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The case of CdF, is obviously different. Little
thermoluminescence is observed. In general, this crystal
exhibits an entirely different behavior than CaF, and
its isomorphs. Trivalent rare earths in CdF, cannot be
reduced to the divalent state by chemical baking;
instead, the crystal displays the properties of a semi-
conductor when doped with several of the rare earths.?®

2 P, F. Weller, Inorg. Chem. 4, 1545 (1965).
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We have computed the paramagnetic quenching effect of lithium and sodium in liquid ammonia on
the long-lifetime component of positron annihilation. The triplet-to-singlet conversion cross sections,
calculated in the Born approximation, turn out to be 5.9 107 cm? for Li and 7.2X10™* c¢m? for Na for
thermalized positronium. Reasonable agreement with the meagre existing experimental data is obtained.

I. INTRODUCTION

T has been known for quite some time that the
two-quantum annihilation spectra of positrons in
many liquids and gases show a long-lived 7, component
and that this lifetime is affected appreciably by the
presence of paramagnetic impurities.! Any process
whereby the two-photon annihilation replaces the
longer-lived three-photon annihilation and contributes
to the 7, component is called quenching. Heynman,
Osman, Veit, and Williams? discuss various types of
processes involved—unpaired-electron exchange, angu-
lar-momentum reorientation, chemical-compound for-
mation, pickoff, and spin reversal. The explanation of
paramagnetic quenching is as follows: Orthopositro-
nium (triplet) is formed first and is subsequently
converted by electron-exchange collisions in the medium
to the parapositronium (singlet), which then decays
promptly. The paramagnetic impurity introduced into
the medium provides extra electrons that can be
exchanged easily with the electron in positronium.
Since the latter does not have magnetic moment in
either of the two states involved, magnetic forces can
be neglected. It has been emphasized by Ferrell® that
the naive interpretation of the triplet to singlet conver-
sion as a ‘“spin-flip” process of the paramagnetic
impurity is not correct. Rather one must consider the
1 See for earlier work the review article by M. Deutsch and S.
Berko, in Alpha-, Beta-, and Gamma-Ray Spectroscopy, edited
by K. Sieghahn (North-Holland Publishing Company, Amster-
dam, 1965), Vol. 2, p. 1583.
2F. F. Heynman, P. Osman, J. J. Veit, and W. F. Williams,

Proc. Phys. Soc. (London) 78, 1038 (1961).
3 R. Ferrell, Phys. Rev. 110, 1355 (1958).

electron exchange arising essentially from the anti-
symmetrization requirements on the wave function of
a many-electron problem.

A direct first-principle calculation of 7, embracing
all aspects of the quenching would be difficult. How-
ever, the modification of 7, by a small concentration of
paramagnetic impurities would be easier to compute,
particularly when the scatterers are isolated. A theo-
retical calculation of the triplet to singlet conversion
in collisions of orthopositronium with atomic hydrogen
was given by Massey and Mohr,* using the Born
approximation. A more detailed calculation for the
same system was given by Fraser® who found that the
Born approximation result was too high, as one would
have expected, and that the cross section fell off rapidly
with energy on the scale of electron volts. On the
experimental side, positron annihilation in atomic
hydrogen has not been studied so far. Other quenching
agents such as oxygen and nitric oxide, or diphenyl-
picrylhydrazyl (DPPH) in liquid benzene require a
calculation of scattering from complex molecules.
Obviously, one would like to have a system sufficiently
simple and hydrogenlike where calculations can be
attempted and meaningfully compared with experi-
ments; such a situation prevails in the study of positron
annihilation in solutions of lithium and sodium in
ammonia.®

4H. S. W. Massey and C. B. O. Mohr, Proc. Phys. Soc. (Lon-
don) A67, 695 (1954).

¢ P. A. Fraser, Proc. Phys. Soc. (London) 79, 721 (1961).

6See T. P. Das [in Advances in Chemical Physics, edited by
I. Prigogine (Interscience Publishers, Inc., New York, 1962),
Vol. 4, p. 3037 for an account of their propertles
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It has been reported that sodium dissolved to satura-
tion in ammonia quenches the long lifetime completely.”
In a recent work Varlashkin and Stewart® report a
series of angular-correlation studies of lithium-ammonia,
which reveal at low concentration the existence of a
bound state. They do not make any lifetime measure-
ments, with which we are concerned. Some preliminary
measurements of the lifetime were reported by Millet
et al.? and as far as we can judge, the theoretical
calculations give the right order of magnitude for
lifetime.

