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In conclusion, the present work shows that different
site spectra may appear in CaF2'.Gd'+ crystals, which
have been grown in different ways. The effect of heat
treatment was also demonstrated. These results seem
to rule out generalizations such as those made by Kiss
and Staebler, 4 according to which in all CaF2 doped
with rare earths, the thermoluminescence is due to rare
earth in cubic sites only. On the other hand, our results
seem to be parallel to those of Makovsky, ' who studied
the fluorescence of this material. As for the general glow
curve, the various glow peaks do not seem to appear at
identical temperatures in different crystals. Neverthe-
less, one is tempted to assume that the trapping sites
are characteristic of the host lattice, as is the case in

the alkali halides. " Since our proposed mechanism for
the thermoluminescence would assume these sites to be
in close proximity to the rare earth, it is not unexpected
then that these sites are inQuenced by the different
symmetries surrounding the rare earths, thus causing
changes in activation energies from crystal to crystal.

Finally, it is intended to extend the present work to
CaF2 doped with other rare earths.
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A 6rst-principle calculation of core-annihilation enhancement factors in sodium and aluminum is
presented. The computations are based on a previously developed theory whose numerical results had
formerly been only crudely estimated. The core electrons are treated in the tight-binding approximation
using atomic wave functions appropriate to the metallic state. The conduction-band states are taken to
be single orthogonalized plane waves. The central core-conduction matrix element of the theory is evaluated
with one computational approximation: a simplifying angular average. The enhancement factors obtained
have a weak momentum dependence, so the shape of the core contribution calculated without correlations
is unaGected. The enhanced contribution of the orthogonalization parts of condlction-electron wave functions
remains to be evaluated, so that comparison of our results with experiment is not completely unambiguous.
With this reservation, however, the agreement on the whole is satisfactory for both distributions and total
lifetimes.

I. INTRODUCTION

N a previous paper' a theory of positron annihilation
- - was derived, which included band-structure effects
while accounting partially for correlation effects be-
tween the annihilating electron-positron pair. The work
was based on a summation of a select infinite subset of
Feynman graphs in the perturbation expansion of the
electron-positron Green's function. It is a space-time
contraction of this two-body Green's function which
determines the annihilation rate in a nonrelativistic
system of electrons and positrons. The graphs summed
were the ladder diagrams; this approximation was
originally introduced, with considerable success, by
Kahana in a discussion of lifetimes in an electron gas.
Since then it has been analyzed more critically by
Carbotte and Kahana' and refined by Bergersen4 and
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2 S. Kahana, Phys. Rev. 129, 1622 (1963).' J. P. Carbotte and S. Kahana, Phys. Rev. 139, A213 (1965).
4 B. Bergersen, Ph. D., Brandeis University, 1964 (unpublished).

by Carbotte. ' These refinements of electron-gas theory
will not concern us directly here (we will return to
them brieRy in the last section). They represent only
secondary corrections to the main ladder contribution.
Also, electron-gas results cannot be taken over directly
to the case of core electrons. More important, the ladder
graphs have not, as yet, been properly evaluated for
core electrons although from the crude estimate sup-
plied in Ref. 1 they are known to give important correc-
tions to the independent-particle model (I.P.M.)
extensively used in past discussions of this problem. ' "
The purpose of this paper is to carry out a computation
of ladder corrections.

It is not dificult to understand, at least in a general
way, the relevance of the ladder approximation to the
calculation of lifetimes. The 6rst point to realize is that
for an arbitrary system of low-energy electrons and

' J. P. Carbotte, Phys. Rev. (to be published).
6 S. Berko and J. S. Plaskett, Phys. Rev. 112, f877 (1958).
7 E. Daniel, J. Phys. Chem. Solids 6, 205 (1958).
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D. Turnbull (Academic Press Inc. , New York, 1960), Vol. 10.
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positrons, the annihilation rate is directly proportional
to the electronic density at the positron site. This
quantity must clearly depend strongly on the short-
range correlations between the annihilating pair. Thus,
it would seem essential to include, in any given
approximate calculation, at least all the multiple
scatterings of the electron-positron pair off each other,
i.e., sum the particle-particle ladders. The zeroth-order
term in this series gives the I.P.M. The remainder
represent corrections. Ke should, perhaps, be more
explicit.

In the I.P.M. the positron is taken to propagate
through the medium influenced only by the average
Hartree Geld of the electron-plus-ion system. The
contribution to the annihilation rate of a given tight-
binding-core electron is then given by the overlap of
its wave function with the positron Bloch state. This
procedure, while simple, ignores much of the important
correlations, and accounts for the direct Coulomb force
between the positron and annihilating electron only
in an average and trivial way. This attractive force
certainly inQuences significantly the relative motion
of the pair in their center-of-mass system and must lead
to a signiGcant increase of the electronic density at the
positron over that computed on the I.P.M. The factor
characterizing this increase in electronic density is
called the enhancement factor for the pair. For the
conduction band these factors can be quite large, of
order 10 in sodium. Although, in this case, they depend
somewhat on the total center-of-mass momentum of the
pair, they are mainly a measure of the coherence in their
relative motion.

