in this process. If the
two states are both of the same approximate spin
species, then this condition is equivalent to conservation
of single-particle energy. But if the states are in different
bands, then &y exceeds 8wt by @=2w, and single-
particle energy is not conserved. This, then, describes
an anomalous event.

We have now two scattering rates: an ordinary rate
proportional to

2 U*(k—K')

; (8~ ), (24)

and an anomalous rate proportional to
2r U%(k—Kk’) /sin¢ sing”\ 2
_ 1 5 & — & —
h 92 \ 2 T )ﬁ(é’k 8}; 2(0) (25)

which we get by writing (4141 +4244)? as (1
+cos¢ cos¢’+sing sing’) and cos¢ as

sin%p
4 (1——sin2¢)m§:}:(1— ) .
2
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An electron may scatter from k to k’ and absorb a
magnon in the process. The reverse also occurs, and the
relative rates depend upon the availability of appro-
priate final states. An electron on a sharply defined
Fermi surface can not emit a magnon in collision, all
the states of energy 2w below the Fermi surface being
filled. At low temperatures only the absorption process
can occur. If the Fermi surface is sufficiently blurred
by temperature, the counting of anomalous events must
include both processes. A microwave frequency of 10
cps corresponds to a temperature of 0.4°K. We indi-
cated that the spectrum in lead cuts off at 50 meV or
at about 10 cps, so it is clear that both ranges are ex-
perimentally accessible.

We first carry out the damping calculation for modes
which are not Landau damped and consider Landau
damping separately later.

We multiply the single event probability of (25) by
the appropriate occupation probabilities, subtract the
emissions from the absorptions, and sum over all
possible events. For simplicity, we take U (kk’) to be
constant and obtain

dn U2/ Q\2
:i?= 4(22(81rs)
X / (F(8a)[1— F(8e) T f(Bun)[1—F(8a)])

X B2 ( 8y — Byrt— 20)dkd¥
X { f 2 sin%¢dSd.S’—2 / sing sing’d.Sd.S’ } . (26)

While the necessary integrations can be performed
without approximation, much more transparent expres-
sions result if we consider the small ¢ limit. The integra-
tions are easily performed, giving

n—1 }
7+1

an U? 2w ¢ { 4
it 8 8 4gt

To find the damping rate, we need to compare this

energy dissipation rate with the total energy of excita-

tion. This energy may be found by evaluating the

expectation of the Hamiltonian as a function of the

amplitude, c.
V(k—k)
(H)= Z z2+p2+q —2¢qzcosp—3 > 2 ———

koce Koco’ 2Q
X (14-cos¢ cos¢’+sing sing’),

where k?=2z2+p%. The limits of the summation are
determined by the Fermi surface. p is a radial cylindrical
coordinate where the polar axis is determined by the
direction of q. It is interesting that this expectation is
time-independent.1?

1P, A. M. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930).

@7

=1

(28)
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Equation (28) is interpretable as a single sum of
contributions from each occupied state, where

Cu=2"+p"+¢*—2¢z cos¢

1y vk, )[1+cos¢ cos¢'+sing sing’ ]
kOcOI
c(k) e(k)

=Ek+7 sin¢———2— COSp—w COS¢p (29)

Ex summed over all particles gives the total system
energy.

(H) may change with the amplitude through the
change in the energy per particle and through the
change in the region of occupation. For our derivative
we have

d dp? dCy

— / Crdk=G&, [ T—dz+ / —dk. (30)

dc dc dc
Cy is the value of €y at zero amplitude at the Fermi
surface. The first integral in (30) is the derivative of the
total number of electrons with respect to ¢ and is 0.
Thus we need only calculate the change in system
energy with fixed occupation.

The differentiation of the functions in (29) gives

/d@k / ( w—Z V(k k) cos¢’)d ;054)

C
in3,
- / Su; *k (1)

d sin%p cose
— Cosp=———

dc c

and
(32)

When the excitation is not Landau damped, all the
occupied states are far removed from the gap, and sin¢g
is proportional to ¢. The first term of (31) is therefore
proportional to ¢ and dominates the second term,
proportional to ¢3. The total energy of excitation is thus
proportional to N¢? which makes ¢ proportional to
N2, as we mentioned earlier.

When the mode is Landau damped, the states near
the gap have sing of order 1, and, as we shall see in
Sec. V, the energy becomes proportional to N¢, making
¢ proportional to N~'. The first term of (31) still
dominates the second by order ¢™!. We can rewrite the
first integrand in (31) as

cose (k1)

dc

( w__Z[V(kk’) V(kk’+2q)])

+<_w_% = [V (k) V(k,k'—-Zq)])

d cosp(ky)
K

dc

(33)
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We have confined ourselves to the case of constant

V(kXk’), leaving only w(d cos¢x/dc) to be summed.
Thus we have

cdé& Q¢ d
Ag=-—=(20) (n+1/2)=— / w— cos¢dk
2 dc 167%)  dc

B Qc?w { 27 (34)

7—1

= +1In: } .
167% ln*—1  g+1

The values of » which we have found to characterize

PSW’s allow us to neglect the logarithm terms in (27)
and (34). We find, then, a fractional linewidth

d(n+3) 1 1 U2
dt (1/2)(2)  Qe)r  2mQ
Ukr

 2mh(20) B

We have included finally the terms of unit magnitude
to permit conversion to standard units. The factor of
(system volume)™ occurs because we have as yet only
considered a single scattering site. To find the total
damping rate, we multiply (35) by the total number of
impurity sites, which replaces @ by the impurity
concentration.

The ordinary scattering produces a resistivity which
is also proportional to the U2 of Eq. (35). Itis a straight-
forward matter to find this resistivity.!! If, for instance,
we calculate the time rate of loss of momentum of an
electron distribution perturbed by an electric field and
equate this to the time rate of momentum gain from
the field, we are led to a conductivity, and thereby a
conduction relaxation time.