Although the alkali atoms are hydrogenlike, the
calculation of the quenching is rather involved. We
assume that at very low concentrations the alkali
atoms in ammonia retain their atomic character and
the chemical effect of the solution is negligible. The
entire purpose of the ammonia solution (apart from its
own quenching mechanism to generate a 3 component)
is to provide a slowing-down medium of the positro-
nium, and we consider the triplet positronium to be
completely thermalized. The problem is then to com-
pute the scattering of the low-energy positronium on-
the alkali atoms. The conversion cross section is calcu-
lated in the Born approximation at zero momentum
transfer—this latter for convenience of evaluation—
and we use the limiting value over the thermal energy
region. At very low concentrations when individual
scatterers act independently, modification of 7, is linear
in the concentration of alkali atoms. Such dilution is
necessary for positronium formation. At the opposite
extreme of high densities when the metallic character
of sodium begins to appear, this is not possible!?; even
the concept of bound state loses its significance.l*

In treating the alkali atoms as hydrogen like we are
ascribing the entire quenching effect essentially to the
outermost electron. This picture emerges from our
detailed numerical calculation with lithium. The effect
of the inner electrons is certainly small. But as our
calculation is based on the Born approximation and there
are some rearrangement effects, the result cannot be
completely conclusive.

We use the formulation of scattering theory of
Goldberger and Watson (GW),”2 and generalize the
Massey-Mohr calculation to compute the conversion
cross section in ammonia. Section IIT presents some
results which show that the contribution of the outer-

7B. G. Hogg, T. H. Sutherland, D. A. L. Paul, and J. W. Hodg-
kins, J. Chem. Phys. 25, 1082 (1956).

8P. G. Varlashkin and A. T. Stewart, Phys. Rev. 148, 459
(199%\67? E. Millet, L. H. Dieterman, and J. C. Thomson, in Positron
Annihilation Conference, edited by A. T. Stewart and L. O.
Roeillig (Academic Press Inc., New York, 1967).

1 A, Held and S. Kahana, Can. J. Phys. 42, 1908 (1964);
H. Kanazawa, Y. H. Ohtsuki, and S. Yanagawa, Phys. Rev. 138,
A1155 (1965); C. K. Majumdar, Ph.D. thesis, University of
California, La Jolla, California (unpublished).

11 W. Kohn and C. Majumdar, Phys. Rev. 138, A1617 (1965).

2M. L. Goldberger and ‘K. M. Watson, Collision Theory
(John Wiley & Sons, Inc., New York, 1964) Chap. 4.
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most electron, though clearly dominant, is somewhat
sensitive to the details of the outer part of the wave
function.

II. LITHIUM AS QUENCHING AGENT IN NH;

If 7, denotes the long lifetime of pure ammonia
solution, the number N of quenched decays in the
presence of alkali atoms will be given by

dN/dt= —7,7IN —noul. (2.1)
Here # is the number of alkali atoms per cc, o is the
conversion cross section, and v is the velocity of the
positronium which can be obtained from the fact that
it is thermalized in the medium. The contribution of
the alkali atoms is linear in their concentration. This
implies that each scattering center acts independently,
and no coherence between alkali atoms is present. One
expects such a situation to be true at very dilute solu-
tion. At high concentration this requires modification,
and coherent scatterings may have to be included.

Let us proceed with the calculation of the conversion
cross section in the scattering of orthopositronium on
lithium atoms. The preoblem is a many-electron
problem, and a completely satisfactory solution is out
of the question. However, treating electronic correla-
tions in Li approximately, we can write down the
entire wave function of the Li atom as a Slater deter-
minant. Then using the Born approximation, we can
write down the entire scattering amplitude involving
all the four electrons, three from Li and one from
positronium. There is no direct scattering amplitude
connecting the incident channel of triplet positronium
to the outgoing channel with singlet positronium. The
nonvanishing terms are of two types. The dominant
terms can be interpreted to be an exchange of the
electron in the positronium with the outermost 2s
electron. The interaction potential has terms that look
like the hydrogenic terms* and also some terms that
come from the screening of the nuclear charge by the
occupied 1s orbital. These additional terms are exponen-
tially damped, and we show that they are negligible.
The second kind of terms should be called rearrange-
ment terms. They are numerically found to be small.
As the Born approximation is known to be poor for
rearrangement collisions, we cannot claim to have
proved that all rearrangement terms are small.

