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The de Gennes-Guyon —Werthamer theory of the proximity eGect in the diffusion approximation has
been extended by the use of coupled integral equations for the order parameters in the two metals. The
two theories are in excellent agreement for Pb-Al superimposed Glms, but there are significant differences
for Pb-Cu Sins. Several experiments have indicated that copper may be a superconductor (2', =0.010'K); in
view of various theoretical and experimental uncertainties, it is concluded that most of this evidence for
superconductivity in copper must be considered doubtful. It is shown that diGerent methods of cutting oG
divergent sums occurring in the theory can give signi6cantly diferent results, introducing a further theoreti-
cal uncertainty.

I. INTRODUCTION

HEN a superconductor is placed in intimate
contact with a normal metal, it is found that the

combination displays the attributes of a supercon-
ductor; the resistance of the combination vanishes at a
we11-defined temperature, a nonzero energy gap exists
in the normal metal, and a persistent current can be
passed through the normal metal. '

The early literature of the proximity eGect has been
reviewed by Hilsch. ' The basic theory of the calculation
of the transition temperature was developed by de
Gennes and Guyon, ' Werthamer, ' and de Gennes'; ex-
periments using two known superconductors'~ have
demonstrated that this theory is essentially correct.
Several experiments'~' have been performed and the
results analyzed in terms of this theory in an attempt
to determine if various normal metals (e.g. , Cu, Pt)
are actually superconductors. The theory has been
extended and used successfully' " to deal with experi-
ments in which the normal metal is magnetic (e.g. ,
Fe, Ni, Gd, Cr).

In this paper, the de Gennes —Guyon —Werthamer
calculation of the transition temperature for non-
magnetic normal metals is refined by the use of coupled
integral equations for t)„(x) and b, (x), the order
parameters in the superconductor and the "normal"
metal, respectively. The new theory is compared with
other theories and with experiments on Pb—Al and

Pb—Cu superimposed films; previous evidence for
superconductivity in Cu is examined. The current
status of the theory is reviewed, some questionable
assumptions in the theory are listed and the difBculties
encountered in generalizing the theory to remove these
assumptions are pointed out.

II. THE TREATMENT OF THE CUTOFF

To avoid breaking the continuity of the presentation
we discuss here the treatment of certain sums occurring
in the theory.

In the theory of many problems in superconductivity
there occur sums such as

which are formally divergent. The divergence is due to
the neglect of the time dependence of the electron-
phonon interaction, "and disappears when this is taken
into account.

If we use the "usual" method of curing the diver-
gence, the sum becomes

where (6»} is an average phonon frequency to be
defined shortly,
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P(x) =if 1nr(x)/Ch,

and we have made the usual identification

2 (1.134(8, i)= ln
r~ 2P+1 i, Tg

This treatment gives results in terms of tabulated
functions but, as will be seen later, the results do not
agree with the results obtained from other treatments
of the cuto6.

Phys. "P.Morel and P. W. Anderson& Phys. Rev. 125, 1263 (1962).
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A more realistic treatment of the cutoff follows from
the inclusion of the cutoff factor"

where

CO g2

„~2v+1+x (2v+1)'+as '

u=38D/(4~T, ) .

(2)

We call this the "natural" cutoff. Since the phonon
spectra of most metals are sharply peaked at a few
frequencies, the use of a Debye spectrum would be no
more realistic than the above model. The only way to
improve the treatment, short of using the complete,
true, phonon spectrum, is to use Einstein terms or
I.orentzians centered at the peaks of the true phonon
spectrum.

A more artificial, " but nonetheless useful, method
is to cut off the sum by writing

2 2'= ~2,+1+. fzi+1+.
where 0(f&1, and I. and f are determined from

2 2 /1.134(8, )l~ 2.+1 f 21.+1 ~ T

A similar cutoff has been used previously by Silvert
and Cooper. "

All three cutoff methods clearly give the same results
when 8&/T, is very large; if this is not the case, the
natural method (Eq. (2)j appears to be preferable
since it is the most soundly based of the three.

In the following it will be assumed that all sums over
co contain an unwritten cutoff factor; these sums are
tobe taken as sums over v, with v = —~, ~ ~, —1, 0,
1, ~ ~, + eo. In all three methods, T, is the transition
temperature of the superimposed film.

