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curve is 67.2 G which is 2 G larger than the one where
hyper6ne structure is neglected.

In Fig. 5 the scattering intensity of Lyman-e radia-
tion is shown near the (d-f) crossing point. The polar
angles of the incident and scattered photon about the
magnetic field direction are ir/4 while their azimuthal
angles diBer by m. where e is an integer. For Anz J—1
crossings this geometry gives maximum coherent signal.
Due to the anticrossing of the my= —1 levels there are
four coherent contributions to the total signal. Using
the notation (rt,alt'g, ms), let us examine the coherence
produced by the two levels (—,', —s, —1) and (-,',——,',0).
The state (s,—$,—1) is a linear combination of three
states, two of which are states with mr= —

~ and one a
state with mr ——s. The state (s,——,',0) is a linear com-
bination of four states; two with egg= —,

' while the other
two have a esp= ——,'. When the anticrossing is ap-
proached from the low-leld side, the state (s,—s,—1)
has a large probability amplitude for the state mI =—,'.
The other amplitudes are of order 1/3f smaller. On the

other side of the anticrossing, the state (s,—ss, —1) has
large amplitudes for the states with nsy= —«„and the
other amplitude is much smaller. On the other hand,
the state (st, —rs, 0) always has large amplitudes for the
mg = 2 states while the amplitudes for the mg = —~ states
are small. Since BKt' & and 5R&+& contain the selection
rule m~=nsg', there are large contributions to the co-
herent signal on the low-Geld side of the anticrossing
from the terms with mg = ~~. On the high-Geld side, how-

ever, all contributions are of order 1/N smaller. The
features of the curves describing the other coherent con-
tributions can be analyzed in a similar way.

The half-width of the total coherent-scattering inten-
sity is 110.1 G which is 3.1 G larger than the curve ob-
tained when hyper6ne structure is neglected.
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Conventional shell theory for the electronic configurations P rests on the separation of the spin and
orbital spaces according to the scheme U(4/+2)QU(2) XU(21+I). If we are prepared to abandon the total
spin quantum number '5, the more symmetrical reduction U(4/+2)QU(21+1)&&U(2l+1) can be adopted,
corresponding to the separation of electrons whose spins point up from those whose spins point down. The
orbital structure of a representation [Xg of U(21+1) can be carried over from ordinary shell theory; but the
quantum numbers Lz and Ls in a typical coupled state

~
(Lhx)LxX/Xs] Ls)LMrMs) are only pseudo-

orbital. The existence of two distinct spaces, each of dimension (21+1), leads to many simplihcations in the
theory. States of the f shell can be classified unambiguously. The spin-orbit splitting of terms near the
Russell —Saunders limit is easy to calculate; no fractional parentage coefficients are necessary. What is
especially remarkable is that Lz and Lz are sometimes quite good quantum numbers, and this makes it
possible to give simple explanations for many regularities in the energy-level patterns for configurations
of the type f~.

I. INTRODUCTION

HE separation of the spin and orbital spaces is a
characteristic feature&of atomic shell theory.

There is, of course, a good reason for this. Spin-inde-
pendent forces (such as the Coulomb interaction be-
tween the electrons) are often much larger than those
that couple the spin and orbital spaces. It is thus natural
to introduce the total spin S and the total orbital angu-
lar momentum L, the corresponding quantum numbers
S and L being available for dehning states. This struc-
tural division of the total space of an atom into spin and
orbital parts has a serious disadvantage when conlgura-

*This work was partially supported by the U. S. Atomic En-
ergy Commission.

tions of the type P are considered. For all but the
smallest values of I, there is a grave imbalance in the
complexity of the spin and orbital spaces; the spin space
remains simple and easy to handle, but the orbital space
is often so intricate that even elaborate group-theo-
retical methods are insuKcient to provide a complete
scheme for classifying the states. '

The central idea of the present analysis is to introduce
a new structural division of the total space. Instead of
spin and orbital spaces, two distinct but essentially
similar spaces are used. In the first (the A space), .the
spins of the electrons all point up (i.e., all m, =+a); in
the second (the 8 space), the spins of the electrons all

' G. Racah, Phys. Rev. 76, 1352 (1949).



162 A TOM i C S 8 EL I. THEORY RECAST

point down (all m, = ——,). Owing to the similarity be- Suppose we consider instead the tensors A(~) and
tween the A and 8 spaces, the complexities of the total B(~', defined by the equations
space, to put it crudely, become equally divided between
the A and 8 spaces instead of being almost entirely con-
centrated in the orbital space. The eigenfunctions of the
configurations (el) N are obtained by coupling together
the A and J3 spaces, just as in conventional shell theory
the spin and orbital spaces are combined. There are,
however, important di8erences between these two cases,
the main one being that it is now considerably easier
to ensure that the Pauli exclusion principle is satis6ed.
In fact, the opposition of the spins in the A space com-
pared to the 8 space means that it is enough that the
principle is satis6ed in each space separately.

When work was started, it was thought that this ap-
proach would have certain mathematical advantages,
but that the various quantum numbers introduced to
de6ne eigenfunctions in the A and 8 spaces would not
have any useful physical signi6cance. Surprisingly
enough, it turns out that these quantum numbers are
sometimes quite good. This enables us to give simple
explanations for many of the. regularities in term
schemes and multiplet structures for con6gurations of
equivalent electrons.