Ne® Q21 Neé*Teona
== . (36)
m Ukp m
Thus (35) may be written
1 1

(37)

WTPSW  WTeond

That the proper relaxation time to use in studying
PSW’s is that of electron transport is an interesting
result. While we would not be surprised at such a result
for spin-independent zero sound, which we remarked
earlier is a current density wave, we might have ex-
pected to see a characteristic spin relaxation time here.
It suggests that basically the spin density of the spin
wave results from an influx of (say) spin-up electrons
in a region and an outgo of spin-down electrons. We

UN. F. Mott and H. Jones, The Theory of the Properties of
Metals7 and Alloys (Clarendon Press, Oxford, England, 1936),
pp. 247 ff.
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shall see this suggested again in the discussion of the
boundary conditions in the final section.

Let us now suppose that the impurity sites can flip
spins; the electrons interact according to the potential
J(r—R)o-Sr. Sr is the angular momentum operator of
the impurity on site R. We shall assume that the
different spin levels of the impurities are degenerate.

Again we calculate a matrix element, and a corre-
sponding scattering rate.

2w J?

92

{[41() 42 (K) [*(M+1[ S+ M)y

+ 42 (KA (K) [ XM —1]| S~ M)}

Xo(Ex— Ew—2w). (38)
In this case, the majority of scattering events flip
electron spins and do not change the magnon number.
The anomalous events are those in which k and k’ refer
to the same Fermi sphere. For these spin type inter-
actions, Fx— Fy—2w is zero, in contrast to the result
for nonmagnetic potential scattering above where
Ey— Ly had to vanish.

We average the transition rate of (38) over impurity
spin configurations and obtain a net electron scattering
rate.

21 (J2/92) (S2H-S —(S2)av) { | A1 (K) A 2 (K') |2

+ | A2 (k)4 1(K)|2}6 (Bx— Ex—2w).  (39)
The anomalous parts give a magnon transition rate

sin%p

2 (S-S — (St
e “ { 4

sinZg’
)

4
X3(8x— w—2w) (40)

obtained in the same way as (25).

Now we saw in evaluating the integrals in the non-
magnetic case of (25) that the terms in sing sing’ lead-
ing to the logarithmic term in (27) could be neglected.
Therefore, we find that the ratio of the anomalous to
the ordinary scattering matrix elements is the same for
both the magnetic and nonmagnetic types of scattering
event. Equation (37) thus remains valid when the
possibility of magnetic scattering is taken into account,
although more complicated corrections would be neces-
sary if the spin levels of the impurity sites were signifi-
cantly split. In this case, the anomalous scattering from
the second term of (39) would be diminished as the
relative probabilities of the impurity states changed,
and ultimately the ratio of anomalous to ordinary
scattering would be reduced by one-half for the mag-
netic as compared to the nonmagnetic cases.

Let us consider now the collisions of the electrons
among themselves. We evaluate the matrix element for
scattering two electrons from states k; and ko to ky
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and k4.
1
(kg,k4 I V(r— l") l kl,k2> = &5 (k1+ kz'—' k3'— k4) |4

XL(A1 04,9+ 4,0 4,0) (4, D4,®44,04,®)

— (A1 WA, O 4 A0 4,) (A, @4, O+ 4,D4,®)].
(41)

As we found in impurity scattering there are ordinary
and anomalous events, the latter characterized by spin
and energy nonconservation. Both the direct and the
exchange scattering, the first and second terms in (41),
respectively, contribute to the magnon damping. If we
begin with k; and k,; on the same Fermi sphere, say
both “up,” the final state for an ordinary event will
have k; and ks again both on the same sphere. The
anomalous event is recognizable by having one final-
state electron on the “down’” Fermi sphere. Similarly if
we begin with ki and k. on different spheres, the
anomalous event will end with both on the same sphere.
The total k is conserved in (41) but because the spheres
are shifted in origin by 2q with respect to one another,
an anomalous event, ending with one electron on the
“wrong” sphere, will fail by 2q to conserve momentum.

We carry out the multiplications of (41) and after
cancellation find

Vo(kit+ke—ks—k) {41 DA, 4,3 4,@®
FAPAMDA,DL,® — 4 D4, 4,B4,®
—A4 1(2>A2(1)A2<3)A1(4)} (1/92) .

With k; and ke “up” for the bracketed term we have

(42)

sings sing;

(A2®— 4,0)= - (43)
2
if ks is on the “down” sphere, and
sing; sing
(40— 4,®)= » — 2 (44)
2

if ky is “down.” If ky is “up” and k, is “down,” we have

sing; sing
(A —4,@) =" 45)
2 2
for k; and k4 “up,” and
sing, sing
(A, ®0—4,®)= i (46)

2

for k; and ks “down.” There are similar expressions
for k; and k; both “down’ and for k; “down” and ks
“up.” A doubling of the final damping rate will include
the effect of these collisions. The bracketed terms are
plus or minus 1 for both initial and final pairs of states
on opposite spheres.

In the case of nonmagnetic impurity scattering, for
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each ordinary scattering matrix element from k to k’
ignoring spin, there was one anomalous matrix element
with relative weight (sing—sing’). Here, by contrast,
we find for each ordinary event from ki, ke to ks, ke
ignoring spin, there are two anomalous events, weighted
by (singi—sings) or (sings—sings). In the range
fwkT if we could sum independently over states, we
could immediately write down the PSW damping rate
as the average scattering rate of electrons within «T
of &r just by comparison with the nonmagnetic im-
purity result.

In the range #wS«T, the difference between the
elastic ordinary events and the inelastic anomalous
events becomes important. The structural difference
between one and two particle scattering also complicates
the relation between the two damping processes, and
the sums over states are not independent but are
correlated by the energy and momentum conservation
relations. The result of this is to reduce the magnon
damping, making 7psw much greater than the electron
lifetime.