It is not necessary to stress here that the rather large
enhancement factors derived for the conduction elec-
trons are due in part to their free-electron nature. That
is, they easily readjust to the positron presence. On
the other hand, core electrons are not so free. Their
motion is dominated by the screened nuclear Geld of
their respective ion so that the positron Coulomb Geld
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Pro. 2. The k dependence of the quantity G(k~k, rl entering Fq.
(5.4). The complex structure from the orthogonalization parts
smooths out for sufhcient large k.

represents a less serious perturbation in this case.
Smaller enhancement factors should result. They are
nevertheless significant.

The starting point of this paper will be the formula
for core annihilation obtained in Ref. i within the
ladder scheme. As derived, this formula is valid only
for simple metals so that we will limit the discussion to
sodium and aluminum. In these metals the core func-
tions do not overlap appreciably and a single ortho-
gonalized plane wave (OPW) gives a reasonable de-
scription of the conduction band. In Sec. II, the basic
expression for core annihilation is first described in
some detail and then simply written down. Contact
with the conventional I.P.M. of Berko a,nd Plaskett is
made. Section II is concerned mainly with the necessary
preliminaries to the evaluation of the correlation correc-
tion to the I.P.M. In particular, the OPW's for the
conduction band are introduced. The expression for
core annihilation is reduced to a form appropriate for
numerical work in Sec. IV. A number of approximations
are necessary to make the work tractable but we believe
these not to be critical. The numerical work is described
in Sec. V where some of the intermediate results are
also presented. The enhancement factors obtained are
given in Sec. VI where we draw conclusions and com-
pare theory with experiment.

II. FORMULA FOR THE PARTIAL RATE R[p]

L
10. 20.

Momentum in unit s of pF

30,

Pro. 1. Solution of the integral equation (5.6) for the amplitude
X."'(y,k) as a function of momentum k and for a number of y
values. Notice that X"'(y,k) is defined only for k& 1, i.e., above
the Fermi surface.

The prescription for the partial rate RLpj (i.e.,
annihilation with emission of a p-ray pair of total
momentum p), derived in Ref. 1 for core electrons, can
be described as follows. It is proportional to the absolute
square of the sum of two terms; the first gives the
I.P.M. result and is the yth Fourier component of the
core electron and positron single-particle wave-function
overlap. The second term is a correction which describes
at least approximately, the correlation in the relative
motion of the annihilating pair. Although the structure
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band, m is the magnetic quantum number, and s is the
crystal momentum restricted to the first Brilliun zone)
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of this contribution is fairly complicated, it can still be
understood in a qualitative way.

First, it is proportional to a matrix element between
a single-particle core state and an unoccupied conduc-
tion state. This matrix element arises because of the
possible virtual excitation of the core electron to the
available states above the Fermi surface induced by
the positron force. The positron must of course "follow
along" and hence there should also appear in the ex-
pression for EQ)g a positron-positron matrix element
describing a transition from the lowest-energy Bloch
state to an excited state. This matrix element, however,
can be evaluated with little error using plane waves and
hence does not appear explicitly in Rgj. Alternatively,
one can think of it as having been absorbed in the en-
hancement factor which multiplies the basic conduction-
core matrix element. This enhancement factor further
contains the screened electron-positron potential caus-
ing the various transitions and appropriate energy
denominators.

If one were content to treat the electron-positron
attraction in Born approximation, it would not be
necessary to solve an integral equation for the enhance-
Inent factor. Unfortunately, this is not justi6ed. ' The
necessary integral equation is, however, relatively sim-

ple because it refers only to further repeated scatterings
of the annihilating pair once the electron has made a
transition to the unoccupied part of the conduction
band as a result of a 6rst interaction. Only conduction-
conduction matrix elements enter in the description
of such further scatterings. These can again be evaluated
with only minor errors using plane waves at least for
simple metals.

The work of Ref. 1 will not be discussed further here.
It is hoped that the above brief description of the basic
expression for core annihilation is sufBcient to convince
the reader of the reasonableness of the starting formula
which we now specify in detail. The contribution to the
partial annihilation rate R[pg from a core electron in
the state

I nlm;sj (where the nl index refers to the
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FIG. 4. The p dependence of the function S"'(p,r) for the 2p
shell. The lack of oscillations implies that the correlation correc-
tions have much the same variation with r as the I.P.M. term.

In Eq (2.1. ) Y is the volume of the crystal and li is a
proportionality constant defined in Ref. 1. The en-
hancement factor e~"'(k) will be specified later. In the
electron-positron overlap integral (2.2) 4'i„i,,i (x) is
the single-particle Bloch state for the core electron
Lnlm;s), and the wave function C's(x) is the lowest-
energy positron Bloch state. In determining Cs(x) the
potential seen by the positron in any given %igner-
Seitz cell is taken to be the sum of the Hartree 6eld of
the ion core in that cell, of net charge Z, plus the poten-
tial coming from Z conduction electrons uniformly
smeared throughout the cell, so as to neutralize it.
Treating only this 6rst term in (2.1) leads to the
Berko-Plaskett theory of core annihilation.