II. GE5'ERECTORS

The spin and orbital angular momentum of a single
electron are denoted by s and 1.The eigenvalues m, and
ns~ of their respective 2 components s, and 1, characterize
the single-electron eigenfunctions. The most general
linear transformations of these 4/+ 2 eigenfunctions that
preserve their orthonormality form the unitary group
U(41+2). Generators for this group are provided by the
double tensors w&"'&, whose amplitudes are determined

by the equation

(el[]w("~) ~~el) = (2)(+1)'~ (2k+1)'"

When treating configurations (Nt)~ with iV) 1, it is con-
venient to take for the generators the many-electron
tensors W("~), given by

The commutators of the tensors W&""' are known, ' and
hence those for A(+ and 8(~') may be readily deduced.
It is found that

[A,&~),8;(~')j=0 (3)

for all k, k', q, and g'. Furthermore, it can be shown that

[A,&'&,A, (~')j= Q c(kqk'q', k"q")A,"&"&,
Ql I qf I

[8,&"&,8;&'&j= Q c(kqk'q', k"q")8; (~"),
Pf /qf I

in which the coeKcients c(kqk'q', k"q") are precisely the
same as those that occur in the commutators of the
familiar tensors V(~). In analogy with Eqs. (1) and. (2),
these are de6ned in terms of their single-electron com-
ponents v, (~', for which

(N)t~)i)(") )(et) = (2k+1)"'.

Since the tensors V&'& are known to be the generators for
the group U(23+1),' it follows that A(~) and B(~) must
separately form the generators for this group. To dis-
tinguish the transforrnations composing this group, it is
convenient to write U~(2t+1) and U&)(21+1). In view
of Eq. (3), the transformations of Uz(2l+1) and those
of Ui)(21+1) can be regarded as taking place in two
diBerent spaces —the A and 8 spaces —and we can
write

U(4l+2) Q U~(2)+1)XU»(2l+1) ~

This represents our fundamental structural decomposi-
tion.

Subgroups of Uz(2l+1) and U»(23+1) are easy to
find. We have only to refer to the group U(2t+1) whose
generators are the tensors V&"& and use the fact that the
commutation relations satis6ed by these tensors are
identical to those satisfied by either the A(~) or the
8(~). Racah's decomposition

W'"'& =g w, ("'), (2) U(23+ 1)QR(21+1)QR(3),

where the sum runs over the electrons i. The traditional
separation of the spin and orbital spaces is obtained by
limiting the tensors W& "~) to those for which either k= 0
or &(=0. The tensors W& & (the complete scalar) and
W&"& (a vector proportional to the total spin S) form
the generators for the group U(2). On the other hand,
the tensors for which I~:=0 act solely within the orbital
space, and, if we include the scalar k=0, form the gen-
erators for U(21+1). Together, the tensors constitute
the generators of the subgroup U(2)X U(2l+1) of
U(4l+2). This expresses the separation of the spin and
orbital spaces in the language of group theory.

which is described by limiting the tensors V(~) to those
with odd rank [for the rotation group R(2t+1) in 21+1
dimensions j and. then to just V&'& [for R(3)g, generalizes
to

U~(23+1)XUi)(21+1)QRg(2t+1)
XR))(21+1)QRg(3)XR))(3). (5)

For f electrons (i.e., when l=3), the product (G2)g
X(G2)&) can be inserted in the sequence (5), but this
refinement has no practical value.

2 B. R. Judd, Operator Techniques ~rl, Atomic Spectroscopy
(McGraw-Hill Book Company, Inc., New York, 1963).
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TABLE I. Classiacation of the states of f~.
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fN

fo

fl

f2

f7

1
2
1
2

0

3
2
1
2
1
2
3
2

5
2

2
1
2
1
2
3
2
5
2

[IA] X[~B]

L07xLo]

[I]X[0]
[0]X[I]

[II]x[0]
Li]x[I]
[0]X[II]

[»1]x[0]
[11]X[1]
[1]x[»]
Lo)x[»I]

[1111]X[07
[111)XLI]
[11]X[11]
[17X[III]
[0)X[1111]

[IIIII]x[07
[1111]X[1]
[I»]X[11]
[11]X[111]
[1]X[1111]
[0]X[11111]

[111111]X[0]
D»11]x [1)
[1111)X[117
[111]XL111]
[II]X[IIII]
[1)X[11111]
[0)X[IIIIII]

[1111111]x[0]
[111111]x[1]
[11111)X[11)
[1111)X[1117

~'~ X+'a

(000)X (000)

(100)X (000)
(000) X (100)

(110)X (000)
(100)X (100)
(000) X (110)

(111)X (000)
(110)X (100)
(Ioo) X (110)
(000)X (111)

(111)X (000)
(111)X (100)
(110)X (110)
(100)X (111)
(000) X (111)

(110)X (000)
(111)X (100)
(III) X (IIO)
(110)X (111)
(100)X (111)
(000) X (110)

(100)X (000)
(110)X (100)
(111)X(110)
(111)X (111)
(110}X (III)
(100)X (110)
(000) X (100)

(000)X (000)
(100)X (100)
(110)X (110)
(111)X (111)

3

5
2
7

fla

5
2

2
1
2

2
5
2

f12

3
2
1
2
1

3

f14

1
2
1
2

fN MS PA) X[KB]

[111)X[1111)
[11]X[11111]
[1)X[111111]
[0)X[11111117

[1111111)X[1]
[111111)X[11]
[11111)X[1117
[1111)X[1111]
[111]X[11111]
[11]X[1111117
[1)X[1111111]

[1111111)X[117
[1111117X[ill]
[111.11]X[1111]
[1111]X[11111]
[111)X[1111117
[II]x[I1111117

[1111111]X[1117
[111111)X[1111]
[11111)X[111117
[1111]X[111111]
[111)X[11111117

[1111111)X[11117
[111111)X[11111)
[11111)X[1111117
[1111)X[11111117

[IIIIIII]X[IIIII]
[111111)XL111111]
[11111]X[1111111]

[1111111)X[111111)
[111111)X[1111111)

[1111111]X[1111111]

%~X8'a

(111)X (111)
(110)X (110)
(100)X (100)
(000)X (000)

(000)X (IOO)

(100)X (110)
(110)X (111)
(111)X (111)
(111)X (110)
(110)X (100)
(100)X (000)

