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atom. Here we have all eight nearest neighbors dis-
placed by roughly this amount, and their perturbations
add at the unit cell containing the quadrupole moment
under consideration, so we guess gp is 10 eV or less.

Combining all the relations above we get

V,'/V, =3$p'A/ap'McpgP(r ') sap =3&pX/Mc. 'ap'(r ')g.

Using the guesses for (t ')s, X, and gp given above,
this ratio is about 1/50, showing that the enhancement
may conceivably be a few percent but that it is un-
likely to make electric relaxation competitive with or-
bital relaxation. That would require that the ratio
V,'/V, be about 50, and that either X or ps be very
much larger than estimated.
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A 10-kG 6eld was applied to polarize the spins; it was then quickly reduced below H,2, and remained
there for about 0.1 sec, during which time a transverse ac probe 6eld of frequency v„was applied. Then
the large dc field was reapplied and a rapid-passage resonance signal observed in order to measure the
effect of the probe 6eld, the decrease in this subsequent signal reQecting the NMR absorption. Except near
H,2 the probe field only burns a small hole in the nuclear magnetization, and it was also necessary to move
the vortex structure about by applying a 100-Hz field of a few gauss during the time that the sample was
in the mixed state. Detailed studies are reported for a multiple foil sample of vanadium with main field
perpendicular to the surface; aluminum foil was interleaved, and the Qux density B was measured using
the AP7 NMR by exactly the same Geld-cycling resonance as applied to the vanadium. The magnetization
was measured ballistically in the same magnet and 6eld cycle. For Qux density around —,H.2 the line shape
almost uniquely implies a triangular vortex lattice. At high probe power, the effect of the probe field is
still confined to the same definite frequency range as at low power, as would be the case for a completely
ordered vortex lattice; this implies order over several vortex-lattice spacings. Accurate measurements are
presented of the 6eld at a vortex center and at the saddle point halfway between two vortices, and of the
average Qux density B, as a function of H, in a fairly clean sample at 1.4'K. These parameters determine
an accurate 6eld map. Near H,2 the field at a vortex center equals H, with a deviation of second (or greater)
order in H —H,2. The linewidth is greater, for a given magnetization, than would be expected from solutions
of the Ginsburg-Landau equations. By extrapolation to zero B, it is concluded that the 6eld at the center of
a vortex is 1.2&0.2 times H,1.The data are consistent, at low B,with a superposition model of independent
vortices.

I. INTRODUCTION

~

CONVENTIONAL nuclear resonance studies of the
M field distribution in type-II superconductors are

difBcult because of the large resonance linewidths,
baseline shift, and noise due to vortex motion, and
sample inhomogeneity. Nevertheless, Gossard et ul. '
observed a structureless broadening in the NMR of
vanadium in V3Si and VSGa and Delrieux and Winter'
succeeded in observing NMR directly in niobium close
to H,2. Much the same kind of information can be
obtained using angular correlations. '

We have avoided these problems by using Geld

cycling resonance. 45 This yields exactly the same in-

' P. Pincus, A. C. Gossard, V. Jaccarino, and J. H. Wernick,
Phys. Letters 13, 21 (1964).' J. M. Delrieux and J.M. Winter, Solid State Commun. 4, 545
(1966).' J. Alonso, Bull. Am, Phys. Soc. 12, 519 {1967).

4 N. F. RaInsey and R. V. Pound, Phys. Rev. 81, 278 (1951).' A. G. Redield, Phys. Rev. 180, 589 (1965).

formation as conventional NMR but has the advantage
that the signal can be observed in the normal state
with less noise and baseline drift. The cycle is the same
as that of Fig. 1 of the previous article, except that. r
was Gxed at about 0.1 sec, and during that time a trans-
verse rf ield H„c s2ov„st (which we will call the probe
ield) was applied perpendicular to the main field H..r

Typical subsequent signals are shown in Fig.
as a function of the probe frequency v„. Consider Grst
the case where H, is greater than H, & (upper right hand
points in Fig. 1), so that all but a negligible surface
sheath is normal, and the local Geld inside the sample
is everywhere uniform and equal to H, . The probe Geld

' W. Fite, II, and A. C. Redfield, Phys. Rev. (preceding article),
162, 358 (1967), to which the reader is referred for many experi-
mental details and references not included in this article.

7The probe field was applied by switching the transmitter
coil with a mercury relay to the ampli6er described in Ref. 5.
The input to this amplifier, normally grounded, was simultane-
ously switched to a signal generator, which was varied manually.
Only a single frequency v was used, u~bt e Ref. $.
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PrG. 1. Ravr line-shape data at various fields and povrer levels.

has no effect until the nuclear resonance condition
2wv~= yH, is approached. ' Then, the probe field induces
transitions between nuclear spin levels, with equal
probability in both directions, and energy is absorbed
by the spin system tending to destroy its magnetiza-
tion and to reduce the subsequent signal. Thus, there
is a sharp dip in the subsequent signal at the resonance
condition (Fig. 1, upper-right-hand data) .

