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a small negative fourth-order contribution in the
expansion of X,.

6. CONCLUSIOÃ

The present neutron-diGraction study has yielded the
following additional information about the magnetic
structures of Tb.

(a) The magnetic long-range order follows the
characteristic temperature variation of spontaneous
magnetization with T~= 226'K. For temperatures
above 0.9T~ there is good agreement with the power
law (T~—T)~ with p=-,'except in a region few degrees
below TN where P=~i. The transition between the
ferromagnetic and spiral phase is of 6rst order and
occurs at 216'K without any change of the long-range
order.

(b) The spiral turn angle per layer has a minimum

at the ferromagnetic to spiral transition temperature.
This is in agreement with the superzone theory which
predicts that the turn angle should decrease with in-
crease of spiral long-range order. The quantitative
agreement between theories based on the free-electron
model and the experiment is poor, but this is not sur-
prising since the rare earths are known to have electronic
structures very different from the free-electron model.

(c) The ferromagnetic long-range order (s) has been
correlated with the lattice expansion X, due to magneto-
striction, and reasonable agreement with the approxi-
mate relation X,= kg'y' (s )' was observed.
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The nuclear magnetic resonance of 4'Ti and 4'Ti has been observed in hexagonal close-packed titanium
metal in the temperature range T=i-O'K. Measurements of the line profile and relaxation rates were
carried out at 12.5 MHz by pulsed nuclear resonance techniques. Since the gyromagnetic ratios of 4'Ti

and 'Ti are nearly identical, the resonances of the two isotopes were superimposed. A partially resolved
first-order quadrupole spectrum having a total width exceeding 8 kOe was observed, yielding a probable
assignment h 'e2gP'=h 'enq()"=7. 7 MHz. The average Knight shift is estimated to be X= (+0.4+0.2)%.
The spin-lattice relaxation times Ti, which are quite long (TiT=150+20 sec'K), provide evidence
that the conduction-electron states at the Fermi level are predominantly d-like. The theory of nuclear
spin-lattice relaxation in hexagonal transition metals is treated in the tight-binding approximation.
Contact, core-polarization, orbital, and dipolar hyperfine interactions are considered. The magnitudes
of the orbital and dipolar contributions to the spin-lattice relaxation rate depend on the orientation of the
magnetic field relative to the hexagonal c axis. In the presence of s-d mixing, the contact contribution is
found to interfere destructively with one of the components of the core-polarization contribution. The
predicted total relaxation rates are shown to depend more strongly on the orbital admixture coefBcients
than is the case in cubic transition metals. The relatively large number of parameters in the theory precludes
a unique fit to the experimental results for titanium. In general, however, the calculated rates exceed the
observed rate by a factor of 2-3 over a wide range of parameter values. The apparent discrepancy
is attributed to the combined eifects of (1) the electron-phonon enhancement of the electronic specie
heat and (2) s-d interference etfects. The former eifect causes the "bare" electron density of states to be
overestimated, while the latter leads to an overestimate of the sum of contact andcore-polarization contribu-
tions to the relaxation.

I. INTRODUCTION

&iURING recent years considerable progress has
been achieved in the utilization of conduction-

electron-induced nuclear spin-lattice relaxation phe-
nomena in the study of electronic properties of transi-
tion metals. To date, most theoretical and experimental
eGorts in this Geld have been concerned with metals
having cubic structures. The important contributions
to the observed relaxation rates have been shown to

t This work was supported by the U.S.Atomic Energy Commis-
sloIl.

arise from core-polarization' and orbital' hyperGne
interactions with the d component of the conduction-
electron wave functions at the Fermi level, as well as
from the familiar contact' hyperGne interaction with
the s component. Conduction-electron contributions
associated with magnetic-dipole and electric-quad-
rupole4 5 hyperGne interactions, on the other hand, are

i Y. Yafet and V, Jaccarino, Phys. Rev. 133, A1630 (1964).
~ Y. Obata, J. Phys. Soc. Japan 18, 1020 (1963).
3 J. Korringa, Physica 16, 601 (1950).
4 A. H. Mitchell, J. Chem. Phys. 26, 1T14 (1957).
~ Y. Obata, J. Phys. Soc. Japan 19, 2348 (1964).
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usually quite small. In the tight-binding approximation,
the total relaxation rate can be expressed in analytical
form. ' ' Moreover, since spin-orbit eGects are generally
assumed to be small, no interference terms arise in the
cubic case among the various interactions. The relaxa-
tion rate in cubic transition metals is therefore given
by a sum of the individual hyperfine contributions. The
detailed application of the theory to experimental data
unfortunately requires a knowledge of several classes of
parameters relating to conduction-electron properties
appropriately averaged over the Fermi surface. These
are (1) the relevant hyperfine interaction parameters,
(2) the total bare-electron density of states, (3) the
weights of the s and d components of the conduction-
electron wave function, and (4) the point-group sym-
metry properties of the d component (i.e., the ratio
of the l'3 and I'5 orbital admixtures). The dependence
of the calculated rate on the fourth parameter is weak
since the variation of the core-polarization contribution
with the F3/I'5 admixture coeKcient is nearly cancelled.
in most cases by that of the orbital contribution. In-
formation concerning the remaining parameters can
often be obtained by combining nuclear relaxation data
with the results of related measurements. For example,
it is often possible to derive reasonably accurate values
of the hyperfine constants from the respective free-atom
values. If the density of states can be estimated from
the measured electronic speciic heat, an approximate
value for the average s/d ratio at the Fermi level can
then be inferred from the experimental relaxation
rates. ' 7 Conversely, if the s/d ratio is known, it is possi-
ble, in principle, to obtain an estimate of the electron-
phonon enhancement of the electronic specihc heat. The
complex dependence of the nuclear spin-lattice relaxa-
tion rate on the details of the electronic structure is of
course similar to the complexities associated with most
transition-metal properties.

The present study is concerned with nuclear spin-
lattice relaxation in hexagonal close-packed (hcp)
transition metals. The primary purpose of this work is to
examine the additional theoretical and experimental
complications which are introduced by the lower crystal
symmetry. Of particular interest are questions relating
to the possible importance of anisotropy and interfer-
ence eGects in the relaxation rate. The dependence of
the relaxation rate on the symmetry properties of the
conduction-electron wave functions at the Fermi level
is examined in detail. The extent to which the theory
can be applied at present to experimental data is illus-
trated by means of a comparison between observed and
calculated rates for titanium metal. In addition, data
concerning the quadrupole splittings and Knight shifts
of '~Ti and 4'Ti in titanium metal are presented.