In the electron-electron matrix element (2.3), Vp, i (x)
stands for an unoccupied state in the conduction band
which we will describe by a single orthogonalized plane
wave (OPW) . The sum over the momentum label k in
(2.1) extends over all possible such unoccupied states,
i.e., over all OPW's

I lt) with
I

ir
I

greater than the
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Fio. g. The overlap integrals g i+(v) for the 2s (a) and 2p (b) electronic shells showing the similarity of the J to the J+ te~.

e "'(k) =X "'(k) 8(k-kp)
N. (p —&), (2 4)

k'+(p —k)'+a„r ' 4'i„&,,l(x) =N 'I' g exp(is R„)U i (x—R.), (2.6)

Fermi momentum kp. The enhancement factor e~"'(k) because core functions are largest where conduction-
multiplying the matrix element (2.3) in Eq. (2.1) can state wave functions are smallest and vice versa.
be written in the form For the core function %i„i,,& (x) we can use a tight-

binding sum

where the amplitude X,"'(k) in general, satisfies an
integral equation. Treating the electron-positron scat-
tering process in Born approximation, however, corre-
sponds to taking X~"'(k) = 1. In Eq. (2.4), we are using
units such that A, =2m=1. Also, we have made a quad-
ratic approximation for the single-particle energy
associated with the OPW

~
k). A similar approximation

was used to describe the positron energy at the bottom
of the 1s band. The parameter h„~, appearing in the
energy denominator of (2.4), is just the energy gap
between the el core level and the bottom of the 3s
conduction band. The theta function 8(k —ki ) is a step
function of value 1 for k)kg and 0 otherwise. This
ensures that the only allowed electronic transitions are
to OP%'s above the Fermi surface. Finally, the poten-
tial function u, (q) appearing in (2.4) is the zero-fre-
quency component of the space-time Fourier transform
of the eRective electron-positron force in the random-
phase approximation.

The prescription for core annihilation derived in Ref.
1, which is the basis of this paper, is now completely
specified provided the amplitude X,"'(k) is known. It
satis6es the integral equation

where S is the number of primitive cells in the crystal
while the R„vectors specify their positions in space. The
atomiclike wave function U„i (x) centered about x=0
can be written as

U-i-(x) =L&-i(r) /r]Vi-(&)

where Fi (i) is the (lm) th spherical harmonic referred,
for the moment, to some general coordinate system, and
I'„i(r)/r is the radial part of the core wave function.
The E„i(r) were taken from the Hartree-Pock-Slater
calculation by Taylor. ' Introducing the tight-binding
sum (2.6) into Eq. (2.1) yields

Ri"' "Q)$=—
~

—
~

8,~,, de U„i (x) exp( —ip.x)
V &V)

2

&&i"(x)+V- Z -'(k) .*(.)3, (2.~)

where ~ is a reciprocal lattice vector and the functions
vo(x) and Na(x) have their usual meaning, namely

C'o(x) = (1/V'") eo(x)

XN. (k—k') . (2.5)

The task now is to evaluate (2.1).The most awkward
part is to make a reasonable calculation of the core-
conduction matrix element (2.3). This difficulty arises

Denoting by R"Q)j the contribution to the partial
annihilation rate coming from the sum of all the core

' Roger Taylor (private communication).
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tion of the OPW to the core states is achieved by
requiring that

(e,„, „~OPW:lr')=0. (3.3)

O
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c
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electrons in the nl band we get from (2.7)

gnl+7 g g[nhn;8]gj
ts— 2

d'x U„i„(x) exp( ip x—)

FxG. 6. The contribution of the core electrons to the two-
photon counting rate for both Na and Al. The enhanced curves are
nearly simple multiples of the I.P.M. curves.

For k'~k+x, where x is any inverse lattice vector,
condition (3.3) is automatically satisfied because of mo-
menturn conservation. Since from (2.6) it is clear that
+~„~~.~+„~=4t„~~.~~, we need only consider the case
k'=k. For a metal in which cores do not overlap signifi-
cantly, condition (3.3) then reduces to

1B„.i „,g —— „d'y U*„.i. (y) exp(zk y) . (3.4)
0

To evaluate this integral, it is convenient to make a
spherical harmonic expansion of the exponential

exp(zlzz x) g 4zl (z) Fpl~zl (/Q)jpz ($r) F its g~ (Q)

(3.5)

where the spherical harmonics I'~" " are to be referred
to the same general coordinate system as that used to
write down the core functions U„~„(x) in the previous
section. In (3.5) the j&'s are the spherical Bessel func-
tions of order /. Substituting expression (3.5) into (3.4)
gives

P~,(x)+V- g;- (lr) N,*(x)), (2.8) B„i „,j, 4zr(i) "F*.i „——.(k) 2„.(.(k) (3.6)

where 0' is the volume of a primitive lattice cell and
0'/Z is the volume per conduction electron.

III. RIy1 ON A ONE OPW MODEL

00

A„&.(k) = rdrj i. (Izr) P„&.(r),
n,»2 , (3.7)

The second term appearing in formula (2.8) repre-
sents a correction to the Berko-Plaskett theory due to
correlations between the annihilating pair. To evaluate
it one needs to know the single-particle states for the
conduction as well as higher bands. For metals like
sodium and aluminum, it is generally accepted that a
single OPW gives a reasonable description of these
states. Such wave functions are plane waves to which
one adds a core admixture so as to make them ortho-
gonal to all core functions. We can write

[ OPW:Ir) =1', 'LV '" exp(zir x)
—Z B 'i';i+~ i ',~i(x)j (31)

we find

2l'+1 = Z Fi-(*)F*~-(*),
4x

(3.8)

( lVk ~'=1—/4zr(2l'+1)
~
A„(k) ~'. (3.9)

which de6nes the orthogonalization coefficients a,s
integrals over the core Hartree-Fock-Slater functions.