(000) X (110)
(100)X (111)
(110)X (111)
(111)X(110)
(111)X (100)
(110)X (000)

(000)X (111)
(100)X (111)
(110)X (110)
(111)X (100)
(111)X (000)

(000) X (111)
(&00)X(i&0)
(110)X (100)
(111)X (000)

(000) X (110)
(100)X (100)
(110)X (000}

(000) X (100)
(100)X (000)

(000)X (000)

III. EIGENFVN'CTIO5'S

The irreducible representations of the groups appear-
ing in the decompositions (4) and. (5) are available for
classifying the eigenfunctions of the many-electron con-
jgurations. Irreducible representations of U(2l+1) are
denoted by the corresponding Young partition P.), and
those of R(2l+I) by W. For R(3), we use the spectro-
scopic symbol (S,I",D, ) whose multiplicity 2L+1
reproduces the dimension of the irreducible representa-
tion in question. The subscripts 2 and 8 distinguish the
spaces. A state of P can thus be described by writing

I
l"(t ) Ajll'ATALAXD Bj~BTBLB)L~i). (6)

The symbol rz is required to make the classification un-
ambiguous when an irreducible representation of RA(3)
occurs more than once in the decomposition of S'~. The
symbol r& has an analogous signi6cance. The quantum
numbers Lg and L~ are coupled to give L, rather than
left uncoupled and assigned additional quantum num-
bers Ml, g and 3EI,~. This is because the generators for

RA(3)XRB(3) can evidently be combined to give the
generators for the group R(3) for ordinary 3-dimensional
space; hence L and 3fl, have their usual spectroscopic
signi6cance. Although the quantum number S cannot
in general be included in the ket(6), yet we can, if we
wish, assign a value of Mq, since 8'00&' ' commutes with
all A&@ and B&"&.

The Pauli exclusion principle imposes certain restric-
tions on the possible representations p,Aj and p,B).
The conunuting operators of U(4l+2) are the 4l+2 pro-
ducts q ~g, where g t is the creation operator for an
electron in the state n(—=elTN, TB~), and r) the correspond-
ing annihilation operator. ' Acting on a determinantal
product state of (el)N, they give eigenvalues of the type
1 or 0, depending on whether or not a state 0, is oc-
cupied. This sequence of eigenvalues, or @eight, has
[11~ 10 Oj as its highest component, and it is this
component that defines the partition of U(4l+2). The
Young diagram simply consists of E cells arranged in a

B. R. Judd, in Group Theory and its Applications, edited by
E. M. Loebi [Academic Press Inc., New York (to be pttblished)].
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vertical line. In terms of creation and annihilation
operators, the separation of the total space into the A
and 8 spaces is trivial to carry out. The operator g ~ is
written as (t t when r)t, =+is and as b t when srt, = —s.
An analogous substitution is made for the annihilation
operators. The eigenvalues of the 2l+1 operators (t t(t

are either 0 or 1; and the same is true for the 23+1
operators b ~b . The permitted representations of
U~(2l+1) X Ut)(21+1) are thus all of the type

[11 10 0]X [11 10 0],
in which the number of symbols 1 in the first partition
(say Xz) and the number of symbols 1 in the second
partition (say 1Vt)) satisfy

IVY+ Ets =X.
Since the operators a ~u count the number of states for
which srt, =+ sr, and the operators b tb do the same for
the ns, = —-', states, it is obvious that we can write

Eg—Eg= 2' g.

The states of the configuration fN, which we shall
draw on to illustrate the theory, are classy. ed according
to the scheznes (4) and (5) in Table I.To avoid a great
deal of repetition, the decomposition

R~(7)XRt)(7) —& Rg(3) XR)s(3)

is omitted; the relevant branching rules are set out in
Table II for not only f but also p, d, and g electrons.

Correspondence with the traditional classihcation of
Racah' can be made by actually decomposing the
Kronecker products 8'gX lV~. For example, we see from
Table I that the states of f' with Ma=s belong to
(110)X (100). Nutter's tables' give at once

(110)X (100)= (100)+(111)+(210),

and it is immediately verified by a glance at Table 2-1 of
Wybourne' that the three representations on the right
are just the ones that arise in Racah's classification for
the states of f' with Ms ——sr. However, the whole point
of the present approach is not to make such decomposi-
tions. It can be seen from Table I that every [X~] and
P.t)] decomposes into a single representation W~ or Wts,.
and Table II indicates that for p, d, and f electrons the

YAnLE II. Branching rules for the reduction R(21+1) -+ R(3).

(0)
(1)
(00)
(10)
(11)
(000)
(100)
(110)
(111)
(0000)
(1000)
(1100)
(1110)
(1111)

S
P
S
D
PF
S
F
PFH
SDFGI
S
G
PFHE
PF'GHIEM
SD'FG'HI'ELN

symbols r& and rts of the ket(6) are not required. In
these cases the scheme

~
P(P,g]L~XP t)]Lt))LMr, ) (7)

gives a complete group-theoretical classi6cation of the
states. In contrast, Racah's method leaves some am-
biguities for fN when 5(X(9.The g shell fares much
worse. In the conventional method, no fewer than 26
'E terms exist in g' with the same group-theoretical
description. ' On the other hand, it can be seen from
Table II that even in the most unfavorable cases we
have at most only two like representations to separate.

IV. MATRIX ELEMENT'TS

The simplicity of the designations of the eigenfunc-
tions would count for little if the calculation of the
matrix elements of operators of physical signidcance
were not straightforward to perform. The procedure
that we must evidently follow is to express an operator
as a linear combination of tensors of the type

(T (k)U (ib )) (K)

where T~(") and Ut)("' act only in the spaces 2 and 8,
respectively. Equation (7.1.5) of Edmondsr immediately
yields

(P([&g]rgLgX [4]rt)Lt))L~~ (Tg (') U ("')) (K)
~ ~

P([)(g']rg'Lg'X [)(t)']rsvp'Lt)') L')
= ([)g]rgLg(~ (Tg [[)(g']rg'Lg') ([)(t)]rt)Lt) ([ Utt ' [( [Xn']rt)'Lt)')

Lg Lg' k
X ((2L+1)(2K+1)(2L'+1)}' Lts Lss' k' ) . (8).L L E.

