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With a free-electron model for the conduction band, the isotropic and first-order nonisotropic terms of
the indirect exchange interaction in the rare-earth metals have been calculated exactly (in second-order
perturbation). The results are compared with previous treatments of the problem, all of which utilize
some type of approximation, and specifically with the calculation of Kaplan and Lyons (KL), who assume
that the exchange integral g (k, k') depends only on k—k'. It is found that the exact calculation leads to
results in disagreement with the approximate treatments: The nonisotropic term is about 4 times larger
than that of KL, and the radial dependence of the interaction is significantly different. The resulting
Hamiltonian predicts a ferromagnetic ordering pattern for gadolinium at O'K, while the approximate
theories predict a screw structure. However, the predicted ordering pattern for Gd is extremely sensitive
to changes in the Fermi wave vector ks. (A 5% increase in kp stabilizes a screw structure with a turn angle of
20'.) An estimate is given of the relative contribution of the anisotropic term (relative to the isotropic) for
the ferromagnetic ordering pattern. For the two-ion asymptotic interaction, this effect is found to be quite
large, ranging from 35 to 200% among the heavy rare earths and over the values of ks considered. After
being summed over the lattice, the contribution is cut down by roughly an order of magnitude.

I. INTRODUCTION

r 1HE indirect exchange interaction via the conduc-
tion electrons is chief responsible for the inter-

atomic spin-spin coupling in the rare-earth metals.
Following Zener's original suggestion' concerning this
coupling mechanism in the transition metals, Ruder-
man and Kittel, 2 Kasuya, ' and Yosida4 developed a
theory for such an interaction in the rare-earth metals.
These authors showed that under certain conditions
one obtains an effective isotropic interaction, the radial
dependence of which is given by the RKKY function
L(x cosx—sinx)/x'j, where x=2kFR (ki ——Fermi wave
number, A=distance between ions). These conditions
are (a) the conduction electrons are treated as a free
Fermi gas and (b) the 4f shell radius is sufficiently
small relative to the Fermi wavelength that the ex-
change integral g(k, k') between a 4f shell and a con-
duction electron may be taken independent of k and
k'. The fact is that neither (a) nor (b) is a very good
approximation for the rare earths. In this paper we
shall say no more about condition (a); our concern is
to make an estimate of the effect of the Rnite size of the
4f shell. Already Liu' has shown that condition (b) is
invalid unless kore&&1 (rs ——radial extent of 4f shell).
However, for the rare earths &pro 0.5, and Kaplan and
Lyons' (KL) went on to investigate the effects of a
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nonspherical 4f shell. Using a free-electron gas and
assuming that g(k, k') depends only on k—k', they
calculated the isotropic and hrst-order nonisotropic
terms by means of multipole expansion of g(k —k').
They found that the radial dependence of both terms
differs from the RKKY function and that the contribu-
tion of the nonisotropic term (relative to the isotropic)
for the interaction between nearest neighbors ranges
from 10 to 80%. After summing out to 12th nearest
neighbors, they found the resulting anisotropic effects
to be reduced by at least an order of magnitude. They
went on to conclude that the usual assumption of a
dominating isotropic term is reasonable but that the
anisotropic terms might contribute appreciably. Follow-
ing the KL formulation, Kasuya and Lyons~ calculated
the general form of the isotropic and nonisotropic terms
(to the 4th order) of the interaction. Although they
did not use the KL assumption that g (kk') ,= g (k—k'),
they evaluated the integrals which determine the radial
dependence by approximate techniques. Their 6nal
results are given as expansions in terms of kp(r)4r.

All previous calculations of the interaction involve
some type of approximation either on the functional
dependence of g(k, k') or in the final evaluation of the
radial dependence, leading one to the question: To what
extent are these approximations valid P This uncertainty
served as motivation for the present work.

Using a free-electron model we have evaluated exactly
(in second-order perturbation) the isotropic and first-
order nonisotropic terms Lusing the same multipole
expansion of g(k, k') as KLj. The functional depend-
ence of the resulting interaction on the angular-momen-
tum operators is, of course, the same as that obtained by
KL. However, the coefBcients determining the relative
magnitude of the nonisotropic term as well as those
determining the radial functions diBer considerably

'T. Kasuya and D. H. Lyons, J. Phys. Soc. Japan 21, 287
(&966}.
389
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from both RKKY and KL. (The coefficient multiplying
the nonisotropic term is 4 times larger than that
obtained by KL; the exchange Hamiltonian we obtain
predicts ferromagnetic ordering for gadolinium at O'K,
while the previous treatments predict a screw struc-
ture. ) The relative effect of anisotropy on the asymp-
totic two-ion interaction is found to be quite larger,
varying from 35 to 200% (Table IV) among the heavy
rare earths and over the values of kp considered.

In Sec. II the e6ective exchange Hamiltonian is
obtained (in second-order perturbation), and in Sec. III
the numerical results and conclusions are given. In
Appendix C a closed expression for the reduced matrix
element pA (LSJ) Lof the Wigner-Eckart theorem,
'/zan(L)-+pi(LSJ)'tl&, (J)$ is derived directly from the
irreducible tensors for the two cases J=

~
L+S ~, result-

ing in considerable algebraic simplification from meth-
ods used previously. (We are able to obtain all numerical
estimates by using the eRective Hamiltonian expressed
in terms of L and S rather than J.However, we include
Appendix C for completeness. )

where P(i, n+1) is the permutation operator and where
fdx denotes integration over coordinates and summa-
tion over spins.

