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1Vote addedin proof. Recent experimental results" in-
dicate that the rate for g~ m'yy computed in VMD
model is too small by an order of magnitude. This may
be due to the fact that the VMD amplitude involves
higher powers of momenta than are required by gauge
invariance. "Nevertheless, since the amplitude given
by pure 5-wave coupling (F„„F„&,sir ) for s) —+ st'e+e

is proportional to electron mass, the vector-meson
intermediate states will still be dominant for this
decay process. If we assume pure 5-wave coupling
for q

—+ m'yy and VMD for q
—+ ~'e+e, the branching

ratio will then be lowered accordingly by an order of
magnitude to =10 6.

ACKNOWLEDGMENT"See, for example, M. Feldman, W. Frati, R. Gleeson, J.
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A sum rule of the superconvergent type is obtained for forward, elastic ICP scattering. It connects Regge
parameters with an integral over total cross sections. A numerical evaluation is carried out and the Regge
parameters thus determined are compared to those obtained from a Gt to the high-energy data. Impressive
agreement is found.

'T was recently pointed out' that if an amplitude
~- f(v) decreases faster than v ' at high energies, it
satis6es a superconvergent relation

dv Imf(v) =0.

account of this calculation. We And that the results
obtained from our sum rule agree very well with the
experimental d,ata available at present.

We consider the forward E+p elastic scattering
aznplitude f+(v) deined as '

Subsequently, Logunov et al.' and Igi and Matsuda'
have shown that it is possible to write d.own an analog
of relation (1) for an amplitude which is not convergent
but whose high-energy behavior is given. Briefly, the
procedure consists in writing the given amplitude as a
sum of two pieces, one of which is nonconvergent and.
the other is convergent enough to satisfy the condition
of super convergence. One then writes a supercon-
vergence relation for this latter piece which, of course,
is the difference of the given amplitude and its (known)
nonconvergent piece. These authors applied. the above
procedure to the case of forward. pion nucleon scattering
and obtained, a striking agreement with experiment. For
a further examination of the underlying assumptions
and. usefulness of this procedure, we have analyzed the
case of forward Ep scattering. We present here an
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Since we need a crossing even absorptive part of an
amplitude for a superconvergent relation, we introduce
the combination

F-(v)=2Lf' '(v) —f'+'( )3v

The absorptive part of this amplitude satis6es the
crossing property

ImF (—v)=+ImF (v).

Following the method described above, we d,ecompose
F (v) as a sum of a nonconvergent part and a con-
vergent one. For simplicity, we assume that the non-
convergent part can be represented. by a sum of Regge-
pole terms. We have

F (v)—=P F&'&(v)+e (v),

4 The amplitudes A and 8 are dined in G. F. Chew, M. L.
Goldberger, F. E. Low, and Y. Nambu, Phys. Rev. 106, 1337
(1957).Ke follow here the notations of this article.
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where we define

P, ( .v/—mz) P—,(+v/mz)
p (~) (v) =—p,.

2 singe;
(5)

where j runs over Zo, h., I't*(1385), and I's*(1405) and

v;= (Mis —M' —mz')/2M .

Here M is the proton mass.
Multiplying (7) with v, taking the limit v —+~, and

making use of Eqs. (4) and (5), we obtain the sum rule

87r' P E + dv {(v' —mz')'~'$o' l(v) —o'+'(v) j
—4m. P P;P., (v/mz)) =0, (8)

where o&+& refer to the total cross sections for E+p
scattering. The residues R, are given below':

Er (ggz„'/47r)X——(Z), Es. (ggz„s/4n)X——(A),

Ryp= (h p'/4') X+(I'pe),

Rr *= (his/4n)32/3(M/My *)'X (Ft*)X s(Fr*)

The index i runs over p, ~, and P.
We assume that the function e (v) satisfies

e (v)(v—' as v —v~ .

We have the dispersion relation

1 1

vp v vp+ v)

1 1
dv' Ims (v') — i, (7)

v' —v «'yv/

which gives

gszv= (1 2f—)gNsr~ and ggzv= (1/~3(1+2f)g~iv~

Here g~~~'/4s. =14.5. The value of f is not precisely
known but various estimates put it in the neighborhood
of 0.3. The coupling constants hs and ht, according to
the estimates of Frye and Warnock, r are ho'/47r=0 32.,
hts/4m= 1.9.

