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Theory of Viscosity in Nearly Ferromagnetic Feirxai Li(luids
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A recent theory of transport processes in nearly ferromagnetic Fermi liquids, based on the concept of
particle scattering from persistent spin fluctuations, or paramagnons, is extended to calculate the viscosity
coeKcient q. The theoretical temperature dependence, in which q falls o6 increasingly less rapidly than T
as T is increased from absolute zero, 6ts well that of the observed viscosity of liquid He .

A THEORY of transport processes in nearly ferro-
magnetic Fermi liquid, shasbeendeveloped recently

by the author' on the assumption that the predominant
particle scattering at low temperatures occurs from
persistent spin-density Quctuations, or "paramagnons, "
of the type discussed by Doniach et al.2 and by Berk
and Schrieffer. 3 A Boltzmann equation for this type of
scattering, taken to occur between bare ferrnt'on states,
was set up and solved by the usual variational procedure
to obtain expressions for the coefBcients of thermal
conductivity E and spin diffusion D. The latter were
evaluated by using a simple model approximation for
the paramagnon spectral density function As(&o) based
on the correct random-phase-approximation (RPA)
result' 4 at long wavelengths. In this paper we report an
extension of the theory to calculate the viscosity
coefficient q. We find that in the low-temperature limit,
T —+ 0, q varies as 2 ' in accordance with the prediction
of the Landau theory, ' but varies increasingly less
rapidly than T ' as T is increased from zero. Thus the
present resu1. t for the viscosity is in line with our
previous work' in which similar departures from the
Landau T ' and T ' laws for E and D, respectively,
were found. The predicted temperature dependence of

q fits well that of the observed low-temperature vis-
cosity'~ of liquid He'.

The theory of fermion transport presented in Ref. 1
(hereafter referred to as I) develops from a Boltzmann
equation postulated to hold for the scattering of bare
fermions from paramagnons:
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where V(k's'; ks) is given by the relations

V(k's'; ks) = V(ks;k's'), (4)
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The left-hand side of (3), when multiplied by gq„
integrated over k, and summed over s, is just u times

8 M. S. Steinberg, Phys. Rev. 109, 1486 (1958).
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Here f~, denotes the single-fermion distribution func-
tion, defined for bare-fermion states of momenta Sk,
energy eq, = Irises/2sn, and spin s($ or 1). rn denotes the
bare-fermion mass, As(oo) the paramagnon spectral
density function, and ss (s&) the Planck function
Lexp(A~/ksT) —1j ' involving Boltzmann's constant
k~. As discussed in I the interaction between fermions
is taken to be a 6 function of strength I.

An expression for the viscosity coefFicient can be de-
rived from the above Boltzmann equation by following
essentially the same procedure as used by Steinberg' in
electron-phonon theory. We consider the fermi liquid to
be in a steady state of shear motion with constant local
velocity ~, in the x direction and a small uniform
velocity gradient a=Be,/By in the y direction. The
deviation of fq, from its local-equilibrium value f~,
is specified by the function p&„ linear in a, where

fz, —fz, ,'—— Pj„Bf&,—'/Be&, The B.oltzmann equation
(1) may be linearized in a to give~
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the mean nonequilibrium momentum Qux T,„,

af„o
i'tk,

l

(2pr)P k m ~ Beg,
(6)

where we have simplified a more general expression than
(7) by using the fact that

pent

=p». In order to calculate
(7) we need to know pp, and A «(co). From (3), p~, has
the form p~, ——f(i ki)k k„. As a first approximation to
p~, we shall take f(lkl)=P( kt)= const ant, where kr
denotes the Fermi wave vector. For the spectral density
function Ap(si), we employ the model proposed in I:

Bearing in mind the symmetry property (4) and that
the shear viscosity coefticient is defined as —T. /va it
follows from (3) and (6) that the viscosity coefficient
is given by

(1/k, T)ffdPkd'k'V(k'I; k~)(y, ~
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with Q=—Q/kt. The function m(t) is dehned by the
relations
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where, by (12),

The above results are similar in nature to those
obtained in I for the thermal conductivity and spin
diffusion. For small (T/8) the right-hand side of Eq. (9)
may be expanded in powers of (T/8) to give a leading
contribution at low temperatures of the form

A, (pp) =npsi/q

=0 )
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In (8) pt denotes the Fermi energy, K(pt), the single-
particle density of states Pz 5(pz, —p) and I=PL(pr)I,
and 1/~pP=—1/(1 —I), the RPA exchange enhancement
factor'P for the interacting Fermi liquid. Q is a cutoff
vector of order kr. As discussed in I we believe (8) repre-
sents the essential qualitative structure of Ap(co), i.e.,
the linear dependence on cu for

