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The decay p -+me+e through a C-conserving, two-photon intermediate state is studied in a vector-
meson-dominant model. The branching ratio I'(g ~ ere+e )/I'(n ~ erg') is found to be =10 '. If, in addition,
a quark model is assumed for the photon —pseudoscalar —vector-meson vertex, we obtain a value of 1.3+10 5

eV for the decay width of p ~ ~e+e . General features of the decay spectrum with respect to the sum and
difference of the electron and positron energies in the g rest frame are discussed.

I. INTRODUCTIO5

where i goes over the Gve convariants, namely, 5, V,
T, A, and P, and where the C s are functions of external
momenta. Because of the behavior of the Dirac equa-
tion, M should be invariant under the combined
transformations,

lge + Yslge and me + ~e ~

As it is well known that 5, T, and P change sign under
the y5 transformation, their corresponding C s must

V( -Q)

' 'T has been pointed out by Bernstein, Feinberg, and
~- Lee' that the decay q~m'e+e through a single-
photon intermediate state can occur if the electro-
magnetic interactions violate charge-conjugation invar-
iance. They estimated that, unless the C-violating
current has special isvspin or unitary-spin transforma-
tion properties, the rate of this decay should be appreci-
able if the violation is large. However, recent experi-
mental results' have put an upper limit of less than 10 '
for the ratio of p-+ m e+e decay width to the total p
width. Anticipating a very small decay rate, we examine
here the decay mode of p

—+ me+e through a C-conserv-
ing, two-photon intermediate state. Knowledge of this
process will be important in the proper interpretation of
future experimental data. Hereafter in this paper, the
decay p —+x'e+e means the C-conserving one, unless
otherwise stated.

We Grst discuss some general features of the decay
amplitude M. To be Lorentz invariant, M should be
of the form

M=+ CyP,FyP. ,

then be proportional to some odd powers of electron
mass. We shall neglect all electron-mass terms as small. '
By parity conservation, the decay amplitude must then
be of the following form:

~=G4"V4"P~+III.V~vs%.e~...P,P+.P
where I', P+, and P are, respectively, the 4-momenta
of p, e+, and e . e»„, is the totally antisymmetric unit
tensor of rank 4. The form factors 6 and H depend in
general on two independent invariants of the external
momenta, for example, P(P+ P) and —P(P++P ).
In the rest frame of g, we take the two independent
variables to be 5=a&++a& and D=&v+ &u, where a&+-

and ~ a,re the positron and electron energy variables.
In order for M to be evan under charge conjugation, it
is necessary that 6 and H be odd functions of D, since
the covariants multiplying G and JI are both odd under
C. Clearly, amplitudes of such a form will give a decay
spectrum that is symmetric with respect to co+ and co,
and will vanish for a+=co . We expect the axial-vector
term to be less important because of its strong momen-
tum dependence.

All the features so far discussed are general; independ-
ent of the models assumed, the decay amplitude must
be of the form shown in Eq. (1) in the limit of electron
mass m, =0. We sha1.1 now proceed in Sec. II to examine
in detail the decay z —+m'e+e in a vector-meson-
dominant (VMD) model. 4 In Sec. III a quark model is
used to evaluate the coupling constants involved in the
photon —pseudoscalar —vector-meson vertex. We find the
decay width F(rl ~me+e )=1.3)&10 ' eV. In Sec. IV
the ratio F(ri —+ 7re+e )/F(ri ~ may) is computed to be
= 10 '. In Sec. V, the last result is checked in a different
model in which the photons emerge from the same vertex
and the y-y-q-x vertex is assumed to take the general
form P PpF „Fp„rk„g . Here F p is the electromagnetic
field tensor.

q(p)
Y

e+(P, )

FIG. 1.Feynman diagrams for g ~ x&7 ~ ~e+e in a VMD model.

* Rockefeller University Graduate Fellow.
1 J. Bernstein, G. Feinberg, and T. D. Lee, Phys. Rev. 139,

$1650 (1965).
'See, for example, C. Baglin, A. Bezaguet, H. H. Bingham,

B. Degrange, F. Jacquet, W. Michael, P. Musset, U. Nguyen-
Khai, and G. ghoul-Boutang, Phys. Letters 22, 219 (1966).
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II. VECTOR-MESON-DOMINANT MODEL

We assume in the following calculation that the decay
p ~ m e+e is dominated by the virtual transitions
q~ P'p followed by V'~m'p and 2p~ e+e . The

3 We do not expect any mass singularity ~1/w, to occur. For
the problem of mass singularity in the Feynrnan diagrams see, for
example, Te Kinoshita, J. Math. Phys. 3, 650 (1962).