The normalization condition (3.2) can easily be
expressed in terms of the coefficients A„i(k) . After some
simple algebra involving the completeness sum for
spherical harmonics

The OPW (3.1) is now completely defined and the
where Ei, is a normalization factor determined by corresponding reduced wave function ui, (x) can be
insisting that expanded to read

(I:OPW
i
OPW:I )=1. (3.2)

In Eq. (3.1) the B„i.„,.q's are called the orthogonaliza-
tion coefficients and the +~„i.,q~(x)'s are the tight-
binding sums for the core electrons as previously
de6ned except that it is now convenient to use an ex-
tended rather than a reduced zone scheme on the momen-
tum index k which is now unrestricted. Orthogonaliza-

Ng(x) = $1 4nQO" Q—Q. (i)"
c&QAf a„n~t~m~

Xexp( —zk (x—R„)jF*i„.(k)A„p(k) U i„(x—R„)$,

(3.10)

where use was made of Eqs. (2.6) and (3.6) .
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Note that the atomiclike function U„~ (x) enters as
a multiplicative factor. Since we have assumed this
function to be well localized inside the Kigner-Seitz
cell, we will need Nz(x) only about @=0, i.e., only in the
primative lattice cell deined by R„=O. Thus, we need
retain only the 6rst term in the lattice sum (~„)
appearing in Eq. (3.10); for x about the origin then.

zzg(x) =—[1—4zr&o'" exp( —zk x) Q (i) "F*/ „(lc)
nebiim~

XA„ / (k) U„(„(x)]. (3.11)

Substituting this last expression into the second term
of (2.8) yields

V Q o "'(k)N* (x) = V ' g o "'(k) —[1—4zr&o'"
k k +k

Xexp(zk x) g (—i) "V& „(k)2*„,(k) U*„.&. ..(x)].

c
C

O
CP

(—i)" dQq expik xP'~ (fo)

XA*
~ (k)U* ~„'(x)], (3.13)

where it was not necessary to introduce explicitely the
spherical average of the enhancement factor. Expanding
the plane wave exp(ik x) that remains in (3.13) accord-
ing to Eq. (3.5), one obtains for the right-hand side

V—z P & n/(k) [1 Q 1/2

k

X Q 4zr&i ~ (&)ji (&r) &*o v(&) U*~ i m (x)]&o '

(3.12)

A great simplification would occur in this last equation
if we replaced the enhancement factor o„"'(k) by its
spherical average over the angles of k since it would
then be possible to use the angular integration dQk to
simplify the second term in (3.12) . This approximation
seems intuitively reasonable since one does not expect
the enhancement factor oo"'(k) to have a strong direc-
tional dependence on the vector k. In any case, retaining
this directional dependence would make the Anal
numerical work painfully complex. For the moment, we
propose to simply make the necessary spherical average.
Its effect on the calculation will become clear later. It
is worth pointing out in passing however, that the
procedure is exact for the 6rst term in the square
bracket of (3.12) so that we are treating, in this ap-
proximate way, only the orthogonalization corrections.
Incorporating this idea into Eq. (3.12) yields

V—1 g & nt(k)zzo (x) —V—1 g & nl(k)Q —1[1 Q 1/2

0.
0.

~ ~ ~ ~ ~~ ~ ~~ ~ ~ ~

~~y%
~++aA+a~ ~ ~ s~

II I

l. 2.
M omentum in unite of pF

FIG. 7. The two-photon counting rate for Na. The experimental
data have not been corrected for background effects.

It is convenient in what follows to write (3.15) in a
more compact form by introducing the quantity

G(Iz; r) =r (Q )'/z g—(21'+1)j& (kr)A*„.p(k)P„& (r).

(3.16)
This gives

V-z P.,-~( )I,+(x) = V-z g;-~(k) X;z[G(k; r) /r].

(3.17)

IV. ALGEBRAIC REDUCTION

Substitution of the result (3.17) into the expression
(2.8) for the partial rate R"'[p] resulting from annihila-
tion with electrons in the wl core band gives

R"'[p]= (X/V)Qo ' Q d'x [P„(r)/r]Y (x)
m=l

Xexp( —ip x) [zo(x)+V '

ness sum (3.8) we get

V ' g oo"'(k)Xo '[1—(Qo)'/'
k

Xg (2P+1)j~ (kr)A*„ / (k) (P„~ (r)/r)]. (3.15)

(3.14) XQ op"'(k)Xo 'G(&; r)/r] . (4 1)
Finally writing out more explicitly the core function
U„z .(x) in (3.14), and making use of the complete- The function wo(x) is the positron Bloch state at the
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We first note that for y=0, the enhancement factor
(4.4) depends only on the magnitude of the vector
k. Further, in the large-p limit, specifically for

~ p ~

much greater than the absolute value of any vector k
of interest, the angular average over k of the previous
section is again nearly exact. In the intermediate region,
the procedure deteriorates and it is dificult to make a
quantitative estimate of the error introduced. From the
preceding discussion, it may be expected not to be too
serious. In any case, it would be very diKcult to do
better at present.

To average (4.4) over the angles of k, we take the
polar axis along the direction of p. This gives

dQI, ep"'(k) =2s8(k —kr)
2ds N, (z&

(~i( k'+s'+6„i pk

0.0.

~ ~ ~
~ ~ ~ ~

I

I.
Momentum in unite of

~ ~ ~ ~ ~ ~
l

2.

FIG. 8. The two-photon counting rate for Al.