I
si

I
&co„and the strong

peaking of Ap(cv) about
I
~

I
=s~, as ~p -+ 0. The result-

ing integrals encountered in (7) are similar to those met
in the calculation of D and E in l and may be evaluated
by following the methods employed there. Neglecting
terms of order (T//Tf)' relative to others, where

Tf=pf/ke denotes the Fermi temperature of the non-
interacting Fermi gas, we obtain the result

Thus as T—+0, g varies as T ' in agreement with
Landau Fermi-liquid theory. ' The qualitative point we
wish to make here, however, is that as the Fermi liquid
approaches the ferromagnetic instability, i.e., as ~p —+ 0,
so that 0 —+ 0, the range of applicability of Landau
theory rapidly diminishes. We note from (13) that for a
fixed value of 8 (equivalently, a given pressure) the
deviation from the T ' viscosity law falls off as T' for
small (T/8). By contrast the low-temperature devia-
tions from the Landau T and T ' laws for the spin
diGusion D and thermal conductivity E, respectively,
calculated in I, are linear in T. Therefore, as T —+ 0, we
expect the viscosity to approach a "Landau region"
much faster than do either E or D.

It may be seen from (12) that once the cutoff Q is
fixed w(t) is a function of the variable t only. We may

TABLE I. Computed values of the function e
defined by Eq. (12}for Q = 1.4.

zo(T/8)

1/g TP =me�(T/8),

where a is a constant,

15m' IPQ'W (0)

8 hf(p4Tf'ky'

and 8 is a characteristic paramagnon temperature,

4 ap'
g= — Tf,I

(9)

(1o)

0.00
0.02
0.04
0.06
0.08
0.10
0,20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1.000
0.999
0.997
0.989
0.975
0.953
0.779
0.612
0.491
0.407
0.346
0.300
0.265
0.237
0.215



162 VISCOSITY IN NEARLY FERROMAGNETIC FERMI LIQUIDS

I,O-

Fzo. 1. 1/sT' versus T for liquid He' at
low pressure. The small full points are the
combined saturated-vapor-pressure data
of Hetts, Osborne, Welber, and Wilks
(Ref. 5) and Betts, Keen, and Wilks (Ref.
6). The open circles denote data of Abel,
Anderson, and Wheatley (Ref. 10). The
full line is the theoretical Gt.
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then regard Eq. (9) as a formula giving the vis-
cosity in terms of the two parameters n and 8. In
applying the theory to liquid He', Q and xo' may be
fixed from the observed paramagnetic susceptibility
and specific heat in the manner described in I. This
procedure yields Q~I.4 and Kp ~sr. In Table I we have
computed the function to(t) in the range 0& t(1 for this
value of Q. Using the table, we have attempted to 6t
Eq. (1) to the low-temperature data on the viscosity
of liquid He', obtained by Betts, Osborne, Welber, and
Wilks' and Betts, Keen, and Wilk. s' under the saturation
vapor pressure. Because of the uncertainty in the
measurements below about 120 m'K it was not possible
to fix n by attempting to identify a low-temperature
trend of the form I/std'= rr. However, excellent 6t to the
data above 120 m'K was obtained by taking n=0.36
pp ' 'K ' and 8=0.56'K. This is shown in Fig. 1. The
latter choice of n is supported by independent low-
temperature measurements (40—60-m'K range), also
shown in Fig. 1, made by Abel, Anderson, and Wheatley. '
The fitted values, 8=0.56'K and n=0.36 pP ' 'K 2,

' W. R. Abel, A. C. Anderson, and $. C. Wheatley, Phys. Rev.
Letters 7, 299 (1961). Recent viscosity measurements made by
M. A. Black, H. E. Hall, and K. Thompson (to be published) are
also consistent with this choice of a. Later measurements by W. R.
Abel, A. C. Anderson, and ).C. Wheatley LPhys. Rev. Letters 17,
74 (1966)g suggest that a should be some 20% higher.

compare with 8 1.1'K and n 2 pP ' 'K ' obtained
by using the low-pressure estimates Q 1.4 and Kp ~s
in the theoretical formulas (11) and (10), respectively.
Because of our use of the simple trial function, P= con-
stant, the latter value of n only represents an upper
bound' for the theory. "The fitted value of 8= 0.56'K is
consistent with the value 8= 0.50'K used in fitting the
low-pressure diffusion data" in I, although somewhat
lower than that, close to the theoretical estimate
8~1.1'K, used in fitting the corresponding thermal-
conductivity data. '3 The variation in these fitted values
of 8, relative to the calculated value of 8, probably
reflects the degree of inadequacy of our model (8) to
treat a particular transport coefficient.
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