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The distribution function for multiple scattering of high-energy Dirac particles has been calculated,
starting from an approximate solution of the Dirac equation. With the Thomas-Fermi potential itself, the
calculated results are found to be in good agreement with the experimental results. This is in contradiction
to the calculations of Nigam, Sundaresan, and Wu, who found it necessary to introduce an arbitrary screen-
ing parameter. The multiple scattering of polarized particles is also discussed.

I. INTRODUCTION

l iHE theory of multiple scattering of fast Dirac..particles is of much help in interpreting many
experimental observations. In a comprehensive review
article Scott' has given an account of the development
of the theory as well as the various improvements
suggested by diferent workers. To apply this theory
to any specific scattering problem one requires erst a
knowledge of the scattering distribution for a single
collision. Moliere' derived his single-scattering formula
by the BWK method. Xigam, Sundaresan, and Wu'
have criticized some of the mathematical steps of
Moliere; they have used instead the second-Born-
approximation results of Dalitz' for scattering from an
exponentially screened Coulomb 6eld. They introduced
a screening parameter which was adjusted to make
the theoretical results agree with the experj. ments of
Hanson et alP Reed and Nodvick6 calculated the same
with the Moliere representation of the Thomas-Fermi
potential but retained the screening parameter. The
introduction of the arbitrary screening parameter is,
however, not a happy feature and shows the inadequacy
of the theory. Also the suggestion of Nigam et aL. that
the Thomas-Fermi potential is unrealistic for small-
angle scattering cannot be accepted. The major part
of this paper will be devoted to this problem. In Sec. III
we shaH consider the multiple scattering of polarized
particles. Muhlschlegel and Koppe' have studied the
polarization eRects in the 6rst Born approximation.
An improvement of their calculations with the help of
the Dalitz formula does not appear feasible, considering
the complicated expressions this will lead to. A simple
and fairly accurate single-scattering formula may,
therefore, be of much help. In the following calcula-
tions we shall utilize the scattering results obtained by
following the method discussed in a previous paper. '
The method essentially consists in solving the iterated

' W. T. Scott, Rev. Mod. Phys. 35, 231 (1963).
~ G. Moliere, Z. Naturforsch. 2a, 133 (1947}; 3a, 78 (1948).' B.P. Nigam, M. K. Sundaresan, and Ta-You Wu, Phys. Rev.

115,491 (1959).
4R. H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951).' A. 0. Hanson, L. H. Lanzl, E. M. Lyman, and M. B. Scott,

Phys. Rev. 84, 634 (1951).
6 R. D. Reed and J. S. Nodvick, Phys. Rev. 135& 8199 (1964).' B. MOhlschlegel and H. Koppe, Z. Physik 150, 474 (1958).
~S. Mukherjee and S. D. Majumdar, Ann. Physik 16, 360

(1965).
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(1.2)

where q=P —P' is the momentum transfer. The units
chosen are fi=m=c= I. e is the energy and the 0.'s are
the Dirac matrices. The constant a=Ze'/A, c. 1V is a
normalization constant which can be determined by
considering the case of a point charge where T is known.
This gives

S=e&"'& -"fl'(1—iae/p)/I'(1+sac/P) j. (1.3)
For the scattering potential we shall consider the
Moliere representation of the Thomas-Fermi potential,
viz. )

8
V(r) = —Qa; exp( b,r/ao), —

i=1
(1.4)

where ao is the Thomas-Fermi radius. ' The form (1.4)
of V (r) makes it possible to evaluate the integral (1.2)
analytically and thus a closed expression for T may be
obtained.

The scattering of polarized particles is given by the
scattering amplitude 3 defined by

a'(P, P', Q) p(Q') =A (P, P') p(Q)A+(P, P'), (1.5)

where 0- is the scattering cross section, p the density
matrix for spin, and Q and 'Q' are the polarization
vectors for the incident and the scattered beam. The
2X2 matrix 3 may be written in terms of T as'

26

1
s (1+0)A+(P') T(» P') A+(P) 2 (1+0) (1 6)

where A+ is the positive-energy-projection operator. A
much simpler relation between A and T may be deter-
mined by noting that the operator A converts the large

e See Eqs. (11) and (16) of Ref. 8. The normalization constantE given in that paper is incorrect and should be replaced by that
in (13) of the present paper.