Before developing the theory we define certain terms
which describe the approximations made. An example
of the "diffusion approximation" will be seen in the
conversion of Eq. (26) into Eq. (27); the "dirty limit"
requires that the mean free path / be very much less
than $„, so that l=f„, where g„=$p/~ 2v+1 ~,

vr/(2v. T,), and 1/$„=1/P„+1/1; the "very dirty limit"
requires that l be very much less than $, where ts=
vol/6~T, . The distinction between the diffusion ap-
proximation and the dirty. limit is not quite as simple
as indicated because the diffusion approximation, to
some extent, does assume that f„=l.

We'denote by S the metal with the higher transition

"W. Silyert and L. N. Cooper, Phys. Rev. 141, 336 (1966).
'4 We use the system of units obtained by formally setting A,

and k& equal to unity.

+ph & ph phonons

in the summand, where co=(2v+1) v. T,.'4 If one re-
places the true phonon spectrum by an Einstein spec-
trum centered at the average (ruvQ) (8,h) = 38D/4
of a Debye spectrum, the sum becomes

temperature and by Ã the normal metal or the super-
conductor with the lower transition temperature; the
X region extends from x = —D„ to 0, and the S region
from x = 0 to D,. In the theory, there are many equa-
tions for the 1V region which, except for a few obvious
changes such as the interchanging of subscripts, are
identical with the equations for the S region. To avoid
wasting space, we omit the equation for E and mark
the equation for S with an asterisk; the first example
of this procedure is Eq. (9*).

IIL THE COUPLED INTEGRAL EQUATIONS
THEORY

This theory, like all microscopic theories of the
proximity effect, is based on the Gor'kov integral equa-
tion for the order parameter A(x). At a second-order
superconducting transition, 6 vanishes continuously;
hence, one can linearize the integral equation to obtain

a(x) = v(x) r. g f r. (x, x')t(x') ch', (4)

where V(x) is the BCS interaction constant at the
point x and T, is the transition temperature of the
superimposed film sandwich.

The central problem in the theory of the proximity
effect is the calculation of the kernel E„(x,x'); once
this task has been completed there still remains the
problem of solving the integral equation (4) for A(x)
and obtaining the transition temperature T, as an
eigenvalue.

In the diffusion approximation, the kernel can be
easily calculated since in this case it obeys the simple
differential equation"

1 B', v.cV(x)
Z„(x, *)= B(x-x), (5)

n'(x) Bx' " '
i

pp
i

where n= (rs$ f„) "' and E is the density of states at
the Fermi surface. De Gennes' has derived the following
boundary conditions on E„:

E„(x,x')/X(x)
i

p- ——E (x, x')/1V(x) i,=p, (6)

L1/a'(x) )BE„(x,x') /Bx ~,=p-

=
t 1/n'(x) /BE„(x, x')/Bx

i p, (7)

BE„(x,x')/Bx=0 at x=D, and x= D. (8)—
Equation (6) is valid in the very dirty limit l«$; Eq.
(7), being derived from Eq. (5), is valid in the diffusion
approximation and Eq. (8) is generally vahd. We
rewrite the integral equation (4) in the form

D~

a, (x) =V,T, g E„„(x,x')A, (x') dx'
Ql P

E„..(*,x') A. (x') d*'
~

(9')
)

I~This is the diffusion equation as first used .by de Gennes
(Ref. 5) but altered by Silvert and Cooper (Ref. 13) to avoid
making the dirty limit assumption.
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E„(x,x') dx'=~1V(x)/l ai l,

gives the same conditions on the coeKcients as the
boundary condition (7); this is reasonable since E„ is
a simple sum of exponentials, and in one case it is
integrated and in the other differentiated. Applying
the boundary conditions (6) and. (7) and solving the
resulting equations for A„A„, and A,„yields

A, =
E,~o., n E, cosho.„D„—o.,/„sinho. „D

X exp( —a,D,),

(12*)

where

d =n„iV, sinha, D, coshn„D„+n, lV„coshn, D, sinhn„D„.

The Qrst term in E„,e is just the di6'usion kernel for a
superconductor occupying all space; this term plus
the second term give the diffusion kernel for a super-
conductor extending from —~ to D,. The third term
is required to satisfy the boundary conditions at
x=0.