Assuming the nucleus to be fixed, we can write down
the Hamiltonian for the entire system:

2m hl% r

4 302 4 82 1,4 e2
EDIEAES F i >

i =1 b R S

(2.2)
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The subscripts refer to the four electrons involved.
Divide H in the incident channel into K.+ V with

ke[E(E-2) 8 e ]

T \2m i) 3| ri |

V=362(f‘1—f4—1) +62i(l I,—r; 1_1—\ r—r; 1—1) . (24)

This decomposition corresponds to electron 4 being in
the positronium. The terms in the brackets in (2.3)
constitute the lithium atom; the rest form the positro-
nium. V is obviously symmetric in 1y, Iy, and r;. Using

p2 p 42 e2

+—+4+-————; (2.3) an independent-particle model for Li, the incident-
2m  2m | r—14] channel wave function can be written as
d2s(r)x:(1)  dus(r)a(l)  ¢us(r)B(1) aa(4)
1 k- 1)/2} .
Vo= 1 bas(r2)x:(2)  dus(r2)a(2)  ¢us(r2)B(2) . (zg:;—sl;: )/ }¢1s(| r—14]) § (1/V2)[aB(4) +B(4) ]
a8 (r5)x:(3)  d1s(rs)a(3)  us(73)B8(3) BB(4) J

(2.5)

¢1s and ¢qg are the Li atom orbitals. The orbitals available from the work of Wilson®® will be used; apart from
that no correlation effects are included. @ and 3 are the up and down spin functions, respectively, with regard to
some fixed quantization axis. x, is the spin function of the 2s electron; we shall average over the initial spin states
s=z=43. We must antisymmetrize the fourth electron with the other three. If P;; denotes the operator

that exchanges the particles ¢ and 7, the completely antisymmetric wave function is'?

3
Q[3%,]=3(¥.— ZP %) .

The outgoing-channel wave function is, similarly,

$as(r)xer (1) drs(r)a(1l)  ¢us(r1)B(1)

(2.6)

=1

1 k' (r414) /2}
= o s(rar (2) dus(a(®) us(rap(2) | EREII A o) (15D Lo (@) ~ah) ]
/3! (2m)3
bas(73)xs (3)  d1s(r3)a(3)  ¢1s(r3)B(3)
(2.7)
After antisymmetrization, we get Considering (Py¥s | V | ¥,) we obtain
° 3
Q¥ =3 (Ty— D_Pu¥s). 2.8 1 27
[ b] 2( 13 ;—1 4 b) ( ) (P41‘I’b‘ Vl‘I’a)= (27‘.)3_3,_!
In the Born approximation, the total matrix element
for scattering is®? XL(1/V2) 8518515 5 (8518574 —8st8a1) 5 — (1/V2) 8548574 ]
(CRAINALR A (2.12)

= |V |¥,)— ZS:I<P4i‘I’b |V I®). (29)

Since the interaction is spin-independent it is con-
venient to carry out the spinology first and select the
nonvanishing terms. It is immediately clear that the
direct term is zero.

Ty | V| T,.)=0. (2.10)
AllTthe remaining exchange terms give equal contri-
bution
Puy | V [ ¥a)=(Pu¥y | V | ¥a)

=(Pu¥; | V | ¥a)=3Tex. (2.11)

The expression for Tex is the same without the factor 1.
We shall write down the integral J below. The second
line in (2.12) shows explicitly the presence of a contri-
bution where a naive “spin-flip” of the atomic electron
does not occur—a point first emphasized by Ferrell?
We get after averaging over the initial spin states and
summing over final ones,

TATE Y | Ta P =[V@0 ] PE (219

s/

B E. B. Wilson, J. Chem. Phys. 1, 210 (1933).
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Let us examine J. After some simple algebra, we get
J=/ exp{ —ik’- (r+11)/2} exp{ik- (r+1s) /2}G1s(| 1—11 ) G1s(| =14 [) V (1, 155 13, 1, 13)

X [ @25 (Ts) 025 (1) 0152 (T2) p15(13) — 025 (T4) @15(11) @15 (T2) a5 (T2) 0152 (13) + 15 (Ts) 15 (1) @a5(12)
X e1s(12) 015 (T3) @25 (15) — @15 (T4) 025 (1) @as (T2) 015 (Xs) @15° (15) Jdrdridradrsdrs. (2.14)