If jV, is decreased below H,2, there is, of course, a
corresponding decrease in the frequency at which
resonance is observed, but more important there is a
broadening of the range over which resonance is ob-
served (Fig. 1), as expected in the mixed state. We will

discuss the significance of the line features in the
mixed state in the next section.

This research started as a casual study in the normal
state, above T„with 8&=0, to determine the order of
magnitude of quadrupolar interactions in our sample. ~

In sample A we found that, for B,=O, there was an
apparently featureless absorption up to about 100
kc/sec, supporting the conclusions of the previous paper'
about the magnitude of the quadrupolar interaction
for a typical spin. (Such an interaction produces
neg1igible second-order broadening of the m~ ——-,'—+—,
transitions which is observed here, except perhaps at
the lowest fields used. )

When we lowered the temperature below T„and
raised H, (with no added 100-Hz audio field), we were
pleasantly surprised to find large signal variations
within well-dehned frequency ranges, as in Fig.
There are two reasons why the signal variations might

8%here throughout this article p is the gyromagnetic ratio
corrected for the 0.55'P0 Knight shift (y/2m=i. 125 KHz/G for
vanadium). Except close to II,2 the resolution of this experiment
vras not sufhcient to study shifts in the Knight shift; at II~, no
'resolvable discontinuity in the Knight shift vras found. Through-
out this article, local fields are obtained from frequencies of line
features using )be Knight shifted j.

be expected to be smaller than we observed: the lines
are broad compared to those in the normal state; and
also there is evidence' that the vortex structure is
pinned against small external variations, so that rela-
tively small variations in 8 (from the probe field, at
frequency i„) might be diamagnetically shielded by a
surface current.

The large linewidth should lead to the following
difhculty: If the vortices are pinned, then each spin
stays at some constant (in time) local field h, and pre-
cesses at some constant frequency Yh/2~ during the
time g. Although h is constant, it is different for different
spins, the range of k being typically several hundred
gauss. If a given spin is not at a point where h is within
about 10 G of the resonance condition, it will not be
much affected by the probe field, which wi11 "burn a
hole" in the line only near resonance. Thus the signal
variation would be at most only about 10% for a 200-6
linewidth, smaller than the nearly 100%effect observed.

At first we thought the large effect was evidence for
slow diffusion of vortices during the 0.1 sec that v„
is applied. This proved to be false, and the argument
of the preceding paragraph does apply; the vortices are
pinned, The reason for the large effect was that the
initial runs were made with an improvised power-
supply modification such that the field II, was not
regulated and the field actually decayed toward P,
with a time constant of some tens of milliseconds,
during 7-. In the hope of improving the resolution, the
power supply was improved so that B, was regulated
and the cycle was really as shown in Fig. 1 of the previ-
ous article. The result of this improvement was that,
except near H,2, the effect of the probe field nearly
disappeared. %e then realized that the earlier small
variation in B, with the improvised supply produced a
similar variation in 8, which means a variation in
vortex density (number per cm'). Thus, since vortex
quantization prohibits creation of a vortex inside the
material, the vortex structure must have been slowly
expanding itself as 8 decreased, so that vortices were
moving away from the center. On realizing this, we
partially removed the perfection of the regulation by
applying a 100-Hz field of a few gauss magnitude, to
move the vortex structure as described in the previous
article, and the large effect returned. The 100-Hz field
was used afterwards on all runs where the linewidth
was more than 50 G.

As for the second question, the penetration of small
ac fields into the sample, we can only say that they do
apparently penetrate our samples to a distance com-
parable to the normal-state skin depth at 6 mc/sec.
Perhaps it is easy for a transverse field to penetrate since
this requires only an elastic bending of the vortices
near the surface, not a change in the number threading

'See, for example, B. Bertman and M. Strongin, Phys. Rev.
147, 268 (1966), and references therein.
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the sample. The 100-Hz Geld presents more of a prob-
lem', perhaps it is easier for such a Geld to penetrate
a Qat stab than a longitudinal cylinder. It would be
interesting to study these effects, systematically cor-
relating NMR measurements with ac and dc sus-

ceptibility, but here we concentrated on local field
measurement.