The two coupled, linear, homogeneous, integral
equations must, except in very special cases, ' be solved
numerically on a high-speed digital computer; the
method we have chosen is to expand h, (x) and A„(x) in
series of simple functions

h, (x) = g e„f„(x). (13')

We choose ns, and m„ to be sufFiciently large so that no
change in T, is found on using several more terms.
These expressions are inserted in (9); the integrals are
performed and one obtains

g a„C„;(x)+g a;C, ;(x) =0.

We use m, values of x in the S region in the 6rst equa-
tion and ns„ in E in the second. The transition tempera-
ture T, is obtained by demanding that the determinant
vanish. With this value of the transition"temperature,
it is a simple matter to solve for the e,'s and e„'s and,
hence, determine A, (x) and ~(x). We have used

and solve the differential equation (5), using the
boundary condition (8) and the symmetry~ E„(x,x') =
E„(x',x), obtaining

E „(x,x') = (E.xn./2 l
co l) {exp(—n, l

x—x' l)

+ expL —n, (2D, —x—x') g}

+A, coshn, (D,—x) coshn, (D,—x'),

E„,„(x,x') =A,„coshn, (D,—x) coshn„(D„+x') . (10*)

lt is easily verided that the sum rule of de Gennes',

polynomials of even degree in (D, x—) and (D„+x) in
the expansions; it is possible that other expansions
would result in faster computation.

The calculation of the coefficients C in (14) is
straightforward except for one diKculty associated
with the cutoff. When x and x' are in the same metal,
as in the calculation of C„;(x), there is no difIiculty
concerning the Debye temperature to be used in the
cutoff; when x and x' are in different metals, however,
as in the calculation of C,„;(x),it is not clear how the
cutoff should be handled if the Debye temperatures in
the two metals are different. We have chosen 8~=
0&(x), but this question deserves further study.
Because all the ~ sums in Kq. (14) converge except
when x=0, one cannot use the usual cutoG method
LEq. (1)$ and still treat all the sums consistently.

The significance of this theory of the proximity
effect is that coupled integral equations for A, (x) and
~(x) are used for all values of the film thicknesses;
the only previous use of coupled integral equations for
the prediction of T, has been by de Gennes' in the
thin film, or Cooper, " limit D,«$, and D„«)„De.
Gennes' also derived the kernels for the case D,=D„=
~; the theory presented here is a generalization of his
results to finite film thicknesses.

Having completed the development of the theory,
we now compare it with previous theories.

IV. COMPARISON OF THE VARIOUS THEORIES

A. The de Gennes-Guyon-Werthamer Theory in the
Dirty Limit

The most commonly used theory of the proximity
effect is that due to de Gennes and Guyon, ' Wert-
hamer, 4 and de Gennes, ' as modified by Hauser,
Theuerer, and Werthamer. ' To obtain the equations
used in this theory from the new theory, we set E„,„=
E„„,=0 in (9'), and keep only the term exp( —n

l
x—x' l)

in E„„and E„„„The integ.ral equations (9) for
d, (x) and h„(x) then become

b„(x) =E,V,T,
De

exp( —a, l x—x' l) A, (x') dx'. (15*)
- 2l~l 0

The function cosq, (D,—x) satisfies the boundary
condition dh(x)/dx=0 at a free surface" and the above
approximate integral equation for h, (x) if one extends
the limits of the integral to —~ and +~ and if g,
satisfies

2

x.v. '

where $,2=sf, l,/(67rT, ); we have made the dirty-limit

assumption f'„=l

'6L. N. Cooper, Phys. Rev. Letters 6, 689 (1961); IBM J.
Res. Develop. 6, 75 (1962)."C. Caroh, P. G. de Gennes, and J. Matricon, J. Phys. Radium
28, 707 (1962).
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Since we expect h„(x) to fall off exponentially in
the normal metal, we choose A„(x) Ix cosh' (D„+x);
disregarding difhculties with the limits of the integral
we Gnd, by analogy with the equation for q„