This is our basic equation for the calculation of matrix
elements. Its advantage over the standard approach lies

P. B. Nutter, Raytheon Technical Memorandum No. T-544,
1964 (unpublished).' B.G. Wybourne, Spectroscoptc Properties of Rare Earths (John
Wiley R Sons, Inc., New York, 1965).

chiefly in the fact that the reduced matrix elements of
T~(") and Ut)(s') involve representations [)(g], pg ],
[)t)], and P.t)'] that are all of the type [11 .10. 0].

' B. G. Wybourne, J. Chem. Phys. 45, 1100 (1966).
7 A. R. Edmonds, Angular Momentum in Quantum Mechanics

(Princeton University Press, Princeton, New Jersey, 1957).
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Conventionally, such a partition describes the terms of
P with maximum multiplicity (maximum 5) which are
particularly simple to treat. The actual evaluation of
the reduced matrix elements is greatly simplified by this
correspondence. For a single electron, for example,

(l~lla'"Ill~) =(i~lib'"Ills) =(ll v'"lll) =(2k+1)'", (9)

where a&z& and b&z& are single-electron components of
A'"& and B'"', respectively. The quantum numbers lz
and l~ correspond to the vectors

lg ——(1/2+s, )1, lt& ——(1/2 —s,)1.

The generalization of Eqs. (9) to the many-electron
case is straightforward. A particular matrix element

(Pg]rgLgIIA &

&llew

~ ]r~'L~ )

can be immediately found for l&3 by interpreting P z)
and [X~') as representations of the group U(21+1)
whose generators are the tensors V&"&. We have only to
replace A &2& by (2k+1) 't'U& "& (which is identical to V &2&)

and refer to the tables of Nielson and Koster' for the
reduced matrix elements of U "&. Owing to the selection
rule i&Ms =0 on A&2&, all matrix elements vanish unless

p~)—=p ~'].
Another property of the reduced matrix elements is of

considerable interest. Suppose p.&) comprises 1V& sym-
bols 1 and 2l+1—kg symbols 0. We denote the repre-
sentation comprising 2l+1—E~ symbols 1 and Xg
symbols 0 by Pz); both P.z) and Pz) decompose into
the same irreducible representation W~ of Rg(21+1).
The interchange p.~]+-+ [&&~] is equivalent to particle-
hole conjugation for spin-free particles, from which we
deduce

(Pg]rgLgllA

&"&Ilgwu]r~'L~')

= (—1)~'([4]r~L~II ~
"&IIP~]r~'L~')

+8(k,0)b(rg) rg') 8(Lg,L~')
X(21+1)' 2(2Lz+1)' '. (10)

This may be readily checked for special cases by using
the tables of Koster and Nielson. ' An identical equation
holds when A is everywhere replaced by B.

ln contrast to the creation operators g ~, which form
the components of a double-rank tensor, ' the operators
c ~ and b ~ are single-rank tensors. As a consequence of
this, we 6nd that the equation relating a reduced matrix
element of a~ to a fractional parentage coefficient is

([&-]"L.II"IIV.]-.l'.)=(-1)"P.(2L.+1)} t

X(P~] ~L~(IP~) ~l'~), (11)

whereas the corresponding formula for a reduced matrix
element of st 2 [Eq. (31) of Ref. 97 contains the additional
factor (2S+1)'ts on the right. The reduced matrix ele-

8 C. W. Nielson and G. F. Koster, Spectroscopic Coegcients for
tite P, dn, and fn Configurations (Massachusetts Institute of
Technology Press, Cambridge, Massachusetts, 1963).

2 B.R. Judd, Second Quantizationand Atomic Spect,roscopy (The
Johns Hopkins Press, Baltimore, Maryland, 1967).

ments of bt are given by replacing the subscripts A by
8 in Eq. (11).

V. COULOMB INTERACTION

As a first example of the theory, we consider the
Coulomb interaction between the electrons of an atom.
We write

ez/». .—Q e2(r 2/r 2+1) (C &2&. C.(k&)

The tensors C'"' are related to the v&2& by the equation'

)i k ly
C &"& = v &'& (—1)'(2l+1) (2k+1)—'t'I

&0 0 0)'

so that our central problem is to evaluate the scalar
products

(v;&2& v,

In terms of tensors acting in the A and 8 spaces, we
readily find

P (v, &2&. v. &2&) —Q (a, &2&.a.(2&)

+P (b &'& b &'&)+A&'&.B"', (12)

since products of the type (a;&"& b;&2&) that occur in the
last scalar product are identically zero. The two sums
on the right of Eq. (12) correspond to putting k=k'
=I&, =0 in Eq. (8), and are trivially simple to evaluate.
The product A&"'B'"& is only slightly more dificult to
handle; it is found by putting 4'= k and K=o. In this

way the matrix elements of the Coulomb interaction
are found as linear combinations of the radial integrals

P(z& e2((std)2
I
(r 2/r 2+1)

I
(rti)2)

To illustrate this method in detail, we take the three
terms of f' for which Ms= 2, L= 2; and the three terms
of f' for which Ms= 1„L=2. From Table I we see that
the first three correspond to

P.~]XP.a]—= [11111)X[1],
and the second three to the product [11]X[1].Since
both [11111)and [11)decompose into (110) of E~(7),
and since (110)—+ PI'II (see Table II), our basic eigen-
functions are

l([11111]J'x[1]F)D),
I
([11111]Fx[1]F)D),

I ([11111)IIX[1)F)D) (13)
for f' and

1([»]Jx[1]J')», l([»]J x[1K)D&,
I([11]aX[1]Z)D) (14)

for f' The matrix elem. ents of the Coulomb interaction
that arise from the two sums on the right of Eq. (12)
are diagonal in Lz and L&, and can be readily obtained—
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in the usual way.
Id,,—a(z, q) I