R"'Lpl = (&/V) Qo
—' Q 4r( —i) 'I'i„(p)

m=l

drj i(Pr) P„i(r)
0

XLRO+(r)+V ' pe "'(k)iV~ 'G(k;r) j . (4.2)

By squaring out (4.2) explicitly and summing over
the magnetic quantum number m, one obtains with
reference to the sum rule (3.8)

R"Q)j= (lI,/V)QO '2(2l+1) 4ir drj &(pr) P„&(r)

bottom of the is band and is needed only in the Wigner-
Seitz sphere about R„=O. Thus we can take it to be
spherically symmetric and write it in the form R+(r) /r.
Noting that the entire expression in the small square
brackets of (4.1) depends only on the

~

x ~=r, the
angular integration can be performed. The result is

R"'Qg= (lI./V)Qo '2(2E+1) 4m drj i(pr) P„i(r)

k'dk
X Ro+(r)+ 8(k —kr)x"'(p k)1Vq 'G(k; r)

(2~)'

(4.5)

In practice we really need to solve the integral equation
(2.5) for the amplitude X~"'(k) rather than assume it
to be 1 as we have done in (4.4). It should be clear,
however, that it would not be consistent to consider
any further angular dependence that might be picked
up in this way since these are higher-order corrections
in the perturbation expansion. As will be seen explicitly
in the next section, these higher terms have the eGect
of changing the number 1 to a number between 2 and 1
but for the most part considerably less than 2. To solve
(2.5) we will then simply assume X,"'(k) to depend
only on the ~p ~

and
~

k ~.

We now put together the results obtained so far. From
the definition of the enhancement factor (2.4), and the
idea that the amplitude X~"'(k) can depend in an
important way only on

~ p ~

and
~

k ), Eq. (4.3) can be
rewritten in the form

XLRO+(r)+V ' g e "'(k)Ãj, 'G(k r)] (4.3)

2x'3'd~ Ns(z)

(~i, (
k'+s'+A„i pk

(4.6)

where the extra factor of 2 accounts for spin degeneracy

among the core levels.
At this point, it is convenient to examine more

critically, the angular average of e„"'(k) performed in
the previous section. It is clear from the integral equa-
tion (2.5) for the amplitude X~"'(k), that while in
general it depends on both the vector p and the vector
k, its most important part goes like 1, which corresponds
to Born approximation. In this case (2.4) reduces to

""'(k)=k, k, N. (p —k) (44)
8(k—kr)

where use was made of Eq. (4.5) . Also, for convenience,
we have taken the limit of infinite volume. The quantity
y"'(p, k) stands for the solution of the integral equation

d'k'
g"'(p k) =1y 8(k' —k,)x"'(p, k')

(2m) '

N, (k —k')
k"+ (p —k') '+6„i' (4.7)

which was obtained from (2.5) by "blindly" imposing
the requirement that the amplitude X,"'(k) depend
only on the absolute value of the two vectors y and k. As
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written, (4.7) is not consistent. This can be seen trivi-
ally by taking the 6rst iterate of (4.7), a quantity that
clearly has an angular dependence. This defect can be
corrected by either averaging the integrand over the
angles of y or alternatively over the angles of k. It is
comforting that both procedures lead to the same in-
tegral equation namely,

y»(p, k) =1+(2pk) —' dk'E "'(k k')x"'(p k')

U(q) =1 fq —8'
q~+2wu II—(2q) '(1—'q'} k

I

Eq+2i

(5.5)

The integral equation satisfied by z"'(p, k)=—X"'(ps&,
p&k) is from (4.8)

where p»=—6»/p~', n=r, /(1 91.9s') with r, the usual
electron-gas density parameter and the potential func-
tion U(q) is

with the kernel E~"'(k, k') given by

1 k+k
E "'(k k') = zCz-', N, (z)(2') '

k"+(p+k')s+~ i
Xln k"+ (p —k') '+6„

(4.8)

with the kernel E~»(k, k') given by

4+k
E"'(k k') =

f k—k~)

k"'+(v+k') s+e"'
ki2+ (+ ki) 2+»zdzaU z s ln

(5.7)

0O

g»(y, k) =1+ Er»(k k')x»(y k'), (5.6)2'

We are now in a position to discuss the numerical
evaluation of R"'[pj as given by Eq. (4.6) . This is the
subject of the next section.

R"Q)j=2 (2l+ 1) —(Ro/Z)
4x

V
«i~(pr) P-i(r)

&&[R+( )+S"'(p )j (51)

where R'=—XZ/Qo is the Sommerfeld annihilation rate.
In (5.1) S"'(p, r) stands for

k'dk
S»(p;r) = x"'(p k)Es 'G(k r)

s, (2~)'

(5.2)
Ip-sl k +z +~el pk

We now measure all momenta in units of the Fermi
momentum p». In particular we write p= yp~. We get

4x CO

R»[yp~) =2(2l+1) —(Ro/Z) drj i(gpss r) P»(r)
p

y [Ro+(r) +S"'(y; r) g, (53)

with

kdkS. h;.) = e (~, k)~,„,—(G(kp.;.) )
1

"+& 2szdznU(z)
X k, ,+, , (54)

V. NUMERICAL EVALUATION

It is convenient to denote the second term in (4.6)
by S»(p ~

&)

In what follows, we shall discuss in some detail only
the results for sodium. Aluminum is not very diferent.
The integral equation (5.6) for a 6xed p was solved by
changing it to a set of inhomogeneous linear algebraic
equations and using a Gauss elimination technique. The
solution for four values of y are showa in Fig. 1.Ke give
curves only for the 2p and 2s electrons. The 1s band
contributes negligibly in comparison. Since the band
gap for the 2p electrons is less than that for the 2s,
x'"(y, k) (as a function of k) is always above g"(7, k) .
For large k both tend towards the common value of
1. This behavior is expected as seen most easily from
the form of Eq. (4.7) .Also, as y increases, the amplitude

x decreases. It is worth noting, in passing, that we have
plotted x for rather large values of k. An important
feature of our calculations is that values of momentum
k up to approximately k =50, enter in a signi6cant way
in the integral (5.4) defining the function S"'(y; r).