At this point we make use of the assumption that % and %’ are both very small and lie in the thermal region, so
that kao, #'ae<<1, where ao is the Bohr radius. In other words, a good approximation to J for our purpose may be
obtained by calculating it for 2=%'=0. One must remember that it is not known whether the positronium is
thermalized; however, in a solid or liquid, this seems more likely than in a gas. A rapid change of quenching with
temperature, if observed, may mean some difficulties with this assumption; so far, this has not been reported.
The third term vanishes because of the orthogonality in ¢is and ¢ss; for it involves a change of state of
both particles 2 and 3, while V allows only one such change. The second and fourth terms will be considered below.
The first term gives the main contribution. Writing it out in full,

]1=/drdr1dr4 o1s(| r=11 )15 (| =14 |) 025 (re) 0as (1) [32 (r 1 —ri ) +-&2(| 1s—11 1 — | 1 —11 [1) ]

+/d1‘d1‘1d1'4 o15(| 1—11 ) G1s(| =14 |) 025(T0) 025(11)

X [/ (| r4e—2r2| T riz \> ¢xs2(rz)drz+/ <| rrejrs] - |r—82r3 l) <p1s2(r3)dr3]. (2.15)

The two terms of the second part give equal contribution, and obviously modify the effective interaction, by
correcting the factor 3 for nuclear charge. They serve to screen out the nuclear potential when the electron in
the 2s shell is far out. For evaluating the various terms, we shall use the Li atomic wave functions as given by
Wilson®:

£3 1/2
by (ﬁoﬁ) exp(—#r/ar),  E=2.69a0; (2.16)
P25 = W (1.345r¢70-60r — g—1.5r) | (2.17)
. 0
Using (2.16), the potential
e? € £
/ I r4—r2-| $15°(12) dry= " —e? exp(—2&rs/ ao) (E -{—rf‘) . (2.18)

Hence J; can be written as
]1=/drdl'1dr4$1s(l r—11 |)dis(| r—14|) pas(rs) pos(rr)

é? e?

) —2¢? exp(—2¢rs/ ao) (_5_2 +r4—1) +2¢? exp(—2¢r/ao) <—£— +r‘1>] .

II'4—I'11 - ]r—r1] Qg ag®

X [ez(r‘l—n—l)—i— (
(2.19)

The last two terms are simply the screening corrections lation becomes extremely tedious. The numerical value
due to the occupied 1s orbital. They are exponentially of the first four terms is
damped out. The long-range part of the 2s wave ;o -
function alone is of importance, hence these terms will Ji'=—2metaX12.52. (2.20)
be negligible. . . . . The correction terms of the exponentials give

The evaluation of (2.19) is analytically possible by
the method shown in the Appendix, but the calcu- J'=—2mea2X0.310, (2.21)
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so that

J1= —2me?a? X 12.83. (2.22)

Let us now return to the remaining two terms of
(2.14).

Jz=/d1‘dl'1dl'4 G1s(| 1—11|) P15 (| 1—14 |) P15 (71) os(74)

e ¢
X fin (25 = o) e, 229)

]4=fdrdr1dr4¢"ns(l r—11|) drs(| r—14 |) prs(ra) dos(11)

e é
X/drz (l p— — [T—, l> P15(12) pas(ra). (2.24)

Numerically, we find
Jz =— 2782002X0.024,

Ja=2me%as*X0.336. (2.25)

Adding (2.22) and (2.25) with appropriate signs,

= —2me®a® X 13.15. (2.26)
Clearly the overwhelming contribution came from
(2.20). The remaining terms amount to only a correc-
tion of 6%,

We have also carried out the numerical calculation
with another set of wave functions for Li given by Zener
and Guillemin* (unnormalized) :

— ,—2.688
nis=¢ Ty

o= (r—0.18) g~0-6307, (2.27)
The result is

J=—2mea®X15.82. (2.28)
Since the Born-approximation result overestimates the
cross section, the Wilson wave function value (2.26)
is preferred. The conversion-scattering cross section in
Li thus comes out to be

o=4raX (13.15)2 (2.29)
For liquid ammonia in the temperature range —77°C
to —33.5°C the thermal velocity of the positronium is
given by (T'=200°K)

2m?=3kT=0.016 €V,

or

v=4.34X10° cm/sec. (2.30)

14V, Guillemin and C. Zener, Z. Physik 61, 199 (1930).