@ R. D. Reed /Phys. Rev. 138, A1000 (1965)g has shown that
the Rozental representation of the Thomas-Fermi potential gives
almost the same scattering results.
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Dirac equation by a distorted-wave approximation.
This leads to a scattering matrix T given by'

T(P, P') =f2e+n (P' —P)$4(8), (1.1)
where

cV
C'(8) = —— exp(itl. r) V(r)P(iae/p, 1, t'pr sP. r—)dr,
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components of the incident wave into the large com-
ponents of the scattered wave. This establishes the
following relation between the matrix elements (with
P along the s axis):

where (8, &p) gives the direction of P'. The two-func-
tions f and g determine the scattering completely. It is,
however, convenient to discuss the polarization e6ects
in terms of four functions J, D, E, and Il given by~

~a= Te+(—1)~'(p/(a+1) )T' ~+s

A can also be written as

(ij =1, 2).

(1.7)

2 =f(8)I+ig(8) sin88 n, (1.8)

where n= (P x P')/( P x P' t. We have from (1.7) and
(1 g)

f(8) =g Traced =s(T„+Tss)+(p/2(e+1) )(Ts—T„)

and

g(8) sin8=e'&Ars ——e' jTrs —(p/(a+1) )T,4j

e '&A» ———e '&LT»+ (p/(e+1) )T»$, (1.10)

Ii =2g*g.

For the scattering matrix (1.1), both f and g are real
and there is no Mott polarization (D=0) . This approxi-
mation results in considerable simplification, since
Waldmann's transport equations which describe the
multiple scattering are completely decoupled in the
absence of Mott polarization. The Dalitz formula gives
a nonzero value for D, viz. ,

where

(4Ps sinsr8)s
D(8) = — - . , sin8 Im(I —J),

2~' e' (4p' sin'-'8+X')

mrs $2+2ps sins%8 ++2ps sjn218
Im(I —J)=,— . ,

'
ln . ,

' +ln
2Ps cos'-', 8 2 (sin~~8) A A —2P' sin'-', 8 (4P'+),') '~'

(1.12)

and h. =p4+4ps(As+ p' sinss8) ]'~' for a potential V(r) = (1/r) e "', but this expression is not suitable for applica-
tion of the small-angle approximation because of the convergence difhculties in calculating its integral transform. '

II. MULTIPLE SCATTERING OF AN UNPOLARIZED BEAM

In the small-angle approximation, the multiple-scattering-distribution function f(x) for an unpolarized incident

beam is given by

(2.1)

with

y(() —y, =2~nt 8d8J(8) LJ,((8) —1j, (2.2)

where e is the number of scattering centers per unit volume and t is the path traversed by the particle, which

will be assumed to be equal to the thickness of the foil. For the potential (1.4) the scattering matrix is given by

3

I'(1+sue/P) & (4P' sin'-'8+6 s/rps) & bP/rP 2iPb, /rp j—
"In the small-angle' approximation (1.12) gives

0 2012+62

($2+$12) 2 ($14+4012+02)1/2

2(e,4+40,2+e )1/2+e, e,XR
2(g 4+~ 2+,~),/2 ~ +81n (4+g 2),/2

where e&=X/p, so that D(e} is negligibly small for small-angle
scattering. But its transform1 7

g(g) = 0 deD(o) J,(y),

which enters into the solution of Waldinann's equation if D is
taken nonzero, does not exist.
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Utilizing relations (1.9), (1.10), and (1.11), we have in the small-angle approximation

J(8) =@+8'g'

4epa2 (e 1)2
gras/y 1+.82

P4 4e2

aP / e 2 8;CJ 82+8.p ice/y (8,2+2ig. ias/y

exp —2a —tan ' — 2 Re g

(82+8 9)2 8;;( (8'+HP) (8'+8') 8'+HP (8 P 2—ig

where g, =b,gp and Hp
——1/prp We. also define the characteristic angle 8, by

0,2 =4n-Epu'
Z+1 pot e'