Eqs. (18), (20), and (24), he derives the relation

X.X.V. in/ "/
IT. j q,

OO

„~2v+1 —
q '$„' iV„V„

(17) +E„lV V„ ln i =0, (25)
T, j g„

All information regarding the boundary conditions
satisfied by 6, and h„at the interface has, of course,
been lost by decoupling the integral equations. As-
suming equal cutoffs in the two metals, de Gennes'
has derived from Eqs. (6), (7), and (9) the boundary
conditions

h, (0)/Ã, V, =b, (0)/E V„,,

L' d~. (*) L' d~. (*)
V, dx p V„dx =p

(18)

(19)

S. The Theory of Moormann in the Dirty Limit

The theory of Moormann" can be obtained from the
coupled integral equations theory in much the same
manner as that of de Gennes, Guyon, and Werthamer;
the only difference is that Moormann keeps the bound-
ary condition (18) but replaces the boundary condition
(19) on the derivatives of h(x) at x=0 by a condition
on the integrals of h, (x) and A„(x). This condition
was derived from the sum rule (11) and is

dx Ã(x) a(x) I (T.(x)/T. )=0, (24)

where T, (x) =T,„ for x(0 and T„ for x)0. Using

"W. Moormana, Z. Physik 197, 136 (1966).

Combining Eqs. (16), (17), (18), and (19) with

A, (x) ~ cosy, (D,—x),

6 (x) ~ coshq„(D„+x), (20)

and using the usual cutoff method PEq. (1)j gives the
three equations used in the dirty-limit form of this
theory:

x(q'6') = »(T-/T. ), (21)

E,PP rJ, ta qn, D, =E $ 'q„ tanhq„D„, (22)

x(—g„g„)= ln(T, „/T,). (23)

It is clear from the derivation of this theory from
the new theory that it should only be valid for large
61m thicknesses; it has, however, given results which
agree surprisingly well with experiment for all values
of the 61m thicknesses. 6~ This agreement will be in-
vestigated later. In the Cooper limit, however, this
theory does not reduce to the correct result; instead it
predicts that T,=O only when D, =O, even for the
case V„&0, where T, must obviously be zero for sufh-
ciently small, but nonzero, D,.

which, with Eqs. (21) and (23), forms the fundamental
set of equations in this theory; Eq. (22) is discarded.

The condition (25) guarantees that the correct
results are obtained in the Cooper limit, so it would
seem that (25) is preferable to (22). We have found,
however, that Moormann's theory can give unphysical
results; T, is not a single-valued function of D, for
large D.„and small T,„.It is far from obvious on theo-
retical grounds which condition is preferable; both ap-
pear to us to be equally valid within the framework of
a noncoupled integral equations theory. We believe
that the difhculty lies in the fact that the coupled
integral equations solutions for h, (x) and A„(x) do not
satisfy Eq. (20). No such difHculty arises in the new
theory since D(x), apart from a constant multiplica-
tive factor, is uniquely determined by solving the inte-
gral equations, and there is no need for boundary
conditions on A(x) .

Moormann points out that there is little difference
between the predictions of his theory and those of the
de Gennes —Guyon —Werthamer theory as long as
T,„T„;substantial differences are found if T,„(&T„.
The predictions of these two theories and those of the
coupled integral equations theory will be compared
later.

C. The Theory of Silvert and Cooper

Silvert and Cooper" "have derived, by a variational
method, a condition for T,"; this condition and a very
simple trial function are used to derive an expression
for T,. Unfortunately, the simplicity of the trial func-
tion and the use of several simplifying mathematical
assumptions make it dificult to estimate the accuracy
of the theory; we have therefore not compared this
theory with experiment in Sec. VI.

V. DIFFICULTIES WITH THE THEORY

Caroli and Hurault have pointed out to the author
that the differential equation (5) is not valid when x
or x' is within / of the interface; in this case X„(x,x')
is sensitive to the rejecting properties of the interface.
Since a proper consideration of this problem would
require a detailed microscopic calculation of the eGects
of the interface, it is assumed in the present theory, as
it has been in. all theories (except those in which an
adjustable parameter is inserted to take care of such

"W. Silvert, Phys. Letters 16, 238 (1965}.
'0 This condition may be of use in solving the coupled integral

equations (9); this possibility has been examined by R. Yeh and
L. P. KadanoB (to be published).
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effects) that the interface is perfectly transmitting.
This assumption may be suQiciently accurate for very
dirty films, but it is not clear how dirty the films must
be.

