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Determination of nuclear-density parameters and of the rms pion charge radius 7, from the elastic scatter-
ing of pions by nuclei has been studied using the optical model proposed by Kisslinger. Good fits to the
available data in the kinetic-energy region 24 MeV< T'»< 153 MeV have been found by searching the param-
eter space. For T'»~80 MeV, i.e., T'» large compared to nuclear binding energies but well below the N* reso-
nance, the best-fit parameters are close to those predicted from pion-nucleon phase shifts. The nuclear radii
obtained are consistent with electron-scattering radii; the calculated differential cross sections are sensitive
to a second nuclear-density parameter for large angles. “Distortion” of the Coulomb amplitude in 24-MeV
n¥-q scattering reduces 7 from 1.84:0.8 F to 7,<.2.0 F (two standard deviations), in agreement with West’s

recent calculation.

I INTRODUCTION

IN this paper we present the results of a systematic
optical-model analysis of low-energy elastic pion-
nucleus scattering.! Our primary goal was the develop-
ment of a method of extracting the root-mean-square
(rms) pion charge radius 7, from 7*+-« elastic scattering,
as proposed recently.? Another objective was to explore
the use of pions as nuclear-density probes. All available
experimental data of sufficient precision in the labora-
tory kinetic-energy region 24 MeV<T,<153 MeV were
studied. These include scattering by helium and carbon
at several energies, and by lithium, aluminum, copper,
and lead at one or two energies.

Other methods have been proposed and applied to
studying the electromagnetic structure of the pion.
Elastic 7-e scattering® has given 7,<3.0 F. Electro-
production of the =+ in the reaction e+ p—e+n+=t,
when analyzed with a one-photon exchange model,

gives?
72=0.66_0 57192 F 1)

in good agreement with the 7,=0.6 F obtained by as-
suming that the pion couples to the photon through the
exchange of p%. However, both of these methods have
sufficient experimental and theoretical difficulties to
justify seeking alternative approaches to the pion struc-
ture problem,

For a T'=0 nucleus such as the « particle, the ampli-
tude fa(6) for scattering by the purely nuclear forces is

* Supported by the U. S. Atomic Energy Commission.
Supported in part by the National Science Foundation.

! A preliminary account of some of this work was given by M. M.
Sternheim and E. H. Auerbach, in Proceedings of the Williamsburg
Conference on Intermediate Energy Physics, Williamsburg,
Virginia, 1966, p. 439 (unpublished). The results given were in-
accurate because of an error in the computer program.

M. M. Sternheim and R. Hofstadter, Nuovo Cimento 38,
1854 (1965).

#D. G. Cassel, Ph.D. thesis, Princeton University, 1965
(unpublished).

4 C. W. Akerlof, W. W. Ash, R. Berkleman, and C. A. Lichten-
stein, Phys. Rev. Letters 16, 528 (1966).
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the same for 7t and 7—. Using the Born approximation
fc®B for the Coulomb amplitude, the differential cross
section for elastic 7+ scattering is

do*
—(0)=1 fx ()% fc?©)[*. 2
aQ

Thus the difference of cross sections D=do—/dQ
—dot/dQ=—4 Re(fn*fcP) is linear in the Coulomb
amplitude. An estimate for fy was obtained using the
single scattering (or impulse) approximation, together
with approximate multiple scattering calculations of
dubious validity at large angles. From this estimate, it
was concluded? that at 100 MeV D is sensitive to devi-
ations from the point Coulomb amplitude near the mini-
mum in fy occurring at about 75°. It was also suggested
that an optical-model analysis would be needed to
extract the small deviations caused by the charge struc-
tures of the = and a.

At first inspection this optical-model analysis might
not seem necessary. Nordberg and Kinsey,® for example,
recently published their measurements and analysis
of 24-MeV %o scattering. They used a partial-wave
expansion for fy with complex phase shifts for /=0 and
1, and a real phase shift for /=2. For the Coulomb ampli-
tude, they multiplied the point Coulomb Born feo®
approximation by (1—¢%?2/6). Fitting the six free
parameters to their data gave

7= (r—ry?)1/2=1.8+0.8 F. 3)

However, this analysis does not include all the con-
tributions to the amplitude which are linear in the
Coulomb potential, as was emphasized by Schiff.® The
incident wave on which the Coulomb potential operates
is distorted by the nuclear forces. (Alternatively, one

§ M. E. Nordberg and K. F. Kinsey, Phys. Letters 20, 692
(1966).