In Sec. II the theory of spin-lattice relaxation in
hexagonal crystals is treated in the tight-binding ap-

6 A. Narath and A. T. Fromhold, Jr., Phys. Rev. 139, A'l94
(~965).

~ A. Narath and D. W. Alderman, Phys. Rev. 143, 328 (1966).
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Fxo. i. Plot of the d-spin core-polarization reduction factor Kq&o

for hexagonal symmetry as a function of the orbital admixture
parameters x and y. The taro curves indicate the range of possible
values of ~&0. The circled cross identi6es the value of ~(0
appropriate for a spherical Fermi surface.

proximation. The experimental techniques used in the
present study are described in Sec. III. The results of
our experimental measurements on titanium metal are
presented and analyzed in Sec. IV and discussed in
Sec. V. The rate equations which describe the magnetic
hyper6ne induced spin-lattice relaxation processes for
nuclear spins I=~ and I=~ are given in the Appendix.

X=—y5I h, (2.1)

where p„ is the nuclear gyromagnetic ratio and I is the
nuclear-spin angular-momentum operator. The effec-
tive-Geld operator h is composed of s-contact (h,),
d-spin core-polarization (hq), d-spin dipolar (hq;~), and
d-orbital (h„b) terms.

with
h =h,+hd+hg;, +h.,b,

h, = —2Hgf, &'~s„

hg ———2Bh f,~'&sg,

h~;, ———ygr 'fs~ —3r-'(x s~) xj,
h.,b = yjir~l, —

(2.2)

(2.3)

(2.4)

(2 5)

(2 6)

II. THEORY OF SPIN-LATTICE RELAXATION

Following Obata, ' we calculate the relaxation rate
by treating the magnetic hyper6ne interactions in
terms of an effective-spin Hamiltonian
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where E denotes the number of unit cells in the crystal,
R; specifies the location of a given unit cell, R„specifies
the atomic positions within the unit cell, and R;„=
R,+R~. The p, are spin functions, while the a„k(r—R;,)
are linear combinations of atomic orbitals (LCAO)
defined by

0.4

u„k(r —R,„)=g c„„y.„(r—R, ), (2.9)
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where y, is the electronic gyromagnetic ratio, s, and sd

are the s-spin and d-spin angular-momentum operators
(s=rs) for the conduction electrons, respectively, 1 is
the orbital-angular-momentum operator for the d
electrons (l=2), and r is the appropriate electronic
position coordinate. We have assumed that the elec-
tronic g value may be taken as 2. Although the eGect
of the dipolar interaction on the relaxation rate is
generally small, we include it in our discussion for the
sake of completeness. The effective s-contact and core-
polarization (d-spin) hyperfrne fields per electron are
denoted by H& f &' and Hh~, &"', respectively. The expec-
tation value of r ' in (2.5) and (2.6) can be expressed
in terms of an orbital hyperfine field per unit orbital
angular momentum Hkr, t""&= y,A(r '—) St, raigh. tfor-
ward application of first-order time-dependent per-
turbation theory to (2.1) yields a relaxation rate for a
given site in the crystal

T = (zrPc) (y fz)' Z Z Z I
(zr'k'o. '

I
Iz Izzk-

pp, ~ kk~ trtr~

Xf„k.(1—f„k;)8(AE), (2.7)

where p, k, and o- are the band, wave vector, and spin
indices, respectively, f„k, is the occupation number of
the one-electron Bloch state

I zzko), and the 8 function
o(dE) expresses the energy conservation requirements
for the relaxation process. In the tight-binding ap-
proximation, the conduction-electron wave functions
are constructed from atomic orbitaIs. For a lattice with

FIG. 2. Plot of the d-orbital reduction factor K„b&') for hex-
agonal symmetry (H ~~ c) as a function of the orbital admixture
parameters x and y. The circled cross identi6es the spherical case
as lIl Flg. I.

Dr,&ye~(Gk&y ~ &peri'kg~ rn'm (6) q

~~=r(m)
(2.10)

where G is an operation of the local point group and
m'= 1'(m) means all m' belonging to the same irreduci-
ble representation as does m. The D"„(G)are elements
of the appropriate transformation matrix which satisfy
the standard orthogonality relation

where g is the order of the group and gr is the dimen-
sionality of the representation F.

The matrix elements in (2.7) can now be evaluated
by expanding the Bloch functions according to the
tight-binding prescription (2.8) . We assume that
matrix elements between orbitals centered on diGerent
atoms can be neglected. This assumption is generally
justified and is, moreover, consistent with the neglect of
normalization in the tight-binding functions. Vsing
(2.9)—(2.11), together with the fact that E„gk E„k,we-—
find the following relaxation rate for the pth site.

Ti(p) '= (zr/fi, lVs) (y„fz) 'kr&T

XZ Z Z t&(E.k E'k )~(&.k E~)— —
kk~ crrr~

XQ F„k„r&"&F„k,rt"'&
I

(m'~'P
I

h—
I moP)I', (2.12)

where k~ is Boltzmann's constant, EI is the Ft:.rmi

where the c„»are elements of a unitary transformation
and the p (r —R;„) are atomic functions which form
bases for irreducible representations of the point group
appropriate for the position R,„.We also note that the
functions (2.8) are not normalized unless all overlap
integrals between LCAO functions centered on diGerent
sites vanish.

In keeping with the symmetry properties of the hcp
structure, we assume in the following that the symmetry
elements of all nonequivalent atomic positions corre-
spond to the same subgroup of the crystallographic
point group. It can then be readily shown that the
symmetry properties of the transformation coe%cients
are expressed by
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energy, and the Fiii,~r' &=—
~
c„z„~'are fractional admix-

ture coe%cients which have the same value for all m

forming a basis for a given irreducible representation
I'(m) . By defining average values of the F„q„r& i accord-
ing to

r&"'L8(E„—E )jL1V(0)1V] ', (2.13)
p k

where the product iV (0)X is the total number of states
per unit energy interval at the Fermi level for one
direction of the spin, we can write (2.12) in the form

Ti(p) '= (s./fi) (y„S)'hnTL1V(0) ]'
XQ Q F„'"&F„"&~'&

(
(m'o'p

(
h

(
mo p)~' (2. .14)

mm~ ere~

Sy dehnition, the factors P„~' & are normalized to unity

P PF r(m& (2.15)
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(2 16)

We wish to apply (2.14) to the hcp structure. The
relevant point group is D6& which is conveniently ex-
pressed as the direct product group D6g=D3qXI. The
hcp lattice contains two atoms per unit cell in special
positions which are related by operations of the space
group (F6s/mmc). With the origin placed at, either of
the two sites, the covering operations of the lattice
correspond to D», which is clearly a subgroup of D6I, .
The nuclear resonance properties of the two non-
equivalent atoms are identical. The distinction between
these sites can therefore be ignored if E in (2.13) is
de6ned as the number of atoms in the crystal. In other
words, we may limit our discussion to a primitive lattice
with D» point-group symmetry and therefore drop the
p subscript. The nonvanishing matrix elements of
(2.14) which arise from the hyperfine-interaction terms
(2.3)—(2.6) involve the s-like (l=0) atomic function
which transforms as the 3&' representation of D»,
and the five d-like (l=2) functions which form bases
for the irreducible representations A~', E', and E".The
appropriate decomposition of the l=2 representation
of the three-dimensional rotation group leads to sym-
metry functions whose angular parts are given in real
form by

O. I

00 02 OA 0.6 0.8 l.O

Pro. 3. Plot of the d-orbital reduction factor K,b&'&+K,b('~

for hexagonal symmetry (Hl.c) as a function of the orbital
admixture parameters x and y.