With reference to rf field penetration in the mixed
state, there is one point which the reader should re-
member to avoid over-interpretation of the data. The
rf 6eld actually appears to be magni6ed inside the
superconductor compared to the normal state. In
Fig. 1, the same order of magnitude of probe 6eld was
used in all runs. Normally a greater rf field is needed
to produce a given energy absorption for a wide line
than for a narrow line. In the present case, with all
its unusual features, we do not know how to prove that
this is still true, but it seems plausible and, if true,
indicates an rf Geld enhancement. A novel feature of
this experiment is that the rf 6eld will produce a tilting
of the vortex structure which implies that near the
surface, at least, there is also appreciable translation
of the vortex lattice (at v~) and thus a strong rf field
in the local Geld direction (—direction of H,), pro-
portional to the transverse gradient of local field. This
rf field is along the axis of nuclear spin quantization
and is therefore in just the wrong direction to induce
transitions. However, it could do so because of state
mixing produced by the residual quadrupole inter-
action; and it is also conceivable that there is a large
transverse field resulting from pinning andjor bowing
out of the vortex lines. The important thing is that this
enhancement may be a function of position (of the
vortex structure relative to a spin) so that the change
in signal may not truly represent the line shape that
would be observed with the same field without the
enhancement. Thus, the line shape cannot be used to
measure the second derivative of local 6eld at a vortex,
for example. However, unless the enhancement is
strongly varying, the prominent bumps in the observed
line shape are not likely to be shifted.

II. THE ABRIKSOV LATTICE

At this writing, the most direct evidence for the
vortex lattice predicted by Abrikosov" is the neutron-
diffraction experiment of Cribier et al.""From varia-
tions in scattering intensity for diGerent runs on
niobium, it is concluded that the "vortex crystallite"
size is about 100 intervortex spacings, a,nd from the

~s A. A. Abrilrosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957)
)English transl. : Soviet Phys. —JETP 5, 1174 (1957)j."J.D. Cribier, B. Jacrot, L. Madhav Rao, and B. Farnoux,
Progress irl, Low Tempera/ere Physics, edited by C. J. Gorter
(North-Holland Publishing Company, Amsterdam, 1967),Vol. V."See, however, a note added in proof by H. Trauble and U.
Essman, Phys. Status Solidi 20, 95 (1967);and Phys. Letters 24A,
526 {1967).

position of the Grst Bragg peak and also the lack of a
second peak it is concluded that the lattice must be
triangular.

All our runs on samples 2 and 8 (except very close
to II,s or at very low Geld) show a dip at the low-Geld
end corresponding to an increase in the energy ab-
sorption and presumably an increased number of spins
at the corresponding Geld. The same has been observed
in niobium by Delrieux and Winter. ' This line shape
does not tell us anything about long-range order, but
it rules out many possible structures: square lattice,
honeycomb lattice, laminar model, completely random,
triangular lattice with very many imperfections.

The first calculation of the NMR line shape for a
Quxoid lattice was that of Schmidt, " for the square
lattice. His calculation, which was a coarse-grained
integration of Abrikosov s square-lattice solution of the
Ginsburg —Landau equations, showed a strong bump at a
point about one third of the way from the minimum
Geld limit of the line to the maximum. Our preliminary
data appeared to conQict with his calculation, and it
was clear from looking at the order parameter map"
(which is identical to the Geld map) that the peak in
the line corresponds to the saddle point in the 6eld
map, that is, to the 6eld at a point halfway between two
vortices. This is a two-dimensional version of a Van
Hove singularity in the spectrum of lattice vibrations,
and the singularity is logarithmic; the reader can con-
vince himself that there is a singularity, or at least a
great many spins located at that field, by looking at a
field or order parameter map.

The corresponding singularity for the triangular
lattice'4 is only 7% of the way from the low-Geld to the
high-6eld. end of the line, in the Abrikosov limit, in
excellent agreement with our data. Lasher" kindly
calculated the line shape for the triangular lattice,
and also recalculated the square lattice; the two shapes
are shown in Fig. 2. This difference between the expec-
tation for the position of the singularity for the square
and triangular lattice is not a quirk of the Abrikosov
theory; it is a general result of geometry plus the
assumption that Geld and current cannot vary by much
over a coherence length. ""For the square lattice, the
saddle point in real space is equidistant from the nearest
vortex and the nearest minimum point. For the tri-,

angular la,ttice, in real space, the saddle-vortex distance
(S-V in Fig. 2) is V3 times greater than the saddle-
minimum distan. ce (S-M) . Thus the saddle-point
field tends also to be closer to the minimum field, an

"V. V. Shmidt, Zh. Kksperim. i Teor. Fiz. 46, 649 (1964)
)English transl. : Soviet Phys. —JETP 19, 440 (1964)j.

~4 W. H. Kleiner, L.M. Roth, and S.H. Autler, Phys. Rev. 133,
A1226 (1964), referred to as KRA in the text.

"W. Fite, II, and A. G. Redfield, Phys. Rev. Letters 17',
381 (1966).