Quoting from the Appendix, we find

1 1 2.248 w2
~— - (),
3r? 4

WTPSW  WTgT

where 7.7 is the lifetime of an electron removed «7 in
energy from 8r and u=%(2w)/kT. At helium tempera-
tures, 7.7 is of order 10~8 sec, giving Tpsw about 10~ sec.
Since Toona can be made to exceed 10~° sec or so only
by very careful sample preparation, it is clear that the
only significant damping process will be single electron
scattering from crystal imperfections.

V. LANDAU-DAMPED MODES

The problem of the loss of energy from an oscillation
with wavelength and frequency appropriate for exciting
single particles presents an interesting contrast with
the case where such excitation is not possible. In the
following discussion, as in the foregoing, we take the
point of view that the properties of the gas may first
be calculated without reference to collisions and that
the effects of the collisions may then be studied per-
turbatively. That is, we study the lifetime of free oscil-
lations without considering how they were originally
excited. Experimental conditions, however, involve
simultaneous excitation and damping, forced oscilla-
tions. This difference is significant for the Landau
damped modes. It concerns the functional relationship
between the amplitude of the driven waves and their
energy content and energy loss rate, which relationship
we shall presently discuss.

The necessary condition for the circumstance we
study is that the external driving field be of sufficient
amplitude to establish the “no collisions” steady state
in spite of collision-induced dissipation. The limit of
weak collisions is, therefore, to be understood in refer-
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ence to the driving field amplitude, and it is necessary
to emphasize that we are not here considering the usual
forced oscillations, zero amplitude limit.

In our discussion of the non-Landau-damped situa-
tion in the preceding section, we found that the scatter-
ing of electrons could be divided into two distinct
classes: the ordinary collisions, and the anomalous
collisions in which the single electron energies were not
conserved. This division still holds for the Landau
damped case for those events in which neither the
initial nor the final state lies near the gap. In this latter
case, however, the division fails. The quantity conserved
in collision, Ly, agrees with the single-particle energy
&y for the gap states, and differs from it by 4w for the
states away from the gap. This means that every event
in which an electron scatters from the gap region or into
it is anomalous, and since the gap states themselves are
a small minority of the totality of occupied states,
virtually every scattering of a gap state electron or hole
is anomalous. This is not surprising, for it is the gap
states which are tightly coupled to the PSW, interacting
strongly with it.

To find the damping rate, we proceed as in the non-
Landau-damped case by calculating the energy loss
rate in anomalous collisions and dividing by the energy
of the excitation. The principal difference is that in the
non-Landau-damped case all the anomalous collisions
had the same energy nonconservation factor, while here
the factor, Fx— 8x— (Ex— 8x) =w(cos¢x— cospy-), is a
strong function of nearness to the gap.

The matrix element for scattering from k to k' is as

before
(U/9)(41(k) A1 (K")+A42(k)42(K")). (47)

Taking k' as a state far from the gap, 44 is 1 or 0
according as the state is on the “up” or “down” spin
sphere. We can neglect the small terms of order ¢ which
were crucial in the previous case. Thus for scattering
from a gap state to a spin-up state we have a rate

U2 U1
7—A2=m— —(14cos¢) , (48)
Q? Q% 2
and to a spin-down state
U? U1
m—Al=m— —(1—cose). (49)
02 Q%2

The energy nonconservation is w(1—cos¢) for the first
case and —w(1-+cosg) for the second. Thus the total
energy loss rate for scattering out of gap states is

<§%>2 / dkdK' {3 (1— cosi) (rUY/22) 1 (8)

X[1—f(8)18(8'— E—w[1—cos¢])
— 3w (1—cos’e) (xU*/Q?) f(8)

X[1—f(8)1(8— E+w[1+cosp])}. (30)
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The integrations in (50) may be carried out by

writing fdk as
a8
/ as(8) = / rdzd 8,
| V8|

where dS(&) is an element of surface area on the surface
of constant 8. Equation (51) may be easily verified for
any 8x which can be written in the form &x=k*+g (k- q).
The energy integration gives a factor

A8/ (1—ebelsT) .

If we combine the energy loss rate due to scattering
out of gap states with the energy loss due to scattering
in, we are left with

(1)

142 Uw
<——) 23k p— / A8(1—cos’p)ds
8l 2

1
=—U%kp / (1—cos¢) sin’pdz  (52)
6473
for scattering from the gap to spin up and
1
—Uwky / (1+cos¢) sin?pdz
64x®

for scattering to spin down. The integrations over z are
easily performed. We find a total collective mode energy

loss rate of
d8/dt=— Uwck p/32n. (53)

The energy of the excitation is again calculated
from (31).

c Q d@k
§=-— [ —dk
2 8x%) dc

Q
=; / [3w sin’p cosp+3c sinp Jrp?dz.  (54)
s

Because cos¢ and sing have the opposite sign in the up
and down bands, we can write (54) as

Q
8—; / (3w sin%p cosg+3c sin®p)w (02— p12)dz. (55)
7

Now, 8r=2+4p*+¢*—c cscp—w cosp from Eq. (10).
Thus we have

ps*—p12=2(c cscp+w cose). (56)
The integrations are all elementary.
&= (Q/87%)
X {tw*er—wc (Inc—In2qz,)+twi+3c3r}y . (57)

Thus, finally
1/rpsw=—(d8/dt)/ &= U?}p/ 22
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which is exactly the same result as for the non-Landau-
damped case.

Landau damping occurs when there are electrons
with particle velocities which match the collective mode
phase velocity. These electrons, in resonance with the
collective mode, can absorb energy from it. By the same
token, they can also relinquish energy to the mode.
Assuming no external influences, the mode and the
resonating electron continually exchange energy. This
is the point of view we have taken throughout this
paper, and it is reflected in the form of the single-
electron wave functions. When external influences,
such as impurity centers or phonons or lattice defects
scatter the resonating electron, the coherence between
the electron and the collective mode is disrupted. Since
such scattering is more likely with a more energetic
electron, this process results in a loss of energy from the
collective mode. If the electron-scattering time is short,
the mode can hardly be said to exist at all.