KL have shown that r( may be reduced to the form

g (M'k'o'; Mko)

n
= —e' Q (JM'

) (g, (n+1) ~
(-', +2s; s„+i)

X(P(k'kl;) i x.(n+1) ) i JM). (3)

The quantities in (3) have the following meaning:
s„+~ denotes the spin operator for the conduction elec-
tron, 1; and s; are the orbital and spin operators for the
individual 4f shell electrons, and (P is given by

(p(k'kl) = (4 )' Z Z Z L(—)"'~"l(»+1)3
ua u/e'

XI(pp'X; kk') F„,*(k)7'„,*(k')Q(pq; p'q'; All),

where

I(PP')tkk') = rtsdrt rz'drs

II. THE EFFECTIVE EXCHANGE HAMILTONIAN

%e adopt the usual model in describing the rare-
earth metals, i.e., a lattice of trivalent ions immersed
in a sea of conduction electrons. The state of the
4f shell is specified by a Russell-Saunders function
fLezzr(1, ' ', n), M= —J, , J, with the value's of
I., S, and J corresponding to the Hund ground state,
i.e., S maximum, I. maximum subject to S, and J=
(I. S, L+S) for a —(less, greater) than half-filled shell.

The 4f shell functions tpzArt =tpzezzr J are properly
antisymmetrized functions constructed from the one-
particle functions of the form

lt t-(x') =~(r') I't-(r') X-(')

denotes the Pauli spinor (a=As).
The wave functions for the conduction electrons are

taken to be those of a free-electron gas:

Pq, (x;) =0 '~' exp(zk r,)x,(i). (2)

The exchange interaction in which we are interested
results from the Coulomb interaction between the n
4f electrons of a given ion and a conduction electron. If

~ JM)~~ JM') and
) ko)~~ k'o') denote the transitions

experienced by the 4f shell and the conduction electron,
then the exchange integral is given by

g (M'k'o'; Mko)

= —e' Q (JM' )
(k'o'

( V(i, n+1) [ ko) ) JM)

XR(rt) R(rs) jo(krt) jo (k'rs) (r&"lr&"+') (4)

[j~(x) are the spherical Bessel functions), and where Q
is defined by

4 Z(Vt- I'-&". V"I't-)
= (I't„,Q(pq; p'q', ) ll) Ft ) .

~
JM) denotes the spin and angular portion of the 4f

shell wave function.
The leading term of (P with (p =p'=0) is a constant

and leads to an eRective isotropic interaction. All
remaining terms of (P contain irreducible tensor opera-
tors 'JJA, (1) of higher order (k)0) and give rise to
nonisotropic corrections to the isotropic term. The erst
set of nonzero terms beyond (p=p'=0) are those for
which p+p'=2, and from this set the terms satisfying

(q =q' =0) dominate. LWhen second-order perturbation
is performed, only those nonisotropic terms with
(q=q'=0) for one of the ions will combine with the
isotropic term of the other ion.) We refer to these terms
(p+p'=2, q=q'=0) as the first-order nonisotropic
terms.

In Table I are given the operators Q corresponding
to the isotropic and first-order nonisotropic terms (with
/, =3 for the rare earths), and evaluating (P to this

TABLE I. Orbital angular-momentum operators Q. I T&0(1) is
given in Table V.g

Q(pqp'q'All)

= —e' g dx,dx," dx„„g,~.*(1,",n)

XQL, *(n+1)V(i, n+1)fgAr(1, ~ ., n)fy. (n+1) j,
V(i, n+1) =

( r; r„~-+'tP(i, n—+1),

0 0
0
0

2 0
0 0

3 3
2 3
4 3
3 3
3 3

1—(3/35) )T2o(1) —5$—(1/21) (Tzo (1)—12$—(5/15) u'Tzo(I)—(5/15) 'i'Tzo(1)



162 INDIREC Y EXCHANGE INTERACTION IN RARF-EAR&H ME~AI. S

where

e4 + exp[i(k —k') ~]
Qs ~i E(k) —E(k')

Xp [-',+2s.;.s I][1+P(a,b)](P(k'k; l.;)6'(kk'; lb;).

Using the relation E(k) =fPks/2m for a free electron
and the fact that the eGective operator is already
symmetric in c and b, we obtain

H~=G Q [g+2s.,'sb;]dye'(P(k'k; t„)(P(kk'; lb;), (6)

where
G =4me4/fi' (2sr) '

and where 8k~' denotes the integral operator

, exp[i(k —k') R.b]

0 kg
(7)

Substituting (5) into (6) and neglecting those terms
which contain greater than zero-order contributions
from both ions, we have

H.b=srsG Q ps+2s„'sb;]8gb {(16/49) I'(003; kk')

—(144/1225) I(003 kk') I(112 kk') cosks

Xcosks [T (1;)+T p(lb ) —10]
—(16/49) I(003; kk') I(114;kk')

Xcosks cosks'[Tsp(l„) +Tsp(g;) —24]

+ (8/49) I(003; kk') [I(203;kk') (cos'ks —ss)

jI(023; kk') (cos'ks' ——',) ][Tsp(1„)+Tsp(lb;) ]I. (8)

appl oxlIQatlon~ we have

(P(k'kl) = (4s./7) I(003 kk')

—(36sr/175) I(112;kk') cosks cosks'[Tsp(1) —5]
—(kn/63) I(114;kk') cosks cosks'[Tsp(l) —12]

+ (2sr/7) [I(203; kk') (cos'ks ——',)

+I(023; kk') (cos'ks' —', ) ]Tsp(1) . (5)

In second-order perturbation theory, the indirect
exchange energy between two ions located at the posi-
tions R, and Rb is given by

exp[i(k —k') ~]
+cb

E(k) —E(k')

X[1+P(44, b) ]4i,(M, 'k'o'; Mgo)

X4ib(Mb'ko; 3fbk'o'),

where k and k' are, respectively, summed over the
occupied and unoccupied states of the conduction band
and where ] JM, )~) JM ') and ] JAN)~[ JMb') repre-
sent the transitions experienced by the two ions. Per-
forming the summations over o. and o.' and using (3), we
have

Tasxx II. I(l4om;ks) and kFB/SksI(lwsm;ks).

l os 44 ks (A-') I (&0 ' I4.')
ks(8/eks)I

(10 ' A.')