$L. I Schiff, Progr. Theoret. Phys. (Kyoto) Suppl, Extra
Number, 400 (1965). See also, M. Ericson, Nuovo Cimento 47, 49
(1967).
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can say that fu is not the same for #+ and =, since the
Coulomb potential distorts the incident wave on which
the nuclear forces operate.) Thus there is an additional
distortion term = fp which has to be included in Eq.
(1). It must be estimated, e.g., by use of an optical
potential, before a phase-shift analysis can be employed.

The /=0 part of fp is particularly important; for
with feoP~¢q 2 we have

Af o= fo— foo~q(1—¢%%/6)—q*~—1*/6. @

Thus the largest effect” on 7+-a scattering of a deviation
from the point Coulomb potential is a sign-changing
s-wave amplitude proportional to 72 The s-wave part of
fp can be comparable to the contribution of the pion
radius, and therefore may not safely be neglected; dis-
tortions in other partial-waves may also alter the
analysis significantly. Very recently, West has applied
a simplified optical model® to the 24-MeV data, and
has found that the inclusion of distortion changes the
result from 7,=1.840.8 F to r,<1.5 F.

Another incentive to undertaking these calculations
was the general lack of detailed pion-nucleus elastic
scattering calculations in the published literature. It
was not initially clear whether good over-all fits to
experimental data could be obtained with either theo-
retical or phenomenological models and parameters.
Despite the considerable amount of theoretical work by
Watson® and others, most existing calculations did
not yield full agreement with experiment. Optical po-
tentials proportional to the nuclear density p(r) give
good results for small angles, using well depths close to
those predicted from 7-nucleon phase shifts.® However,
these depths cannot be adjusted to fit experimental
data for large angles. Similarly, approximate multiple
scattering calculations!! using w-nucleon data and
electron-scattering nuclear-density functions fit only
to the region of the first minimum.

The velocity-dependent optical potential derived by
Kisslinger'? would appear on theoretical grounds to
have considerable promise. It has been applied so far
only in a modified form by Rainwater and his co-
workers,!31* who analyzed their several experiments

7 This was first pointed out to us by M. Block who attributes the

(stefrvajtion to Cabibbo. It has also been discussed by M. Ericson
Ref. 6).

8 G. B. West, Phys. Rev. (to be published). His analytic non-
relativistic calculation uses a uniform sphere nuclear density and
ghe rflodiﬁed Kisslinger model which we discuss at the end of

ec. II.

9 K. M. Watson, Rev. Mod. Phys. 30, 565 (1958); also earlier
papers given here.

10T.. D. Roper and R. M. Wright, University of California Radi-
ation Laboratory Report No. UCRL 7846, 1964 (unpublished);
L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. 138,
B190 (1965), solutions 14 and 24.

11 M. M. Sternheim, Phys. Rev. 135, B912 (1964).

127, S. Kisslinger, Phys. Rev. 98, 761 (1955).

13 W. F. Baker, J. Rainwater, and R. E. Williams, Phys. Rev.
112, 1763 (1958); W. F. Baker, H. Byfield, and J. Rainwater, ¢bid.
112, 1773 (1958).

14 R. M. Edelstein, W. F. Baker, and J. Rainwater, Phys. Rev.
122, 252 (1961).
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around 80 MeV, and were able to fit their data quite
well. The modification of the Kisslinger model makes it
difficult to compare their phenomenological well parame-
ters with the corresponding two-body data. West?® also
used this modified model. To date, no calculations have
been published based on the original Kisslinger model.

