
EQUAL —TIME COMMUTATOR

we require the right-hand side to be a vector. We must
therefore de6ne a covariant equal-time corrnnutator, for
which the obvious candidate is C„'&;

covaria, nt e'~'* 6( xo)

X(p~ LJ *(x),J. (O)7~ p')d'x =—C„' (4.6)

where C„'&'is given by (2.38). Equation (4.2) then tells
us that under this operation it is possible to have a
closed algebra if we restrict ourselves to the case k=0;
for then

covariant 6(xs) (p'
~ $Jo'(x),J„'(O)]~

p')d'x

values of k. For the rather important consequence of
deriving sum rules, however, it is Eq. (4.2) which is
relevant and can consistently be postulated. The point
about an algebra is that we can make a single assump™
tion that determines for us the whole set of structure
constants G~'&. But since the same set of constants
occurs in both (4.2) and (4.7), we can still make an
assumption about the algebra in (4.7) t for example, that
it is an SU(2) or SU(3) algebra) and insert the resulting
values for the structure constants in (4.2) which is not
a closed commutator relation. Use can then be made
of (4.2), for general k, in deriving sum rules. In this
sense the restriction to (4.7) does not involve a loss of
generality.
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We have shown that the assumption of maximal analyticity of first degree and fixed-t power behavior of
the scattering amplitudes in general imply a lower bound at a axed angle. The fixed-angle lower bound takes
the form exp)-c~(s, ) s&lnsg, where c„(s,) and y are positive. The precise value of y depends on the specific
assumptions on the axed-t bound of the scattering amplitude. In particular, the assumptions made by
Cerulus and Martin correspond to y=-,', and for the case of a linearly rising trajectory, y= i. Furthermore,
we obtain a nonzero lower bound at z,=0, which heretofore was given as zero.

I. INTRODUCTION'

ECENTLY Cerulus and Martin' have shown that
the Mandelstam representation, together with

a weak unitarity condition, implies that the scatter-
ing amplitude has a lower bound as the energy s
increases at 6xed center-of-mass scattering angle 2, .
They used the finite range of the interaction and the
assumption of a polynomial bound to show that

~ f(s,s,) ~ ~&expLc—(s,)s't' lnsj. Subsequently, Martin'
rederived this result under a weaker assumption. The
rapid decrease of the differential pp scattering cross
section at large momentum transfer led Kinoshita'
to postulate the principle of "minimal interaction"—

*Work done under the auspices of the U. S. Atomic Energy
Commission.' F. Cerulus and A. Martin, Phys. Letters 8, 80 (1964).' A. Martin, Nuovo Cimento 37, 671 (1965}.

that the physical amplitude takes the minimum value
consistent with the general requirements of analyticity
and unitarity.

Doubts concerning the uniform polynomial bound
assumption have been expressed by Cerulus and
Martin, ' and by Mandelstam himself. Martin' was
able to include the possibility of Regge cuts when the
leading branch point in the J plane does not increase
faster than t'I' as the momentum transfer t increases.
Recent experiments, ' however, suggest that Regge

3 T. Kinoshita, Phys. Rev. Letters 12, 256 (1964).
4 S. Mandelstam, Nuovo Cimento 30, 1148 (1963).
'Experiments seem to suggest that the p trajectory and the

nucleon and the ~ trajectories could rise linearly in t, see Van
Hove's Rapporteur's talk, in Proceedings of the Thirteertth Inter
rtatiortat Cortferie ort High Ertergy Physics, Berke-tey, Califorrtia,
1966 (University of California Press, Berkeley, California, 1967),
p. 253. Also see N. N. Biswas et a/. , Phys. Rev. Letters 18, 27$
(1967).
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trajectories could. increase linearly with t. If this trend
persists, then the assumptions made by Cerulus and
Martin, ' and by Martin' could be too strong.

We shall show that the assumptions of maximal
analyticity of the 6rst degree and 6xed-t power be-
havior do indeed imply a lower bound at fixed angle.
The fixed aug-te lower bound (FALB) takes the form

exp[—c7(z,)s& 1ns], where y is a positive constant and

c~(z,) is a positive definite function. The precise value
of the constant p depends on the speci6c assumptions
on the 6xed-t bound of the scattering amplitude. In
terms of the Regge-pole hypothesis, the FALB depends
on the behavior of the leading singularity in the J plane
as a function of t. We show that the result of Cerulus
and Martin (CM) is a special case of this general result.
Furthermore, we improve the lower bound at s, =0,
which heretofore was given to be zero. ' '