0 0 3

1 1 2

2 0 3

1.33
1.40
1.47
1.33
1.40
l.47
1.33
1.40
1.47
1.33
1.40
1.47

0.857
0.834
0.809
0.0997
0.107
0.114
0.0630
0 ' 0675
0.0722
0.0465
0.0498
0.0529

—0.445—0.473-0.501
0.104
0.109
0.114
0.0899
0.0927
0.0946
0.0622
0 ' 0630
0.0633

where

and where

X[(1;m)'+ (1;m) '—si(&+1)]I, (9)

~=R~/R b,

x=2ks~,

f~(x) = (x cosx+8 sinx)/x',

fs(x) = (x cosx+D sinx) /x',

B=b/A, C=c/A, D=d/c,

A =K&[(16/49) Es—(1440/1225) Es—(384/441) Es],
b = —(16/49) [KP+2EgEg']+ (1440/1225)

X[5E&Es+(EsEs) ']+ (384/441) [5ExEs+(E,Es) '],
c=Ks[(144/1225) Es+ (16/441) Ks+ (32/147) E4],

d = —(144/1225) [5KsEs+ (EgEs) ']
—(16/441) [5EgEs+ (Ebs) ']—(224/147) EsE4

—(32/147) (EgE4) ', (10)

with E& I(003) ks') ) Es'————I(112;kp), Es ——I(114; kp),
E4=I(203; ks), and (K)'=kJ 8/Bks(K).

The operator equivalent of H~ in terms of the total
4f shell operator is easily obtained following Appendix
B.Using (B1),we have

H~ ———4'( Iesfg(x) +nspCf, (x)[(L.~)'+ (Lb.~) '
——s'I.(I+1)]I+&(S. Sb) (fg(x) +ns)Cfs(x) [(L..~) '

+(Lb n )s—sL(I+1)]I, (11)
where

$ =2sl7rsGA.

And 6nally, to obtain the operator equivalent in terms

The integrals over k and k' are evaluated in Appendix
A with the results expressed in an asymptotic expansion
in terms of (2kb R~) '. Substituting Eqs. (A8) through
(A11) into (8) and remembering that in these equations
the s axis coincides with R,b, we have

H~ sin-sG Q——I-', +2s„'sb;IA If~(x) +Cfs(x)
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Tmx.E III. CoefBcients in radial functions.

kr (k ') A (10 sh')

1.33
1.40
1 47

0.925
0.729
0.545

9.11
12.2
17.0

0.223
0.296
0.409

—6.52—6.43—6.33

of the total angular-momentum operators J, and Js, we
use Eqs. (82), (33), and (B8).We obtain

II~= ',k)~'f-t(x) +~20P2f2(x) (~20 +IJ20 )j
+$71fl(x) (J Js) +Pr221Cf2(x) {-'f(J.Js) (&20 + fI20 )

+sf (II20'+II20 ) (Jo' Js) +~L(J 'm) (Jt 'Ws)

—2(J. Js) jI (12)
where

l =vt(P2-Ps),
X=—,'yrD4 (4J'—3) —Pr (4L' —3)$,

II20'=(J' n 0)' —sJ'.
The form of II,& is most easily seen in Eq. (11),where

it consists of four terms. The first term is a constant,
independent of magnetic ordering. The second repre-
sents single-ion anisotropy, i.e., its contribution (after
being summed over the crystal) depends only on the
orientation of each moment relative to its crystalline
environment. The third and fourth terms are, respec-
tively, isotropic and nonisotropic exchange. One can
readily see that the fourth term depends not only on the
angle between moments a and b but also on the angle
that each makes with the line connecting ions a and b.

III. NUMERICAL ESTIMATES AND CONCLUSION

In this section we con6ne our attention to the heavy
rare-earth metals, Gd through Tm.

For a free-electron gas the Fermi wave vector is
given by

krs 3n (le/V), ——

where (E/V) is the density of conduction electrons. For
the heavy metals X=3 and V=t22cV3/4 (hcp). Using
the lattice constants a=3.6 L and c=5.65 L, we obtain
ks =1.4 L '. However, since the Fermi surface is not
spherical, we should not feel bound to this value of kg.
Therefore, in addition to ks =1.4 L ', let us also con-
sider, say, a +5% variation from this estimate.

To evaluate I(lmn; kr) we require a choice for the
radial function R(r) .For this choice we use the Hartree-
Fock 4f shell function for gadolinium' given by Freeman
and Watson. ' By numerical integration we obtain the
values of I(lmn; ks) and kFB/BkrI(lmn; kr) given in
Table II, which with Eq. (10) yield the values of the
coefficients A through D in Table III.

2 Doubtless the variation in R(r) through the rare-earth series
affects the interaction. However, owing to the crudeness of our
band functions, taking R(r) for Gd as representative does not
appear a bad approximation.' A. J.Freeman and R. E.watson, Phys. Rev. 127', 2058 (1962) .

We first observe that the value of 8 (the coefficient
of sinx/x' in the isotropic radial function) in Table III
is larger than that obtained by both RKKY and KL.
fKL obtained the values' (8, C, D) = (3.2, 0.07,
—4.1) .]The effect of this variation in 8 is most easily
seen in the case of gadolinium. Since I.=0, the exchange
energy of the crystal from Eq. (11) may be put into
the form

II=g' (S Ss) (x cosx+8 sinx) /x'.