=0 (16)

VI. LL COUPLING

It is clear that the solutions to Eq. (16) must be
identical to the term energies obtained by the conven-
tional approach. The terms of f' with Id' s= 2 are all of
the type 'D; those of f' with cVs=2i are 4D and two
terms of the type 2D. In contrast with the energy ma-
trices obtained by the standard methods, the two ma-
trices [d;,] are in a form that displays their close con-
nection. Indeed, if 33K' were deleted from dpi and —9E3
from doo, the spacings of the three 'D terms of f' could
be obtained from those of the D terms of fo simply by
inverting the energy-level scheme. This remarkable
result (which can be extended to include all terms of f'

together with their associated factors —simply by refer-
ring to the energies of P.~)L~ and [7w]L~ in the tables
of Nielson and Koster, ' and adding the two parts. Thus
we find that the energies of [11111]P, [11111]F,
[11111]II,[1]F, [11]P, [11]F,and [11]IIare 10Eo
+33E, 10E, 10E'—9E', 0, Eo+33E', E', and E 9E—o,

respectively, vrhere the parameters E~ are Raeah's linear
combinations of the radial integrals F(~&. For the term
in A&"&.B&~&, we use Eq. (8) in the form

(f'([11111)L~X[1)F)DI
(A&o& B&o&)

X I f'([11111)LnX[1)F)D)
LA ~ LB

([11111)L~IIA&o&II[11111]Li&)
3 2 3

X([1]FII&"'II[1]F) (»)
for the D terms of f' with 3fs=2. The reducedmatrix
elements are found by using Nielson and Koster's
tables' for U&"& and multiplying their entries by
(2k+ 1)'&'. Owing to Eq. (10), an almost identical result
holds for f'. In fact, we can write down both energy
matrices in the form [d;;], the individual matrix ele-
ments d;; being given by the following equations:

dii ——9E'+ (9/2) E'+33E'
~(84Eo+39E'+1/16E'+ 132Eo)/14 )

d i2 ——doi ——~ (E'—286E ) (6/7) '",
dio =doi ——a (E'+65E'—9E') (66) '/'/7,

9Eo+(9/2) Ei (36Eo+13Ei+572Eo 22Eo)/6

d» ——d» ——a (E'+260E'—28E') (44/63) '"
doo

——9E'+ (9/2) E'—9E'
&(252E'+107E'—10'790E'—494E')/42.

The upper sign corresponds to the D terms of f' with
Itd's 2; the lower s——ign to the D terms of f' with 3/I 8= io.

The states from vrhich the matrix elements d;; are con-
structed are ordered as in (13) and (14). The energy
eigenvalues e can be found by solving the secular
equation

E'= —18.87F2 E'= 14.68F2,
E'=0.077Fo, E'= 1.49Fo.

(17)

These parameters lead to energies —102.4F2, —183.382,
and —231.382 with respective eigenfunctions

—0.996
I
(PXF)D)+0.078

I (FXF)D)
—0.053

I (HXF)D),
0 094

I
(PXF)D)+ 0.990

I (FXF)D)
—0.109

I (IIXF)D),
—0.050I (PXF)D)+0.114I (FXF)D)

y0.992
I (aXF)D).

The symbols P.~) and P,i&) have been omitted from the
kets for the sake of clarity. In all cases P.z) = [11111)
and P»)= [1).It is at once seen that LL, coupling is
extremely well obeyed, the eigenfunctions above being
pure states of the type I(L&XL»)L) to within 98%.
This is in contrast with Racah's classification scheme,
where no single state makes a dominant contribution.

Of course, I.L coupling works better for some terms
than for others The situ. ation for the D terms of fo is
quite poor, though even there I-L coupling turns out to
be useful in predicting certain properties of the levels
(for example, the small spin-orbit splitting of the lowest
D term).

To conclude this section, we give another example of
good LI. coupling, the four 4G terms of f'. The result of
a complete diagonalization for the hydrogenie param-
eters (17) is shown in the central part of Fig. 2. On the

'0 J. P. Elliott, B. R. Judd, and %. A. RunciIn@n, Proc. Roy.
Soc. (London) A240, 509 (1957).

with I&IIs= 2 and all terms of f' with M'8= is) throws new

light on a familar connection between the terms of I2

and those of the half-61led shell P'+' with maximum and
next-to-maximum multiplicity: One energy-level scheme
can be obtained from the other by a simple inversion.
This is illustrated in Fig. 1 for f' and f' Fo.r Ms=0 of
fo and cVs ——

o of fv, we find from Table I that

P.g]X [P,g]—=[1]X[1]i [111111)X[1),
and only A&~& B&~& of the three terms on the right-hand
side of Eq. (12) has nonvanishing matrix elements. This
is precisely the scalar product that gives rise to the
alternating signs in the d;;. Our method thus provides
a simple explanation for the inversion represented in
Fig. 1, and at the same time shows why other sets of
terms do not show similar properties.