4 See, for example, M. Gell-Mann, D. Sharp, and W. G. Wagner,
Phys. Rev. Letters 8, 261 (1962).
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Feynman diagrams of this process are shown in Fig. 1.
V' denotes all known neutral vector mesons of zero
strangeness, namely, &p, p', and @. Thus, there are in
fact a total of six diagrams. We take the simplest pseudo-
scalar (P)-photon (A„)-vector (V„) vertex consistent
with the requirements of Lorentz, C, I', and gauge

invariance,

gl vp(e z,.r).&zr)rA. )P,
where gpss~ is some appropriate coupling constant.

The invariant decay amplitude (M) in momentum
space is then

M= P gv(3Ev&'& —Mv&")

gee'
V

d4K 1 5.,—(P—K).(P—K),mv
—'

e sv (K Q) (P—K)v
(2~) Ks+ie (K—Q)s+ie (P—E)s—~P+ie

e),„„pK),(P—K)„

XU(P,S ) yz . y.+v. — . rn U(—P+, S+) (5)
(K P+)y m—,,+i e — (P —K)y —m, +ie

where gv
——g„v~g vv and Q=P++P . Mv&'1 and Mv&s& are amplitudes corresponding to uncrossed and crossed

photon-line diagrams in Fig. i. Because of the presence of the totally antisymmetric tensors e pv, and e»„, the
term proportional to (P—K),(P—K),mv

—' in the vector-meson propagator vanishes and, in fact, each vertex can
contribute at most one power of E to the numerator. As a result the integral over d'K is convergent as E~~.
In the following calculation we shall always set the electron mass rN, =O and also neglect, in the numerator, terms
that are second order in I'+ and P .

After rationalizing the electron propagator, we obtain from the numerator of M~('~ a term of the following type:

~= e.,„,(Q—E).(P—E)„.„„„K,(P-K)„y,g(K-P, ) y$y„
= e-uv "~".LQ-PvP vs'.v.KxK. PvP 7—n'.&.K-K~K. Q-P vz—y.v.KvKxK. +PVP.vz(v P+)v.K.-K~3

By means of Feynman parameters,

d'K U(P, S )NU( P+, S+)—
(2')' (Ks+ie)P(K —Q)'+iejL(P —E)'—mv'+iejL(K —P+)'+ie]

=e'3 t

d'E
GS

(2s.)4 p

1—z U(P,S )XU( P+, S~)—dx, (5)
(Ks 2bgK), +av+—i e)'

where
av ——(m ' fmvs)z+2(P+. —P )y,
b~ =P+).x+Q),y+P), z

%e can then perform the de integration by change of
variables and contour rotation. Thus, for example

E),E„E„ ix'
d'K -= [b~p, .+&,4.+b.o~~

(K' 2bK+av)4 12cv—
+ (2/cv)blab„b„j,

where c~= u~ —b~b~. After neglecting second-order
terms of I'+ and I' in the numerator and after a con-
siderable amount of algebra„we obtain

also a function of P+ and P ).Thus our decay amplitude
is in complete agreement with the vector form we have
expected from very general arguments in Sec. I Lsee
Eq. (1)j.We note parenthetically that, had we used a
model with photons emerging from the same vertex
(see Fig. 2) and assumed for the y-y-w-rl vertex the
simplest possible interaction @„p F„„F„„(F„„is the
electromagnetic field tensor), we would not be able to
obtain an amplitude of the form found in Eq. (1),
because this interaction in fact gives a decay amplitude
proportional to the electron mass. Thus, we expect
that contributions from such an interaction will. be
several orders of magnitude smaller than those from
the present VMD model. '

P(P= xP+ yQ+1.5zP)—
Zxdgt&

cv+se

ie~
Mvf" = U(yP) U

Sx'