Assuming a spiral ordering pattern (where the moments
in each hexagonal plane are parallel and lying in the
plane but are rotated by an angle ro from plane to plane),
one 6nds" that the turn angle depends sensitively on
both 8 and ks. With a hcp lattice (@=3.6 L, c=5.65 A.)
and with kr ——1.4 L, II is minimized with a turn angle
which decreases from ~50' to 45' as 8 increases from

( —1) to (+6).For B&6, 00=0 minimizes II. Both the
KL function 8=3.2 and the RKKY function (8=—1)
predict a screw structure for Gd at O'K with ~ 45' to
50', while with the appropriate value from Table III
(8= 12.2) one obtains ferromagnetic ordering in agree-
ment with experimental observation. " With kp =
1.33 L ' and 8=9.11, one again obtains ferromagnetic
ordering; however, with kr =1.47 L ' and 8=17.0, II
is minimized with a turn angle of 20'. The predicted
ordering pattern for Gd appears to be too sensitive on
the value of kp to allow one to reach a definite conclusion
with a free-electron model.

We next consider the anisotropic term; we note that
the coeflicient C (which gives the relative magnitude
of the anisotropic term) is about 4 times larger than
that obtained by KL. Of course, one ca,nnot conclude
that the anisotropic contribution will be 4 times
greater, since the coeflicients 8 and D are also difFerent.
Due to anisotropy the two-ion exchange energy E~ for
a ferromagnetic arrangement will depend on the angle
between each moment and the vector n~. In general,
E~ is obtained by taking the expected value of (12).
However, for the heavy rare earths, this calculation
can be greatly simplified by using (11) instead. Since
J=L+S, thestateofmaximumMzisgivenby~ J,J)=

~
I-, I.) ~

S, S), so that E~ can be obtained by choosing
the s axis in the direction of the moments and taking
the expected value of (11) between

~ L, L)
~
S, S) for

each of the two ions. Retaining only the two-ion inter-
action terms of (11), we obtain

E.s &Ss f fg (x) +nsr——Cfs (x) L2L'(n. s*)'

+L((n.s*)'+(n~")')—2L(L+1)jI (13)

' Although KL used hydrogenic functions for R(r}, it is doubt-
ful that this could produce the large discrepancies in the coeK-
cients.

"All hcp lattice summations evaluated for this paper were
taken over all lattice points inside a cylinder centered at the origin,
with axis parallel to the c axis and with radius. and half-height
equal to 50 nearest-neighbor spacings (=50&3.6 A.).

~ W. C. Koehler, J. Appl, Phys. 30& 1078 (1965).
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TABLE IV. Exchange energy for nearest-neighbor and asymptotic two-ion interaction and exchange energy (per ion) of crystal.

Rare
earth

Nearest-neighbor
two-ion energy

&No (0) Em (~/2)
(kg'K) (ks'K) XNN

Asymptotic two-
ion energy

E (0) E„(n/2)
(10 ke'K) (10 ks'K)

Ferromagnetic energy
(per ion) of crystal

E, ,(0) E.„.(s/2)
(k~s'K) (kg)'K)

1.33

1.47

Tb
Dy
Ho
Kr
Tm

Tb
Dy
Ho
Er
Tm

Tb
Dy
Ho
Er
Tm

—4.79—3.05—2.48—2.08—1.40

—6.59—4.44—3.10—2.09
1.17

—7.66—5.38—3.34—1.74—0.68

7 ~ 73—5.50—3.26
—.1.49—0.42

—8.06—5.67—3.50—1.79—0.68

—7.07—4.89—3.18—1.86—0.87

47
57
27
33

108

20
24
12
15
53

8.0
9.5
4.9
6.7

24.5

329
202
181
169
123

257
144
159
177
140

147
58

121
178
156

621
445
259
111
26

632
456
259
102

15

617
451
247
84

1 ~ 1

61
75
35
42

130

84
104
48
54

162

123
154
68
72

202

—78.8—54.6—35.1—19.9—9.0
—77.7
-53.8—34.8—20.0—9.2

72.2—49.8—32.5—19.1—9.1

—79.6—55.3—35.3—19.7—8.7

—79.5—55.3—35.2—19.6—8.6
—75.8—52.8—33.5—18.4—7.9

1.0
1.3
0.6
1.0
3.4

2.3
2.8
1.7
2.0
6.7

4.9
5.9
3.0
3.7

14.1

With 0 denoting the angle between n,b and z, this
becomes

E.b ((1) =$S'Di (x) +a»Cf&(x) L(2L 1) (cos'0———,') j.
A good estimate of the anisotropic strength can be
obtained by comparing the values of E,& (0) and
E,b(s/2). For nearest neighbors (R~——3.6 L) these
values are given in Table IV, along with the value of

XNN)

X=200
I E(0) —E(~/2) I I E(0)+E(~/2) I

'

which gives the percentage contribution of the
anisotropy.

Since the anisotropic strength clearly depends on
R~[j~(x) Wfs(x) j, it is instructive to consider the
asymptotic behavior of the anisotropy. As E &-+~, both
f~(x) and fs(x) approach cosx/x'. In Table IV the
values of E (0), E (s/2), and x are tabulated,
where E (8) is obtained from E,b(0) by setting f~(x) =
f, (x) =1.

To estimate the eBect of anisotropy on the exchange
energy of the crystal, we again consider the ferro-
magnetic case. Using (13) and the synunetry of a hcp
lattice, we obtain

E-"(~)=P' Z' I:fi(x)
b

+snsyCfs(x) L(2L 1) (cos 0~—s) (cos n —s—))
as the exchange energy per ion for a ferromagnetic
ordering pattern. Here O,b is the angle between ~ and
the c axis, and 0. is the angle made with the c axis by
each moment. The summations over b were performed"
for the two cases in which the moments are along the
c axis E,~,(0) and in the hexagonal plane E„r,(a/2).
The values of E~(0), ~E,( / s),2and x„~ are given
in Table IV.