POSITRONS IN

LIQUID NH, 251
Hence the ov product of interest in calculatmg the rate
according to Eq. (2.1) is

0v=4.34X 105X 4mwaX (13.15)2=2X 10~ cm?/sec,

(2.31)
which is of the correct order of magnitude.
The quenching rate in pure ammonia is known to be
1/72=4.5X 108 sec™ . To obtain a decay rate 10® sec™?,
we thus need a concentration

108=n-2X1072,

or

7n=0.5X10" per cc. (2.32)
Since the density of liquid ammonia is 0.68 gm/cm? at
the boiling point —33.5°C, the concentration necessary
for a paramagnetic quenching-decay rate 10+8 sec™ is
(0.5X107) /(2.4X10%) or 0.21X1075. This requlres a
very dilute solution of ammonia.

Since the experiments have to be carried out at
various concentrations, it is necessary to know the
limitations of the linear formula of Eq. (2.1). One
must start considering coherent scattering by pairs of
alkali atoms when the de Broglie wavelength of positro-
nium becomes comparable to the average spacing
between two alkali atoms. At 200°K, the de Broglie
wavelength of positronium is 1.41X10~7 cm or 27 ao.
The concentration of alkali atoms for such an average
spacing is .

3
n=— X (1.41)73X10t2=8X 10" per cc. (2.33)
47 P

Another relevant length is the apparent size of the
scatterer as represented by the cross section (2.29).
The apparent radius comes out to be 26.3 ao, so that
the concentration where impurities begin to overlap is
again ~10% per cm?. At very high concentrations when
the solution begins to show metallic conductivity, there
would be no long-lifetime component at all, as indicated
by the experiment of Hogg et ao.” for saturated solu-
tions. When metallic character is present the positro-
nium formation itself is not possible.

However, if one uses a concentration 10® or 10¥
per cc in (2.1) with our value of o9, it would follow
that the decay rate is comparable to or more than the
free annihilation rate. Hence at such concentrations
0.19, or so, the long-hfetlme component would be
absent. This seems to be in agreement with the experi-
mental data of Varlashkin and Stewart.

III. A SIMPLE MODEL

The calculations of the various integrals in Sec. II
suggest that the entire effect of quenching can be
ascribed to the outermost electron of the alkali atoms,
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Tasre I. Computational results. The third column represents
the calculation with the simple exponential of the type (3.2).
The fourth column gives more accurate results.

Atom E;® (eV) — J /2ne’aq? — J/2we*ay’
Li 5.39 6.76 13.15
Na 5.14 6.95 (14.6)
X 4.34 7.63

Rb 4.18 7.77

Cs 3.89 8.07

H 13.6 3.75b 3.75b

& C, Candler, Afomic Specira and the Vector Model (Hilger and Watts,
Ltd., London, 1964).

b This value was obtained by us evaluating the hydrogenic integrals
of Massey and Mohr by the method indicated in the Appendix.

at least if we restrict ourselves to the Born approxi-
mation. Even the independent-particle approach we
used for treating the Li atom becomes prohibitively
difficult for other alkali atoms. However, the structure
of the dominant term is quite clear, and the problem is
reduced to calculating the following integral:

. e e e &2
J=/¢1s(l r—12|)y¥(re) [; - ;1+ nen| t—n |]

Xeus(| 1—11 )¢ (r)drdrdrs. (3.1)

This has the same structure as the hydrogenic integral *
except that the wave function y that appears is the
outermost alkali orbital. It turns out that (3.1) is some-
what sensitive to the actual wave function used for
¥(r), in particular the tail of the wave function must
be accurately described.

The inner part of the wave function ¥ is not of any
importance. The simplest way of characterizing the
wave function one could think of is to write

¥(r) = (/m) eer,

The parameter o is determined from the ionization
energy E;

(3.2)

#%e?/2m=E;. 3.3)
J can then be evaluated as before and the results are
collected in Table I. In the fourth column we have the
result of our detailed calculation of lithium. The value
for sodium was obtained by replacing ¢ in (3.1) with
a two-parameter fit to the atomic 3s wave function of
sodium,’ which reproduced the external part of the
wave function accurately.