In Sec. II, we set up our mathematical problem and
prove a theorem which will be used repeatedly. We shall
see that the FALB is closely connected to an angle
0, which determines a domain in the t plane within
which the fixed-t polynomial bound is assumed. We
shall reduce the problem formally to that of a theory
satisfying uniform 6xed-t polynomial bound assumption,
where the range of interaction depends on the energy.
In Sec. III, we shaB exhibit a potential model with its
domain for polynomial bound enlarged as compared to
the domain assumed by CM; consequently that the
FALB obtained is higher than that of CM. In Sec. IV,
we consider relativistic scattering amplitudes. We dis-
cuss the additional constraint of simultaneous unitarity
in all channels. We show that the CM result is consistent
with this constraint, but is by no means the most
general one. In particular, we show that for a linear

Regge trajectory, the best FALB we can obtain is

exp[—ci(z,)s lns)i. We shall make some concluding
remarks in Sec. V.

1V(t) =lim[ln
~
T(s, t) ~/lns). (2.2)

The function N(t) is a real-valued continuous function
on the complex t plane. We assume

~
T(s, t)

~

(cs~"' at
large s, where c is a large positive constant. We shall
show that the specific behavior of this function N(t)
will, determine a FALB for the function f(s,z,)= T(s, t), —
with z.=1+2t/(s —4).

First, we need a lemma, which is a generalized version
of a theorem proved by Cerulus and Martin. '

II. A MATHEMATICAL THEOREM

We now show how the assumption of 6xed-t power
behavior implies a FALB for a scattering amplitude.
Consider an analytic function T(s,t) of two complex
variables. Let T(s,t) be analytic in t with a branch
point at to on the positive real axis. If T(s, t) has fixed-t

power behavior in s, we can de6ne a function

for
y(s,z ) I

)c' exp[—c "(z,)s& lns),

—~ (s,(1)
(2 5)

where y=~/28

Thus the asymptotic lower bound at a fixed angle
derived here is connected to assumptions on the domain
speci6ed by 0, . The usually assumed polynomial
bound corresponds to 8, = sr. In that case, o,=~, and we
obtain the CM result. But in general, the angle 0,„

will not be equal to x. For a theory with a 6nite range

Lemma (Cerulus Ma-rtin Theorem): Let g(s,w) be an
analytic function of the real variable s and the complex
variable m, such that, at large s,

(1) g(s, w) is analytic in w with a branch point at
wo ——1+vi/(s —4)'&, ni) 0, y) 0;

(2)
~
g(s,u)

~

(s~ for wPD, where D is a 6nite domain
in the w plane (to be specified in the proof);

(3) ln~g(s, 1)
~

=0(nu lns), n~(N and finite.
Then, ~g(s,w)

~
&~ exp[—c7(w)s& 1ns), for s sufficiently

large, and —~ (w(1, where the real function cv(z)
is positive definite in this interval. (See the Appendix
for the proof. )

We cannot apply this lemma to our function f(s,z,)
directly, by identifying the variable m with s„because
condition (2) of the lemma is in general not satisfied.
We can, however, make an appropriate change of
variable so that this lemma becomes applicable. Let us
first define a new variable $= rexp[i(z. ——8))= t to, ——
and write 1V(t) as N($). Denote by 0, the biggest
angle for which X($) is bounded by some constant Np,
whenever $ lies to the left of two lines f~ in the $ plane,

rexp——[i(z&8, )), 0&r(~. In this sector of the
$ plane, subtended by an angle of 28,„,the function
T(s, t) is bounded by s+'. The desired transformation is
the one which maps this sector onto a plane. On this
new complex plane, we can apply the above lemma and
obtain a FALB.

We define

(2.2)

where y=~/20, , and p=1+2to/(s —4); and we use

f(s,w) to represent f[s,z, (s,zv)). In the w plane, f(s,u)
is bounded by s~0, and it is analytic except for a branch
point at

wo ——1+(p—1)'&=1+(2to)'&/(s —4)'& (2.3)

Now we apply the lemma, assuming the condition (3)
is satisfied by f(s,w), and obtain

t j(s,w)
~

&&exp[—c,(w)s~ lns). (2.4)

Since m(s, z,)=1—(1—z,)'&+0(s '7), we immediately
obtain a FALB for f(s,z,).
Theorem: If

~
T(s, t)

~
~& Cs~&o and T(s,t) has the singu-

larity structures described above, then f(s,z.) has a
FALB, i.e.,
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of intera, ction, le'I' is a constant (it is the inverse of the
range). It corresponds to a singularity in the z, plane,
located at the point p=1+$2le/(s 4)—J. This point p
approaches z, = 1 as 1/s when s is large. If we make an
analogy with a problem in which m is the cosine of the
scattering angle, we see from Kq. (2.3) that the range
of the interaction has an energy dependence (s—4)~'l'.
In this new theory, the scattering amplitude satis6es a
uniform fixed-t polynomial bound.