My&') is of similar form to M~0) with I'+ and I'
interchanged. (We note that the denominator cv is

e C. H. Llewellyn Smith fNuovo Cimento 4S, 834 (1967)g has
used just such a model of pure S-vvave coupling, Ii„,F„& @„.The
ratio F(rl ~e.e+e )/I'(v -+sly) is found to be =10 ' with a
reasonable cutoff for the divergent integral. Similar results have
been obtained by T. J. Weare fImperial College (London) Re-
port 67—13 (unpublished)g and J. Smith fUniversity of Adelaide
Report (unpublished) g.
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TA&LE I. DiGerential decay spectrum of q -+ 7r e+e .
2 S

L(100 MeV)'g (MeV)

1.0 266
2.3 279
3.7 291
5.0 303
6.4 315
7.7 328
9.1 340

10.4 352
11.7 364
13.0 377
14.4 389
15.7 401
17.0 412

dpr/dSdry/dS

9.5X10 i4

5.0X10 "
3.2X10 '4

2.2X10 '4

1.5X10 '4

9.5X10-»
5.8X10 "
3.2X10-»

X10
7.1X10 "
2.3X10-~6
3.7X10 "

0

2.1X10-»
1.5X10 '3

1.1X10-»
75X10 '4

5.0X10 "
3.2X 10-14
1.9X10 '4

1.1X1Q &4

5.5X10 '5

2.4X1Q I5

7.5X10 "
1.2X10 I&

0

I'ro. 2. Feynman diagrams for q ~ mph' ~ ~e+e with two
photons emerging from the same vertex.

IQ. NUMERICAL EVALUATION

To obtain an absolute rate for the decay, we need to
to know the value of gv )see Eqs. (2) and (3)j.For this
purpose we shall assume a quark mode1, which has been
rather successful in predicting, among other things, the
rate of u —+ w'p. ' In the quark model' the pseudoscalar
mesons (P) are the 'Ss state of a quark-antiquark
system and vector mesons (V) are the sSt states. A
V~ P+y process is therefore interpretated as an M1
transition of quarks. The amplitude is then associated
with the magnetic moments of quarks, which are in
turn related to the total proton magnetic moment
tt„=2 79e/2. hatt„Wh.en ce-P and X-rt mixings are taken
into account, ' the quark model predicts'

The integrations are done numerically; the results for
diGerential width are shown in Table I and are plotted
in Fig. 3.

The differential decay width corresponding to the
dispersive part of the process, di'z/dS, displays a
(lnQ')' dependence. Indeed for small Q' the spectrum
can be very well jitted by fin(Q'/21))'X10 ".Using
this function to extrapolate the spectrum to Q'=0, we
are able to compute the width, Fg ——0.4&(10 ' eV. The
differential width of the absorptive process, di'r/dS,
increases less rapidly with Q' and is expected to be
regular at Q'=0. We obtain I'r ——0.9X10 ' eV, thus
giving the total decay width

g60= 2 2Py ~ gP= 1.0LMy ~ gy= 0 ~

Furthermore, because of the near equality of co and p
masses, it is a good approximation to equate the
amplitudes M " (M "') and M "l (M "'), their only
difference being an mv term in the denominator cv.
Consequently the gz's can be factored out in the expres-
sion for decay width, I'

~ pv g&(M&&'& —Mv &s&) ~s.

Ke consider the decay spectrum with respect to S
and D, the sum and difference of electron and positron
energies. As anticipated, dI'/dD is a symmetric function
with respect to positive and negative values of D, and
vanishes at D= 0.S is linearly related to Q'= (P++P )s.
In our approximation of setting m, =0, Q' varies from
zero to (m,—tts )s=17X10' MeV', corresponding to 0'
and 180' angles between the emerging electron-positron
pair.

The real and imaginary parts of the amplitude in
Kq. (6) are separated by the familiar identity,

1
=P.V.—Arb(cv),

cTr+ss cv

I"(rt-+rre+e )=1.3&(10 ' eV.

IV. I'(rt —+ ss e+e )/I'(rt —+ ee yy) RATIO
(VMD MODEL)

Admittedly, the procedure of obtaining the g~'s
through a quark model is not very reliable. For one
thing there are ambiquities in the identification of the
V-I'-y coupling constants within the model. "Neverthe-
less we can arrive at an experimentally measurable
result that is more or less model-independent.

We note that g —+ x'yy involves the same set of gy's.
Thus we expect the branching ratio I'(rr'e+e )/I'(m'yy)
will be independent of the values assumed for the
coupling constants which can be, as we have seen,
factored out in the expression for decay width. We
compute the rate for g ~ Hyy in the same VMD model.