Probably the most severe restriction on the theory
is the requirement l«$ for the validity of the boundary
condition (6). According to de Gennes, ' the most
general form of this boundary condition is

E„(x,x')
~

e'=aLE„(x, x')+b BE„(x,x')/Bxj

He argues that b l and hence that the derivative term,
being aE„(x,x') if E„~ exp( —n~ x—x'~), is neg-
ligible in the very dirty limit. Since l/$ &0.3 when the
films are deposited at O'K, the use of (6) is questionable
even in this case; again it appears that a microscopic
calculation of the effects of the interface is required
for a more accurate treatment.

The differential equation (5) is not valid when x
or x' is within l„of the interface for another reason";
the objection arises from the fact that the diffusion
kernel is not correct when

~
x—x'

~
&f„This o. bjection

is most easily understood by examining the kernel,
valid for all values of l/(, which was derived by Wert-
hamer' for a superconductor occupying all space:

dq expLiq(x —x') j

X
" ——

I (26)
tan 't„q / j

The di6usion kernel for a superconductor occupying
all space is derived from this by setting tan 'x=x —3x',
simplifying, and performing a contour integration; the
result is

E„(x,x') = (Zen/2 [ cu ~) exp( —a
~

x—x' (). (27)

The important point is that (26) diverges at x=x'
whereas (27) does not; the range of the singularity is
given by

~
x—x'

~

&l'„. Since both (26) and. (27)
satisfy the sum rule (11), the diffusion kernel should
be adequate as long as A(x) varies slowly in space;
this is not the case near the interface, for Silvert and
Cooper" have shown that the discontinuity in V(x)
results in h(x) having infinite slope at the interface.
The magnitude of this singularity is approximately
(n$„) ' and the range is approximately t'„, so the diffu-
sion kernel may be suQiciently accurate for dirty films.

Moormann" has attempted to generalize the theory
to remove this last objection. He retains the boundary
condition (25) but uses the kernel (26) instead of the
diffusion kernel (27) in the noncoupled integral equa-
tions (15).The expressions (20) for h, (x) and b,„(x)
are used to solve the integral equations in the manner
described previously; he derives relations analogous to

2'The discussion in this paragraph is based on the vrork of
Silvert and Cooper (Ref. 13) and J. P. Hurault (private com-
munication) .

Eqs. (21) and. (23) except that the y function is re-
placed by a more complicated function. A major
difEculty with this theory is that it was developed to
apply to clean films (l &P), and in this case the singu-
larity at x=0 is expected to be important; the expres-
sions (20) do not, however, display the proper behavior.

It would be desirable to extend the coupled integral
equations treatment to satisfy the objection of Silvert
and Cooper to the use of the diffusion approximation.
Because the sum rule (11) and the boundary condition
(7) gave the same relations for the coefFicients A„A,„,
and A,„ in the di6usion approximation, it is probably
unnecessary to attempt to generalize (7); this would
be dificult because the generalization by Moormann"
of the differential equation (5) for E„(x,x ) is of infinite
order. In any case, (11) must be satisfied. The forms
of the kernels (10) can probably be generalized without
using this differential equation.

The author feels that the theoretical and experi-
mental difhculties with clean films (the importance of
the reflecting properties of the interface, the difhculties
in finding the proper boundary conditions on E„at
the interface, the danger of interdiffusion, etc.) out-
weigh the experimental uncertainties with dirty films
(inhomogeneous films and uncertainties in the material
constants) . Also, in the clean limit, the mean free path
/ must be independently and rather accurately known;
in the dirty limit, 3 occurs only in the product ejl for
which accurate estimates can be made. For these
reasons, we agree with other authors (e.g., de Gennes')
that experiments using clean films are not as informa-
tive as those using dirty films.