6eld oriented along a s direction whose polar and
azimuthal angles in the X, F, Z coordinate system are
specified by 0 and p, respectively. The contact and
core-polarization matrix elements can be obtained im-
mediately since they are obviously independent of field
orientation. The orientation dependence of the orbital
and dipolar matrix elements is most conveniently ob-
tained by expressing these interactions in spherical
tensor form.

h„b ——2'"year sl.i '(n' P')

hs;p
——2 (6x/5) '~'y Ar-'Ls+Y —'(n' P')

(2.19)

—6 "'s—Ys'(n', P')+s'Ys '(n' P')]. (2.20)

Here n' and p' specify orientations in the x, p, s co-
ordinate system. The connection between the Cartesian
components of / and the tensor elements I.p is given in
the usual way by

2-ii2LY,s(n P)+Y;2(n P) 3 (2.»)
Z":—2—'"LYs'(n, P) —Ys '(a, P) $,

I,+' =w 2-'~'l+—=W 2
—'~'(l'ail~),

JO )z

(2.21)

(2.22)

2 '~'iPYs'(n P)+Ys '(a P) j, (2.18)

where the Yss(a, P) are normalized spherical harmonics
of order two. The polar angle a is measured with respect
to a Z axis which is chosen to lie parallel to the crystal-
lographic c axis. The positions of the X and I' axes in
the hexagonal basal plane are arbitrary.

The calculation of the relaxation rate (2.14) is now
easily accomplished, We assume an, external magnetic

The tensor elements which appear in (2.19) and (2.20)
can now be transformed into the X, I', Z system by
making use of the well-known transformation prop-
erties of spherical tensors under rotations.

LP(n', P') =P D'„.(8, @, 0)1. (n, P), (2.23)
q/

Y,~(n', p') =go«. (0, 4, 0) Yes'(n, p).
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The D'(0, p, 0) denote appropriate rotation matrices. '
Performing the indicated transformations and evaluat-

ing the necessary matrix elements in the basis (2.16)-
(2.18) reduces (2.14), in the absence of s-d mixing, to
the form

Il.= (4n/A) (y„&rt)'kEL(X(0) $' Q P,'(K;("
i

+K (s) sins8) (2.25)

where E= (T&T—) ' and the sum is taken over the four

hyperGne interactions with

~.=p+hfs"

Po (1—p)——Hbt. (a),

Pa( =P b=(1—p)Hbs" '

(2.26)

(2.27)

(2.28)

and p is the average fractional s character at the Fermi
level.

(2.29)p=X (0)/E(0).

LThe effect on (2.25) due to any p admixture in the
conduction-electron states at the Fermi level is dis-

cussed at the end of this section). The reduction factors
K.;&') and K;&» are given by

K,~»=O,

Ko&') =L1—2x+-', x' —x'y(1 —y) j,
K,&»=O,

K,»(') =xyL3 x(y+2) 3

(2.31)

(2.32)

(2.33)

(2.34)

K (') =-'xL4x(1 —y) —y(6 —7xy) 7, (2.35)

K„,('& = (1/392) $8+32x—36x'—42xy

+52x'y+5x'y'j, (2.36)

Ka; (s) = (3/784) $8—32x+28x'+18xy
—20x'y —7x'y'7, (2.37)

where
2C Pr(EI)+Pr(E«) jg pj-&

y Pr(E«) (Pr(E') +.Pr(E' )wt

and according to (2.15)

Pr(A(~)+2Pr(EI)+2Pr(E ) = 1

(2.38)

(2.39)

(2.40)

8 See, for example, A. K. Saha and Y.P.Das, Theory and A pplica-
teons of Nuclear Induction (Saha Institute of Nuciear Physics,
Calcutta, India, j.957), p. 252.

Thus, if s-d interactions at the Fermi level are neglected,
the various hyperGne contributions to the spin-lattice
relaxation rate do not interfere with each other. How-
ever, in contrast to the situation in cubic metals the
orbital and dipolar relaxation rates in hexagonal metals
are anisotropic except when @=0.8, y=0.5. It should

also be noted that the core-polarization reduction factor
(2.32) re resents a specialization of the general result

r(fe )'(gr) ' where fa is the relative weight
of d states at the Fermi level belonging to the represen-
tation I', and the normalization of the fP is given by
forfar= 1.

We now examine the consequences of s-d interactions.
In cubic metals such interactions have no eGect on the
relaxation rate since the s and d functions belong to
diferent irreducible representations of the cubic point
group (0). In the hexagonal case, on the other hand,
both the s(Y&s) and d(Yss) functions belong to the
A&' representation of D» and consequently to the same
tN in the expansion (2.9) . Hence, matrix elements of the
contact and core-polarization interactions between
these functions nil/ interfere provided that these func-
tions are admixed in +„&„(r) at the Fermi level. If the
A~' functions are expressed as linear combinations of
the form f„&,Yts+(1 $„&,')—'t'Yss, the resulting inter-
ference term is given by

+ —&= (8'/&&&) (y fi)'kEL.E(0)j'Hb( (e)Hbt ( &

X ((P„&,"~"&)'&„&,'(1—
$„&,') ), (2.41)

where the angular brackets denote an average over the
Fermi surface. Since Hhf. &'& and Bhf, &@ are of opposite
sign (Hs&, (@(0) this term interferes destrletit&ely with
(2.25) .

The variation of the reduction factors K~&'&, K„b|:",
and K.,b('&+K.,b"& with the orbital admixture coeffi-
cients x and y is illustrated in Figs. 1, 2, and 3, respec-
tively. (The dipolar contribution is small, as is also the
case in cubic metals, and will therefore be ignored in
the following. ) The behavior of these factors reveals
three important differences in the relaxation rate be-
tween cubic and hexagonal transition metals.

(1) The most obvious difference lies in the number
of d-electron orbital admixture parameters which appear
in the theory. In cubic metals the d-band properties
are specified by a single admixture parameter. In
hexagonal metals, two parameters are required as a
result of the lower symmetry.

(2) The orbital contribution to the relaxation rate
in hexagonal metals is dependent on Geld orientation.
This anisotropy is particularly large when y is very
small and x is large. The anisotropy vanishes for x=
0.8, y=0.5 since the various d orbitals in that case have
equal admixture coefficients in the wave function
(spherical Fermi surface). The orbital and core-polari-
zation reduction factors are then identical to the corre-
sponding factors for cubic metals.