A more spectacular success of the theory is the com-
parative purity of the eigenstates produced by diago-
nalizing the energy matrices. That is, a term occurring
in nature can sometimes be labeled quite accurately by
just one product P.z]L&XP,z]LI&. A good example of
LI. coupling, as this situation may be called, is provided
by the 'D terms of f'. For 4f hydrogenic functions,
which are a good approximation for rare-earth ions, vre

have"
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usefulness of such classiications, we consider the ener-
gies of the terms of P of maximum multiplicity. Owing
to the symmetry about the half-ulled shell, attention
may be restricted to those configurations for which
1V&2l+1. From Table I, we deduce that all states with
cVs=S belong to the representations L11 1jX[0]of
U'~(21+ 1)X Ur&(2l+1) .It can also be seen that all repre-
sentations 5'~)(8'~ into which these product represen-
tations decompose are of the type 5'z ——(11 . .10 .0)
and W»=(00 0). The fact that the states are com-
pletely scalar in the 8 space, when combined with the
result (given in Table III) that the tensors B&s& (with
k)0) possess no scalar components in the 8 space,
means that all matrix elements of B&s& (with k) 0) taken
between states of maximum S and Mq are zero. This in
turn implies that the scalar product A&'& B&'& in Eq.
(12) has null matrix elements when k) 0. The relative
energies of the terms of maximum multiplicity of P are
thus determined solely by

FIG. 1. The terms of f' (with M'&&=0), when inverted, coincide
with the terms of f' (with Ms = —',), provided the same set of Slater
integrals are used in both configurations. This familiar result is re-
lated to the alternation in sign of the matrix elements of A(~) B(+.

left are Racah's diagonal matrix elements, on the right
the diagonal matrix elements for the four states

~
(L1111jL~X$1jF)G), where Lg =D, F, G, a—nd I. The

latter are much closer to the actual energies.

VII. g ELECTRONS

The process of classifying states according to irreduc-
ible representations of groups can be extended to
operators. The method consists in studying the com-
mutators of the operators with respect to the generators
of the relevant groups. ' The results for several operators
of interest are summarized in Table III.They are given
in a form that is valid for all l. As an example of the

g (a;&s&. a;&'&) (k even).

TABLE III. Transformation properties of operators for /

Operator [Whig XW»I »]&z&

a'"& or A&s& (odd k)
a(~) or A(~)

(even nonzero k)
b&"& or B&s& (odd k)
b(k) or B(I&:)

(even nonzero k)
a~

b~

n„(I~) - W „(»)

[(110 ~ 0)k X (00 0)0]& "&

[(20 .0)k X (00 .0)0]&"&

[(00 0)OX (110 0)k]'s&

[(00 0)OX(20 ~ .0)k]&s&

[(10 0)l X(00. ~ .0)0]«&

[(00 ~ 0)OX (10 0)l]&'&

[(10 0)l X (10 0)l]q&"&

From Table III, we see that the transformation prop-
erties in the A space are determined by the product
(20 0)X(20 0), which decomposes into

(DxF)G (00 . .0)+(220 0)+(40 . .0)
+(110 .0)+(20 . 0)+(310 0).

(Ill)(20)

(2I I) (30) G

(2II)(2I) "G

(2II)(20) G

(GxF)G

(FxF)G

Of these representations, only the erst three possess
R~(3) scalars in their decomposition. Furthermore, the
operator (00 0)S displaces all terms equally; while

any operator classified as (40 0)S must have zero
matrix elements, since (40 0) does not occur in the
reduction of

(11 10 0) X (11 10 0) .

(gxF)G

FIG. 2. Diagonal matrix elements for the 'G terms of f' in LL
coupling (on the right) are closer to the exact energies (in the
center) than the diagonal matrix clemepts in Racah's scheme (on
the left),

The conclusion is striking: The relative energies of the
terms of maximum multiplicity can only involve as
many radial parameters (i.e., linear combinations of the
integrals F&s&) as there are S states in the decomposition
of (220 . 0) of Rz(2l+1). For f electrons, only one S
gtatq occam.rs; as is well known, all r(;lative energies of the
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terms of maximum multiplici. ty can be expressed as
multiples of the one parameter E'.

For g electrons, it is found that (2200) contains in its
decomposition two S states. ' This means that two pa-
rameters are required here. The results of Shortley and
Fried." for g', which were established almost thirty
years ago, must thus be expressible in a simple form for
terms of maximum multiplicity. Indeed, we find that
the term energies E('s+'L) can be written as follows:

where

E('P) =X+98Y+11Z,
E('F)=X+33Y+11Z,
E('H) =X—13Z,
E(sE)=X,

X=Fp
—392Fs

—784F4—152Fp
—1'7Fs,

Y= 3(5Fs+10F4—3Fp—68Fs),
Z= 3(7F, 35F4+27F—p+17Fs) .

The quantities FI, are related through numerical fac-
tors" to the integrals F(~&. Unless the co-ordinates of
the g electrons Quctuate only slightly from a constant
radius —which is most unlikely —the parameter Z is
positive. This implies E('H) (E('E).Thus gs is a simple
conhguration for which Hund's rule is not obeyed. '2 The
relative energies of all terms of maximum multiplicity
of other configurations g~ must be expressible in terms
of I' and Z of course, but preliminary calculations indi-
cate that further deviations from Hund's rule are not to
be expected.

VIII. SPIN-ORBIT INTERACTION

The splittings of terms near the RusseH. -Saunders
limit are calculated by making use of the equivalence

t P (s; I;)=—)iS L,

)i~sIl-Ii = t ((PA]&ALA XPB)TBLB)L3IIvVV s

X ~p (s„t„)~(p. ]. ' L' A@X, ]B'rBL')BALM ).
"G. H. Shortley and B. Fried, Phys. Rev. 54, 739 (1938).
'~ This agrees with the semiclassical argument of N. Karayianis

LAm. J. Phys. 33, 201 (1965)j. An explicit demonstration that
E('H) (E('E) has been made for hydrogenic 3g electrons by J.
Bauche (private communication).

which is valid for a manifold of states of constant S and
L. The relation between ) and the spin-orbit parameter
f is established by setting the right- and left-hand sides
of Eq. (19) between suitable states and evaluating the
two matrix elements. When the terms are described by
basis states of the type (6) above, the procedure can
again be followed. It is convenient to assign the same
value of 3Eq to both bra and ket, for then we get at once

Now

g sg, lg$ = Wpp &"'(l(l+1)(2l+ 1)/6}'"

= (Ap&'& —Bp&'&) fl(l+1)(2l+1)/12}'1',

(P. ] L,~(W& &([t)„] A'L ')
= (3/E(l+1)(2l+1)} 1 (pA]rALA ffLA f] pA]rA'LA')

f (&Ay&A )t (LA)LA )(3.LA(LA+ 1)(2LA+1)/
l(l+1)(2l+1)}'".