Martin' has subsequently abandoned the assumption
of a uniform polynomial bound, and rederived the CM
result under a somewhat di6erent assumption. His
"new" assumption requires that the function T(s, t) be
bounded by s~t", N(t)=0(~t~"). This weaker as-
sumption might still be too strong. Recent experiments
seem to suggest the power N(t) grows linearly with t.
However, we can make use of his mathematical method
and derive our theorem with a relaxed condition. The
angle 8, can now be the biggest angle so that N($)
=0(j $

~

'l') in the sector de6ned by this angle tl, .
In the next section, we shall exhibit a potential

model where 0, &m and the corresponding FALB
derived is higher than that of CM. In Sec. IV, we shall
see that for a linear trajectory the angle 0 will be
z/2. Hence the FALB will be lower than that of CM.

a(t, l) =
2s )

D,(s,&)g,~
1+ ~ds.

l 4)—(3.1)

Since the discontinuity function D,(s, t) is also bounded.

by the same power, Kq. (3.1)defines an analytic function
of l, regular for Re(l)&N, for all t on the t-channel
physical sheet. Since a Regge pole arises from the
divergence of the integral in Kq. (3.1), it follows that
no Regge pole can move to the right of the line Re(l) =N
for all t on the erst sheet. The angle 0 dehned in the
last section will then be at least as large as m.. Using the
Theorem of Sec. II, we see that the FALB of the scat-
tering amplitude is expt —cia~(z,)s'I' lnsg. This is
exactly the CM result.

'For example, see R. Blankenbecler and M. I.. Goldberger,
Phys. Rev. 126, 766 (1962).

7 T, Regge, Nuovo Cimento 18, 947 (1960).

III. A POTENTIAL MODEL

The existence of the Mandelstam representation has
been proved for a certain class of potentials. ' Through
the work. of Regge, we also know that the scattering
amplitude has 6xed-t power behavior due to the exis-
tence of t-channel Reggepoles. Theuniformpolynomial
bound, required by the Mandelstam representation,
puts a restriction on the possible position of a t-channel
Regge pole. Let the scattering amplitude A(s, t) be
bounded by

~
s~ N. The power N has the physical inter-

pretation of being the maximum" angular momentum
a t-channel Regge pole can have, as can be seen easily
from the Froissart-Gribov amplitude

If the angle 0 is bigger than z., the corresponding
FALB will be bigger than that of CM. If a(t, l) is also
regular on the second sheet of the t plane, for Re(l) &N,
the double spectral function p(s, t) will also be bounded
by s~, for all t. This follows from the fact that the dis-
continuity of a(t, l) across its elastic cut is given by

t' 2s )
p(s, t)Qti 1+ ids. (3 2)

Now we can use a dispersion relation to find D,(s,t),
and D,(s,t) is also bounded by s+ in the same region
where p(s, t) is bounded. Since (2i)D&(s, t) is the difference
of the scattering amplitude A(s, t) between the first and
the second t sheets, the angle 0, is now possibly bigger
than x.

For potentials suKciently "ana'ytic, " all poles of
a(t, l) move towards the negative qP axis on the second
sheet where Re(l) is large. For this class of potentials,
0, can be as large as 2'—e. We apply our theorem of
Sec. II and obtain a FALB

expL —ctl4(z, )s'lt~"i lnsj. (3.3)

We can generalize this method to include any fixate
number of channels, and obtain a FALB higher than
that of CM.

Additional considerations have to be made for rela-
tivistic problems. As we shall see, that there are
ief&zitejy many multiparticle channels opening as t
increases, and their existence is probably what is re-
sponsible for the ever-rising Regge trajectory. If the
leading Regge trajectory increases too fast, the FALB
will be considerably lower than that of CM.

IV. POWER BEHAVIOR AT FIXED MOMENTUM
TRANSFER AND FIXED-A5'GLE

LOWER BOU5'D

with

1 " D„(s,ee')
A &"iLs,u(s, l)j=-

7l' ep I —Q(S,l)

(4.1)

A(s, t)=A&'i(s, t)+At~'Lsu(s, t)j, ee+s+t=4
Both A &"(s,l) and A &"i(s,N) have the same singularity
structure in s as does A(s, t), and both have right-hand

e R. G. Newton, The Contplex J plume (W. A. B-enjamin, Inc. ,
New York, 1964), p. 108.