The quantity G(krak; r) entering Eq. (5.4) is plotted
in Fig. 2 as a function of the radial distance r in the
Wigner-Seitz cell, for four difFerent values of momentum
k. Although only k's greater than 1 enter in the calcula-
tion of S"'(y; r), the case k =0 serves as a check on the
calculation. It is well known that at the bottom of the
3s band the OPW wave function reduces very nearly
to the signer-Seitz wave function. On comparing with
Callaway's'0 result, this was found to indeed be the
case. As k increases, the minimum in the wave function
around r=0.5 a.u. becomes more shallow since the
orthogonalization coeKcients in (3.16) rapidly become
negligible. For suKciently large k's the straight-line
part (of slope one) of G(krak; r) dominates even for
relatively small values of r. For r's around the cell
edge, G(k~k; r) becomes independent of k and behaves
like a straight line because the core functions P„~ (r)
in (3.16) become negligibly small. Thus, deviations

"J.Callswsy, Phys. Rev. 123, 1255 (1961).
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from a straight-line behavior occurs only for small r's
and k's.

Noting from Fig. 2 that the difference between
G(krk; r) at k=0 and k=2.5 is not great, it is easy to
see that if the only transitions of importance in (5.4)
were those about the Fermi surface, i.e., 0 =1 we would
recover the model discussed in Ref. 1. This results
because it would then be justified to fix G(krk; r) in
(5.4) at G(kr, r) and pull it out of the k integral. But
G(kr, r) is nearly equal to G(0; r) which in turn re-
duces to the Callaway wave function Ro(r) so that

8"'(y r)=R (r) m"'(p) (5.8)
with

mnl (~)—
'+& 2irsds nU(s)

I i—el

where m"'(p) is essentially the same quantity as that
plotted in Fig. 5 of Ref. 1. This procedure is however,
not justified. We have seen that the amplitude g"'(y, k)
does not have a strong k variation, Also, the quantity

"+& 2ssds aU(s) =—A (k)k2+s2+yni
(5.10)

is not a rapidly damping function about the Fermi
surface. This means that G(kki;, r)'s for many values
of k get averaged over in the expression for 8"'(y; r).
Since for large k's the G(kkr, ' r)'s are nearly straight
lines (as a function of r), the dip at r=0.5 a.u. occurring
in G(kkr, r) for k amund 1 will clearly be considerably
smoothed out in 8"'(y; r). This can be seen in Fig. 3
where we have plotted 8"'(0; r) for the 2p and 2s
shell. The little structure that remains for small r is
reduced even further as y increases. This is shown in
Fig. 4, where the results for the 2p shell are plotted for
p=0, 3, and 6. The lack of any pronounced wiggles
in all these curves implies, of course, that the correlation
correction in (5.3) will have much the same variation
with y as the I.P.M. term.

Our 6nal results can perhaps be presented best by
introducing as in Ref. 1, the intermediate quantities

J„&+(y)= drj &(p&pr) Pr, &(r) R, o (r) (5.11a)

dry i(Pryr) P„t(r) 8"'(y, r) (5.11b)

in terms of which Eq. (5.3) can be written as

R"'(yPr)
=2(21+1)(47r/V) (R'/Z)

~
J„i+(y)+J„i (y) ~'. (5.12)

The results obtained for the J„t+(y) 's are presented in
Fig. 5. We see explicitly now that the J„i (y)'s have
very much the same momentum variation as the
J„i+(y)'s. In fact, for sodium, the magnitude of these
two quantities are nearly equal so that neglecting either

would lead to an underestimate of R"'(ppr) by roughly
a factor of 4. These results are quite diferent from
those obtained on the crude model of Ref. 1, In that
work, J' (y) had quite a distinct momentum variation
from J+(y) and a considerable amount of destructive
interference actually occurred between the two. This
feature now appears to be mostly due to a defect of the
model used.

To end this section, we would like to point out that
the calculations so far, can be put to the following
check. We have noted previously that for r around the
Wigner-Seitz cell edge, G(kpr, r) behave very nearly
like a straight line of slope 1 for arbitrary k. Hence in
this region 8"'(y; r) should go like a straight line of
slope m"'(y) provided one assumes the OPW normaliza-
tion factor XJ,„,to be 1. This indeed checks out, as can
be verified from Fig. 4 and the value for m"'(y) given
in Ref. 1.