(3) In general, the sum of orbital and core-polariza-
tion rates is not as independent of the orbital admixture
coefficients as is the case in cubic metals. The lack of
sensitivity to the orbital character of the wave function
in cubic systems is associated with the fact that the
absolute magnitudes of Hhf, t+ and Hhf &""& are often
nearly the same. The d-band contribution to the re-
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FIG. 4. Plot of observed spin-echo
intensity in titanium metal due to 4'Ti
and "Tiat j..95'K as a function of mag-
netic field strength (v=12.500 MHz).
The data were obtained with a two equal-
width (20 iisec) pulse sequence. The pulse
separation was ~=10 msec. The arrow
indicates the zero Knight shift 6eld
strength.
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laxation rate is therefore nearly proportional to ~&'&+
K„b&".The reduction factors for cubic symmetry are"

Kg&'& =-',x'+-', (1—x) ', (2.42)

K„b&i& =-s, xL2 —(5/3) x7, (2.43)

where x is the average fractional I'5 character of the d
functions at the Fermi level. Hence,

Kg&'&+K.,b&'& =—,'+-', x/1 —(5/6) x7, (2.44)

which depends only weakly on x. An inspection of the
corresponding expression (2.32) + (2.34) shows that
this weak dependence does not hold for the hexagonal
case.

The foregoing analysis contains two tacit assump-
tions. In the 6rst place, it was assumed that the expan-
sion of the conduction-electron wave functions at the
Fermi level could be limited to 1=0 and k=2 atomic
functions Li.e., E(0) =E,(0)+1V&(0)7. It is likely,
however, that the 3=1 admixture is often comparable
to the 3=0 admixture. Nevertheless, the )=1 hyper6ne
interaction may be safely neglected since P hyperfine
6elds are generally quite small compared to s and d
hyperfine fields. The major effect of an appreciable p
admixture at the Fermi level is therefore to reduce
1&r'(0) relative to the total bare-electron density of
states by an amount which is proportional to the frac-
tional p character. This reduction is probably small
since the density of states is dominated in transition
metals by the d-band contributions. I Alternatively, the
p admixture may be viewed as part of an effective s
density provided that the contact hyperfine Geld is

reduced by the factor 1V,(0)/LE, (0)+E„(0)7.I A
potentially more serious defect in the analysis is the
assumption that the three d orbitals (2.16)—(2.18) have
identical radial dependences. In other words, the d-spin
and d-orbital hyperfine fields in (2;4) and (2.6), respec-
tively, are assumed to be constants. This assumption is
reasonable only if the potential within the atomic
volume is nearly spherically symmetric.

IIL EXPERIMENTAL TECHNIQUES

During the course of the present work, powdered
titanium specimens from three sources' were studied.
No discernible di6'erences were detected in the results
of nuclear-magnetic-resonance measurements on these
specimens. The hcp structure of the samples was veri-
fied by powder x-ray diGraction techniques. The
experimental results presented in Sec. IV were obtained
on the Johnson-Matthey titanium sponge. According
to the supplier, the principal impurities as deter-
mined by spectrographic analysis were (in ppm)
Sn-100, ¹100,Fe-70, Si-3, and Mn-1. Other metallic
impurities were not detected. Powdered samples were
prepared by ball-milling the sponge in deionized water
until a sufhcient amount of 200-mesh material had been
accumulated. The power was leached with dilute HC1
in order to remove surface contaminations. It was then

~ Gallard Schlesinger Chemical Manufacturing Corporation
(granules-83447, 99.9+'P&); Johnson, Matthey, and Company,
Limited (Sponge, 99.9+/&, Lot No. S.2692); Bureau of Mines
(Electrolytic, powder, 99+'%%uo), we are indebted to Dr. R. A.
Forman for making this sample available to us. The purity esti-
mates given here do not include possible contamination by oxygen
and nitrogen.
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TABI,E I. Summary of magnetic hype rfine fields and spin-
lattice-relaxation rates 8;=2hy 'knfP(0)HM, &'&g' in titanium
metal.

&hf"'
(io' Oe)

I,;
(sec'K) '

I I I I I I I l I

20 p. sac I division

Contact
Core polarization
Orbital

+1.0—0.10
+0.16

0 ' 807
0.00807
0.0206

I'rG. 5. Examples of typical spin echos observed at 52.2 kOe
(v=12.500 MHz) under the same experimental conditions as
were used to obtain the data in Fig. 4.

placed in a vacuum furnace at 6&10 ' Torr and an-
nealed for 6 h at 700'C. The vacuum was maintained
in the 10 ' Torr range during the entire heating cycle.
This was accomplished by raising the temperature
gradually over several hours from room temperature to
the 700'C annealing temperature. The nuclear-reso-
nance measurements were performed on samples which
had been diluted with 325-mesh NaCI powder to pro-
vide the necessary electrical insulation between the
titanium particles.

The nuclear-resonance measurements were carried
out by standard crossed-coil transient techniques in the
temperature range 1—O'K at frequencies near 12 MHz.
The magnetic 6eld mas provided by a compensated
60-koe superconducting solenoid. Sample temperatures
were controlled by regulated pumping on liquid helium
contained in a separate sample Dewar.

Transient excitation of the nuclear resonance was
provided by a 15-kK gated rf amplifier. Rotating 6elds
in excess of 50 Oe were easily achieved. Because of the

extreme inhomogeneous width ()8 kOe) of the nuclear
resonance resulting from the electric Geld gradient at
the titanium nuclei, all measurements were based on
observations of the spin echo following two equal-width
rf pulses. Phase-coherent detection was employed in
order to assure detector linearity. The detector out-
put was displayed on an oscilloscope and recorded
photographically.

The enormous width of the nuclear resonance not
only resulted in a relatively poor signal-to-noise ratio
but also made it exceedingly dificult to obtain accurate
spin-lattice relaxation rates. The usual technique in
which the recovery of the nuclear magnetization is
observed after application of a saturating "comb" of
rf pulses was only partially successful. Complete satura-
tion could not be achieved even with pulse trains of
several hundred 5—10 psec rf pulses. Since the spin-
lattice relaxation times T~ were of the order of a minute
it appeared feasible to achieve saturation by a less
drastic method. Two methods were considered. In
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FIG. 6. Comparison of experimental and theoretical spin-
lattice relaxation curves for titanium metal for T~T=150 sec'K
(2W = T~ '). The three cases (A), (B), and (C) are discussed in
the text.
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principle, the easiest approach is to use a low-power
cw sweep oscillator as the source of rf excitation. Satura-
tion should be attainable with several frequency sweeps
across the inhomogeneously broadened resonance during
a time less than T~. In the present case, however, it was
more convenient to demagnetize the sample by remov-
ing it from the magnet. " This was accomplished by
mounting the sample probe on a motor driven hoist.
Isolation between the helium Dewar and the atmosphere
was achieved by means of a sliding 0-ring seal. A stroke
of 10 in. was sufhcient to reduce the field strength at
the sample to about 3%%u~ of its value at the center of the
magnet. Care was taken that the sample remained in
the helium bath at all times. The sample was left in
the "out" position for several T&'s. Upon reinsertion
into the magnet, the recovery of the nuclear magnetiza-
tion was monitored in the usual way. The time required
for insertion was 0.'I sec.