"W. Fite, II, and A. G. Redleld, Proceedings of the Tenth
International Conference on Lovr Temperature Physics, Moscow,
1966 (to be published) .
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FIG. 2. Theoretical resonance line shapes calculated by Lasher
on the basis of solutions to the Ginsburg-Landau equations in the
Abrikosov limit. The horizontal scales are renormalized to give the
same linewidth; in fact for a given material the square lattice width
would be somewhat greater. The square ends of the lines are a
consequence of the zero gradient of the field at the vortex center
and the minimum point. The inset shows a unit cell of the vortex
lattice, showing points of maximum 6eld (V), minimum Geld (C),
and the saddle point (S).

eGect which is much greater than the real-space
distance ratio suggests, because the Geld and current
must be smoothly varying in space.

Practically the same predicted position for the sin-

gularity comes from the simplest artiGcial Geld dis-
tribution obtained by summing three cos(lr,"r) terms,
with the three k s equal in magnitude and 120' apart
in direction. Such a distribution is in better agreement
with the neutron-diffraction data" (lack of a second-
order Bragg peak) than is the corresponding solution
of the Ginsburg-Landau equations. The same kind of
cosine sum with square symmetry has its singularity
exactly in the middle, of course.

Figure 3(a) may help convince the reader that the
short-range order is triangular. We convoluted the
theoretical line shapes of Fig. 2 with a Gaussian func-
tion, to smear out the line shapes by about 10%, to
agree with the width of the end of the line at high Geld,
and normalized the total linewidth and height to
get good agreement with experiment for the triangular
lattice. The experimental points are proportional to
—in{LS(H„)—S(~)7/LS(0) —S( ) j},where S(&„)
is the signal observed when the probe Geld equals EI~,

S(O) is that with no probe field, and S(~ ) is the
signal at very high probe power, which is mostly
due to repolarization of the spin system during the
time the field is turned on, just before observation
at 6 kG. If one makes a simple spin-temperature as-

sumption about the rate of energy absorption, then
one concludes that this transformation of the data
should give the absorption line shape which would be
observed in conventional NMR. The excellent agree-
ment between these points and the triangular line shape
should not be taken too seriously since there were three
parameters varied to fit the data (width, height,
smearing), but it would not be possible to change these
parameters to get nearly as good agreement with the
square lattice curve. Closer to H, s LFig. 3(b) $ it would

be harder to make this distinction. For very low 9,

on the other hand, one has essentially an array of
nearly isolated vortices, and the peak is expected to
move toward the lower end of the line for any arrange-
ment.

The honeycomb lattice would have a singularity close
to the maximum fieM; the laminar model would have
peaks at both ends, at least for long coherence length;
any other lattice would have two or more singularities.
A completely random distribution would have no singu-
larities.

Fairly stringent, if difFicult to deGne, limits are placed
by our data on possible imperfection of the lattice, for
8 in the range around -', II,2. Here the ends of the line
are well dehned, although the lower end can never be
resolved from the singularity. The power can be in-
creased 10 to 100 times the level needed to get a 50%
decrease in subsequent signal (points marked "high
power" in Fig. 3) . This washes out the structure within
the line, but the ends of the line remain extremely
sharp and unmoved, and there is no precursor absorp-
tion beyond the ends of the lines. Imperfections
in the vortex lattice would lead to field excursions out-
side the perfect-lattice limits. These imperfections
would be moved about by the 100-Hz audio Geld and
lead to precursors of absorption at high power. Let us
guess that our data show that fewer than 20% of the
spins at minimum Geld points experience shifts in their
resonance frequencies greater than 50 6 because of
imperfections in the vortex lattice. Considerations
which we discuss in Sec. 4 suggest that a major imper-
fection such as a missing or extra vortex or dislocation
or grain boundary would produce such a shift as far
way as 1500 A, so 80% of the sample must be more than
1500 A from such a major imperfection. If we assume a
polycrystalline model with large angle boundaries
viewed as a sheet of such imperfections, the dimensions
of the vortex crystallites must of order (1500 A) &&2/0. 2,
or more than ten lattice spacings at 8—-', H,&. If we
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FIG. 3. Comparison between theoretical line shapes obtained by
smearing the shapes of Fig. 2, with absorption line shape deduced
from data of Fig. 1, as described in the text.
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assume an otherwise perfect lattice with random vac-
cancies, the vacancy concentration must be considerably
less than*. If we assume, as is likely, that each vortex
is randomly displaced from its equilibrium position as
a result of impurity variations or other atomic lattice
defects, the typical displacement is small, less than
10% of the lattice spacing, judging from Fig. 6 below,
at intermediate Gelds. Our assumption used in making
these estimates is fairly conservative.