Z A p'' (2.5)

where pp is the density and A the atomic number of the scatterer. The factor (Z+1)/Z has been introduced to
account for the electron-electron scattering. To start with we shall neglect the term 8'g' in J(8). The integral
(2.2) then consists of the following terms:

Odg
28,'e "»gaP expL 2a(p—/P) tan '2/grj LJp($8) —1j(82+8,2) 2

=28'e~"/&pa expL —2a(e/p) tan '2/g, jL($/28;) ki($8;) —(28)) ') (2.6)
where k& is a modihed Bessel function, and

/HP+2ig; '"/r gd8 /8'+8/'i ~'/r
28 'e~~'&2 Re a,a;

pe —2ig; (8'+HP) (8'+8/2) ~8'+HP/

In evaluating the integral in (2.7), terms of order aV/p' and higher will be neglected. Then the part of the integral
independent of u gives

while the other term after a partia1 integration reduces to

iac), (8'+HP)

4p(HP —8,~) |,8'+8']

Now the important range of values of g in (2.1) is $~1/8, . Hence with 8,&&8,(g„we write

iac@ P' 8'+8 ~
I2= 1n2 gd0

SP (HP —8/P) p 8'+HP

iaeP 1 (HP —HP
" OP

2 (HP —g &) Q —
~

—g P lnP-
16p(8' —8~) '

s iE' k HP

Collecting the terms and expanding the Bessel functions, we have to the order of P
3 p2P8, 2 /'OP+ 2ig;l

f($) —
gp =28 'e~"» —'@gal expL 2a(e/p—) tan-'2/8;g ln

' +2 Re+a;a
~l 4e (8, —2ig;)

(2.S)

(2.9)

P iaeP ~ 1 qaeP 8& 8&
(HP ]n~t (y2PHP) —g P lnxt(yPPH P) )—tP+ — Q —X,""— '

lnP — (2.10)
SHP —HP

' '
Sp i,=, E' '

16P OP —8,& 8'

where Iny is Euler's constant and X; = (HP —8')/8' "
The expression in (2.10) can be written in a compact
form in terms of a screening angle 0 defined by

~s

Xln8 = —~}—lim g(8)d8/8 —} lng. , (2.11)
gg~QQ Q

3fgg= 1.402476, 3E13=1.627226.

"The values of the sum of the series 3Ejz=Z(1/k'}X;;~=
Z(1/E'~}L(b —b/2}/b;2g~ are given by (for the Moliere repre-
sentation}

35512= 1.473104,

where

HP+2ig, '"/i'
},=e-'/& Re+pa, a,

'
. ', (2.12)

~ 8,~—2S,

and q(8) is given in terms of the scattering cross
section o(8) as

nto (8) =28Pq(8)/4(1 —cos8) '. (2.13)

The definition (2.11) of 8 is very convenient because
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we can write (2.10) as TABLE I. Multiple scattering of electrons from gold and beryllium.

2/=$8. (XB)"', (2.15)

f($) f—p '——X8-2P 1n(ysP8 '/4e)

which, apart from the factor ), is of the same form as
Moliere's expression. The factor X, however, presents
no difhculty, as we can de6ne the new variable p by

Material

pot (mg/cm')
Bl,;~, MeV

y118) deg

Experiment

37.28
15.67
1.539
3.76

Be

491.3
15.24
1.506'
4.25'

where the parameter 8 satis6es the equation

B—lnB = ln (8.8,2/y28, 2) . (2.16)

8
8 (Nigam et al ,~/l=. 1.00)
8 (Nigam et at. ,'/l=1. 80)

8.648
8.131
6.766

10.263
10.267
8.954

This renders (2.14) exactly into Moliere's form, viz. ,

y(2/) —
g()

——Q(2/) —Qp ———2/2/4+ (r/2/4B) x in(2/2/4). (2.12)

The reduced scattering distribution is then given by

X&/e

x,/, (Nigam et al. ~ @=1.80)
3.626'
3.659'

4.507'
4.179'

These are quoted from R. D. Reed [Phys. Rev. 138, Ai000 (196$)],
where results for other values of p, are also given.