VI. DISCUSSION

In an angular correlation experiment one does not
measure R"'fpry7 directly since the usual apparatus
is unable to discriminate against two of the three
momentum components of the y-ray pair. Only an
average over two components enters, namely,

ivoo"$y 7= Q dy dy R"'[pi:y7pr,

where the s direction is defined by the geometry of the
instrument. We have summed over all core electrons
and the units are such that the counting rate X""[y,7
integrated over the dimensionless variable y, gives the
total ra, te. The results obtained for 1V""Py,7 are pre-
sented in Fig. 6 for aluminum as well as for sodium. For
comparison the I.P.M. results are also plotted. Al-

though, at first sight, the enhanced curve may appear
to be quite diRerent from the Berko-Plaskett result,
they are actually, very nearly, simple multiples of one
another. For sodium the variance in the multiplicative
factor is less than 5/~ throughout, while in aluminum
it is slightly more. Thus, the core enhancement factors
are almost momentum-independent although quite
large. In sodium, the core electrons contribute an
amount 3.5E.' to the total rate as compared to 0.978'
from the Berl~o-Blaskett term. The over-all enhance-
rnent factor is hence ~3.6 which is much larger than
the rough estimate of 2.2 made previously, on the basis
of a very crude model. The results in aluminum are
similar. The total rate is 1.4E as opposed to 0.498.' on
the I.P.M. The average enhancement factor is 2.8
which is substantially less than the sodium result. This
seems intuitively correct since the core functions in
aluminum are "stiver" and the screening of the bare
electron-positron force is greater.

Strictly speaking we have demonstrated that ladder
corrections to the I.P.M. do not change appreciably
tlie sha, pe of the counting rate only in the very simple
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cases of Al and Na. It is of some interest to consider the
possibility that this result may, in fact, be more general.
If so, it would be possible to interpret experimental
results in more complicated cases serniphenomenologi-
cally on the I.P.M. supplemented by constant core
enhancement factors. These could be chosen empirically
to give the best possible 6t to the angular correlation
data as well as lifetimes. In fact, this has been at-
tempted with some success by Berko and Terrell" for
certain ferromagnetic metals in the transition series
although discrepancies arise. In particular, they con-
clude that such a procedure overestimates the high-
momentum tails. The experiments favor momentum-
dependent enhancement factors decreasing with increas-
ing angle. Our present calculations show no evidence of
such a tendency at least in the region (0 to 3ps) . It is
important to realize, however, that the simple con-
siderations of this paper cannot really be applied
directly to materials as complicated as ferromagnetic
metals. The basic formula used is, in fact, suspected
for such cases. Thus Berko and Terrell's limited success
is very encouraging. On the other hand, it is worth
mentioning that even in the case of Al and Na, experi-
ments seem to favor a nontrivial momentum depend-
ence of core enhancement factors although the evidence
is not unambiguous. This discrepancy could be due to a
number of causes. We shall mention only a few here.
Certainly, the angular average made in the course of the
calculation is less accurate in the intermediate-p region
than in the zero or large-p limit. A more careful treat-
ment of this region seems, however, to be prohibitively
difficult and probably not worthwhile. Perhaps more
important, is our neglect of positron self-energy correc-
tions. The work of Woll and Rose," in sohd argon,
indicates that these can be significant in certain cases
and, more important, that they represent shape-de-
pendent corrections. Their considera, tions, however,
cannot be applied directly to core electrons in metals,
where it is likely that other corrections to the simple
ladder approximation are equally important. Further
progress would probably require a systematic study of
all the other terms in the perturbation series. This does
not seem to be necessary. As we shall now see, the
agreement of the present theory with experiment is
really quite reasonable and the core enchancement
factors obtained io Na and Al are likely to be adequate,
at least at this stage of our understanding of the sub-
ject. In fact, indications are that uncertainties in
present electron-gas calculations are probably much
more serious sources of error than any corresponding
limitation on core-annihilation computations.

Since the major contribution to the counting rate
arises from the conduction electrons, it is necessary to
add these onto the results for core annihilation when

"S. Berko and J.H. Terrell, in Optica/ Properites and Electronic
Structure of Metals and Alloys, edited by F. Abelhs (John Wiley
Bz Sons, Inc. , New York, 1966), p. 210."E.J. Well, Jr. and K. I.. Rose, Phys. Rev. 145, 268 (1966).

making a comparison with experiment. For the conduc-
tion electrons we will use the latest available estimates
based on plane-wave theory. In Fig. 7, we present a
least-squares fit" to the experimental data of Kim and
Stewart'4 in sodium. Only half the angular correlation
curve is shown although the data from both sides of the
distribution were used in the comparison. The scatter-
out in the tail results in part from our use of the raw
data uncorrected for background. Also the experiments
were not made speci6cally with this region in mind. For
the present comparison, these data are nevertheless
adequate. Generally the agreement is good, although as
discussed previously out in the tails, the theoretical
curve is above the experimental points suggesting that
the present theory perhaps predicts too broad a dis-
tribution for core annihilation. In the range ps to 2ps,
the remaining discrepancy is tentatively assigned to
lattice eGects in the coedlctioe-electron gas. That this
is reasonable can be seen as follows.