III. MAGNETIZATION AND FLUX DENSITY

F000
t

F000 2000
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3000

I' IG. 4. Observed magnetization versus applied Geld, and
inferred equilibrium magnetization versus Qux density B.

For a more detailed discussion of the line shape pa-
rameters it is of interest to know B and H as accurately
as possible. For sample B, which was in the form of a
stack of 0.1-mm foils with plastic tape and aluminum
foil interspersed, B could be measured with at least
&10 G precision down to 1000 G by increasing the
Geld at the end of the field cycle in order to observe
the aluminum nuclear resonance of nuclei inside the
Al foil, instead of the vanadium resonance. Then exactly
the same field cycling resonance (without the 100-Hz
field) was done on the Al resonance. v„was varied until
there was a sharp dip in the Al resonance, and the posi-
tion of the dip gave the Qux through the Al foils and
thus through the vanadium also. As expected' for this
geometry, the Qux density B was nearly equal to the
applied Geld H, . Below B—1000 G the aluminum reso-
nance was too broad to observe, although it would

probably be possible to see it by improving the alumi-
num-foil purity and thus, perhaps, the signal-to-noise
ratio.

Ke also measured M to get H=—B—AM and also
to estimate B at low fields; our measurements agree
well with those of Radebaugh and Keesom, ' allowing
for impurity difFerences. The same magnet and sample
geometry (including interleaved tape and foil) were
used but the NMR and miniature Dewar assembly was
replaced with series opposed coils, coaxial with the
superconducting magnet, and connected to a galvanom-
eter and in later runs to a lock-in ampliGer. The sample
was reciprocated between the coils manually and later
at 6 Hz (7-mm displacement) by a simple stirring
motor-eccentric —connecting-rod combination. The ap-
paratus was self-calibrated by turning the sample so
that H, was parallel to the sample surface, and measur-
ing the slope of 3f versus H, in the low-Geld Meissner
region. Even though H, is parallel to the foil surface, a
demagnetization correction must be made: Between V
foils, local h= —4rM, where M is the magnetization
per unit of volume of the vanadium itself. Dehning

(B), (M) as averages over the entire sample volume
including nonsuperconducting interleaving, we have
(B)=(1—f)&= —(1 f)4aM, —where f is the fraction

» J. Cape and J. M. Zimmerman, Phys. Rev. 153, 416 (1967)."P.R. Radebaugh and P. Keesom, Phys. Rev. 149, 209 (1966);
149, 2i7 (1966).

of the sample volume containing vanadium (f 0 3—.
for this sample). The sample volume is more or less
spherical, so (B)=H,+ss47r(M)-; and (M)=fM Solv-.
ing these equations we get —4s-M =H, (]+f/3), in the
low-Geld Meissner region, for the self-calibration runs.

The sample was then reoriented in the same way
as was used in the NMR experiment with H, perpen-
dicular to the surface, and magnetization measured
for upgoing and downgoing fields. Data for sample B
at 1.4'K are shown in Fig. 4, together with an inferred
3f versus B curve. Ke verified that the apparent 3f
was the same for a slow downgoing sweep as for a rapid
field cycle, and could also observe the efFect of the
100-Hz Geld. For values of 100-Hz Geld typically used
in the NMR runs the difFerence between upgoing and
downgoing magnetization curves was about one-half
that without the 100-Hz field. This is the ac analog
of the ", jarring" effect noticed by Radebaugh and
Keesom.

To estimate B at the lowest Gelds, we used the ob-
served magnetization for downgoing H„which we de-
note by 3f&. If the extra, hysteretic, magnetization is
uniform (that is, resulting from edge currents around
the sample) then (B)=B H, +ss4Jr(Mq) be—cause the
over-all sample volume is roughly spherical (it is in
fact more nearly a cylinder whose length and diameter
are equal) . Since (M&) fM&, we have B=H,+
87rfM&/3 This small .correction was roughly checked
above 1000 G, where B, H„and M~ are all known.

To get the equilibrium-magnetization curve, the up
and downgoing magnetization curves were averaged,
for H, &H,~. Then we replotted the average curve
against B, using B=H,+87rfM/3, as above. Finally, at
low Gelds where hysteresis was too great we extrapolated
M versus B obtaining a fairly unique curve by the
requirements that the area under the M versus B
curve should equal H.'/8 tshat 4sdM/dB be minus
one in the limit 8—+0; and that the curve have negative
O'M/dB' and be reasonable looking. Essentially the
same method was used by Keesom and Radebaugh.
We assume that thermodynamic H, is the same for our
sample as theirs; it should not depend much on im-
purity content.

Similar measurements and corrections were made
on sample A, which was in the form of 25 wires trans-
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2000

I 000

gether with 8, in Fig. 5, for sample 8 at 1.41.'K.
Other runs are summarized in Table I. We did not try
to estimate the minimum Geld; it was always close to
h, as discussed in Sec. II.