We notice that the result of using the simple expo-
nential is almost a factor of 2 smaller. Comparing the

B E. Kennard and E. Ramberg, Phys. Rev. 46, 1034 (1934).
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wave function (3.2) with a determined by (3.3),
V() =L(0.630)" (ra) 205, (3.4)

with the Wilson wave function (2.17) we notice that
the Wilson wave function lies substantially higher than
Eq. (3.4) in the outer region (Fig. 1). This is simply a
result of the factor » multiplying the exponential which
weights the external region more than in (3.4). It
seems, however, that numerical evaluation of (3.1)
with ¢(r) being the exact relevant atomic wave
function of the alkali atom would be a good approxi-
mation to calculating the quenching rate. This is
certainly true of Li as Sec. II demonstrates. Also the
value in sodium in the fourth column seems to be
following the correct trend as in the third.

IV. CONCLUSION

We have shown that a relatively simple calculation
can explain the paramagnetic quenching effect of
lithium and sodium added to ammonia. On the other
hand, we have so far made no serious attempt to
justify the use of the Born approximation; this justi-
fication is necessary particularly in view of the presence
of rearrangement collisions. An extension of our calcu-
lation to higher concentrations is possible, following
the treatment of Van Hove' for slow neutron scatter-
ing. This may be necessary when more experimental
data are available at concentrations where the long
lifetime is almost completely quenched. This is an
interesting region both experimentally and theoretically,
because of its bearing on the onset of the metallic be-
havior of alkali atoms. We hope to pursue calculations
of the other complex quenching processes and for the
long lifetime 75 itself.

3| EXPONENTIAL

_3-.
Fic. 1. (wa®)V%y(r) plotted against 7 (in atomic units)

for the exponential in Eq. (3.4) and Wilson’s 2s wave function
in Eq. (2.17).

1. Van Hove, Phys. Rev. 95, 249 (1954).
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APPENDIX

All the integrals that appear in the calculations in
the zero-momentum-transfer limit have essentially
similar structure. It will be enough to illustrate the
calculation of one of them. Considering one term of
(3.1) with ¢y=eps,

I=¢[gis(| 1—12 |) s ()it

X1s(| 1—11 |) p1s(rz) drdridr,. (A1)

Putting in the appropriate eigenfunctions, and making
everything under the integration symbol dimensionless,
we get

e2ap?
= '8—7;;/71"1 exp(—3 | r—11() exp(—r)

(A2)

@ is the Bohr radius. Similar exponentials appear in
various combinations in the integrals. Consider now

(=3, 8=1)

X exp(—3% | t—r12|) exp(—r,)drdridr,.

Il=/rf1 exp(—a | r—11|) exp(—pri)dr: (A3)
=2 [ d -
T /o r1 11 exp(—pBr)

1
X f exp[ —a(r?+r2—2r rix) 2 ]dx. (A4)
-1
Putting 724-r2—27 rix=1, we reduce the second part:

+1
dx exp[ —a(r2+r2—2r rx) V7]
-1

r+nr n _1_)

o

~— [ ewl—atrtra]

a

—exp(—al|r—nl) <l—r-:a-—M +i—2)] , (AS)

so that integral I is expressed in terms of elementary
integrals;

_ﬁr —ar

Li=2r [fr— At

A2+e‘°”A3] ,  (A6)

7
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where
Ar=[a(a+B) I (e + (a+B))
—[a(B—a) I (@ = (B—a)™),
As=—4,,
As=o'((B—a) ' —(B+a) ™).
To integrate the other part of I of Eq. (A2), take

(A7)

I2=/ exp(—a | r—ry|) exp(—Br)dr.. (A8)

We notice
I,=—0aI,/dpB, (A9)
so that
e—-ﬁr gor
L=2r [—r—- B+ " Bz+e""TBs+e_“'B4] , (A10)
with
1 2 1 2
Bi= —— (ot - ~1__ ,
' a(a+ﬁ)2("‘ +a+ﬁ) a(ﬁ+a)2("‘ ﬁ—a)
Bz= '—B1, Ba=A1,
1 1
By= ‘1( - ) . All
T\ T (e (A1D
Hence Eq (A2) gives
I=27e%a? mrzdrl I
T /(; 1£2
AlB1 AlBa A132+A2-Bl
— 920 2
Zneas [ 2% T T atB
+ A1By+A:Bs+ 438, 243Bs
(a+8)? (a+B)?
AsBy | A:Bs+A3Bs | 2A3B4
+ 20 + (2c)2 + (2a)3] ’ (A12)
where we have used
/ me“""n”dn———nl/ ARt (A13)
0

For a=%, =1, we then get I,=2re?a? X 10.1. Equation
(AS) is the important step in every other integral.