The invariant decay amplitude is

M=+ gvsa&reksvriIa(P k)ykA(P k)y

(g)
(P k)' nty—s+ie—(P cI)s revs+—se)—

where p, k, and q are the 4-momenta for rt and two
photons, which have polarizations & and e', respectively.
To obtain the decay width, we square the amplitude
and sum over all anal states. A factor of —,

' will be
inserted to account for the identical particles in the

' Reference 7, p. 296.

where P.V. means the principal value. Contributions by
the real and imaginary amplitudes to decay width
will be denoted by subscripts E and I, respectively.

s T. J. Weare /Imperial College (London) Report 6/-13 (un-
published) g has used just such a model with a F„,F&&+„vertex.
The ratio I'(rt ~ s.e+e )/P (v ~ nay) is found to be = 10 ' with a
cutog for the divergent integral set at the nucleon mass.

s W Thirring, Phys. L.etters 16, 335 (1965); V. V. Anisovitch,
p. A. Paxselm, Ya. I. Azimov, G. S. Danilov, and I. T. Dyatlov,
t6td. 16, 194 (1965).

7 See, for example, R. H. Dalitz, The Quark Model for Ele-
mentary Partscter (Gordon and Breach Science Publishers, Inc. ,
New York, 1965).

s We took mixing angles to be cosg„e =g-,'and tantt» —0.2. ——
~Reference 7, Table 3, p, 298. (The table contains some

misprints. )
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hnal state. The integrations are again done numerically,
giving F(g -+ neyy) = 1.3 eV."

Thus we have for the branching ratios,

Fg (17-+ n'e+e —)
=0.3X&0-5, (9)

F(& ~~)

=O.7X ~0-5,
Fz(g~ n'e+e )

(1O)
F(.--'v~)

and it follows that

F(g —+ vr'e+e )
(»)

F (n ~ ~'vv)

We note that this 6nal. result is computed in a UMD
model with the electron mass set equal to zero through-
out. We have also dropped, in the numerator of
the amplitude, terms that are second order in I'+
and I' . Among them, the most dangerous term is
Q'= (P++P )'. Since the final result is of such form
that the principal contributions come from small Q',
we expect this approximation to be a good one, or,
properly speaking, a self-consistent one.

lOl

)
0- l4

Q (100 MeV)'
5 IO

V. I z(g —+ eee+e )/F(rg —& erg') IN A.

FORM-FACTOR MODEL

As a check. for the results obtained in the VMD model
we compute Fz(q~ne+e )/F(q~n. yy), the ratio of
the absorptive process q~ me+e to the width of
of g —+ eyed, in a different model. "We assume for the
g-rr-y-y vertex a coupling of P PpF „Fs„g.g„, where Pq
is the g 4-momentum. We note that this form-factor-
type coupling satisies all the invariance requirements
states in the Introduction and it gives a nonzero
amplitude in the limit of m, =0.'3 Explicitly, the
invariant absorptive amplitude is (the kinematics are
the same as those used in th. e VMD model)

lO l5
300 350

I

400

again setting m, =0 throughout, then

Mz(rre+e )=g—U(y P—)U d'E: 8(E')8((E—Q)')
4x

P(E P+) P(E —P)—
x(zQ)

(ZP+) (EP )
(13)

S (Mev)

FIG. 3.The n ~ n e+e decay spectra, dI'a/dS and dr E/dS

=xrrg U(y P) UfP (P+ P)]. —d4E
M z(n.e+e )=ge'U(P 5 ) in.l(E')in.8((K—Q)')

(27r)4

X I (E'P)8„.—K„P.](L(Q—K).P]&„p—(Q—&),Ps)
We note that Eq. (13) also agrees with the vector term
of Eq. (1). The decay spectrum dFz/dS obtained in
this way shows a similar Q' d.ependence to that found
in the VMD model. For g —+ may, we have the decay
amplitude,

M(nay)=2g(k p)(g p)(e e'),

where we have chosen the polarization vectors such
that they are spacelike in the rest frame of p. In this
way we obtain the ratio Fz(n.e+e )/F (n.vy) =10 ',
which is to be compared with the value of =7)&10 '
found in the VMD model Lsee Eq. (9)].Allowing for
such model-dependent variations, we expect the inter-
ference e8ect with the C-conserving back.ground not to
be an important factor in the search for the C-violating