We will compare our results with predictions based" "
on the Ginsburg-Landau equations, mostly in the
limit appropriate only to dirty superconductors near
H,&. Ke do this, even though the theory should not
apply to our samples, ""because the theory is well
deGned and familiar. We assume a triangular lattice
henceforth, ' and denote the corresponding high-Geld
solution to the Ginsburg-Landau equations by ERA.

IOOO 2000
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FrG. 5. Field at a vortex and at the saddle point, and also B,
versus H. The inset shows the differences between H and the
other Gelds on an expanded scale, near H,2. All curves are purely
experimental except B, which is slightly constrained by thermo-
dynamics as described in the text. The same data were reported
in Ref. 16, but H and B are slightly dift'erent because of improved
magnetic measurements. The lowest ho data point was based on
one run only, and is therefore shown dashed.

verse to H, . Here we could not measure 8 directly, a
serious disadvantage. For an inGnite isolated cylinder, '
8=8,+2w3E. For a randomly arranged bundle of
wires, diameter small compared to the spacing between
wires, this is also true because the Geld due to neigh-
boring wires averages to zero. Correcting for finite
length of the sample volume, which was roughly spheri-
cal as before, we conclude that 8 H,+2wM+—@nfl/6.

For sample 8, the Bux density 8 is accurate to
&10 6 or better above 1000 G. All other Geld estimates
may suffer from systematic errors due to the approxi-
mations outlined above. The error in 8 at low Geld, and
in sample A, is probably less than 0.05(P—8). The
error in 4n.M=V 8 is probably less —than 0.1(H—8)
at high Geld, conceivably more at low Geld. In sample A,
the Qux density 8 may be in error by about 0.05 (H—8)
for all runs.

The transition at H, 2 was about 100 6 wide in
sample J3, wider in sample A, but the average H, 2

could be determined very accurately by extrapolating
M versus H, from above and below H,2. For sample jB,
at 4.2 H 2=850 6 H y—380 G' at 1.41 Hq2= 2720 G
and H,& 985. For sample A, H,~=3420 G at 1.33'K,
and 3290 6 at 1.5'K. The reader should consult the
paper of Radebaugh and Keesom' for a thorough
investigation of the magnetic and thermal parameters
of pure vanadium.

IV. LOCAL FIELD MEASUREMENTS

The maximum Geld ho at the vortex center, and the
saddle-point Geld h, obtained from the absorption peak.
at the low-frequency end of the line, are plotted to-

In the ERA limit this 6eld ho equals O'. In sample 8,
ho is signiGcantly greater than H. Marcus" has solved
the Ginsburg-Landau equations in a cellular approxima-
tion for q=2, not too far from g~ and g2 for our sample.
He predicts that ho should be greater than H but by
only about half as much as we observe, over most of
the range of B. The comparison is ambiguous since
H,s/P, ~ is not quite the same for this calculation as for
the sample.

TAsr.z I. Summary of line-shape runs not
plotted in Figs. 5 and 6.

Sample

4.2
1.3
1.3
1.3
1.54
1.54
1.54

514 582
867 1235

1915 2062
2625 2700
1180 1442
1925 2060
2635 2697

630 490
1380 818
2150 1890
2740 2600
1560 1130
2155 1890
2730 2620

» For a review of relevant theoretical work see A. L. Fetter and
P. C. Hohenberg, in A Treatise on Superconductivity, edited by
R. D. Parks (Marcel Dekker, to be published) .

20 For theory applicable to clean material near T, and FI,2 see
L. Nenmann and L. Tewordt, Z. Physik 191, 73 (1966). This
paper does not give an explicit Geld map.' Lj.Dobrosavljevic, Compt. Rend. (to be published).

Linewidth Versus Magnetization

The ERA solution predicts that'4" (hs —h, )/4e-M
is 1.35. This ratio can be measured accurately in both
samples A and B. It is signiGcantly greater than the
ERA value in the clean sample 8, being around 2 for
8~1200 6, and around 2.5 fairly close to H,2. Very
close to H,2 there is some indication that the ratio
decreases again (see the next paragraph) . In sample 2
the ratio is less, around 1.75 for most runs. This is the
only difference we can discern between samples A
and B. The data on sample A were too sk.etchy, and
8 in this sample too uncertain, to draw any other con-
clusions, and henceforth all analysis refers to the fairly
clean sample B.

Field at a Vortex Center
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Near H, 2 it appears that the curve for hp is becoming
tangent to H. In other words, near B,2, hp —H may be
proportional to (H—H,)' (inset, Fig. 5). This is pre-
dicted by the Ginsburg-Landau equations, but as we
mentioned they should not necessarily apply to pure
vanadium. It is dificult for us to study this region
accurately because H, & evidently varies by about 3%%uo

over the sample volume, judging from the width of the
transition in M at B,2.