9l =x/8 Bl/2gl/2 (2.19)

The exponential factor in (2.18) becomes large positive
for large g, thus making the integral diverge if taken to
infinity. The exponent is equal to zero for p=0 and
q=2e I' and these will be considered as the limits for
the integral. The major contribution, however, comes
from the range g=0 to q~B. Moliere' and Bethe"
expanded the exponential factor in inverse powers of 8,
and integrated the 6rst three terms. The approximation
is not very accurate, the value for q =0 and B=7.33
being 1.2% less than the exact value obtained by
numerical integration. In general the exact curve is
steeper and smoother than that obtained with the
Moliere-Bethe expansion (dl in Table II gives the
reduced. distribution function for B=8.648) .

In Table I we have compared the results obtained
by the present method with the results of other workers.
It is seen that with the Moliere representation of the
Thomas-Fermi potential for gold, the present method
gives a value of x~~, close to the experimental value.
This is of great signi6cance and removes the doubts
about the validity of the Thomas-Fermi potential for
small-angle scattering. No additional screening is found
necessary, while the method of Nigam et c/. needs an
add tional screening with the parameter @=1.80. That
the statistical Thomas-Fermi method gives the general
feature of the atomic potential is a well-established fact
and the present calculations rearm this. The agree-
ment is poor in the case of Be and it is worthwhile to
compare the results obtained with the Hartree-Fock
potential, taking account the modi6cations due to the
crystalline structure of metallic Be. This will be con-
sidered in our next paper.

In evaluating J(8), we neglected the 8'g' term. If
this term is retained, we shall have the integral ds

"H. A. Bethe, Phys. Rev. 89, 1256 (1955).

f(v) = —adagio(~) pL n'/4+—(n'/4B) l (~'/4) 3,
2Ã

(2.18)
vrhere the reduced angular variable is

LEq. (3.5)] instead. of c/l LEq. (3.3)] as the reduced
distribution function. As Table II shows, the two
integrals are not much dÃerent, and the value of x~~,
calculated from 8& is practically the same. The accuracy
of the present method is, however, restricted by (a)
the limitation of the small-angle approximation and
(b) the approximation made in neglecting terms of
order uses/p2. While the error due to the latter approxi-
mation is difBcult to estimate consistently, the accuracy
of the small-angle approximation may be discussed
qualitatively by comparing it with the more exact
method of Goudsmit and Saunderson. '4 Lewis" and
Bethe" have shown the relation between the two
methods. In fact, the method of Goudsmit and
Saunderson introduces an additional factor in the
integrand of (2.18) in our calculations which may
safely be neglected. Nigam et u/. , who followed the
method of Goudsmit and Saunderson, also neglected
this factor in their 6nal calculations. Scott has also
pointed out that the error made by Nigam et al. in
using the asymptotic formula for the logarithmic
derivative of the y function f(l)~ ln(l+ —,), down to
l=0 in evaluating the distribution function is of the
same order as the factor the exact method introduces.
It is, therefore, suKcient to consider Moliere's sma11-

angle approximation which, because of its simplicity,
makes it possible to study also the multiple scattering
of polarized particles. This will be undertaken in the
next section.

III. MULTIPLE SCATTERING OF A POLARIZED
ELECTROÃ BEAM

The scattering of polarized particles is described by
the product of the distribution function and the density
matrix for the spin. Thus the scattered beam is given by

~(x 4)t (V') =2L~(x, 4)+~(x, 0) &j, (31)
where

~(x 4) =~(x 4)%' (3.2)

'4S. Goudsmit and J. L. Saunderson, Phys. Rev. 5V', A24
(1940); 58, 836 (1940)."H. W. Lewis, Phys. Rev. 78, 526, (1950).
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TABLE II. Values of the integrals. 8=8.648.