In fact, the polarized condition which is the starting
point for the above calculation cannot be established.
If the system is driven by an external field, the absorbed
power must be proportional to the strength of the ex-
ternal field and the strength of the response, which is
again proportional to the driving field; the system
absorbs energy proportional to ¢%. But we have just
seen above that in the limit of infinitely weak collisions,
it will dissipate energy at a rate proportional to c. These
two conditions are clearly incompatible in the limit of
small ¢. There must, therefore, exist, some minimum
value of ¢ dependent on the strength of the scattering
below which the results of Eq. (53) are inappropriate.

Equation (53) was obtained by considering the ex-
pectation of the system Hamiltonian before and after a
scattering event, then using the difference in this
expectation as a measure of the energy dissipated. This
procedure is more extensively discussed in Appendix B.
There we find that in addition to this fixed amount of
energy dissipated per particle scattered, there are a
number of transients associated with the scattering
process reflecting the manner in which a disturbed
particle exchanges energy with the field. These tran-
sients oscillate and die away at a rate which depends
on the strength of the field. The characteristic distinc-
tion between the Landau damped and the non-Landau
damped modes is the appearance of transients with
long periods associated with the states on the gaps.
The weak scattering limit for which we have calculated
the damping in (53) allows these transients time to
decay completely.

While the approach used in Appendix B could be
carried out for short scattering lifetimes carrying along
the effects of the transients, it is much simpler to per-
form a more conventional calculation, obtain the usual
Landau damping and observe that the “resonances”
associated with these modes are completely damped out.

What we have demonstrated above is the possibility
that with sufficiently long scattering lifetimes or suffi-
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ciently high driving fields, it may be possible to observe
resonances in the single particle continuum. The neces-
sary condition is that the product 2¢7> 1. For a lifetime
of 108 sec, this requires a total (external plus response)
rf magnetic field strength in excess of 50 G.

VI. DETECTION

Ordinary spin waves in magnetized materials with
localized moments may be ‘“‘seen” by exciting geo-
metrical resonances in thin films. The existence of thin-
film resonances depends on the nature of the boundary
conditions to which the modes are subject.

The interactions of the electrons conserve angular
momentum. The Hamiltonian we have been using,
Eq. (1), conserves spin. This allows us to write an
equation of continuity.

M=pv-G1-il), (58)

where M is the spin density in the (say) x direction,
and j1 is the particle-current density of electrons
polarized “up” with respect to x. In second quantized
form

M= (¢+(I', T)lﬁ (r: T) —¢+ (l', D‘l’ (l’, l))l“ )
J=¥HE D)W ()~ [WH(r, ) (1)
HF D)W D —[WHE D W),

from which Eq. (58) may be proved by writing the
Hamiltonian in second quantized form and evaluating
the commutator [M,H].

We assume that the reflecting of the electrons by the
surface occurs without spin flip, which immediately
implies that the normal component of j at the surface
must vanish. This is our boundary condition. We use
(58) to express it as a condition on the magnetization.
In Fourier-analyzed form, with excitations propagating
normally to the surface, we have

w M 4

(59)

z
@ g

=12 j,=0. (60)

For a single Fourier component, Eq. (58) states that
the spin current j and the spin density M are in quadra-
ture in space. Since the surface must be a node of j, it
is an antinode of M.

The polarization due to a single, spiral PSW is
P=P£ cos(2q-r—2wt)+9 sin(2q-r—2wt)]. (61)

If we combine this with the spiral of opposite handed-
ness, the polarization becomes

P=2P £ cos2wt+4 sin2wi] cos2q-r. (62)

When q is in the 2 direction, the boundary condition is
satisfied at z=nw/q.

wte
=+ {———m} ;o n=1.
nhkr
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We notice also that the boundary condition is satisfied
if g=0.

An obvious experiment is one modeled after a con-
ventional thin-film-spin-wave resonance measurement.
Radiation of fixed frequency is incident normally on a
film with a magnetic field applied perpendicular to the
film plane. As the field is changed, different standing-
wave modes are brought into and out of resonance with
the applied radiation. Viewed by reflection, the film
becomes absorptive at resonance.

In Fig. 5 we have overdrawn lines to indicate the
circumstances of this experiment. A fixed frequency wo
is defined by the apparatus; a lowest ¢, go, that for
which one half wave is contained in the film, and is
defined by the thickness. As the field is increased, the
various branches of the spectrum move in the manner
discussed in Sec. III. As the branches cross points of
intersection of wo and #ngo, there are resonances.

Because the point of disappearance of the upper states
in Fig. 5 moves away so rapidly with field, the frequency
must be within a few percent of resonance at zero field
in order that any of these modes may be observed. As
many lower state resonances can be observed as there
are points of intersection contained within the triangle
g=0, w=w,, and w=qupm.

The Fermi velocity in Pb has been measured directly
and found to be 7.5X107 cm/sec. At a frequency of
10'° Hz, this means there will be no resonances for
samples less than 38-u thick, one resonance for 38- to
75-u samples, two resonances for 75- to 113-u samples,
etc.

At this frequency, the penetration depth is a few
percent of a wavelength. Hence by transmission, the
samples should become anomalously transparent at
resonance.

We must finally check to see that the effects of the
spin waves on the properties of a specimen will be large
enough to observe. Let us consider driving the electron
system with an external field. A new term appears in
the one-electron Hamiltonian Eq. (3).

p3e:[£ cos(2q-r—2wt)+9 sin(2q-r—2wt) ]-o

=Cextl ote 200 c ). (63)
We can combine the term in (63) with the self-consistent
field to obtain

Ctot= CrestCext= Cres+pICrs. (64)

Now in the integral equation for ¢(k), our dispersion
equation (12), c(k’) appearing under the summation
comes from the response of the one-electron wave func-
tions to the total spiraling field and is, therefore, ciot
of (64). However, ¢(k) on the left-hand side is the field
seen by one electron because of the polarization of all
the others and does not include the external field.
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Hence we have
V Ctot
koco 29 (Zk‘ q—w')

174 1 -1 —1
- ex[( / —————dk) —1] . (65)
1673/ 2q-k—o'

We can find the magnetization density of the gas by
summing the fractional polarization over the occupied
states, multiplying by the electron magnetic moment,
and dividing by the system volume. After some re-
arrangement of terms, we find

1 dk Vv dk
e )
1673/) 2k-q—o’ 1673J) 2k-q—o’

(72%)
Wo—S,

(66)

== UCext

where as before
To=47*/Vkr; S1=2+4+nIn(n—1)/(n+1); n=0'/2qks;

and the condition for a collective mode is 2I'y=.51.