IV. EXPERIMENTAL RESULTS

A. Nuclear-Resonance Line Shape

The abundant magnetic isotopes of titanium are
4"Ti (tt~= —0.78711 nm, I= ss)" and 4'Ti(tt~= —1.1022
nm, I=s)" which occur in natural abundances of 7.75
and 5.51%, respectively. The gyromagnetic ratios are
nearly identical, the frequency-field ratios being 0.2400
kHz/Oe for "Ti and 0.2401 kHz/Oe for "Ti.This small
difference was undetectable in the present experiments
and the observed signals were therefore superpositions
of the 47Ti and 4'Ti resonances. The electric q'uadrupole
moments of the two isotopes are not known but have
been estimated to lie in the range (0.3-0.4)X10 '4

cm2

The hcp structure generally produces nonvanishing
electric field gradients at the nuclear sites. The resulting
first-order quadrupole broadening of the nuclear-reso-
nance spectrum (I) rs) in powder specimens is particu-
larly large in titanium metal. This undoubtedly ac-
counts for the fact that the nuclear resonance. has not
been observed previously in this metal. Figure 4 shows
an experimental spectrum obtained at a frequency of
12.500 MHz and a temperature of 1.95'K using rf
pulse widths of 20 ttsec. (Experiments with 100-ttsec
pulse widths yielded identical results within the experi-
mental uncertainty. ) The data points represent meas-
ured echo intensities as a function of magnetic field
strength. Each point is an average of three independent
photographic observations. (Typical echos are shown
in Fig. 5.) A time interval of 2 min separated successive
"shots. " The most prominent feature of the spectrum
(Fig. 4) is the strongly peaked central portion which
presumably corresponds to the +is- -—ts transitions
of 4~Ti and 4'Ti. The total number of satellite pairs

'OThis technique was suggested to the author by Professor
M. Seger and Professor W. G. Clark.

"' C. D. Jeffries, Phys. Rev. 92, 1262 (1953).» M. J. Weber and R. R. Allen, J. Chem. Phys. 38, 726 (1963).

expected for 4'Ti (I=—', ) is two, while the corresponding
number for 4'Ti (I=sr) is three. The Grst-order shifts
of the satellites for a symmetric field gradierit q are
conveniently expressed for any spin I in terms of the
quadrupole frequency"

3

2I(2I—1)
' (4.1)

where Q is the nuclear electric quadrupole moment. The
frequency shift of the peak. s in the powder pattern
associated with m~m —1 transitions is given by

t &'& =-',
(hatt

——',) t q. (4.2)

The closest-spaced pair of satellites is reasonably well
resolved in the observed spectrum. The splitting is
approximately 2.3 koe. The remaining pairs are con-
tained in the broad wings of the spectrum. The shift
of the central transition toward higher fields relative
to the mean position of the satellites is due to second-
order quadrupole effects.

The observed quadrupole structure cannot be inter-
preted with complete certainty since the ratio of the
electric quadrupole moments Q4i/Q's is not known. The
partial resolution of the satellite spectrum suggests,
however, that the respective quadrupole frequencies
vq are either nearly identical or integral multiples of
one another. This follows from (4.1) since the factor in
brackets has the value 3/20 for I=-,' and 3/42 for I=
~. Thus, if the quadrupole moments of 4'Ti and 4'Ti are
approximately equal we can assign the closest-spaced
satellite pair to the "Ti (&ra&-+Ass) transitions. The
wings of the observed spectrum contain the remaining
satellites in three distinct sets which are not resolved,
however, in the present experiment. The first set con-
sists of the 4'Ti (&ts---Ass) and "Ti (Ass+-+Ass) transi-
tions. The next set arises from the 4'Ti (&ss~~7s)
transitions while the @Ti (Ass- -Ass) transition's give
rise to the satellite pair having the largest splitting
(9.2 kOe). The calculated spacings and intensities of
the satellites based on the above assignments are in
satisfactory agreement with the observed spectrum if
Jt 'e'qQ'r~~h 'e'qQ4'~7. 7 MHz. This assignment is sup-
ported by the magnitude of the observed second-order
broadening and shift of the +', - - ——', transitions. The
calculated second-order splittings are 0.60 kOe (irTi)
and 0.28 kOe ( Ti), while the calculated shifts of the
high-field component are 0.38 kOe ("Ti) and 0.17 kOe
('sTi). These values are quite consistent with the
observed asymmetry of the central component. Another
possible assignment is obtained by assuming that the
&',----+~ transition of the two isotopes nearly coincide.
This requires h 'esqQ4'~~3. 7 MHz and i't ' 'eq4Q'~~.77
MHz and thus a factor-of-2 difference in the quadrupole
moments which appears somewhat unlikely. This

"See M. H. Cohen and F. Reif (in Solid State Physics, edited
by F. Seitz and D. Turnbull (Academic Press Inc. , Near York,
1957, Vol. S,j for an excellent review of nuclear quadrupole
effects in solids.
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assignment also fails to account for the large second-
order shift of the central transition.

The Knight shift in titanium metal can be estimated
from the center of gravity of the satellite spectrum. We
obtain E= (+ 0. 4& 0. 2)%. This value is consistent
with the observed position of the central transition. In
view of the noncubic symmetry of titanium the Knight
shift contains both isotropic (E;„)as well as anisotropic
(E ) terms ".(In general, ( E;„[&[ E, (.) Unfor-
tunately, these contributions could not be distinguished
in our experiments because of the complexity of the
resonance spectrum.

B. Spin-Spin Relaxation

The observed transverse relaxation times T2 in
titanium metal are much longer than the calculated
rigid-lattice dipolar relaxation time of approximately
6 msec. Of course, the calculated value of T2 is only
valid in the absence of inhomogeneous broadening. In
titanium, however, the diferent 5m=&1 transitions
are completely detuned (except in crystal grains for
which |l=cos ' 3 'I') and energy conservation require-
ments therefore limit simultaneous nuclear spin-Qip
transitions to pairs of adjacent levels. The probability
of such transitions occurring is thus greatly reduced,
and T2 becomes quite long. The experimental transverse
relaxation times were obtained for the central part of
the quadrupole spectrum from measurements of echo
phase-memory decays. The echo amplitudes were found
to decrease nearly exponentially with increasing pulse
separation r in a two-pulse sequence. The 1/e, times of
the echo intensity-versus-2w plots were somewhat de-
pendent on rf pulse amplitude and varied between 100
and 200 msec. No temperature dependence was detected.

C. Spin-Lattice Relaxation

As mentioned earlier, the severe quadrupole broaden-
ing of the titanium resonance interfered seriously with
the measurement of the spin-lattice relaxation time
Tj. Figure 6 summarizes some of the experimental data.
The recovery of the nuclear magnetization only fol-
lowed an exponential time dependence when the hoist
technique was applied Lease (A)j, since it was impossible
in the present experiments to achieve an initial state of
unique spin temperature by rf saturation techniques.
In the temperature range 1—4'K, the relaxation time
was found to be inversely. proportional to the absolute
temperature with

T~T=150 sec 'K.