Thus independently of the pion form factor problem,
it appeared quite interesting to study the Kisslinger
model in its original form. Much better pion-nucleus
experiments are becoming feasible, and pions are likely
to be quite useful as nuclear probes.'® Therefore, we set
out to answer these questions: (1) Does the Kisslinger
model work, i.e., can a set of parameters always be
found which leads to the observed elastic scattering?
(2) Do the “best-fit” optical-model parameters obtained
by searching the parameter space agree with the
“theoretical” parameters calculated from m-nucleon
phase shifts or at least vary reasonably with the nu-
clear mass 4 and with 7,2 (3) Are the ‘“bestfit”
nuclear-density parameters consistent with electron
scattering experiments? (4) Can unique values be ob-
tained for fp, the distortion amplitude in 7-« scattering?

In the next section we summarize the derivation and
limitations of the Kisslinger model. In Sec. III we
compare the best-fit and theoretical parameters, as
well as the measured and computed cross sections.
Applications to nuclear density and radius determi-
nations and to the pion form factor are discussed in
Secs. IV and V, respectively.

II. OPTICAL-MODEL DERIVATION

We summarize briefly Watson’s derivation® of the
optical model. Consider a pion incident upon a nucleus
of A nucleons. The Hamiltonian is

A
H= (HN+/Z)+Z V;EH0+ V,

=1

where Hy is the nuclear Hamiltonian, % is the pion
kinetic energy operator, and V; is the w-nucleon po-
tential. The scattering amplitude T is a solution of

T=V+VaT, (5)
where a=E— H}ie. An exact formal solution of Eq.
() is

T=%t/+3 t/a/+X t/a 7 a7 U+, (6)
[ (% 25k

where ¢ is the amplitude for pion-bound nucleon scat-
tering. >’ means that two successive scatterings by a
single nucleon are to be excluded.

The “coherent part” 8¢ of an operator 6 is defined by

'loclv)=&"16ly) it W,=W,, )
=0 i W,EW,,

15 M. Ericson and T. Ericson, Ann. Phys. (N. Y.) 36, 323
(1966).
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where W, is the nuclear energy. Thus the elastic scat-
tering amplitude is

Te= ti'c—}—Z'(ti'a_‘tj’) et (8)

The optical potential U in analogy with Eq. (5) is
defined by
To=0+VaT. ©)

Thus, formally at least, calculating the pion-nucleus
elastic scattering has been reduced to solving a one-
particle problem with the Hamiltonian 4-0.

Useful expressions for U can be obtained if sufficient
approximations are made. Neglecting excited nuclear
states, we have

(ta - )e= ti'ca—‘t,"c- ce
If 4 is large or if the two-body forces are weak, we can
set >.'=Y_. Then Eq. (8) implies

Te= Zli’(,v: Zli,ca_ch (10)

V=Y t/c. (11)

The impulse approximation, or the replacement of the
bound amplitudes #; by the free w-nucleon amplitudes
¢;, is reasonable for energies large compared to nuclear
binding energies. If the nucleon recoil is also neglected,
Eq. (11) becomes

or

@ [vlp=% @ |tlpp@'—p), (12)
where p’ and p are the pion momenta. Here
p(q)= f €' p(r)d’r (13)

is the nuclear form factor or Fourier transform of the
nuclear density function, which is normalized to unity:

/p(r)d3r= 1.

The approximation of neglecting recoil is apparently
not very good!® for off-shell matrix elements of U, which
contribute significantly to large-angle scattering.!!

The simplest optical model is obtained from Eq. (12)
with a forward scattering approximation for £:

(14)

@' |t pp(p’—p) = (|| p)o(p'—p) = (po| t| Po)o(p'— D) .

Here one assumes first that p(¢g) drops off rapidly with
increasing ¢, and then that the wave function in mo-
mentum space is strongly peaked about the incident
momentum po. In coordinate space, VU is now a local

potential
0(r) = (2)*4(po| t| po)o(r) , (15)

where (po|f|po) is suitably averaged over m-p and m-n

16 E. Leader, Nucl. Phys. 26, 177 (1961).
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amplitudes. Calculations based on this simple model
invariably fit only small-angle data, as noted in the
Introduction.13:17:18

This model fails to take into account the largely
p-wave character of low-energy w-nucleon scattering.
Noting that usually #~p?* holds, Kisslinger'? substi-
tuted into Eq. (12)