We note from the values of E„~, that for each rare

earth the energy favors the experimentally observed.
ordering pattern (concerning the ordering relative to
the c axis) and has the correct order of magnitude with
respect to the observed ordering temperature. From
the values of gNN and X it can be seen that the aniso-
tropic contribution for two-ion interaction is signi6cant.
After being summed over the lattice, however, the
contribution x„r, is reduced to about 5% of g . (This
reduction occurs as a result of cancellation due to the
symmetry of the hcp lattice. ) Further, it is seen that
the anisotropic contribution depends sensitively on
kp. (A 5% variation in kp alters the anisotropy by
about a factor of 2.) With k~ ——1.33 X ', x,„r, is negligi-

ble, while with kp ——1.47 L ' the anisotropy could
possibly be of significance in the case of Tb, Dy, and
Tm. The fact that AN is reduced with increasing kp

while x„~, is increased indicates that the nearest-neigh-
bor interaction does not give a good measure of the
two-ion anisotropic behavior. Since x and x„~, have
roughly the same dependence on kp, the value of x
appears to be more indicative of the anisotropic be-
havior for the two-ion interaction. Because of the
strong dependence on k~ and the small value of y„„,/x,
it also appears that the exchange energy per ion for a
ferromagnetic ordering pattern, although physically
signihcant, does not represent a good test of the ex-
change anisotropy for the crystal. Although x is
equally sensitive to t|&, its value remains quite large
over the region 1.33&k~ L& 1.47, and one would expect
to 6nd eGects in which such a large two-body inter-
action would be manifested. One such possibility is the
spin-wave dispersion curve, and calculations concerning
this are in progress.

Recent band calculations of Dimmock, Freeman, and
Watson" suggest that near the Fermi surface the bands

"A. J. Freeman, J. 0. Dimmock, and R. E. W'atson, Phys.
Rev. Letters 16, 94 (1966).
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are not at all like those of free electrons. In view of these
calculations, any specific physical conclusions drawn
from our results would appear somewhat questionable.
However, the purpose of this work is not to question
the validity of the free-electron model, but to extend
the calculation along the lines of previous authors. %ith
this in mind the present results are significant: The
mathematical approximations used previously lead to
results significantly diferent from our calculation; the
predicted ordering pattern for Gd is too sensitive to kp
to allow a definite conclusion with a free-electron model;
the anisotropic contribution which we have evaluated
strengthens the conclusions of KL, i.e., that the aniso-
tropic correction to the standard calculations of Liu
and previous workers can be expected to be physically
significant. Further, the present results suggest that
the corrections to the RKKY E dependence of the
interaction are considerably larger than those found by
KL and will probably be physically important.

APPENDIX A: RADIAL DEPENDENCE

The technique for evaluating the integrals over k
and k' is best illustrated by an example. Let us consider

I=8),), jI(003; kk')
} I(203; kk') cos'ke

+I(023; kk') cos'k&&') }, (Ai)

where e&),), and I(lm&a; kk') are defined in (7) and (4).
To simplify the notation we introduce the integral
operator

ir and lr', integrating term by term in (A5) . Evaluating
I in this manner requires the inclusion of a convergence
factor in the integrand, for otherwise each term of the
expansion would be undefined (in the sense that
I&) x" sinxdx is undefined) .

After introducing the factor expL —n(k+k') ), we see
that each term of (A5) contains integrals of the form

I'=lim
aM 0

dk dk' expL —u (k+k') )
XexpLi (k—lr') R)Lk~k'~ cos'k&)+k~k'~ cos'ks']

XLks —k") ' (A6)

where m=2, 4, 6, ~ and m=0, 2, 4, ~ ~ ~ .
Since the integrand of (A6) is antisymmetric in ir

and ir', the lower limit on Jdk' may be extended to
zero."Further, there is no loss of generality in taking R
along the s axis. Making use of these simplifications
and integrating over the angular variables kg, k~, kg"
and kz', we have

f —167r'& "~ " expL —P (x+y) )I'=lim
~ ~

dx dy
&
Rm+e+4 j y' —x'

X I (x~+' sinx+2x~ cosx —2x~' sinx) (y"+' siny)

+ (x"+' sinx) (y~+' siny+2y~ cosy —2y~ ' siny) },
where PR=&r. Using the relations

CO y~ siny
lim exp( —Py), , dy= sa.x~' cosx
P~p 0 p —x

n-
&rlr2

Then from (4) we have
lim
P~P 0

ri'dri rs'drs R(ri) R(rs) (r("/r)"+') . (A2) (p odd) and

0 CO y~ cosy
exp( —Py) dy= ——,'s.x& ' sinx—X2

I(lmr&; kk') =@„,„,"j&(kri)j„(k'rs)

and (A1) becomes

I=%i-, &„,„,'8„,„,'j&)(kri) j&)(k'rs) Ljs(krs) j&)(k'r4) cos'k&&

(A3) (p even), we obtain"

8~3 kIrBI'= dx L(2x~+" '—x~+~+') sin(2x)
gm+n+4

ji(*)= Zfi(&) x'"+'
nM

(A4)

and making use of the symmetry in k and k', we have

I=- Q S~), S„„'S„.,'fe(&r)fo(f)
2 abed

X{fs(c)f&)(d) r 'Lk" +'+')k""+ ) cos'k&&

+ks(s+d)+s(a+e+1) cossk &)

+f&)(c)fs (d) r4'Lk'&~+') k"&~+') cos'k&)'

+ks&~ +'&k"& +'& cos'ke')Lri"rs"rs 'r4M) I. (A5)

To evaluate I we first perform the integrations over

+j&) (krs) js(k'r4) cos'k&)').

Introducing the Taylor expansion for the spherical
Sessel functions,

—2x"+"cos(2x) )=2r)} &' —3(5+m+m) + ~ )kr"+"
=2rf(6 S(5+kg&/Bkr) —+.~ ]kg"+", (A7)

where &'=cos(2krR)/(2krR)s, S=sin(2krR)/(2krR)',
p=16x'k&4, and where we have neglected any terms
containing (2krR) &' with p)5.