0.0
0.4
0.8
1.2
1.6
2.0
3.0

2.14470
1.76115
0.99643
0.41514
0.14274
0.04710
0.00510

0.00000
0.38921
0.59633
0.61716
0.55084
0.47101
0.32756

2.14664
1.76279
0.99746
0.41566
0.14299
0.04722
0 ' 00513

0.00000
0.04697
0.05313
0.03319
0.01521
0.00627
0.00102

2.14664
1.76217
0.99605
0.4143'L
0.14218
0.04680
0.00503

2. 14886
1.76404
0.99721
0.41491
0.14244
0.04693
0.00507

0.00000
0.38991
0.59718
0.61777
0.55119
0.47121
0.32763

dr —— ridri exp[Q —Qp)Jp (pg), (3.3)

Q' being the polarization vector of the scattered beam.
If D=O, a single collision does not change the degree
of polarization, i.e., Q'=@ '. The polarization vector
simply rotates around n, the normal to the scattering
plane. One has still to investigate the possibility of a
depolarization in multiple scattering due to the fact
that particles coming out in a given direction have
actually traversed different paths and hence may have

. their polarization vectors pointing in different direc-
tions. The angle of rotation of the polarization vector
presents another feature of interest in the theory of
multiple scattering.

Miihlschlegel and Koppe have solved Waldmann's
equations for F(x, f) and pp(y, lt); the solutions are
given in an elaborate form by Scott.' We shall utilize
these solutions but, whereas the earlier workers ob-
tain their results by the Moliere-Bethe expansion, we
shall express our results in terms of the following
seven integrals:

dicate differentiation by p. The quantity co is given by

rp = (s+s'/16rP) '" (3.10)

where the parameter s is defined in our case by

s= [(.—1)s/e']0 s) a (3.11)

The values of these integrals, relevant for the case of
scattering of 15.67-MeV electrons from gold, cited in
Table I, have been evaluated numerically (by an IBM
1620 digital computer) and are given in Table II.

Let us consider a longitudinally polarized electron
beam, i.e., Q along the s axis. Then we shall have

~(p, lt) =(2~) 'ds,

rr, +i7r„= exp(+@) (~ Q j/2z)d4,

z-, = () Q (/2z-)ds. (3.12)

The degree of polarization rr, is given by vis = pp'/F'. In
their calculation, Miihlschlegel and Koppe found some
depolarization which, as pointed out by Scott, resulted
from a mathematical error. Scott proved that rr,' =

~

'@ ~'

to the order of s'; s was defined there as

d2 dri exp[Q —OpjJr(capri), (3.4) s = [(e—1) '/e'je 'B

ridri exp[Q Qp ,'s(Q"+—ri '—O'—)]Jp((prl), (3.5)

d4 —— ridri exp[Q —Qp+ ~rsQ"j

Our calculations indicate a very small depolarization
and this increases with pp (see Table III) .

The angle of rotation of the polarization vector is
given by 81.= sin (~ rr, +i7r„~/F), which Muhlschlegel
and Koppe expressed as

)& f (—s'"/pp) sinh(aQ'I Jr (ppg),

dp —— ridrl exp[Q —Qp+~4sQ"j

(3.6) with
(ll. =s'"a[1—s~(v') j

1—y8'2 8'2

~(p) =r'z + ~Bylaw

(3.13)

(3.14)

&& f coshppQ'+ (s/4rpri) sinhcpQ'I Jp(pprj),

ridri exp[Q —Qp+-'sQ" j

The results of Milhlschlegel and Koppe are not very

TAsr, R III. Polarization in multiple scattering. ~'g~ =I.

X f cosh~Q' —(s/4rprl) sinhppQ'I Jp(tpg), (3.8)
0.0
0.4

dri exp[O —Qp+t4sO"j 0.8
1.2
1.6

X f coshppQ' —(s/4pIg) sinhppQ'I Jr(pre), (3.9) 2.0
3.0

where Q —Qp= rP/4+(ri'/48) in(rP/4); the —primes in-

TL

1.000000 1,000000
1.000000 1.000000
1.000000 0.999999
1.000000 0.999998
0.999999 0.999996
0.999998 0.999994
0.999957 0.999951

0.00000
0.02665
0.05329
0.07993
0.10656
0.13316
0.19932

0.04367
0.04528 0.04505
0.05094 0.05181
0.06401 0.06533
0.09251 0.09686
0.15077 0.15543
0.48973 0.63524

rr' (/=0) sz (rad) a (p) a(p)
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accurate. However, if we express our results in the
form (3.13) by changing e(to) we get the column for
a(y) in Table III. The values of a(y) given by (3.14)
and evaluated with correct values of d1 and d2 are also
tabulated there. It may be pointed out that only the
transverse component of polarization can be detected
experimentally, and a(p), in fact, serves as a measure
of this transverse component.