We are interested primarily in the behavior of 9 near
resonance. We can therefore expand (66) by a two-term
Taylor series expansion of Si.

2Po w()(7]02— 1)
M= 25— ——, (67)
V no(w—wy)
where wo is the center-resonance frequency, which is
complex because of the damping.

The energy of excitation supplied by the external
field is the volume integral J"93C,dr. This energy is
dissipated at the damping rate, hence the power which
must be supplied is /(91/7)3C.sdr, and since 1/7 is the
frequency width of the resonance, we can find the power
as the integral over external frequency of _J/9N3C,dr.
Hence,

2[42Fo wg(n02~— 1) 1
= / dw 3C,i2df
0 wW—w

4 1 0
#2Pokp 0)0(7702— 1) Qs 2(0
= T GC, ; 68
P ” I ) (68)

where 3C;:(0) is the value of 3¢ at the surface of the
sample, @ is the sample area, and 6 is the penetration
depth of the radiation, the rf skin depth. We have
assumed that ¢ is much less than the PSW wavelength.
It is interesting to make a comparison between the
power in (68) and the power dissipation in an ordinary
electron spin resonance in the same system. We have a
well-known equation of motion for the spin density;

d8/di=2SX3=~SX[3CexB+5Cst (£ cos2wi+9 sin2t) ],
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which we linearize to give the oscillating component in
terms of the constant component.

Srr= —7S63Cet (0 —3Cex) L= —7S03Ces (0 —wo) 1.

The constant component is the spin polarization of the
gas by the constant, homogeneous, external field. After
substitution and simplification, we find a spin magnet-
ization density

3I"zazacex JCrs
M= ,
8r w—wp

where 9T is the electron density. Comparing this with
(67), and cancelling terms, we see that the ratio of
powers in the PSW to ESR experiments is

T¢(nd—1) /m*=T¢(n*~—1).

For lead, this number is 1.8)X10~2% For aluminum, the
ratio will be of order 105,

We have seen earlier that the PSW spectrum extends
to its highest in lead, permitting greatest freedom in
the choice of experimental frequency ranges. Since the
damping is quite strong, one would like to be able to
use as high a frequency as possible to obtain the
sharpest, highest lines. We have just seen that minimum
required sensitivity of the detection apparatus will be
lowest for lead, and that this minimum sensitivity,
while high, is not unattainably so.
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APPENDIX A

Figure 7 shows initial- and final-state vectors for a
possible anomalous scattering event conserving energy
and momentum. The origins are shown as the center of
the Fermi sphere. Momentum conservation requires
the coincidence of the midpoints of the spans from k;
to ks and k; to ky, as indicated. Energy conservation is
indicated for this highly specialized example.

Practically all of the scattering takes place among
states within & or 2«T" of the Fermi energy, being so
restricted by energy conservation and the occupation
probability factors. This is crudely indicated in Fig. 8,
a detail of the region of the Fermi surface about k;. In
order for scattering to occur, k; must lie within the
outermost surface, for beyond, there are no occupied
states to scatter. At the same time, k, must lie within
the outer sphere. Assuming fixed A, the plus sign on
line segment £ indicates the relative locations of k, and
the Fermi surface. The plus is located at the reflection
of the head of ky in the line OB: Thus, roughly in order
for a scattering event to occur, k; must fall within the
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F1G. 7. A possible configuration of initial wave vectors ki, ks
and final-wave vectors, ks, ks, measured from the center of the
Fermi sphere. The coincidence of the heads of A and A’ is de-
manded by conservation of momentum. Conservation of energy
is indicated crudely.

shaded region of Fig. 8. The energy of the state k; is
a linear function of the displacement of k; from the
Fermi surface, plus a correction term of relative order
q/kr which we shall ignore. The energy of the state k,
is a similar function of the displacement of the 4+ from

Fic. 8. Details of
the Fermi surface in
the regions near the
initial state. The
pluses are the images
of the other member
of each pair reflected
in O.

the Fermi surface. As k; is imagined moved along ¢, the
sum of the two energies is a constant. A similar con-
struction shown in Fig. 9 applied to the”final-state
wave vectors.

Fic. 9. Fermi- kg
surface details near
final states.
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With each ¢, there is an initial-state energy associated,
and with each ¢’ a final-state energy. If these differ by &,
the absorbed magnon energy, then any k; on the surface
of revolution of £ about A and any k; on the surface of
revolution of ¢’ about A’ describe energy and
momentum-conserving anomalous events.

Let s measure the displacement of £ from some fixed
point along the line OB, say the point B, and let /
measure the displacement of k; along £ from OB. Then
the energy of the state ki is §r+2kr(sh+«l) and that
of ke is 8p+2kr(sh—xl), where xkp is the magnitude
of A.

There are analogous expressions for &x; and &g
Now O and O’ are relatively displaced by q from the
centers of their respective spheres. For this reason, 4
differs from 4{ and x differs from «’ by relative amounts
of the order g/kr. We shall ignore these corrections.

To find the damping, we need to evaluate the sum
[assuming constant V (k)],

| & sing;—singz\ 2
2r— (—~—-—)

Q2 kikslesks 2
X6(k1+k2—k3—k4—2q)6(é’1+ 82+2w-— 83‘— 64)

X f(81)f(8)[1—f(&)I[1— f(E4)].