Substituting (A7) into (A5), we have

I=~/&: —S(5+k,a/ak, ) + ")e„„,s~„„,s

XQ (krri) "(krrs) "(mrs) "(krr4) '
abed

Xfo(u) f&) (b) ps(c)f&&(d) (k&rrs) s+f&)(c)fs(d) (krr4) ']
"The factor expLi(k —k') Rg in the integrsnd is effectively

symmetric in k and k'. Evaluating the integrals of k and k' by
this procedure amounts to taking the principal part of the
integral.

"The form of the R dependence in (A7) looks like a special
case of the recent results of Roth et al. /phys. Rev. 149, 519
(1966)j.
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Using (A4) and the fact that d„,„4s=d„„ss, we obtain

I=2&Le-s(S+ k,a/ak, )+' "]
Xp jo(4'&i)jo(kWS) ]p ~j2(k&S)jo(kipr4) ]

and with (A3) I becomes

I=2i1$8—S(5+k28/Bkg)+ )I(003; k2)I(203'ks).

(AS)
Following this procedure, one can also verify

@bed P(003 kk') =21(e 3(—1+kPB/Bks)+ ~ ]
XP(003' kz), (A9)

Ab I(003; kk') I(11)J;kk') cosko cosks'

g(5+4cj/&4)+ ]I(003;kp)I(11K; ks),

(A10)
drab I(003) kk') PI(203; kk') +I(023; kk') ]

=22' &(1+k&—8/Bk&) + ~ ]I(003; ks) I(203; ks ) .

(A11)

It is of interest to note how (A9), the radial depend-
ence of the leading term, divers from the RKKY func-
tion. In fact, if we had set I(003; kk') =I(003; ks) be-
fore doing the integration, we would have obtained the
RKKY function instead, i.e.,

dbg P(003; ks) =21LC—$)P(003.ks)

APPENDIX 3: OPERATOR EQUIVALENTS

In the Russell-Sunders coupling scheme the individual
1; and s; are 6rst coupled to form the total operators
L and S, and these are then coupled to form the total
angular-momentum operator J. It is therefore expedient
to obtain the operator equivalent of (9) first in terms
of L and S and then in terms of J.

We observe that each term of (9) (after being ex-
pressed in terms of irreducible tensors) contains opera-
tors of the form

P 'JJ„(4)J(,...(s,) .

Using the signer-Kckart theorem and the fact that L
and S are deined in disjoint spaces, we have

Z 'Jjb. (1')'JJ'0 (s')~~» (»LS)'J(b. (L)'JJb. (S) (81)

as the operator equivalent in terms of L and S. Here
nbb (lsLS) is the reduced matrix element and is inde-
pendent of g and q'. The application of (81) to (9) is
given by (11).

Finally, to obtain the operator equivalent in terms
of J, we use the fact that L and S are coupled to form

J, and another application of the Wigner-Eckart
theorem immediately yields

TABLE V. Irreducible tensor operators 'JJbs(J), where
'JJ~(J) =D~2'a (J).

0
1 al
2, 0
2

2 &2

ad%/2

(V'6)/2

W1/2

1/2

J,
(J,WSJ„)

3, 0

3, &I

3 +2
3 a3

(+10)/2 J,s- -', (3I'—1)J.
+(+30)/8 (J,+J.S„)J,S+J,'(J +SJ„)—s (2J'+1) (J*+&J )

(J,+iJ„)'J,+J.(J +iJ„)'
(J.~is„)3

vS/4

Wvf/4

Qs~lV&iL'(J. .Jb) . (86)

The quantity QS may be treated by expressing it ex-
plicitly in terms of irreducible tensors. Noting Table V,
we write

Q2 Sb 2 (Lyso) +4Sb Tsi(La) +4Sb+&s —i(L~)

+h(2L2+ I) (L,.Sb) +—,
' (4L' —3) (L 'Sb*)

Using (82) and (33), we have

QS-+&//base(Jg Jb) (I *) y(I *) (J Jb) 7

Equation (11) contains four terms with (kk') = (00),
(01), (20), and (21). The application of (82) and

(83) to the first three terms here is trivial. The fourth
term contains the operator

I=(S. S)C~-(L.)+~-(L))=&1+~(,k))Q, (84)

where

Q= (S. Sb) &20(L.) =2L(S. Sb) 2'20(L.)

+T20(L.) (S. Sb)].

To obtain the operator equivalent of Q we use Table V
and the relation S,=J,—L,. We have

1 2 31

where

Qi=2L(J. Sb) I'20(L.)+2'20(L.) (J. Sb)),

QS=-,'L (L.~ Sb) (L.*)'+ (L.') '(L..Sb) ),
Qs= sL'(L..Sb).

Using (32) and (83), we have

Qi~sVAL(J. Jb) T»(J.)+&20(J.) (J. Jb)] (85)

'Jib, (L)~Pb(LSJ)'Jib. (J),
P.,(S)~.(L»)~.,(J).