The estimated uncertainty is &15%.Although most of
our relaxation experiments were restricted by signal-to-
noise considerations to the central transition, a few
measurements were also made on the satellite transi-
tions. Within our experimental error the measured

' See, for example, W. H. Jones, Jr., T. P. Graham, and R. G.
Barnes, Phys. Rev. 132, 1898 (1963).

satellite relaxation times, as determined by the hoist
technique, were the same as for the central transition.

It is of interest to examine the behavior of the re-
laxation curves following rf saturation of the central
transition. The solid curves in Fig. 6 are theoretical
predictions for diferent initial states of the nuclear
spin system. The details of the calculations are given
in the Appendix. Curve (C) assumes a very short comb
of suKcient spectral purity to saturate completely the
+-,'+-&—istransitions of both isotopes but have no effect
on the populations of the other spin levels. Curve (B)
assumes a comb of sufhcient duration to allow the
populations of the

~

m ~&s levels to attain thermal
equilibrium with those of the

~

nz
~

= silevels. In other
words, immediately after the comb, the +-is- - ——',

transition is saturated (infinite-spin temperature)
while the population diGerences between all other pairs
of adjacent levels are determined by the lattice tem-
perature. This assumes, of course, that spectral spin
diffusion due to cross relaxation between diRerent
intervals can be ignored. The data associated with the
calculated curves were obtained as follows: (B) comb
duration T~, comb composed of 100 8-@sec pulses;
(C) comb duration 0.1 sec, comb composed of 40
10-psec pulses. The agreement between theory and
experiment is extremely good for (C) . The agreement
is somewhat poorer in the case of (B), presumably
because the comb did not quite yield the assumed
initial state of the spin system. It is likely, for example,
that the comb raised the spin temperature of the
(+s, &s) level pairs to some extent. This follows from
the fact that the length of the comb would have been
insufficient to thermalize the satellite transitions if
only spin-lattice relaxation processes had been available
to redistribute the spin populations. The neglect of
spectral dif/usion during the recovery period, on the
other hand, is justified since even the initial relaxation
rate was observed to be directly proportional to the
lattice temperature. The eQ'ectiveness of spin-spin re-
laxation processes is therefore limited to the establish-
ment of a Boltzmann distribution for the relative
populations of adjacent spin levels. The recovery of
the multilevel spin system as a whole toward internal
equilibrium characterized by a single spin temperature
is dependent on spin-lattice relaxation processes.

The qualitative difference between cases (B) and

(C) is of considerable practical importance when the
hoist technique (or equivalent technique) is imprac-
tical. In many experimental determinations of Tj
accurate measurements of the recovery curves are
limited to approximately the first decade because of
limited signal-to-noise ratios. In this range the non-
exponential behavior of (C) is not very evident. It is
then easy to mistake the observed recovery for the true
spin-lattice recovery M(t) /M( ~ ) cc 1—exp( —t/Ti) .
Such an error resulted in a preliminary value'5 of T~T

I A. Narath, Bull. Am. Phys. Soc. 11, 220 (1966).
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for titanium metal which is much smaller than that
obtained in the present work. The same dif5culties have
been encountered for the hexagonal Group-III transi-
tion metals scandium ( sSc'.I= s; h 'e'qQ=2. 0 MHz ' )
and lanthanum ('s'La: f'= ~~ )I 'esqQ =7.8 MHz 'r).
Measurements of T& for yttrium's (Y:I=sr tr 'e'qQ=0)
gave surprisingly long relaxation times when compared
to the reported values" for the other two metals in this
group. Making use of experience gained in our study of
titanium we have remeasured TJ in these metals and
have obtained relaxation times which are about an
order of magnitude longer LTtT("Sc) =1.6 sec 'K,'
T&T('ssLa) =0.58 sec 'K'sj than the previous values.
Under conditions of extreme inhomogeneous broadening
it is therefore of great advantage to make use of case
(B).The initial recovery is then quite nonexponential
and the asymptotic limit is reached much more quickly
than in (C) . If the second-order quadrupole broadening
is small it may be more convenient to achieve case (B)
by means of cw saturation of the central transition for a
time equal to several T&'s than to rely on extremely
long-rf combs.

V. DISCUSSION

A. Quadrupole Interaction

The quadrupole coupling constant t's 'e'qQ4'4s 7.7
MHz in titanium metal is surprisingly large. For exam-
ple, in scandium metal Jr 'e'qQ4s=2. 0 MHz, 's with
Q4s~0.2&&10 s4 cms. s' If Q47 4'~0.4&(10 s4 cm' the
electric ield gradient q would still have to be twice as
large in titanium as in scandium. Three important
contributions to q are commonly recognized in metals. 2'

The first is the direct lattice field gradient (q&,«) which
arises from the incompletely screened positive-ion cores.
A second contribution (q~.,) is believed to arise from
the nonspherical distribution of conduction electrons
within the atomic volume surrounding the nuclear
site. Finally, one needs to consider the contribution
arising from the closed shells which become distorted
under the inQuence of the nonspherical potential asso-
ciated with q&,«and q&„. This contribution is usually
expressed in terms of the Sternheimer antishielding
factors" y and Eo, respectively. The total 6eld gradient
may therefore be written

'6 R. G. Barnes, F. Borsa, S. L. Segel, and D. R. Torgeson,
Phys. Rev. 137, A1828 (1965).

» A. Narath {tobe published).
'8A. T. Fromhold, Jr., and A. Narath, Bull. Am. Phys. Soc.

10, 606 (1965)."Y.Masuda, J. Phys. Soc. Japan 19, 239 (1964).' A. Narath and A. T. Fromhold, Jr., Phys. Letters 25, 49
(1967)."G. Fricke, H. Kopfermann, S. Penselin, and K. Schlupmann,
Naturwiss. 46, 106 (1959)."R. K. Watson, A. C. Gossard, and Y. Yafet, Phys. Rev.
140, A375 (1965)."R. Sternheimer, Phys. Rev. 84, 244 (1951).

where (1—p„) is approximately +8 for both scandium
and titanium and 1—Rg is probably near unity. The
magnitude of q&,«may be estimated by interpolation
of de Wette's'4 numerical results for the hcp lattice.
Using c/a=1.601 and a=2.953 X for titanium, we find
Z 'qt, «=+5.7X10" cm ', where Z is the effective
charge of the ion cores. This value is essentially identical
to the value Z 'q&,«=+5.0&10" cm ' reported by
Barnes et at." for scandium (c/a=1 593.6, a=3.309 A.).
If one makes the naive assumption that Z is equal to the
number of valenceelectronsLZ(Ti) =+4,Z(Sc) =+3j,
one obtains a value of 1.5 for the ratio q&,«(Ti) /q&, «(Sc) .
This is fortuitously close to the required ratio. Actually
the ion-core charge is probably much smaller than
assumed above because of the strong localization of the
d electrons. Furthermore, even for the extreme choice
of Z =+3, the calculated quadrupole coupling constant
in scandium has a value which is only 44% of the ex-
perimental va1ue." It appears, therefore, that the
observed coupling constants must be dominated by
q&„. Since this quantity cannot at present be calculated
it is not possible to draw further conclusions from our
data.