9S. Y. Chu and C. I. Tan, I.awrence Radiation Laboratory
Iieport No. UCRL-17511, 1967 (unpublished).

In a relativistic theory, the scattering amplitude
A(s, l) is the sum of two analytic functions A&'i(s, t)
and A &"iLs,g(s, l)$, defined by

1 "D((s,t')
A &'i(s,l) =— — Ch,
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f i "&(s,z,)=A[—s,u(s, 1) &&,

z, = 1+2t/(s —4) = —1—2u/(s —4) . (4 2)

We shall 6nd lower bounds for ft'&(s, z,) and ft"&(s,z,)
a,s s becomes large (while keeping z, 6xed) from our
knowledge of the asymptotic behaviors of A &" and A &").

It does not follow immediately that the lower bounds
for ft" and ft"& should also be lower bounds for the full
amplitude f(s,z,), because cancellation's might occur
between f"& and ft~&. We think such cancellations are
unlikely and shall assume that they occur only at isolated
points of s,. It then follows that the bigger of these
two lower bounds for ft" and ft"& is the best lower bound
obtained for averaged functions. For instance, define

zz+&

f(s,z,)= f(s,x)dx, A&0. (4.3)

If 6 is not too small, we innnediately have a lower
bound for f(s,z,) in both energy and z, dependence.
From this point on, we shall discuss only f"&(s,z,)
(and drop the subscript), for simplicity.

The FALB of A (s,t) can now be found in exactly the
same fashion as that for potential models. In the Regge
theory, the function N(t) would be the value of the real
coordinate of the rightmost singularity in the j& plane
at a given t. Because of s-channel unitarity, the Froissart
bound" tells us that N(f) &&1, for —~ &~t~&0. It also
follows from unitarity that" N(0) &~N(f) &~ 2 for 0~& f ~& fp,

where to is the lowest t-channel singularity. The value
of N(t) for an arbitrary t is, in general, not known. In
most model theories, "N(t) is bounded for the whole
complex f plane, as was shown in the example in the
preceding section. However, all these models could not
incorporate simultaneous unitarity in all channels. It
is a well-known fact that a 6nite number of normal
threshold singularities in one channel is inconsistent
with unitarity in the cross channel. As discussed in Ref.
9, the existence of in6nitely many multiparticle channe]s
may have the eGect of producing ever-rising Regge
trajectories. If this is the case, N(t) will not be bounded
as [tf —&~.

' This was erst mentioned by A. Martin in Ref. 2.
"For example, see A. Martin, in Strong Interactions and High

Energy I'hysics (Oliver and Boyd, Kdinburg, 1964), p. 105.
"Y.S. Jin and A. Martin, Phys. Rev. 135, 31375 (1964).
"Page 54 of Ref. 8.

cuts in the t and I planes, respectively. For potential
scattering, the complete scattering amplitude A(s, t) is
just A t" (s,f). Here we are interested in the behavior of
A(s, t) when s goes to in6nity while keeping z, 6xed,
where 2:, is the cosine of the s-channel center-of-mass
scattering angle. Let us de6ne

f(s,z,)=A(s—, t), ft"(s,z,)=A t'&(s,z,),

In general the FALB will be

expL —c,(z,)sv lnsj, —,
' &y(~. (4.6)

We note" that this bound is true for all s, between 1 and—1, including the point z, =0. (The numerical form for
c~ is given in Ref. 17).

V. CON'CLUDI5'6 REMARKS

We have seen that there is a connection between the
asymptotic behaviors of the scattering amplitude A (s,f)
in diRerent asymptotic regions. It is not clear at the
present if the asymptotic conditions of the S matrix are
determined by axioms of maximal analyticity of the
first degree. The postulate of second-degree maximal
analyticity is intended to fill this gap. It is nevertheless
encouraging to know that the knowledge of 6xed-t
asymptotic behavior, which can be obtained from the
second-degree maximal analyticity, implies certain
constraints on the fixed-angle behavior, whether the
former is simply a consequence of basic S-matrix axioms
or not.

The conjecture of ever-rising Regge trajectory might
sound alarming at first. It will not allow us to write
down a double-spectral representation in the form ori-
ginally proposed by Mandelstam. This worry is really
an ill-founded one. Unitarity in all channels and simul-
taneous analyticity in s and t can give dehnite meaning
to the Mandelstam representation through analytic
continuation. "All singularities of scattering amplitudes
are dynamically determined. The ever-rising-Regge-

~4 In order to apply our theorem, we need a function analytic in
the whole m plane except branch points on the positive axis. A
mapping with 8 a &7r will bring singularities onto both upper and
lower m plane.