(0'|t|p)=artasp? cosd=ao+ap’-p,  (16)
obtaining
x| 0p)= () ALaopy—aV-(pV¥)],  (17)
or, in terms of momentum operators,
V(r)=(2m)*ALaop+a:p-pp]. (18)

We shall see shortly that Eq. (16) is fairly consistent
with experimental (i.e., on the energy shell) w-nucleon
scattering at kinetic energies well below the N* reso-
nance near 200 MeV. However, its validity for |p|
# |p’| is unknown, and it clearly violates unitarity for
large momenta. Furthermore, at best only a small
region near T.=(20%X200)2=65 MeV is compatible
with Eq. (16) and also with the impulse approximation.

The loss of pions from the elastic channel is pro-
portional to

—/¢*(’U~U+)1//d3r=2(27r)3A
X f TCaol | 2-aa| V6| Todr. (19)

Since p>0, both terms in Eq. (18) always correspond to
sinks (sources) of pions if Im ao and Im @, are negative
(positive). For spin zero, Eq. (18) is the simplest
velocity-dependent potential having this property which
is consistent with the usual symmetries.

Following Baker ef al.'3, we introduce U into a Klein-
Gordon equation as a fourth component of a four-
vector and drop the 0? term. Thus if V¢ is the Coulomb
potential

(= ViHuY=(E~Ve—0)%
=[(E,~Ve)2—U. (20)
This is the equation we actually solve. With Eq. (18),
Uy=2E, 09

=—Abopo’op+ A5V - (pVY), (21)

where
bo=— 2(217') 3E,,a0/p02 s

by=—2(21)3Ea1.

The b&’s are proportional to m-nucleon amplitudes and

(22)

17T, A. Fujii, Phys. Rev. 113, 695 (1959).

18 Yu. A. Budagov, P. F. Ermolov, E. A. Kushnirenko, and V. I.
Moskalev, Zh. Eksperim. i Teor. Fiz. 42, 1191 (1961) [English
transl.: Soviet Phys.—JETP 15, 824 (1962)].
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are independent of nuclear parameters; they differ
from the C’s of Baker et al.13 by a factor — A4p(0).

We must relate the optical potential in the lab system
to phase shifts in the w-nucleon center-of-mass system.
Let % be the pion momentum in this c.m. system. The
usual connection between ¢ and f(6) gives

@l ¢l Phav=— f(0)1ap/ (47°E>). (23)

With the optical theorem and the invariance of total
cross sections,

f(O) lab/p= f(O)cm/k~ (24)
Thus we obtain readily for /=0, 1
b= kO]
l—j)kZ c.m._|I
(25)
4 p* - M3>+4-2E. M
= T[kf (0)e.m. 5
where p and M are the pion and nucleon masses,

respectively.

The amplitudes in Eq. (25) must be suitably averaged,
over spin and isospin variables. Let a;=exp(26;) sind;,
where the §; are the w-nucleon phase shifts and
1= (2T,2J). For a =~ and a nucleus (4,Z2), we find

[ef(0)e.m.Jo=[Z(es+2e1) /34 (A —Z)as]A72,
[2f(0)e.m.J1=[Z(2ass+asi+4ens+2011) /3
+(4—2)(2033+s1) JA7L. (26)

For #t scattering, the factors Z and (4—Z) are inter-
changed.

T T T T T T T T
o He
a Li
o C -
8.0 - s 0
u Al
S 70+ Reb e Cu —
a o %o '
& "
50 -TTES ; \ 1
50 |- -
"
w
a0 .
THEORY (7r-NUCLEON
3.0 — PHASE SHIFTS) 1
1/p?
o 20— (ARBITRARY > —
o UNITS)
®
«
'

PION LAB KINETIC ENERGY, MeV

Fic. 1. Theoretical and phenomenological best-fit values for
the real parts of the optical-model well-depth parameters &, and
b1. The bands of theoretical values indicate the extremes of those
calculated for 4 =2Z nuclei from the three sets of pion-nucleon
phase shifts listed in Ref. 10. The error bars shown were obtained
by an error-matrix analysis, as described in the text; other best-fit
values probably have similar errors. For wlithium, the best-fit
Re b; has been reduced by Re (b1) 4—4, z—3—Re(b1)a-22=0.7, and
|Re bo| has been similarly reduced by 0.4.