In the limit B~, hp is the GeM at the center of an
isolated vortex. We estimate it later as (1.2&0.2) H,t.
In the high ~ limit, the Ginsburg-Landau prediction is
hp= 2H r in the limit z= 1/v2 hp= H y. Marcus, " and
Neumann and Tewordt, " and Matricon'4 have solved
the Ginsburg-Landau equations for an isolated vortex,
for various I(, values. They obtain the ratio of hp to
H, » as 1.07 for ~=1, 1.21 for ~=2, 1.35 for ~=4, and
1.39 for I(:=5. Matricon'4 has also solved the problem
with a two-quantum Quxoid and Ands less than a 1%
difference in this Geld ratio, between a single and a
double Qux quantum. Neumann and Tewordt" have
estimated the correction to these results for a clean
sample. The correction is large: For a sample having
the same ~ and mean free path as sample B, they pre-
dict that the center Geld will be around 1.4H, », instead
of (1.2+2) H, r as observed, and around 1.07H, r from
the Ginsburg-Landau equations with ~=1. As usual,
their theory is only valid near T,.

Line Centroid

The Aux density B is the center of gravity of the
true Geld distribution, and is therefore expected to be
close to the saddle-point singularity. For the Abrikosov
limits' (lt,—B)/(hp —I't,) is 0.26. In samPle B this
ratio is less, roughly 0.2 for B~2H,&, most probably
because the line-shape function is relatively lower near
hp. The height of the line-shape function at hp is inversely
proportional to 8'h/itr' at the vortex center. So probably
the Geld distribution is more sharply peaked at the
vortex. center than would be predicted by the ERA
limit solution scaled up to the observed linewidth.

Field Distribution in Syace

2000

OOOO

l t i i ~ I

F000 o 2000
ro &~

Fro. 6. Data of Fig. 5 replotted against vortex spacing assum-
ing the triangular lattice and the accepted tluxoid its 2e. The
curves passing through tt, and hp at large rp are based on the super-
position model.

take A» ——A2=A3, A4= AS= A6', Av= AS= A9, k», k~, ks
are equal, of magnitude 47rr p/V3, 120' apart in direction,
and k» is perpendicular to a primitive translation vector
of the fluxoid lattice. The vectors k7, k8, k9 are, respec-
tively, twice k», k&, ka, and k4, k5, ks are a similar trio of
vectors of equal length 120' apart, with k4 ——k» —k, .
Then calculation shows that i'tp=B+3(A$+A4+A7);
h, =B Ar A4+3—A7, —It;n= B—1.5Ar+3Ap —1.5Ar;
and from these we get Ar+A4=s(hp —h,). From the
data mentioned in the last paragraph we conclude that
Ar ——(0.05~0.05) Ar, and if we take i't,—h t as
(0.07&0.05) (hp —I't,) then we estimate that A& ——

(0.05+0.05) A&. The errors stated here are only those
from the conservative assumption of an error of 5%%uo

of the linewidth in the determination of hp, h„and h;„-.
They do not include errors resulting from the omission
of higher-order Fourier components which are probably
especially serious for A7. Cribier et cl." conclude that,
in niobium, A4 and A7 are small compared to A», but
they set no limits on these components.

Low-Density Limit: Superposition Model

In the limit of very low 8 we would have an array
of hardly interacting vortices. Call the Geld near such a
vortex It;(r), where r is the distance from the center. It
is interesting to interpret our data in terms of a model
in which the Geld at any point is assumed to be the
superposition of all fields due to (nearby) vortices, and
these Gelds are assumed to be given by the same func-
tion h, (r) as for an isolated. vortex. 's In this model,
since It;(r) falls off rapidly with r, we can include only
near neighbors, and, if rp is the vortex lattice spacing,

's P. Marcus, in Proceedings of the Ninth International Confer
ence on Low-Tensperuture Physics, Columbus, Ohio, j.964, edited
by J. G. Daunt, D. O. Edwards, F. J. Milford, and M. Yaqub
(Plenum Press, Inc. , ¹wYork, 1965), p. 550.

psL. Neumann and L. Tewordt, Z. Physik 189, 55 (1966).
24 J. Matricon (private communication) .

"Such a model has been considered at lower Qux values by P.
Marcus, in Proceedings of the Tenth International Conference on
Low Temperature Physics, Moscow, 1966 (to be published).