The equation for the reduced matrix element of 8&'l can
be obtained at once by replacing the subscript A every-
where by B.The 9-j symbol of Eq. (8) can be explicitly
evaluated, and we arrive at the result

t 3(TAg TA )3(7B)'TB )3(LAILA )3(LB)LB)
X LLA(LA+1) —LB(LB+1)]/$2MBL(L+1)]. (20)

The simplicity of this result is remarkable. Unlike the
conventional expression, "no sum over products of co-
e%cients of fractional parentage appears; and, being
diagonal in all quantum numbers, no cross terms occur
when )~ is evaluated for states of the type (18). The
three pure states (13) lead to 'A= —51/12, 0, and 31 /4,
respectively; these numbers agree well with the com-
plete calculation, "which yielded )t= 0 409$—, 0..004$,
and 0 737f Th. e fac.t that the spin-orbit splitting for the
lowest 'D term of f' came out two orders of magnitude
larger than the next highest 'D term can now be readily
understood.

Occasionally a term can be described by a single
value of L~ and a single value of L~. Ke see at once
from Eq. (20) that when LA =LB, the spin-orbit splitting
is zero. The sP term of f' is a case in point. Its descrip-
tion in LL coupling is simply

~
f'(L11]FXL1]F)PM~s),

since neither L11]P nor L11]H can be coupled with
L1]F to give a P state. So LA=LB= 3 and &=0. This
resolves the long-standing problem of why the spin-
orbit splitting of 'P of f' should be zero.

Of course, Eq. (20) reproduces all the standard prop-
erties of multiplet splittings. As can be seen from Table
I, the operation of conjugation (interchanging holes and
electrons) corresponds to the interchange WA~ WB,
which implies L~~ L~ and hence 'A~ —X. This ac-
counts for the familiar opposition of multiplet splittings
of conjugate terms in a shell.

A special case of Eq. (20) is of some interest. For a
given term of maximum multiplicity, we can always
make the choice MB= S. It is evident from Table I that
either LB=0 (for the first half of a shell) or LA=0 (for
the second half). In the first case, LA L; in the second, ——
IB L. Substitution in E——q. (20) yields the well-known
result X= &f/2S, where the upper and lower signs refer,
respectively, to the erst and second halves of a shell.



36 B. R. JUDD 162

IX. SPI3V-OTHER-ORBIT COUPLING

The power of the methods based on the use of the 2
and 8 spaces is illustrated by considering the magnetic
interaction between the spin of one electron and the
orbit of another. As a specific example, it is convenient
to study the eGect of this interaction on the sextet levels
of f' Sin. ce f" is a half-filled shell, all diagonal matrix
elements of the spin-orbit interaction vanish'; conse-
quently, the spin-other-orbit interaction B.„plays a
more important role than it does for other configurations
of f electrons.

Conventional theory provides two avenues for treat-
ing this problem. The 6rst is to construct all the relevant
two-particle fractional parentage coeKcients connecting
the sextets of fr with the sextets and quartets of f'.
Each matrix element of H„, is then expressed as a sum
over matrix elements of H„, for the two separated elec-
trons fs. Once the last have been calculated, the sum can
be performed. The second approach is to set up a chain
calculation in which the available tables of fractional
parentage coeKcients are used to relate the matrix ele-
ments of II„, or f~ to those of f~ '. Starting then with
f', we eventually arrive at the required results for f'.
Either method is extremely tedious, not least because
II„, is perhaps the most complex operator commonly
encountered in atomic spectroscopy. (A third method, '
in which the two-particle operator is converted into a

e...—=vs L. (21)

Once X' is known, the contribution to multiplet struc-
ture coming from spin-other-orbit interactions can be
readily calculated. Setting both sides of Eq. (21) be-
tween states of P, and then passing to reduced matrix
elements, we 6nd

product of sums of single-particle operators, suGers from
its complexity and the need for subsidiary tables of
reduced matrix elements. )

If we restrict our attention to matrix elements of
II.„that are diagonal in Ms, we may write II„, (for
equivalent l electrons) as follows":

II- = —Z Z L(k+ 1)(2~+k+2)(2~—k)/37'"
i&j I&:

X[{w« "+'&w &'s&} &i»{~« '&()IIC&"+i&fft)s

+2M&s&(lf IC&'& Ill)s}+{w &s'&w. &'s+'&}

X {M&"&(lffC&"&III)s+2M&' '&(llfC&'+'& IIE)s}7

where the radial integrals 3f&~& are de6ned by'

M&s&= (e'k'/Sm'c')((el)'
I
(r~"/r~s+')

I (el)')

The 6rst step in treating H„, by the methods described
in the previous sections is to replace the tensors w&"~& by
the appropriate combinations of the tensors a(~& and
b&s&. Having done this, we make an analogous statement
to Eq. (19):

V= —(~8) ' Q [(k+1)(21+k+2)(2l—k)/3L(L+1)(2I.+1)7'I'

in which

and

X[—{~is&(gffC(»jfg) +~&i—&(gffC&i+ &fit) }(iiffg {a,&s&a, &s+ &}& & {b.&s&Q.&s+ &}&i&flit,')

+-,{m'"'(illC&»ll~) —~& —
&(~IIC& + &ill) }9II{«»&&s+»}&» —{&&s+»&&»}& &I

it'= ([)&A7TALAX pB7&B+B)Ly

([xg7rz'Lx'X—P a7&a'LI&') L ~

We now make the specific substitutions P.~7= [11~ ~ 17 (in which 21 symbols 1 appear),