VI. COMPARISON OF THE VARIOUS THEORIES
WITH EXPERIMENT

To avoid repetition, we make here two criticisms
which apply to nearly all the experiments to be con-
sidered. The first is that lead has been used for the
superconductor in all the experiments, despite the fact
that the theories are weak-coupling theories; the efIects
due to the strong-coupling nature of this metal have
not been estimated. The second is that only Hilsch'
and Minnigerode" give data on the variation of the
film resistivities with the film thicknesses; if there are
such variations and if they are due to changes in the
structure of the films and not to surface scattering,
then the true resistivities must be used in the calcula-
tions, not the resistivities for very thick films. Only
the artificial cutoff LEq. (3)g has been used in the
calculations for the coupled integral equations theory;
the natural cutoff LEq. (2)) is considerably more
dificult to apply, and the extra eGort has been deemed
unjustified in view of these criticisms.

We consider first those experiments which have used
the proximity effect in an attempt to find the BCS
interaction constant in metals which are not known to
be superconductors. We restrict ourselves to those
experiments in which the films were deposited at low
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FrG. 1. Comparison of the various theories with the experi-
ments of Hauser, Theuerer, and Werthamer on Pb-Cu films with
D, =150 L. The abbreviations used are: dG-G-W, de Gennes-
Guyon-Werthamer; C.I.E., coupled integral equations; M, Moor-
mann; N, natural I Eq. (2)g; A, artificial t Eq. (3)g; U, usual
[Eq. (1)g. The values of S, where 8= T, (D„=~), for the theo-
retical curves are marked at the lower right-hand corner of the
graph; 8 is taken to be 1.36'K for the experimental results.

temperatures to avoid various objectionable eBects
such as interdiGusion, etc. ; in addition, such experi-
ments are suited for the use of dirty-limit theories
because of the short electron mean free paths.

Hauser, Theuerer, and Werthamer' have measured
the transition temperatures of Pb—Cu superimposed
films deposited at 77'K; the results of their measure-
ments, together with the predictions of the various
theories, are given in Fig. 1. We have used the dirty-
limit form (f'„=l) of all the theories. The coherence
lengths were calculated from P=f'teal/(6rrknT, ); the
quantity ni/ is determined from' eel= (a.k&/e)'/(pp),
where p is the resistivity and p is the electronic specific-
heat coefficient. The density of states E is proportional
to y. The material constants" used were T„=7.2'K,
p, =18 pO cm, p„=10 p,0 cm, 8~,=90'K, OD„=343'K,
y, =1.72&&10s ergs/cm' 'K', and y„=0.977&&10' ergs/
cm' 'K'. We draw the following conclusions from Fig. 1:

experimental and theoretical results in Fig. 2, using
t= (T,—8)/(T„—8) and 8=T,(D„=eo); as de Gennes'
first pointed out, such an intermediate layer should
not, in a first approximation, affect the results when the
data are plotted in this manner. We have replotteg
only the curves from Fig. j. in which the artificial cutoG
was used; this was done for clarity because the de
Gennes —Guyon —Werthamer theory is relatively insensi-
tive to the cutoff method used (in this kind of plot).
This method of plotting the results has not, however,
removed the disagreements between the various theo-
ries. Except for the point at D„=600 X, the data are
fitted best by the coupled integral equations theory
using T,„=O, in contradiction to the conclusion reached
from the examination of Fig. 1. We conclude that the
data give no evidence for superconductivity in copper.

The above analysis of these experimental results in
an attempt to derive information about the BCS inter-
action constant in copper must be considered somewhat
meaningless in view of the experiments of Bassewitz
and Minnigerode, " which showed that copper films
Produced at 77'K are only ss as dense as bulk coPPer;
the porous nature of such films means that the material
constants and the film thicknesses may be seriously in
error.

I.O
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(1) The three theories give markedly different results
(2) The theoretical results are quite sensitive to the

cutoff method used; this is a direct result of the small
Bn/T, value for lead.

(3) The experimental results, in conjunction with the
de Gennes-Guyon —Werthamer theory, provide no
evidence for superconductivity in copper.

(4) Since the experimental points lie above the
theoretical curves, the coupled integral equations
theory and Moormann's theory both indicate that
copper might be a superconductor.
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Since there might have been an intermediate layer
of oxide between the two films, we have replotted the

"The resistivities are taken from the experimental paper; the
Debye temperatures and the electronic specific-heat coeflicients
are taken from K. A. Gschneidner, Jr., in Solid State Physics,
edited by F. Seitz and D. Turnbull t,'Academic Press Inc. , New'

York), Vol. 16,p. 275.