B.Spin-Lattice Relaxation

We now return to the main topic of this paper,
namely, the nuclear spin-lattice relaxation behavior of
hcp transition metals. In this section, we apply the
theory developed in Sec. II to the experimental relaxa-
tion rate of titanium metal. Because of the large number
of parameters which are contained in the theoretical
rate equation (2.25), it is, of course, not possible to
obtain a unique Gt to the experimental relaxation rate.
Our aim instead is to estimate the acceptable ranges
for the least known parameters and in this way examine
the sensitivity of the calculated rates to changes in the
various parameters.

The relevant hyperfine 6elds for titanium metal are
listed in Table I. They were estimated in the following
way. The orbital hyperfine field per unit orbital angular
momentum is given to a good approximation by
Hhf &" & =—&,5(r ), as noted earlier, and (r s) repre-
sents an average over the radial distribution of the 8
electrons near the Fermi surface. We assume that
(r ') may be approximated by its value in the neutral
titanium atom. ss The core-polarization hyperfine field
per electron can be estimated because of the near
constancy" of Hhf, &+ among 3d transition-metal ions."

~4 F. W. de Wette, Phys. Rev. 123, 103 (1961).~ A. J. Freeman and R. E. Watson, in Magnetism, edited by
G. T. Rado and H. Suhl (Academic Press Inc. , New York,
1965), Vol. GA, Chap. IV.

~ A major uncertainty arises, however, because of the unknown
contribution to IIhf, () from the d-spin exchange polarization of
the 4s component of the conduction electrons. This contribution is
presumably positive (Ref. 25) and would thus have the effect of
reducing the absolute magnitude of Hsf, &+. LSee for example'/the
discussion by %. E. Gardner and J. Penfold, Phil. Mag. 11, 549
(1965).g Because of the uncertainties involved we ignore this
effect here.
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Finally, we obtain an approximate value for the contact
hyper6ne 6eld by adjusting an earlier estimate for
vanadium metaP according to known trends in the
magnitude of Hhf, ~'~ among 3d atoms.

The density of states at the Fermi level, for one
direction of the spin, may be calculated in the inde-
yendent-particle approximation from

X(0) =-,'(n.kii) 'y, i, (5.2)

where y, ~ is the electronic specific-heat coefficient. Using
.the specific-heat data of Kneip et al.' and Dummer, "
we find E(0) =4.43X10"erg ' atom '.

Thus the problem of calculating the relaxation rate
has been reduced to a determination of (1) the s/d
ratio, (2) the orbital admixture coefficients x and y, (3)
the electron-phanon enhancement of the electronic
specific heat, and (4) the magnitude of the s-d inter-
ference term (2.41). In the absence of interference
.eGects, the total relaxation rate is given by the sum of
the indivi'dual magnetic hyper6ne contributions. These
contributions are proportional to

I, =2lgy 2Il'Bp+(0) H& f (a)j2 (5 3)

so that the total rate may be written as

R=Gt pm+L6t K "&+% (K &'&+K b&'& sin'8) j

The dipolar term has been ignored in (5.4) because of
its small magnitude. Values of S; computed on the
basis of the above hyperfine-field estimates are listed
in Table I. A comparison of the calculated values of (R;
with the experimental rate R,„,=0.0067 (sec 'K)
reveals immediately the strong transition-metal charac-
ter of titanium since the calculated rate would exceed
,the experimental rate by two orders of magnitude if
p =1.Even in the limit p =0, the rate would be grossly
overestimated were it not for the reduction factors in
(5.4) . The effect of these factors is illustrated in Fig. 7

which shows the dependence of the d-electron rate /the
bracketed term in (5.4)j on the orbital admixture
coeKcients. Since the experimental measurements were
carried out on a powder, the sin'OK„b&'& term in (5.4)
was replaced by its average value 3K„b& &. This sim-

pli6cation is justified by the fact that anisotropy in the
orbital relaxation rate would probably have escaped
detection in the present experiments.

Figure 7 reveals two striking features. In the 6rst
place, the calculated rates are seen to be strong func-
tions of the orbital admixture parameters. Secondly, the
calculated d-electron- rates exceed the experimental rate
for most values of x and y. Thus, even in the unlikely
event that p~0, agreement with experiment can only
be:achieved over an extremely lirriited range of x and y

values. In fact, it appears that p 0.1 is a more appro-
priate choice for titanium. For example, combining an
estimate for the orbital magnetic susceptibility of
titanium (g& v=73X10 ' emu/mole) given by Shimizu
et al."with the orbital hyperfine 6eld in Table I accord-
ing to

E;=(p»Ã) 'Hhi, &'&x;, (5.5)

where E is Avogadro's number and p~ is the Bohr
magneton, we obtain E~& +0.2——0%. This value is in
essential agreement with our measured value of the
total Knight shift E=+0.4+0.2%. Since E,=+1.4%
for p=1(x,i,;„=81X10' emu/mole" ), it is apparent
that the contact shift must be nearly cancelled by the
core-polarization shift. Since ~Hhi. &"&/H&, f.&'

~

0.1 we
are immediately led to the conclusion that p 0.1 as
stated above. For this value of p we calculate 8,=
0.008 (sec 'K) ' which is somewhat faster than the
experimental rate.

The apparent discrepancy between theory and ex-
periment is probably a consequence of one or both of the
following eSects:

(1) The density of states lV(0) may have been
overestimated. A 40—70% electron-phonon enhance-
ment of the electronic specific heat would be sufhcient
to remove the disagreement.

(2) The d functions at the Fermi level may be pre-
dominantly of the Ai' symmetry type (i.e., small x).
Hence, if the s and d bands are strongly admixed at the
Fermi level the s-contact and d(Ai') core-polarization
contributions to the relaxation rate would largely
cancel one another. It is also possible, of course, that
one or more of the hyperfine fields were overestimated
by a significant amount. This explanation appears less
plausible, however, in view of the relatively large
positive Knight shift.

It is not possible, on the basis of available informa-
tion, to distinguish between the two alternative ex-
planations given above. In all probability, both e8ects
are important. In this connection it is significant that
Clogston' has obtained an estimate of 70% for the
electron-phonon enhancement of the electronic specific
heat of scandium. It would be somewhat surprising,
however, if the enhancement factor for titanium (whose
electronic specific heat is only one-third that of scan-
dium) had the same magnitude.