So much for the Born terms. Turning to the evalua-
tion of the integral in (8), we remark that since we
assume that the Regge behavior for the amplitud, e
F (v) is already established by 6 BeV/c, we take this
energy as the upper limit of integration. To carry out
the integration over cross sections, we used, the d,ata in
Refs. 8 and, 9 for K p and E+P, respectively. Integration
over the second, term is carried, out analytically. "

To keep the number of parameters to a minimum,
we erst consid, er the case of i = p only. From the analysis
of s-iV scattering, the value of n, is determined" "to be
roughly 0.54 0.56. Using a typical value of n, =0.54
we find' from the sum rule (8) that 4s.P,= 12.9(1/mz).
To ascertain the cutoB ind, ependence of this result, we
took the upper limit of integration as 18 BeV/c and
evaluated. the integral over cross sections using the d,ata
of Ref. 6. In this case, we find that 4sP„= 12.8(1/nzz).
The values of p, quoted above are obtained with the
choice of f=0.3. However, since the Born contribution
is rather small compared, to the integral over cross
sections, the value of p, obtained from the sum rule (8)
changes only slightly's when we change the value of f
say to 0.2 or 0.4. Therefore, from now on we shall con-
sider f=0 3only. .

The value of p, obtained from the sum rule is to be
compared with the value calculated, by a Regge fit to
the total-cross-section data above 6 BeV/c. For this
fit, we employ the formula

(9)
where

Xp(j)= (1/SM')L(M;WM)s —mz'$.
Using (9), we obtain 4sP, = (12.9&0.3)(1/mz), with

Ap 0 54. The error quoted is statistical. Within the

To check the validity of the sum rule (8), we proceed
as follows. We determine the value of p; from the experi-
mental data for E+p total cross sections' at 6 BeV/c and
higher assuming that the Regge asymptotic behavior
for the amplitude F (v) is already established at 6
BeV/c. We then compare this value of p; to the ones
obtained from the sum rule (8).

Let us estimate the various terms in (8).
To determine gzzv and gsz„, we use SU(3) symmetry

~ For the (F&*Ep) and (Fo*Ep) vertices we assume the following
effective Hamiltonians:

Hg = (b&/M) (1'r*)„pa~+H.c.;
Ho= hoYp*pl|:+H.c.
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"In particular, we find that with a cutoff of 6 BeV/o, the value
of 4rP, from the sum rule is 12.9(1/mz) and 12.7(1/mw) corre
sponding to f=0.2 and 0.4, respectively.
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TABLE I. The values of 4irp, (in 1/mx units) calculated from
the sum rule (8) with the cuto6 kaon laboratory momentum of
6 BeV/c and from the Regge fit (9). Each of the latter values of
harp, carries a statistical error of &0.3.

0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60

4p
(Regge fit)

13.7
13.3
12.9
12.5
12,1
11.7
11.4
11.0
10.7

4p
(sum rule)

13.4
13.1
12.9
12.6
12.4
12.2
11.9
11.7
11.5

accuracy of experimental d,ata, the agreement between
the values of P, obtained from (8) and (9) with the
choice of n„=0.54 is excellent.

We have repeated this calculation of 4Irp, with
slightly diGerent values of 0, The results are given in
Table I.

It seems, therefore, that the sum rule (8) is satis6ed
by consid, ering only one Regge term which we called. the
p term with 0.„0.54. In addition, however, we may

have Regge terms corresponding to io and iti. If cr, (0),
cr„(0), and ne(0) have approximately the same value,
then Io and @ pole terms are automatically included in
what we have called, the p term. "In any case, once the
values of o,p A and n~ are given from any phenomeno-
logical or theoretical analysis, " the sum rule (8) pro-
vid, es an ind, epend. ent test for the correctness of these
values.

We thank Professor J.W. MGRat and Professor P. J.
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Many different methods for normalizing Bethe-Salpeter amplitudes for bound states have been known.
In this article, derivations of the normalization condition based on conservation of charge and of energy-
momentum are studied in detail, and it is shown that the final result in both cases is identical with the one
derived from other methods.

'L. $NTRODUCTION

''N studying Bethe-Salpeter (BS) wave functions or
J. amplitudes for bound states, ' one of the funda-
mental problems is how to normalize them, since the
3S amplitudes are not directly interpretable as being
probability amplitudes. This problem is rather old and
has been studied extensively in the literature, and there
are, roughly speaking, two distinctive kinds of solutions.
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In earlier papers' ' this problem was solved by expres-
sing the expectation value of a current, such as the
electric or baryonic current, in terms of the SS ampli-
tudes and putting it equal to the conserved quantity
which is known II priori In later. papers, ~" methods
were developed of normalizing the BS amplitudes
without using conserved quantities.

In this paper we show that these two distinctive kinds
of methods lead to identical results. It has been claimed
that the electric or baryonic current cannot always be
used for normalizing the BS amplitudes. "This problem
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