Fro. 2. The theoretical curves and experimental data of Fig. 1
replotted using the reduced temperature t= (T,—8)/(T„—,s).
Only. the artificial cutoff forms of the various theories are plotted.
The abbreviatioris used are defined in the caption for Fig. 1.
The experimental value of t is less than 0.01 for D„=600 L.

"A. v. Bassewitz and G. v. Minnigerode, Z. Physik 181) 368
(1964).
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Hauser, Theuerer, and Werthamer' ' have also
measured the transition temperatures of Pb-Pt super-
imposed films. Since the data do not indicate that Pt
may be a superconductor, we shall not discuss these
experiments.

Hilsch' has measured the transition temperatures of
Pb—Cu films. We have not analyzed the data because
the films were deposited at 10'K, resulting in even
more porous copper films than those of Hauser,
Theuerer, and Werthamer. In addition, the published
data are the average of the two different orders of con-

- densation whereas one requires the data for the con-
densation order giving the larger depression in T, for a
proper analysis. o

Minnigerode' has also performed experiments on
Pb—Cu films but the films were deposited at 200'K in
order to avoid the above-mentioned porosity. Un-
fortunately, the mean free paths in the lead films are
suKciently large, as a result of this high condensation
temperature, so that dirty-limit theories do not apply;
hence, the present form of the coupled integral equa-
tions theory cannot be used to analyze the data.
Minnigerode has analyzed his data using the gener-
alized form of Moormann's theory and finds that they
are best 6tted by assuming that copper is a super-
conductor with T,~0.07'K. Because of the large dis-
crepancies between Moormann's theory and the coupled
integral equations theory shown in Figs. 1 and 2, and
the fact that the results of the latter lie aboM those of
the former, it must be concluded that a prediction of
superconductivity in Cu is unwarranted. The Cooper
limit formula may, however, be valid for some of the
61m thickness combinations used by Minnigerode;
using this formula, these data are again well fitted by
assuming a T, of approximately 0.07'K for Cu. These
very-thin film data of Minnigerode must be considered
to be the only positive evidence for superconductivity
in Cu.

We now turn to analyze those experiments which use
two known superconductors. We consider first the
experiments of Hauser and Theuerer' on Pb—Al 6lms.
The data are plotted in Fig. 3 along with the results
of some of the theories; again the dirty-limit forms
were used. The same material constants as before were
used for lead; the material constants" used for alu-
minum were: T,„=1.2'K, p„=0.18 IMQ cm, OD„——423'K,
and y„=1.36X10' ergs/cm' 'K'. For the sake of clarity,
only two theoretical curves are plotted in Fig. 3, the
coupled integral equations theory using the artificial
cutoff LEq. (3)j and. the de Gennes —Guyon —Werthamer
theory using the usual cutoff LEq. (1)j.The difference
in the theoretical curves is almost entirely due to the
use of different cutoffs; using the artificial cutoff for all
three theories, the results of the de Gennes —Guyon-
Werthamer theory lie a maximum of 0.025'K higher,
and the results of Moormann's theory lie a maximum
of 0.13'K higher, than those of the coupled integral
equations theory. The experimental points lie midway

0
0
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Fxa. 3. Comparison of the various theories with the experi-
ments of Hauser and Theuerer on Pb-Al films with D„=4400 A..
The abbreviations used are defined in the caption for Fig. 1. Four
experimental points with D,)800 A. have not been plotted.

between the two plotted curves. We note that the
calculations of Hauser and Theuerer for the de Gennes-
Guyon —Werthamer theory differ slightly from our
calculations for this theory, probably because we have
used a different (and more recent) value of y . It
appears from Fig. 1 that using the coupled integral
equations theory with the natural cutoff LEq. (2)j
would increase the transition temperature above that
obtained using the artificial cutoff and thus further
increase the disagreement between theory and
experiment.