We sum first over ks and convert the remaining sums
to integrals.

) Q3 /I:sin¢1—sin¢2:|2
" (89 2

X8(81t Eat20—[Es+ 8.1) f(61) f(62)
X1 F(8) T~ /(8 Jkodhodks,

(A1)

(A2)

The energy delta function may be written as a delta .

function on ¢'.
8( 85+ 84— 80) =82k [ a2+ (h+5")2]— 80)
8(s"—s0)
" dhks

; (A3)

where sq is the value of s’ for which energy conservation
is satisfied.
Substituting (A3) into (A2) gives

20QV? [8(5'— s0)
(813)3/ Aty
X[1—f(&Ls" ¥ D= F(8L',F' D]

X Fovdsdl hdpds'dlhdy/ 8uatdx ks

F(&Ls,1]) f(&Ls,0])

(A4)

The angles ¥ and ¢/ are angles of rotation of k; about A
and k; about A, respectively. dk; has been replaced by
2dA =2[ (xkr)? sinfdbdpd (xkr)]. The function on ¢, and
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Fr6. 10. The Fermi
sphere. p is the angle
between a plane con-
taining q and a fixed
vector and the plane
containing q and A.
¢ is the angle be-
tween the plane con-
taining q and A and
the plane containing
k; and ko. 0 is the
angle Dbetween ¢
and A.

¢2 has been replaced by its mean value

F / [sinq&l—— sinqsg:l"’d\l/ sinfdf dy’
e 2 w2

(A5)

which we will discuss in turn. Figure 10 shows the
variables of integration.

The integrals over 4, £', and s’ in (A4) give elementary
functions.

27QV? / TP Quibe 1 aGtw)
av_ as
(873)2J (2kp)’x*h Ahkp 2 (ee—1)(e=+—1)
X2 (xkrp)*d(xkr) sinfdodp ,

(A6)

where u=&/xT"; s=4krhs/xT. We integrate over z and
obtain

27QV? (kT)32kp*
(8733 8(2kr)?

(2wh)? wi4nu
X { / F,, oy 22dx sin0d0dp}———-. (A7)

6(1—ec¥)

The net energy loss rate is found by subtracting the
emitting collision rate from the absorbing rate, giving
finally

QV2kp (kT)? (u¥+472u)

192 (892

/ F,,dx sinfdodp.  (A8)

Now let us consider F,,. We have

c ¢ r 1 :I
sing; = =
g 2q-ki—ow’ 2qk FLx(cosG)-i—&—h sinf cosy.
an

singe=

c I‘ 1
2qk Fl_x (cosf)+6-+7 sing cos;[/:|
by the construction of Fig. 10. Therefore,
} (sing1—singy)
}? sin%d cos®y

¢ 2
- (2qk p) [ (x coso-+8)2— k2 sin® costy P

(A9)
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The integration over Y may be performed, but it results
in a complicated function, precluding the integrations
over § and x. The integrand is a positive function with
broad maxima at ¥=0 and 7. We overestimate the
integral by a factor of order unity by replacing the
integrand with its maximum value. The resulting

integration over 6 is elementary, but tedious. In the
limit of small §,

AP (1+h 14k
av=_{ ln——l} . (A10)
w? | 2k 17
Thus the sum in (A1) has become
QV2%kp(T)? it
—————— (3 4n)—4r
192 (87%)? w?
1 1+ 1—h
x/ —{ ln———-}-l}dx. (A11)
0 2k 1+4
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This is the net magnon absorption rate for a particular
type of collision, say ki and ks “up” to ks “up” and
ks “down.” As we discussed, there are four types of
anomalous collision in which an up spin is turned down,
indicating magnon absorption. Likewise, there are four
types of process in which a down spin is turned up,
indicating emission. Thus for the net magnon absorption
rate, we have

QV2kp (kT2 (ud+4n2u) 2’
(879712 o

U4 1—h
x/ —{ 1n———~+1}dx. (A12)
0 2% 14k

The value of the integral is 2.248. The magnon lifetime
is found as before by dividing by the magnon number,

din+3) 1 3 [QV2%kp (kT)3 (u3+4n2u) (w/12(87%)%) ] (c22/ w2)2.248N V2(kT)3 (ud+4n2u) (n—1)2.248
@c%/16m2) 20/ ("= 1)—In[ (—1)/ (+ 1DT] '

dt  n+i

It is well known!? that the rate of electron or hole
scattering by collisions with other carriers is propor-
tional to the square of the energy separation of the
state in question from the Fermi energy. The total
number of collisions in the system per unit time can
thus be approximated by

Q «T Qkr 1 kT
oot =—2 f drkra(AEYA(AE)=—" — " (A14)
8x3 Jo o2

TxT

where 7,7 is the lifetime of an electronic state «T" above
the Fermi energy and « is a constant.

We can also find an expression for the total collision
rate by using (A7), setting Fay=1, u=0, and multiply-
ing by 4 to include the different types of ordinary
scattering event (such as ki, ks “up,” ks, ks “down,”
etc.)
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V2_

- T«T (KT)2 ’

We equate the rates in (A15) and (A14) to eliminate
V? in favor of 7.r and use this in (A12) to express the
magnon damping time in terms of 7,7.

Aw  (kT) (uB+4n2%) (12— 1)2.248

(A15)

w T,(Tw27r212
(dm2+u?) (2—1)2.248 1
= = (A16)
wrerl27? WTPSW

We can evaluate 7,r from the expression for electron

12 7. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).

13)
w3192

lifetime as given by Quinn and Ferrell,'? using parame-
ters for the Fermi surface electrons in lead from
Anderson and Gold.®* We find 7,7=4.1X107"T2 sec.
At liquid-helium temperatures, this is of order 1078 sec.
The factor n—1 in (A16) is of order 10~* in lead, giving
a magnon lifetime around 10~% sec or longer due to
interelectron scattering.