In conclusion, it has been shown that the detailed
nuclear-spin-lattice-relaxation behavior of hexagonal
transition metals is much more strongly influenced by
the symmetry properties of the d functions at the Fermi
surface than is the case in cubic transition metals. Two
additional diGerences arise because of the lower sym-
metry of the hexagonal lattice. These are (1) the
anisotropy of the orbital and dipolar relaxation rates

' G. D. Kneip, Jr., J. O. Betterton, Jr., and J. O. Scarbrough,
Phys. Rev. 130, 1687 (1963).

28 Q. Bummer, Z. Physik 186, 249 (1965).

~9M. ShiInizu, T. Takahashi, and A. Katsuki, J. Phys. Soc.
Japan 18, 1192 (1963).' A. M. Clogston, Phys. Rev. 136, AS (1964).
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and (2) the occurrence of destructive interference
between the contact rate and the d(Ai') component
of the core-polarization rate if the corresponding func-
tions are admixed at the Fermi level. Although this
increased complexity interferes with the detailed
interpretation of the experimental rates it should pro-
vide a stimulus for interesting future investigations. For
example, it appears feasible to obtain estimates of p,
and the orbital admixture coeKcients from known band
structures by means of tight-binding interpolation
schemes. 3' Reliable band structures for this purpose
obtained by either augmented-plane-wave (APW) or
Korringa-Kohn-Rostoker (KKR) methods are becom-
ing available. Finally, it would be of interest to measure
T~'s in single crystals of hcp transition metals in order
to detect the anisotropy of the orbital relaxation mecha-
nism.

quantity which is proportional to the magnetization of
adjacent pairs of spin levels

a„(t) =PI„(t)-n„,(t) j, (A2)

da (t)/dt=W g A„,„.a„.(t). (A3)

The nonvanishing elements of A are given by

A,„,~i $I(I—+—1) —nz(m+1) j,
A. ,

= —2tI(Iy1) —m(~ —1)],
A, i=LI(I+1)—(m —1) (m —2) j.

The solution of (A3) has the form

(A4)

(A5)

(A6)

the relaxation behavior of the spin system is specified
by the 2I coupled-linear-differential equations" "
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where the P /lV are the eigenvalues of A and the n are
components of the corresponding eigenvectors. Andrew
and TurnstalP' have obtained the general solution

APPENDIX
X /W= (ts+I) (m+I+1), (Ag)

We wish to derive expressions which describe the
relaxation behavior of the +'i-- & —2itransition for
nuclear-spin systems having I=~ and I=~ under the
assumption that the energy levels are unequally spaced
so that simultaneous nuclear spin-Qips involving two
different transitions are forbidden by energy conserva-
tion requirements. Furthermore, we assume that the
transition probability per unit time 8/', ~ due to
nuclear spin-lattice interactions is of the form

we find, using (A7)

O'mm'= Cmm'gm' p (A9)

gyp g (C )gg ~g ay@ (0)
mt'

(A10)

where m= I+1,~ ~ .,+I.—The normalization of the
eigenvectors is determined by the initial state of the
spin system. Thus, if we define a vector n according to

g, =ps(~ (~'
~

I+
~
~)

~ +I (~'
~

I—
~
~)

~ g (A1) where C ' is the inverse of C. Hence

n„„.=C„„.Q (C-')„.„"a -(0). (A11)The selection rule on m' is therefore m'=no~1. We let
1V„(t) be the population of the mth state at a time t and
Em the corresponding thermal equilibrium population. The C columns are therefore determined within a
The relative deviation from equilibrium may then be multiplicative constant. For the special cases of I=2
denoted by e (t) = $1V (t) —E 0)/P X 0. Defining a and I= ~~ we find+

~1.00000 1.00000 ]..00000 1.00000 1.00000

1.00000 0.50000 —0.25000 —1.25000 —2.50000

C (I 2) — 1,00000 0 —0.66666 0 3.33333

1.00000 —0.50000 —0.25000 1.25000 —2.50000

1.00000 —1.00000 1.00000 —1.00000 1.00000 (A12)

"F.M. Mueller, Phys. Rev. 153, 659 {1967).
"A. Sher and H. PrimakoG, Phys. Rev. 119, 178 (1960)."E.R. Andrew and D. P. Turnstall, Proc. Phys. Soc. (London) 78, 1 (1961).
"W. W. Simmons, W. J. O' Sullivan, and W. A. Robinson, Phys. Rev. 127, 1168 (1962).
~ The C matrix for I= 2 has already been given by Simmons et al. (Ref. 34). We reproduce it here for the convenience of the

reader.
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I 0.14285 0.22857 0.25714 0.22857 0.14285

0.35714 0.28571 0 —0.28571 —0.35714

C '(I= ~5) = 0.33333 —0.13333 —0.40000 —0.13333 0.33333 (A13)

0.14285 —0.28571 0 0.28571 —0.14285

0.02380 —0.09523 0.14285 —0.09523 0.02380

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 0.66666 0.16666 —0.50000 —1.33333 —2.33333 —3.50000

1.00000 0.33333 —0.33333 —0.60000 0.06666 2.33333 7.00000

C(I= 2V) = 1.00000 0 —0.50000 0 1.00000 0 —8.'/5000, (A14)

1.00000 —0.33333 —0.33333 0.60000 0.06666 —2.33333 7.00000

1.00000 —0.66666 0.16666 0.50000 —1.33333 2.33333 —3.50000

1.00000 —1.00000 1.00000 —1.00000 1.00000 —1.00000 1.00000,

0.08333 0.14285 0.17857 0.19047 0.17857 0.14285 0.08333

0.25000 0.28571 0.17857 0 —0.17857 —0.28571 —0.25000

0.31818 0.09091 —0.22727 —0.36363 —0.22727 0.09091 0.31818

C '(I=-,') = 0.22727 —0.19480 —0.29220 0 0.29220 0.19480 —0.22727 . (A15)

0.09615 —0.21978 0.01373 0.21978 0.01373 —0.21978 0.09615 '

0.022/2 —0.09091 0.11363 0 —0.11363 0.09091 —0.02272

0.00233 —0.01398 0.03496 —0.04661 0.03496 —0.01398 0.00233

Therecoveryof the+', - - —-', magnetizationistherefore abundances of 4"Ti and 4'Ti, respectively. The initial
given by conditions on which the three curves were based are as

followsI—2, aJ/2 (t) —Qy/2, 3/2 exp ( —2Wt)

+ ( —12Wt)+ ( 30Wt) —(A16) (A) a (0) = —&(m —
&) (hvar/AT),

I= 2:ag/2(t) =ay/2 g/2 exp( —2Wt)

+num, g/2 exp( —12Wt)

+(X1/2, 3/2 exp( —30Wt) +~1/2, 7/2 exp( —56Wt), (A17)

(8) a~/2(0) =e, all others zero,

a y/2(0) =am', (0) = —
2e&

all others zero,

where the n, ~ coeKcients are obtained from (A11). where e=~ &„%II//k+T ~. We note that only (A) yields
The theoretical curves in Fig. 6 were obtained by corn- the normal single exponential behavior with T~ =28',
bining (A16) and (A17) in the ratio of the natural independent of the magnitude of vq.