It is not difFicult to estimate crystal-field corrections
to the Sommerfeld parabola using the I.P.M. The more
important question of how to enhance the resulting
tails is however, as yet, unresolved and appears not
to be straightforward. Lacking a fundamental calcula-
tion, it seemed to us reasonable to multiply these tails
by a smoothly dropping enhancement factor chosen
at p& to be equal to its average value for the central
parabola while around 3ps It was constrained to take
on its avera, ge value for core electrons. In this way, one
can obtain a very good Gt to the data which is en-
couraging although the procedure still remains to be
justified. One should not exclude the possibility, how-
ever, that a detailed calculation of the necessary en-
hancement factors may well yield a function which
drops less rapidly with momentum than present ex-
periments indicate. It seems to us, therefore, that this
important question must be settled before one can
assess precisely the relative success and limitations of
our results. Finally, it is important to compare total
rates. Theory gives a total rate of 3.0)&1.0' sec ' while
the experimental value of Berko and Weisberg" is

2.94&10' sec '. The agreement is excellent.
Our results in Al are similar and are compared to the

data, of Kusmiss and Stewart' in Fig. 8. On the average,
the agreement appears to be somewhat better than in
sodium. In particular, far out in the tails the data
remains above the computed curve. Again, the remain-

"Only the central parabola was used in the least-square fit.
This was thought to be the most reasonable procedure since
lattice effects in the conduction-electron gas not included in the
theoretical curves must certainly make an additive contribution in
th tails. The comparison is therefore not unambiguous and the
the agreement can be changed somewhat by using a different
criterion for the least-squares fIt."S. M. Kim and A. T. Stewart (private 'communication).

"These results are presented in Fig. 4 of an article by J. H.
Terrell, H. L. Weisberg, and S. Berko, in Proceedings of the
Positron Annihilation Conference (Academic Press Inc., New
York, 1967)."J.H. Kusmiss and A. T. Stewart (private communication).
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ing discrepancy is probably due to orthogonalization
parts in the conduction band which we have neglected
in our comparison. Thus, the angular correlation data
can readily be understood at least qualitatively. The
area under the calculated curve is, however, about 2S%
too great to agree with lifetime measurements. It would
seem that we have overestimated correlation effects
in this case. The difhculty can be traced mainly to
electron-gas theory which is used to deal with the
conduction electrons. In fact, the best available esti-
mate' gives a total rate, from annihilation with the
conduction electrons alone, as large as the observed
rate. This is clearly an overestimate by at least 15 to
20%. It should be pointed out, however, that in the
region of r, 2 the electron-gas curve obtained for the
total rate as a function of the density parameter r, is a
rapidly decreasing function so that much of the dis-
crepancy could be removed by using a slightly larger
value of r, than that employed in this work. It is more
likely though, that the calculation scheme of Ref. 5 is
not as good in the high-density limit ('say r, 2) as for
r, 5. The ladder approximation appears to be best at
low density where it predicts results which go asymp-
totically toward singlet positronium. This idea is given
further support by the fact that the major difference
between the simple ladder approxiarntion of Kahana
and the more consistent modified ladder scheme of
Bergersen and of Ref. 5 is in the case of Al. For Na the
difference found between the two schemes is, relatively,
much smaller. Further work on electron-gas theory
would clearly be desirable. Also more lifetime measure-
ments in the region of r, 2 would be very helpful.

A few concluding remarks mainly on electron-gas
theory may not be inappropriate. The recent beautiful
experiments of Stewart's group' " on positron motion
in metals indicate that positrons have an effective mass
of about twice the bare mass, with some variation with
electron-gas density. As yet it has not been possible to
calculate the positro~ effective mass so as to agree with
experiment, although several attempts have been
made. "' It is likely that much of the observed re-

"A. Z. Stewart and J. B. Shand, Phys. Rev. Letters 16, 261
(1966).' A. T. Stewart, J. B. Shand, and S. M. Kim. , Proc. Phys. Soc.
(London) 88, 1001 (1966).

's C. K. Majntndar, in Proceedings of the Positrort Anrtihilotiort
Conference (Academic Press' Inc. , New York, 1967); Phys. Rev.
149, 406 (1966).

~ D. R. Hamann, Phys. Rev. 146, 277 (1966).

normalization of the bare mass is due to correlations
between the positron and the conduction-electron gas.
A better understanding of this problem should lead to
further development in lifetime calculations. The eGect
of positron self-energy corrections on the annihilation
rate (in an electron gas) have been discussed in the
past' although only in a linearized approximation. The
same approximation employed by Hamann fails to give
the observed positron effective mass.

Further, we should mention here the work of Crowell,
Anderson, and Ritchie. "These authors were the first
to go beyond the random-phase approximation in
treating polarization parts. By applying Hubbard cor-
rections they obtained rates from the simple ladder
graphs somewhat smaller than those of Kahana. Such
corrections, however, are expected physically to be most
important at low densities where present theory is
best. Nevertheless with the better understanding of the
Hubbard parameter f achieved recently, particularly
through the work of Geldart and Vosko, "it would seem
reasonable to include such corrections in any further
calculation.

Finally, we can state that using the ladder approxi-
mation to the electron-positron Green's functions, we

have had an encouraging amount of success in interpret-
ing the angular correlation data as well as lifetime in

sodium and aluminum. Certainly the approximation
yields reasonable enhancement factors for core electrons
as well as for conduction electrons. In fact, it is likely
that when lattice corrections in the conduction band
are applied, a detailed quantitative theory will result
in sodium, at least in the region 0 to 2pr. This is prob-
ably the only region of interest since it would show

clearly how the main parabolic distribution is to fit on
the broad tails at higher angles. In aluminum, the
angular correlation data can also easily be understood
on the present theory although the total rate is over-
estimated by 25% to be compared with no more than
a few percent discrepancy in sodium.
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