APPENDIX B

Our discussion of the properties of PSW’s has been
carried out in toto using the wave functions of Egs. (5)
and (6). These wave functions describe electron states
with time-dependent, spiralling spin polarization. This
polarization is constant and homogeneous in magnitude.
It is either in perfect phase or out of phase by = with
the driving field, the term proportional to ¢ in the one-
particle Hamiltonian of Eq. (2). As we saw in Sec. VII,
this driving field may be composed of an external ap-
plied field and an average response field found self-
consistently. Qur approximate many body wave func-
tions formed out of our one electron states give rise to
an average response field in phase with the external
field or out of phase by .

This description neglects the effects of damping. We
expect in general the response of a dissipative system
to lag somewhat behind the driving field. The resulting
component of the response in quadrature with the field
provides the mechanism for power transfer from field to
system.

We can relate the power absorption to the polariza-
tion phase through the use of the equation of con-

13 J.R. Anderson and A. V. Gold, Phys. Rev. 139, A1459 (1965).
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tinuity of Sec. VI.

... M 4
V'(Jf—u)=—=d—(jt—j¢>=, (58)
2

"

where 2 is in the direction of ¢. A particle in the field
experiences a force along the field gradient and absorbs
energy in proportion to its velocity. Hence for the power
absorption density, we have

®r)=—[V0(")1-Gr+—iv). (B1)
All our quantities vary sinusoidally in space, hence
VO(2)=¢U(z+n/29) and likewise for j and M, from
which we find

d
®(r)=—0(@)—M(). (B2)
dt

When we integrate this power density over the volume
of the system, the only contribution comes from the
components of M in phase with the field. Our discussion
is specific to the case of spin density variations along a
single direction, but the result, Eq. (B2), is more
general than this. We shall use (B2) for the spiral con-
figurations we have been considering and observe that
the conclusions agree with the simple results of Sec. IV.

The wave functions with which we have dealt so far
exhibit no polarization component in quadrature with
the field and able to exchange energy with it. To under-
stand the absorption and the out of phase components
of the response, we must generalize the class of func-
tions from which we form determinants.

The one particle Schrédinger equation, Eq. (2), has
two orthogonal solutions for each k. We have so far
considered no fractional occupations of the correspond-
ing states. Now any linear combination of these two
wave functions again satisfies Eq. (2) and represents
therefore a possible one particle wave function for use
in the many-body determinant. We so generalize one
state.

dx= i (k,r)+-a.¢.(k,r). (B3)
The # and ! refer to the upper and lower branches as
discussed after Eqgs. (5) and (6). If we now calculate
the spin polarization as before, the contribution of the
occupation of this state is of two parts. The first is in
phase with the field

[A 142 (l a; l 2— l ay l 2)+ (A 2—A 12){ (azdu*'f‘dz*au)
X cos(E,— Et+i(aa*—ai*a,) sin(E,—E)t) ]
X[£ cos(q-r—at)+9 sin(G-r—ar)] (B4)

and no longer constant in magnitude. The second part is
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in quadrature with the field

{i(aias*—ar*a,) cos(E,—E))t

— (me*+a*a,) sin(E,— Ey)t}

X[£sin(g-r—a&f) —49 cos(G-r—at)]. (BS)
It is the interference between ¢, and ¢; that produces
the out of phase components and is hence crucial in the
understanding of the energy absorption. Let us, there-
fore, consider a scattering event from the state k’ into
the state k, considering all four orthogonal states in-
volved and follow the polarization as the scattering
proceeds. We shall then use that polarization to calcu-
late the energy absorbed per particle scattered.

The bulk of the following discussion is an elaborate
exercise in trigonometry, the major part of which is not
displayed. We begin with the assumption that at ¢=0,
the state k;’ is occupied and the states k,/, k;, and k,
are all empty. Scattering occurs off impurity centers
as in Sec. IV. We calculate the various amplitudes, a; as
in (B3), and form the polarization as a function of time.
The polarization in the states k,, k; is proportional to
products of @, with ¢;. These products are of second
order in the scattering potential U, since the a’s are of
first order. We confine this discussion to scattering not
involving spin flip, in which case there are no direct
matrix elements connecting k;’ with k,’. The amplitude
a.’ is therefore of second order in the scattering poten-
tial, but since @;=1 is of zero order, products of the
two are of second order; the polarization in the states
k’ must be considered as well. Taking the a; as calcu-
lated by time-dependent perturbation theory (first or
second order as is needed) and substituting into (B4)
and (BS) gives the polarization which we may then
differentiate with respect to time. Using this derivative
in (B2) and multiplying by the “driving” potential

V(r)=c[£ cos(q-r—at)+§ sin(g-r—at)] (B6)
and integrating over space gives the power absorption.
We form a packet of states about the state k to give
meaning to the term “scattering into k” and integrate
with respect to time to find the energy absorbed. We
find that there are two types of contribution to this
final energy; terms which are proportional to the time
elapsed, and terms which oscillate in time between
fixed limits. We consider the case of one of the “anoma-
lous” scattering events of Sec. IV, and considered the
occupation probability of the “almost spin flipped
state,” k,. This probability grows linearly with time,
Thus when we calculate the energy absorbed per par-
ticle scattered, we find a constant plus some oscillating
transients which die away like 1/ The constant proves
to be - or —&, as we used in Sec. IV, for the case of
non-Landau-damped modes. The cases of other starting
occupations of k,’ and k; may be treated analogously;
we shall not display them here.
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From time-dependent perturbation theory, we have

sin[((Ey/—Ey)/2 ]
ar= —U(A1A1{+4,45) L&~ B)/2Y,)

L J— e
e (Bl Et)l2]t’

E/—E,
in[(E/—E.)/2]t
tom— U(Asdy— Anty ot BN kco-mirme,
E/—E,
2 ’ ’ ’r__ NC—92) (et . -
aﬂ’: U (A 1A+ A4, )(AgAl A4, )( 21) {SIHE(EZ Eu )/Z:Ite—i[(El’—Eu’)/ﬂ‘
E/—E,; E/—E,

sin[(El— E,/)/Z]f UZ(A 1A 1/+A zA 2’) (A 2A 1/—A 1A 2’) (— 21)