+-+ n.e+e until the ratio F(q —+ n.e+e )/F(g —+ n.yy) is
4experimentally set at some value less than 10

1 1
X ye

ps+�'ys

7~~.(Z-P,)-~, ~ (P E)-m. -
x U(—P+p+) (»)

"While this part of the computation was being completed we
learned that similar work has been done by G. Oppo and S. Oneda,
Phys. Rev. 160, 1397 {1967).They obtained I'(q —+ ~y) =0.9
eV. The slight numerical difference is understandable in view of
the ambiguity in identifying the coupling constant with the M
transition amplitude in the quark model."It will be considerably more dificult to compute the corre-
sponding dispersive amplitude as it is complicated by the ultra-
violate divergence. Indeed we may look upon the vector-meson
intermediate states in the VMD model as a natural cutoff
mechanism.

'3 The advantage of studying the absorptive part of the inter-
ction with a E PpF Iip vertex was first pointed out by S.acr n a a

h bse-Berman in a private conversatIon wIth G. I'eInberg, who su
quently informed me.
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1Vote addedin proof. Recent experimental results" in-
dicate that the rate for g~ m'yy computed in VMD
model is too small by an order of magnitude. This may
be due to the fact that the VMD amplitude involves
higher powers of momenta than are required by gauge
invariance. "Nevertheless, since the amplitude given
by pure 5-wave coupling (F„„F„&,sir ) for s) —+ st'e+e

is proportional to electron mass, the vector-meson
intermediate states will still be dominant for this
decay process. If we assume pure 5-wave coupling
for q

—+ m'yy and VMD for q
—+ ~'e+e, the branching

ratio will then be lowered accordingly by an order of
magnitude to =10 6.
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A sum rule of the superconvergent type is obtained for forward, elastic ICP scattering. It connects Regge
parameters with an integral over total cross sections. A numerical evaluation is carried out and the Regge
parameters thus determined are compared to those obtained from a Gt to the high-energy data. Impressive
agreement is found.

'T was recently pointed out' that if an amplitude
~- f(v) decreases faster than v ' at high energies, it
satis6es a superconvergent relation

dv Imf(v) =0.

account of this calculation. We And that the results
obtained from our sum rule agree very well with the
experimental d,ata available at present.

We consider the forward E+p elastic scattering
aznplitude f+(v) deined as '

Subsequently, Logunov et al.' and Igi and Matsuda'
have shown that it is possible to write d.own an analog
of relation (1) for an amplitude which is not convergent
but whose high-energy behavior is given. Briefly, the
procedure consists in writing the given amplitude as a
sum of two pieces, one of which is nonconvergent and.
the other is convergent enough to satisfy the condition
of super convergence. One then writes a supercon-
vergence relation for this latter piece which, of course,
is the difference of the given amplitude and its (known)
nonconvergent piece. These authors applied. the above
procedure to the case of forward. pion nucleon scattering
and obtained, a striking agreement with experiment. For
a further examination of the underlying assumptions
and. usefulness of this procedure, we have analyzed the
case of forward Ep scattering. We present here an

*Supported in part by the National Research Council of
Canada.

~ L. D. Soloviev, Joint Institute for Nuclear Research Report
No. K-2343, Dubna, 1965 (unpublished); V. de Alfaro, S. Fubini,
G. Furlan, and G. Rossetti, Phys. Letters 21, 576 (1966).' A. A. Logunov, L. D. Soloviev, and A. N. Tavkhelidze, Phys.
Letters 248, 181 (1967).

3 K. Igi and S. Matsuda, Phys. Rev. Letters 18, 625 (1967).

Since we need a crossing even absorptive part of an
amplitude for a superconvergent relation, we introduce
the combination

F-(v)=2Lf' '(v) —f'+'( )3v

The absorptive part of this amplitude satis6es the
crossing property

ImF (—v)=+ImF (v).

Following the method described above, we d,ecompose
F (v) as a sum of a nonconvergent part and a con-
vergent one. For simplicity, we assume that the non-
convergent part can be represented. by a sum of Regge-
pole terms. We have

F (v)—=P F&'&(v)+e (v),

4 The amplitudes A and 8 are dined in G. F. Chew, M. L.
Goldberger, F. E. Low, and Y. Nambu, Phys. Rev. 106, 1337
(1957).Ke follow here the notations of this article.