If the incident beam is poIarized transversely, with
along the x axis, and the scattered beam observed

along (q, 0), we have

s;(q, 0) = (t Q i/2s) Le-'~q —'Is+Is —
q
—'87],

my=0,

s.,(q, 0) =(t @ i/2s)g4. (3.15)

It is easily seen that the angle ter&, by which the polariza-

m„—x,—0, (3.16)

there being no rotation of the polarization vector. Thus
we see an azimuthal asymmetry in polarization, the
angle Os decreasing from a maximum of er —81. at /=0
to es =0 at P=s/2. The degree of polarization rr for
/=0 is also tabulated, and also shows very little
depolarization.
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tion vector is rotated, is equal to 8i, discussed above.
But for the azimuth P=n./2, we have

s*(q» ~/2) = (I y t/2&) [& '"&i v—'& '~&s+& '@7j
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Mossbauer spectra of IieMo alloys have been obtained for a series of closely spaced compositions from 2.1
to 6.0 at %Mo. T. he hyperfine Geld and peak widths show a composition dependence suggestive of overlap
of the disturbed surroundings of impurity atoms, in accord with results of neutron-di6'raction studies of
dilute impurities in iron. Analysis of the data in conjunction with the recent unpublished magnetization
results of Aldred led to the deduction of a fractional increase in average iron inagnetic moment, (1/pp, )
(dip, /d C), of 0.25 per at. % and a magnetic moment per Mo atom of 0.4 ps directed antiparallel to the iron
moment, the latter value in good agreement with the neutron-diGraction results.

i iHE Mossbauer spectrum of iron alloys is complex..and has been analyzed as the superposition of six-
line spectra due to iron atoms in different local en-
vironments. ' 3 Approximate analyses have been made
by assuming random distributions of the impurity
atoms which reduce the hyperfine field (hf) of 1st,
2nd, ~ ~, near neighbors by h1, h2, ~ ~, kOe. Kertheim
et ul. ' represented the results of studies of several alloys
by the equation

H(N, m) =Hp, (1+an-tt-bm) (1+AC), (1)

giving the hf, H(e, m), for an Fe atom with n impurity
near neighbors and ns impurity next-near neighbors in
terms of aIIF, =h1, bHF, =h2, and the constant k for

* Supported by Advanced Research Projects Agency through
the Northwestern University Materials Research Center Con-
tract No. SD-67 and by National Aeronautics and Space Adminis-
tration through a traineeship to H. L. Marcus.

' G. K. Wertheim, V. Jaccarino, J. H. Wernick, and D. N. E.
Buchanan, Phys. Rev. Letters 12, 24 (1964).' M. B.Stearns, Phys. Rev. 129, 1136 (1963).' L E. Cranshaw, Rev. Mod. Phys. 36, 395 (1964).

atomic concentration C. Stearns4 has extended this
analysis to include the effects of 3rd- and 4th-neighbor
impurity effects. Cranshaw et al.5 have emphasized the
shortcomings of this simplistic approach and in their
analysis of the spectra of FeSi alloys demonstrated the
necessity for corrections due to local order, quadrupole
splitting, and higher than first-order dependence on
the number of impurity neighbors in a given shell.

In related experiments, Collins and Lowe have meas-
ured the magnetic-moment distributions around im-
purities in iron as evidenced in diQ'use elastic neutron
scattering. For elements to the left of iron in the
Periodic Table (V, Mo, etc.), these workers found a
small decrease on the moments of 6rst and second
neighbors of the impurity with a small increase in
moment on the iron atoms at greater distance, the range

4 M. 3.Stearns, Phys. Rev. 147, 439 (1966).
~T. E. Cranshaw, C. K. Johnson, M. S. Ridout, and G. A.

Murray, Phys. Letters 21, 481 (1966).
6 M. F. Collins and G. G. Low, Proc. Phys. Soc. (London) 86,

535 (1965).