When the flux density is not too low (B& ', H,s), -
the Geld variation in real space will not be too rapid and
then the Geld can be mapped with an accuracy of a few
percent from the four experimental line shape parame-
ters 8, hp, h, and the minimum Geld h;„.We expand
h(r) in a two-dimensional Fourier series, keeping the
6rst ten terms: h= PA; cosh; r. The k; are vectors of
the reciprocal lattice. The vector kp

——0 and A p= B.We
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the model predicts that h, =2h;(ro/2) and ho= h;(0)+
6h;(ro) .

In Fig. 6, we replot the data of Fig. 5 versus ro ——

4.86&(10 8 ' ', the theoretical triangular lattice spac-
ing. The lower curve, fitted to h„was obtained by
assuming that h;(r) is proportional to r 'I' exp( —r/Xr),
with )&——400 A. as estimated by Keesom and Rade-
baugh. This form for the Geld variation is predicted by
the Ginsburg-Landau equations for high ~, or by the
London equations. In practice, over the range of
interest, this function is very well represented by
exp( —r/380) times a constant. There is one adjustable
parameter in this fitting (the constant multiplying
vertical scale), not counting XI.. In the region where the
fit is good, the saddle point is 1.5 coherence lengths or
more from the nearest vortex.

We then forced the prediction ho ——h;(0)+6h;(r, )
through the measurement of ho at ro——1520, by setting
h, (0) =1210 G and obtaining h, (ro) from extrapolation
of the form deduced in the previous paragraph without
any change of scale of h;(r) . In other words, we assume

ho=h;(0)+3h, (2ro), obtaining h, (2r,) by exponential
extrapolation of actual measurements and setting
h;(0) = 1210 G. The two unprecise measurements for hp

for the largest values of ro in Fig. 5 tend to corroborate
this estimate; while an upper limit of 1400 G seems
indicated by the requirement that h;(0) be appreciably
less than the value of ho=1560 6 observed for ro ——

1520 A..
Carrying this model further, we can create a unique

trial function for h;(r) for all r by assuming that h;(0) =
1210 G; that h;(r) decreases quadratically with r out
to some transition radius beyond which it is pro-
portional to r '~' exp( —r/Xr, ); and that h; is continuous
and has a continuous Grst derivative at this radius. The
transition radius needed to fit h;(0) and h, (ro) as
deduced from Fig. 6 is 650 L. Interestingly, this is the
same order of magnitude as the transition radius
between spin diffusion and direct relaxation, as deduced
in the immediately previous paper. The Quxoid pre-
dicted by this model is only about 12% greater than
the accepted value. Sixty percent of this Qux is within
the 650 A radius. This Geld variation appears to agree
well with that predicted by Neumann and Tewordt2'

near T,.
The good agreement with the accepted fluxoid hc/2e

is not too surprising since, given ho and h, and the correct
lattice, any smooth trial distribution is likely to give
nearly the correct Qux density and thus Quxoid provided
the actual -distribution is fairly smooth, as it is for
r0——1510 L. Likewise, lengths of the order of 500 L and
Gelds of the order of 1000 G are built into the model.

Also, the curve for h, becomes signiGcantly modified if

more than nearest vortices are taken into account;
it is about 30% higher at 1520 L but only about 10%
higher at 2300 L. Good agreement would be obtained
by increasing 'Ar, by perhaps 10% to about 500 X,
and the Geld at an isolated vortex center to about 1250
G. Such a detailed, three-parameter analysis does not
seem worth while; the main point is to get a reasonable
estimate of h;(0) and of the effect of vortex-lattice
imperfections, which we used in Sec. II, and to show
that the superposition model is not grossly wrong.

In conclusion we should mention that this does not
constitute a direct measure of the penetration depth
except insofar as the Quxoid is known and the model is
correct. If the Buxoid were increased by a factor of 2,
agreement would still be as good if we increased all
lengths by the square root of 2.

V. MISCELLANEOUS EFFECTS

At the end of the introduction to this paper we
mentioned that there appears to be an enhancement of
the probe Geld intensity as the external Geld is lowered
below H, 2, and we conjectured that this enhancement
was due to the production of a large probe-frequency
field in the H, direction, which produces transitions by
virtue of a residual quadrupole interaction. We have
some independent evidence for this mechanism; At
low B„around 1000 0, and higher probe power, ab-
sorption appeared at a frequency range double that
of the main absorption presumably due to hnsI ——~2
transitions. We did not study this eGect in detail,
though it would be interesting to do so; mostly it was a
nuisance which introduced uncertainty into the meas-
urements at low B. At higher 8 this line disappeared
rapidly, presumably because of a decreased admixture
of states and also a decrease in the available probe
power.

Near H, &, where we usually did not use the 100-Hz
field along H„we observed partial motional narrowing
of the line when we applied a strong 100-Hz Geld. The
dip in subsequent signal at h, started to disappear and a
new dip appeared at a frequency &J3/2m, where 8 is the
independently measured average field.
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