(82)

(83)

+"ViEPi(2L'+1) —Itb(2J'+1)](J- Jb)

+—'v 9 (4L' —3) /3 (4J' 3)7(J *—I')—



396 FREDERICK SPECHT 162

Substituting (AS), (A6), and (A7) into (A4), we According to Hund's rule, the values of L and S are
obtain given by

APPENDIX C: REDUCED MATRIX EIEMENTS

A. Evaluation of O.k~'

To evaluate the reduced matrix elements abb [de-
fined in (B1)), we must first consider the explicit form
of the 4f shell functions /~M. These functions are con-
structed from the one-particle functions, Eq. (1),
according to Hund's rule and the Pauli exclusion prin-
ciple, and are given by

fg~(1, .~ ., n) =[R(ri) ~ R(r„)]ygbi(1, ~ ~, n),

QJbr(1 ' n)

=g [C(LSJ I rnnb'M)pz, s (1, , n) j, (C1)

where Pzm. s~ is totally antisymmetric.
For a less than half-filled shell (n&2l+1), Pz;s~

can be expressed as the product of an antisymmetric
orbital function pz (1, ~, n) and a symmetric spin
function Ps~ (1 ~ n). For rn=L and rn'=S, these
functions have the particularly simple form

Qzz, (1, ~, n) =8[I'it(1) I',i,(2) ~ ~ ~ Fbi „+,(n) j, (C2)

ass(1~' '~ n) =[Xi/2(1) Xi/2(2) 'Xi/&(n) j~ (C3)

where 6, is the normalized antisymmetrizer.
For a greater than half-filled shell (n) 2l+1),

, in general, cannot be factored into this product.
However, due to the fact that J=L+S, the function'

Qzz is given by

4'~~(1,"'& n) =4'zz;ss(1~' ' '~ n)

=o,[(l, —;
I 1)(l—1, —,

'
I 2) ~ ~ ~ (—l, —,

'
I 2l+1)

X (l, —p I 2l+2)(l —1, ——'
I 2l+3) ~ ~ ~

where

and

&&(l—l+1, —k I 21+1+&8, (C4)

l =n —(2ly1)

(in a
I
P)=I"i-(p)X.(p).

For this case it is convenient to deal with the number
of holes p defined by

p =4l+2 —n =2l+1—l.

(S. Sb) [T»(L.)+T»(Lb) j
-sVi(P2-P. ) ( (J..Jb) [T»(J.)+T-(Jb) 3

+LT20(J.) +T»(Jb) 3(J'Jb) I+km i[A(4J' —3)
—Pi(4L' —3) jLJ.'Jb*—3J. Jbl (&8)

The operator equivalent of H~ in terms of J is given in
Eq. (12).

L=nl —-', n(n —1),
S=pe,

for n&21+1, and L=pl sip—(p 1)—,

S=-',p

(C6)

(C7)
for n) 2l+1.

In Eq. (11) appear the reduced matrix elements a«
and 0.». These are most easily obtained by setting
q=g'=0 in (31) and taking the expected value between
4z,r.;ss We have

„„.= (ZT, (1;)T .,(s;) )/(T o(L) T o(S) ). (C8)

Using (C2), (C3), and Table V, we obtain for n&
2l+1

(ZT»(1;) )=Q (l—j+1)'—-', nl (l+1)
j=l

=—,'n (2l—n+1) (2l—2n+1), (C9)

=-g (l &+1) +,pl(l-+1)-
j=l

= ——,'p(2l —p+1) (2l—2p+1), (C15)

(ZT»(l, ) T„(s,) ) ~ p (l j+1)',pl(l+1)
j=l

=i'~ p(2l —p+1) (2l—2p+1), (C16)

and using (C7), we have

(T2O(L) )= ',p(2l p+1) (-2pl ——p'+ p —1), (C17)

(T-(L)T"(S)&=~p (2l- p+1) (2pl- p+P-1).
(C18)

(&T»(1,) T„(s;)) = ii2n(2l —n+1) (2l 2n+—1), (C10)

and using (C6), we have

(T,o(L) )= 3L(2L—1) = 6n(2l —n+1) (2nl —n'+n —1),
(C11)

(T»(L) Tio(S) )=—,', n'(2l —n+1) (2nl —n2+n —1) .

(C12)

Substituting (C9) and (C11) into (C8), we have

a2o ——(2l 2n+1—) /(2nl tP+n —1), (—C13)

and substituting (C10) and (C12) into (C8), we
obtain

a2i (2l—2——n+1) /[n (2nl —n'+n —1)$ (C14)

for n&2l+1.
For a greater than half-filled shell, we use (C4), and

we have
y

(ZT»(l;) )=4 Q j'—Q (l—j+1)'—-',nl(l+1)
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Rare
earth

TmLE VI. Eigenvalues and reduced matrix elements for rare earths.

Ce
Pr
Nd
Pm
Sm
EU
Gd
Tb
Dy
Ho
Er
TIIl
Yb

1/2 5/2
2/2 4
3/2 9/2
4/2 4
5/2 5/2
6/2 0
7/2 7/2
6/2 6
5/2 15/2
4/2 8
3/2 15/2
2/2 6
1/2 7/2

1/3
1/11—1/11—1/3—1
0
1
1/3
1/11-1/11—1/3—1

1
1/6
1/33—1/44—1/15—1/6
0—1/6—1/15—1/44
1/33
1/6
1

8/7 9/7
6/5 78/55

14/11 35/22
7/5 21/11

12/7 39/14
0 0
0 0
1/2 5/22
2/3 3/7
3/4 11/20
4/5 22/35
5/6 15/22
6/7 5/7

10/7
91/55

280/143
28/11
13/3
0
0
1/11

24/91
11/28
44/91
6/11
4/7

—1/7
-1/5—3/11—2/5—5/7

0

1/2
1/3
1/4
1/5
1/6
1/7

Substituting (C15) and (C17) into (C8), we obtain may be obtained by using the definitions given by
Racah. "

npp
———(2l—2p+1)/(2pl —p'+p —1), (C19)

LJ J .(J))= Lk(k+1) —q(q —I))""JJ.., (J), (C24)

(2l 2 +1)lL- (2 l .+ 1)) (C20)
p' % (J))=(k(k 1) -q(q I))'I'~ '"(J) (C25)

LJ' J"p(J))=q'9".(J), (C26)

B. Evaluation of g~ and 7~

The values of n2p and np' for each rare earth (l=3)
are tabulated from Kqs. (C13), (C14), (C19), and and the fact that for q=~k these tensors are given by
(C20) in Table VI.