U—i[(E;—Eu')/zlz} +

El—Eu El/—Eu
<3 E f— ul 2 i Eu_Eu/ 2 t
o rm[( /—E))/ ]te—i[w/—Eu')/zlz_ sin[( )/2] il BN AL (BY)
El"“Eul Eu'—Eul

At this point the development becomes unwieldy. Following the prescription outlined above yields an expression
for the power absorption containing 20 terms. Of these, 4 come from the first term in (B4) and are of higher order
in ¢. Of the remainder, 14 are oscillatory between fixed limits, giving an oscillating, decaying contribution to the
energy per particle scattered. All of the remaining terms coming from (B4) are transients of this form. Two terms
contribute to the energy per particle, and we shall show the details of the development only to the extent necessary
to obtain them.

The first-order quantities, a, and @, taken from (B7) and substituted into (BS5), yield a polarization

Asin[(E,'-E,) /27t sin[(Ef — E.)/ 2]t
N L(E~E)/2]  [(E/—~EJ/2]

202(A147+A245) (4247 — A sin[ (E,—Ey)/2]¢

X (£ sin2(q- r—wt)—4§ cos2(q-r—wt)) (BSY)

after some trigonometric combinations. Differentiating with respect to time, multiplying by V(r) from (B6) and
integrating over dr gives

sin[(E{—E;)/Z]t sin[(E,’—-Eu)/th
—2U2(A1A1/FA249)(A24A) — A142)2cw in[ (E,—E;)/2]t. B9
( 4 o e ] iy TR ()

We now integrate over the states of a wave packet centered on k;. We take the slowly varying factors out of the
integration and obtain

1—cos(E,— Et
——p(E[) U2(A 1A 1I+A 2A 2’) (A 2A 1"— A 1A 2’)47!'6(0—“‘——‘—"-‘— (B 10)

for the power absorption, where p(E;) is the density of states about E;.
The second-order amplitude, a,’, also gives a contribution as we mentioned. For the power absorption we have,
in analogy to (B9)

—sin(E{ — Ei—sin(EJ/~ E/)l | —sin(E{~ Ei—sin(B/— E/)
(E/—E)[(Er—EJ)/2]  (B/—EJ[(Bu—E.J)/2]
N sin(E,/—E/)t + sin(E,/—E/)¢ } . (B1D)
(E/—EJ)[(E/—EJ)/2] (E/—EJ)[(E/—EJ)/2]

20cU(A141+ A245") (4241 — A14Y")
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Again we integrate over the packet of final states
around k;, and obtain for the power absorption a con-
stant plus oscillatory terms.

p(Ez)7r4ch2(A 1A 1/+A 2A 2) (A 2A 1”—-A 1A 2/)
1

X{————-————]—i—- -+, (B12)
[(E/—E.))/2]

Integrating over time from O to ¢ gives the energy
absorbed from the field by the scattering as a function
of time.

From (B7) we may find a; as a function of time, the
total scattered probability. Dividing by the integral
over the packet we obtain the energy absorbed per
particle scattered.

A Ay —A:14 1 1
2wc —
A4V + 4245 \E,—E;, E/—E/
A4 — 4145

=w——————(sing+sing’). (B13)
A141+ 445

After expressing sing and sing’ in terms of the 4, this
just becomes w(cos¢p—cos¢’) the result we used in
Sec. V.

The transient terms which we have neglected oscil-
late with frequencies E.,—E;, E,/—E/, E,—E,,
E,—E/, and E,/— E;. They occur in the form of func-
tions like sinA#/A, which only become small relative to
the terms increasing as ¢ for times such that AtX1.
In the Landau damped situation, say where the state
k' is on the gap, E./—E;’ becomes 2¢. If the scattering
lifetime of the states is not long enough to allow the
transients to decay, their effects must be included.
Thus for high scattering rates, high compared to 3,
the field “pumping rate,” the customary theory of
Landau damping is applicable and the Landau damped
“modes” are broadened to unobservability. In the case
of long scattering lifetimes or high pumping rates corre-
sponding to strong excitation, the lines sharpen up, as
we discussed in Sec. VI and observable resonances
may occur.

We have seen that the inphase components of the
polarization contribute only transients to the energy
absorption. We may, therefore, relate the damping
directly to the component of net magnetization in
quadrature with the field, that is, to the imaginary
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component of the susceptibility.
Ctot A1
Ximag= )
Cext dt
. dE In
since ——=ciidM,=—a—, (B14)
dt dt

where dn/dt is the net magnon absorption rate, the
excess rate of absorbing over emitting anomalous
collisions. :

We cannot clearly associate an average out of phase
magnetization to each state of the gas, for as we have
just seen, both the initial and final states in a collision
contribute a portion. Let us, however, arbitrarily assign
the entire amount to the final state. The average out of
phase magnetization of state k (however we make the
division) depends on the rate at which electrons scatter
in anomalously.

27U (sing-sing’)?
2
k’ Q c
XA — f(Ex1)) f(Ext")6(Exy— Ext'+a) .

(B15)

Only states within & of the Fermi surface contribute to
the out of phase magnetization, and, on a surface of
constant energy, the average out of phase part varies as
(sing+const).2 It is interesting to contrast this result
with the device of using a complex frequency to obtain
the imaginary part of the susceptibility. Assuming the
mode is not Landau damped, we have for the mag-

netization of state k

¢
—_, (B16)
2k-q—w—1in

In the limit of small damping, the imaginary part (the

out-of-phase part) is thus, for small damping,

c sin2¢p
1:!, = 'l:l[ . (B17)
(2k-q—w)? c

Comparing (B17) with (B15), we see that in order to
reproduce the results of the detailed, microscopic
damping theory we have presented here, it is necessary
to use a state-dependent complex frequency; the de-
tailed theory does not permit the use of a unique
imaginary part of the frequency.