The agreement with experiment is good, but it
should be better. In addition to the comments at the
beginning of this section, we note that the aluminum
films were condensed at 400'C and hence, are well
annealed. Using Chambers's value'4 of pl =490 pQ cm A.

for Al we find l„=2700 X; since $„, the coherence length
in aluminum, is 1300 A. at 7.2'K and 3200 A. at 1.2'K,
the films may not be su%.ciently dirty for the theory to
apply

Bergmann~ has measured the transition temperatures
of Pb—In superimposed films; the data are fitted
equally well by the de Gennes —Guyon-Werthamer
theory, by Moormann's theory, " and by the coupled
integral equations theory.

VII. CONCLUSIONS

It has been shown that different methods of treating
the cutoff of sums lead to signi6cantly different results
when Bz/T, is not very large; this sensitivity of the
results to the cutoff method employed can be greatly
reduced by replotting the results.

It has been shown that the three theories of the
proximity effect discussed here, the, de Gennes-Guyon-
Werthamer theory, the theory of Moormann, and the
coupled integral equations theory, give much the

s4 R. G. Chambers, Proc. Roy. Soc. (London) A215, 481 (1952).
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same results for Pb—Al 61ms and probably for all 6lm
combinations in which T,„T„;large diBerences
between the predictions of these theories are found for
Pb—Cu 6lms and probably for all film combinations in
which T,„, 0 K. In addition, it has been found that
Moormann's theory gives unphysical results in the
case D~&g„and T,„O'K.

Except for the very thin 61m data of Minnigerode, '
evidence for superconductivity in Cu obtained from
experiments using Pb—Cu superimposed 61ms"" must
be considered doubtful due to experimental and theo-
retical uncertainties.

Additional experiments using two known super-
conductors are required in order to compare theory

and experiment more critically; such experiments are
in progress.
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Piezomagnetism of ~-Fe,o, and the Magnetoelastic Tensor
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A theory is developed for the piezomagnetism of insulating antiferromagnets based on a single-ion Hamil-
tonian and a molecular-Geld model of exchange. The piezomagnetic constants are found in terms of the
single-ion magnetoelastic tensors of the magnetic ions. ln contrast to magnetostriction, where the macro-
scopic magnetoelastic tensors are obtained by summing microscopic magnetoelastic tensors, the piezo-
magnetic tensor involves the difference of the microscopic magnetoelastic tensors of the ions on the two
antiferromagnetic sublattices. The theory is then applied to the piezomagnetism of u-Fe203. The single-ion
magnetoelastic tensor is measured for Fe3+ in A1~03 using electron paramagnetic resonance under uniaxial
strain. The piezomagnetic constants of a-Fe203 in the low-temperature (am) phase are predicted on the
single-ion model to be

P» =4.5X10 's emu/cc per dyn/cm',

F4=8.SX10 ~ emu/cc per dyn/cm'.

The single-ion contribution to the piezomagnetic constants of n-FesOs in the high-temperature (2/sa) phase
are predicted to be

P&4 P,e= 7.9X10 ~ emu/cc per dyn/cm',

Pu= —2Pei=2Psa= —1.8X10 ~ emu/cc per dyn/cms,

Ps4 ——8.5 X10» emu/cc per dyn/cm'

Pss ——9.0X10 u emu/cc per dyn/cm',

832=0.

Appropriate experimental values of the piezomagnetic constants of a-Fe20& are not yet available for com-

parison with the theory.

I. INTRODUCTION

EMATITE or a-Fe203 is a magnetic crystal which
... . has engendered considerable interest due to its
complicated magnetic properties. The most striking

t' This work was supported in part by the Advanced Research
Projects Agency through the Center for Materials Research at
Stanford University, in part by the National Science Foundation,
and in part by the Joint Services Electronics Program (U.S.
Army, U.S. Navy, and U.S.Air Force) under Contract No. ONR
225(83).

~ Permanent address: The Clarendon Laboratory, Oxford
University, Oxford, England.

feature is the phase transition' which occurs at about
—16'C. Above this temperature a-Fe203 is a weak
ferromagnet, ' and below it a pure antiferromagnet.
The symmetry of the crystal is D3&' and the magnetic
symmetry above the transition point is 2/m, the spins

lying in the basal plane with a small canting angle to
give a net, moment. Below the transition point the
symmetry is 3m and the spins are aligned along the c

' F. J. Morin, Phys. Rev. 78, 819 (1950).
~ I. Dzialoshinski, J. Phys. Chem. Solids 4, 241 {1959).