Jg„(J) = (—2—~IPJ+) ~

We observe that the reduced matrix elements p~ and

yz Lde6ned in (B2) and (B3)) may be obtained from
each other by simply interchanging L and S, so that
it is sr% cient to evaluate only one of them. Let us
consider pq.

From Eq. (B2) two expressions for Pz may be ob-

tained. The 6rst, which is valid for all values of J from
L+S to L S, is obtaine—d by multiplying both sides

by 'JJkpt(J), summing over q, and taking the expected
value between

I J, cV). One obtains

(J~ I c"(J~ L) I J~& (c~(J, L) &~

&J~ I c„(J,J) I J~) (c„(J,J) &~'

e .—.(J) = (2-'I'J-) ". (C28)

gg,„-g(J) =I-2'n!F(k; e))
n @~ )

XZ (J+)"-'(J-)"(J')", (C30),=.p!( -p)!

By repeated applications of (C24) and (C25) to
(C27) and (C28), respectively, one can verify

J..—.(J) =-L2" !F(k; ))-'"
n ) y+k~!XZ, (J )" "(J+)'(J )", (C29)

p( p) '— —

where

C~(J L) = Z Jjpt(J)'91p(L)

=2 ( —)"$.—.(J) J .(L) (C22)

where F(k; n) is deined by

F(k; e) =g f(k; p),
p=o

f(k;0) =1,

(C31)

is the contraction. The second expression, which is valid
for J=L+S only, follows from the fact that for this
case

I J, J) is given by I J, J)=
I L, L) I S, S). Setting

q=0 in (B2) and taking the expected value between

I J, J), one has

p"=&L, L I'$o(L) IL L&/(J, J I J»(J) I J J» (C-"3)

(J=L+S) .

(C32)(p&0).

—&k!
XZ

~ ~

((J') "(J ) '(J+) "&~.
n=p p!(k—p)!

f(k; p) =2k+1 —p

Setting e=k in (C30), we have

&J J I'JJ»(J) I J, J&=&J»(J)&~=L2"k!F(k;k)) "'

To utilize (C21) and (C23), general expressions for "G. Racah, Phys. Rpv. 61, 186 (1942); 62, 438 (1942); 63,
the irreducible tensors are needed. Two such expressions 367 (1943).
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The only term which contributes is the one for which where
=0.

('t!-(J)&.= I
2"k F(k k) j-"((J ) '(J-) ).

=L2"k!F(k k)$ 'lok!F(J k). (C33)

G(J;k) =IIg(J; p),

g(J;0) =1,

Substituting (C33) into (C23), we obtain

Pg, F(I.; —k—) /F (J; k)

g(J; p) =2J+1+p (p)0),
and where $q is independent of J. Thus, we obtain

C34
(Co(J, J) )=k!$I„.F(J; k) G(J; k) . (C37)

(C38)

for J=L+S.
To evaluate Pq for J=

~

L S~ we —fust consider the
denominator of (C21) Since Co(J J) is invariant Substituting (C37) into (C21) and using (C34), we

(Cq(J, J) &or is independent of M, and we set M =J.
Using (C29) and (C30), we have (Co(J, L) )=k PoF(I.;.k)G(J; k)

(C.(J, J) ).=Z (-) (V .-(J)v.,--.(J) &.

2k k—n n n g+k+r +~ 2

=o2"+!F(k;n) o=o .=o p!r!(I—p)!(e—r)!
&&((J )" '(J+)"(J )"(J+)" (J )'(J+)") .

The only terms which contribute are those satisfying
r=0, p=l, and 0&m&k Thus.

" ((J+)'(J )"(J+)"(J)")(c.(s, s)).=Z

=k~F(J k)H(J k) (C35)
where

„=o 2'e!F(k; I)

for J=L+S'.
Since the relation

(Co(J, L) &~=Po(Co(J, J) )~= (Co(L, J) )~

is valid for all values of M, Cz(J, L) is symmetric in J
and L. Furthermore, since Cq(J, L) is invariant, it must
consist solely of the invariant operators (J.J), (L.L),
and (J L). For the three cases J=L+S, I. S, and—
S L, (J.L) ha—s the values of L(J+1),J(L+1), and

JL, respectiv—ely. (Of course, (J J) and (L L) are the
same in each case. )

From (C38) we obtain (Cq(J, L) ) for J=L Sand-
S—L by constructing transformations under which
the symmetry of (J J) and (L L) is maintained and
under which

I.(J+1)~J(I.+1),
I-(J+1) + JL, ——

Since Co(J, J) is invariant, it must be of the form respectively. The transformations are

Co(J J) =2& (J J)" (C39)

from which follows J~—(L+1), I. +J, —(C40)

«.(S, S) &=2 .LJ(J+1)&-,
n=o

and since (Cz(J, J) ) is a polynomial of degree k, it can
be factored into the form

«.(s, s) &=II &b.J(J+1)+-j

respectively. Using (C38), (C39), and (C40), we have

(Co(J, L) )=k!poF(J; k)G(L; k)

for J=L—5 and

(C41)

(Co(J, L) )=k!$oF(J;k) G( —L—1; k) (C42)

for J=S I.. Substituting —(C37), (C41), and (C42)
into (C21), we obtain

where

=II t (b /4) (2J+1+d„)(2J+1—d„)j,

d„=L1—(4c„/b„)g"

Po=Ã(L; k)/G(J; k) j
for J=L—S and

P), = $G( L 1; k) /G(J; k) )— —

(C43)

(C44)

From (C36) we see that the factors of (Co(J, J) ) occur
in pairs, and since one member of each pair is contained
in F(J; k) in (C35), EI(J;k) must be of the form'

EI(J k) =&oG(J k)

for J=S—L
To obtain &I, one need only interchange L and 8 in

(C34), (C43), and (C44) . The values of yq and
Po(k=1, 2, 3) for each of the rare earths are tabulated
in Table VI.