"This is implicitly mentioned in Ref. 1.
"Equation (4.6) actually holds for all s„—~ &s,&1.We have

a similar expression for f&"&(s,s.), true for —1 &x, & ce. The physi-
cal region is, of course, —1(z,&1. In obtaining this result, we
have also assumed that f&'&(s,z.) decreases monotonically along
the real axis as z, decreases from 1.

~~ Charles B. Chiu, John Harte and Chung-I Tan, University
of California Radiation Laboratory Report No. UCRL 17553
(to be published)."G. F. Chew (Lawrence Radiation I aboratory and University
of California, Berkeley, private communication).

Applying the theorem of Sec. II, we obtain a lower
bound for f(s,z,),

~ f(s,z,) ~

& expL —c,(z,)sr lns7, where y= sr/28 . . (4.4)

The existence of in6nitely many multiparticle channels
also limits the angle 0 to less than m..' When 0, =m,
we obtain the CM lower bound. In this sense, the CM
lower bound is the best possible lower bound for f(s,z,)
consistent with s-channel unitarity. "

We can easily see that the FALB of f(s,z,) can be
considerably lower than that of CM. In particular, if
a Regge trajectory increases linearly with t, 0, will
be x/2. It then follows that the FALB of f(s,z,) is

exp/ —ct(z,)s lnsj.
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trajectory model is definitely a qualified candidate to
satisfy all these requirements.

It is interesting that both the energy dependence and
the angular dependence of the pp cross-section data at
large angle are compatible'~ with the form of our lower
bound for either y=-', or y=1. Unfortunately, the data
are not sufIicient to make a meaningful test on the
minimal-interaction hypothesis. Should the scattering
amplitude at large angle indeed coincide with the lower-
bound amplitude, the situation will be quite puzzling,
since there are other general requirements not used in
our derivation of the results. So it is still possible that
the fixed-angle behavior is of the form proposed by
Martin and by Kinoshita, with y = is, whereas the lower
bound will decrease faster. Consideration of analyticity
in the s channel might, however, raise the lower bound
obtained here.
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point at

Par/(1 —wb) j ai
w= 1+ =—1+

(s—4)'7 (s—4)'&
(A1)

where

(1—1nr/1nR)~ (1nr(jnR)1~ 0

7

o=s~
7

M = expL —p(w, s)j=g(s,w),

lnr c(ut) (2ai) 'ts 1+o-
1nR (s—4) & (s 4) '&I—

(A2)

(A3)

(A4)

(A5)

(A6)

(4) Now we do precisely the same thing as CM did
Using the mappings of Refs. 1 and 3, centered at Cu= 0.
and applying Hadamard's three-circle theorem, " on,
obtains
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APPENDIX

with

and

(1+X) (
2 sint q'"

sin8= (1—w')'t'.

Proof of the Lemma (Cerlltts 'Jrlartt'rt T-heorem): The
original CM theorem was given in Ref. 1, and was
subsequently clarified by Kinoshita in Ref. 3. We shall
not repeat their results and refer interested readers to
Ref. 3 for details. We shall only point out the major
modifications necessary for our proof.

(1) g(s,w) has a branch point at ws ——1+ai/(s —4)'&,
0&y& ~, whereas the actual scattering amplitude has
a branch point in s, plane at 1+2to/(s 4)—

(2) g(s, w) has no left-hand cut in w. Consequently,
we do not have to restrict ourselves to mappings cen-
tered at m=0.

(3) For any point wb on the real axis to the left of
w = 1, define w=—(w—wb)/(1 —wb). If we consider g(s, w)
as a function of s and w, we see that g(s,to) has a branch

Substituting Eqs. (A3), (A4), (A5), and (A6) into (A2),
one has

y(w, s) &F(w wb)(s —4)& lns, wb& w&1, (A'l)

where we have introduced

F(w, wb) = (E—as)/c(w, wb)(2ai)"'.

(5) Deine C,(W) —=min(F(W, Wb)
~

—oo (Wb(W} Put-.
ting this back into Eq. (AS), we obtain

j g(s,w)
~

& expt —c (w)(s —4)& lnsj.

(6) One can check. that c~(w) is finite for all w,—~ (m&1.

"E. C. Titchrnsrsh, The Theory of Fnncttons (Oxford University
Press, New York, 1939), 2nd ed. , p. j.72.