[)&»7= [17, Lg=Lg=L~ =Ln'= f,

corresponding to the terms of next-to-maximum multiplicity of the half-filled shell P'+'. Equations (8) and (10) are
used to simplify the matrix elements, and the final result is

k+1

l l L

(2l+1) (21+k+2)(2l—k)(k+1)
) '= —4m&o&l I++ (life&"& Ill)'M&"'( —1)z

(2l—1J s (2l—1)L(L+1)(k+2)

3L(L+1) tl l k
X (—1)n+(k+2) i +

2l(2l+1) (l+1) Ii ) L

l l k+2—(k+1) (22)
l l L

For our purposes, we have only to set l=3 and run over the values of L satisfying 6&L&1.However, the gen-
eral form of Eq. (22) is convenient, because we can set in turn l=1 and 1=2, thus checking our results against
the known results" for p' and d'. The calculations for f electrons are summarized in Table IV.

13 g R Judd~ Physica g3~ f74 {1.9$}
'4 H. H. Marvin, Phys. Rev. 71, 102 {194/).
"H. Horie, Progr. Theoret. Phys. (Kyoto) 10, 296 (1953); T. M. Dnnn and Wai-Kee Li, J. Chem. Phys. 46, 2907 (1967).



ATOM I C SHELL THEORY RECAST

The importance of spin-other-orbit eGects can be
gauged by taking the values of the integrals 3II "& as
tabulated by Blume, Freeman, and Watson" for the
configuration f' in Gd'+. They give (in cm ') M& &

=3.70, M "&= 1.71, and M "&= 1.16, from which we cal-
culate (using Table IV) V('I)= —17 cm '. This pro-
duces an energy separation between 'I7/2 and 'I j.e(2 of
24Y, namely 408 cm '. Since the observed'7 multiplet
structure (which is regular, not inverted) extends over
only 827 cm ', it is clear that spin-other-orbit sects
must play an important role. Wybourne" recently
diagonalized the complete f' energy matrix, including
in it Coulombic and spin-orbit eGects, but neglecting
contributions from spin-other-orbit interactions. He
found that an interpolated spin-orbit coupling constant
f predicts multiplet splittings that are too large, and it is
probable that this result is due, at least in part, to the
neglected sects of H„,. However, it would be neces-
sary to carry out a further complete diagonalization,
allowing also for spin-spin interactions and relativistic
sects, before a conclusive answer could be given. A de-
tailed treatment of this kind is beyond the scope of the
present article.

X. CONCLUSION

Having stressed the advantages of the present classi-
fication scheme, a word should be added about its defi-
ciencies. These stem from the abandonment of S. The
fact that S is a good quantum number for electrostatic
interactions means that the Coulombic energy matrix
for a given Mg includes among its eigenvalues all those
that arise from energy matrices corresponding to higher
Nz values. The duplication that this leads to may not be
too troublesome with present computing techniques,
especially since the matrix elements themselves may be
easier to compute than by conventional methods. In-
deed, the independent checks that this duplication
aGords may be a positive advantage, provided the en-
ergy matrices do not become too large. The problem
becomes more acute when the spin-orbit interaction is
considered; for, unless we are only interested in the
Russell-Saunders limit, we must consider the mixing of
3f8 values, and we are lef t only with M~ to characterize

"M. Blume, A. J. Freeman, and R. E. Watson, Phys. Rev.
134, A320 (1964)."K.H. Hellwege, S. Hufner, and H. Schmidt, Z. Physik 172,
460 (1963).

'() B. G. Wyhourne& Phys. Rev. 148, 317 (1966).

TABLE IV. Spin-other-orbit coupling constants
for the sextets of f'

Term

6g
6D

6p
66
6H

61

(21/5)M&o&+ (9/5)M &a&+(21/11)M(4)

(319/75)M&o&~(221/225)M&'& (47/99)M(4)

13/3)M &0&+(11/45)M &s) +(5/99) M &4

111/25)M&o& (53/825)M&2&+(361/181S)M'&4
—(343/'75) M&'&+ (311/5445)M&'&+ (287/5445)M &'&

—(71/15)M &'&+ (131/495)M &'&+ (135S/14157)M &'&

the matrices. The duplication of eigenvalues occurs
much more frequently, and probably makes this exten-
sion uneconomic, except for a few special cases.

The value of the approach based on the A and 8
spaces lies chieQy in the insight it gives into shell struc-
ture, and in the ease with which certain calculations can
be performed. Although the applications described
above have been restricted to equivalent electrons, it is
clear that it would be straightforward to extend the
method to inequivalent electrons' . It is only necessary
to separate the electrons with spin up from those with
spin down and put them in the A and 8 spaces.

The reason for the frequent occurrence of remarkably
good LL coupling is not clear. A naive interpretation
would be to conclude that the Coulomb interactions be-
tween electrons with all their spins up, and those be-
tween electrons with all their spins down, are more
important than the interactions between electrons with
their spins opposed. This is by no means the case, par-
ticularly since electrons with opposed spins are not re-
stricted to nonoverlapping orbits by the Pauli exclusion
principle. The difFiculty of giving a physical basis for L L
coupling is accentuated by the fact that, apart from a
few trivial cases, no single choice of Slater integrals can
ensure perfect coupling for all terms in a con6guration
P.A possible line of attack on this problem is to examine
in detail the coupling between L~ and L~. This plays
a crucial role in determining whether or not LL coupling
is obeyed.

Note added As proof. Dr. M. Wilson has kindly drawn
my attention to an article by Shudeman, " in which
electrons with spin up are separated from those with
spin down in order to count the number of terms
with a given S and L in the con6gurations l~, where
L&6.

)() C. L. B. Shudeman, J. Franklin Inst. 224, 501 (1937).