AUERBACH, FLEMING,

AND STERNHEIM 162

8.0 T T T T T T T

THEORY (7 ~NUCLEON
PHASE SHIFTS) 5 {

70—
6.0}~
50 -

40 —

Imb,,F3,

30

20

o o | % 19 | ! ! [
O 20 40 60 8 00 [0 140 160 180
PION LAB KINETIC ENERGY, MeV

Fic. 2. Theoretical and phenomenological best-fit values
for the imaginary part of the optical-model well-depth parame-
ter b;. The theoretical values and error bars are obtained as
for Fig. 1. The best-fit value for lithium has been reduced by
Im(b1) s, z=3—Im(b1) 4-22=0.3.

We used three different sets of phenomenological
m-nucleon phase shifts obtained by Roper et al.’® to
evaluate by and b;. They give similar but not identical
results, as is seen in Figs. 1-3 plotted for the case 4 =2Z.
Since b; is dominated by ass/p?=~ (833-+1033%)/p® and 833
has the expected p® behavior, we find Re &; is almost
constant at about 6.3 for T,.<130 MeV.® Hence
Im b, is rapidly increasing; it is 0.2 at 20 MeV, 1.8 at
80 MeV, and 6.8 at 150 MeV. The empirical leading
terms'® linear in p in 28; and in 6; nearly cancel, so that
Re bo~(28;+481)/p® is surprisingly constant at —0.7
except at very low energies; one expected a 1/p?
behavior. Im bo~(28;2+68,%)/p? has the expected 1/p
dropoff from a value of 0.6 at 25 MeV.

From this discussion, it is clear that the largest
theoretical uncertainty is associated with Re b,, since
moderate deviations from the free pion-nucleon ampli-
tudes may spoil the accidental cancellations and lead
thereby to much larger values and to a 1/p? variation.

A few remarks are in order before concluding this
section. We have not included corrections for the
“effective kinetic energy” of the pion inside the nu-
cleus,? for the Lorentz-Lorenz effect,!®:?! and for pion
capture.!20 Qur actual calculations are made in the
m-nucleus c.m. frame; we neglect the small effects on
the theoretical parameters of the transformation from
the lab frame.

The modified Kisslinger model mentioned in the
Introduction is obtained from the above by the replace-
ment

(1+01p4)V% — (1—Abyp)~ V.

19 All radii are given in fermis; the b’s have units of F3.

20 R. M. Frank, J. L. Gammel, and K. M. Watson, Phys. Rev.
101, 891 (1956).

21 N. M. Kroll, quoted in Ref. 14.
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TasBLE I. Best-fit parameters for 80-MeV 7~-C scattering.

Density Rebo (F3) Imb, (F3) Reb; (F3) Imb, (F3) 7 (F)
Saxon-Woods, R=2.45F+0.11F, ¢=0.25F —0.7540.54 0.284-0.87 5.91+0.93 1.944-0.30 2.114:0.10
Saxon-Woods, R=1.97F, c=0.45F —1.24 0.22 6.41 1.44 2.26
Modified Gaussian, ¢=1.47F —1.14 0.22 6.16 1.32 2.14
Theory (2-body phase shift) —0.7540.10 0.344-0.02 6.5 £0.1 1.8 £0.1

Since Im ;5%£0, this replacement is not needed to avoid
singular points. It introduces a further difficulty in
comparing phenomenological and theoretical parame-
ters. We have used this model only to help verify our
computer programs: we obtain good agreement with
the older calculations.!?

III. CALCULATIONS

The solutions of the optical-model wave equation,
Eq. (20), were obtained using a suitable modification of
the ABACUS code originally developed by one of us for
nonrelativistic velocity-independent optical potentials.??
For each partial wave required the program solves for
the wave functions using difference equations with as
many as 500 mesh points. These are joined to solutions
of the Klein-Gordon point Coulomb equation outside
the nuclear force region.

ABACUS can ‘“‘scan” parameter sets, ie., repeat the
calculations for systematically varied parameters. It
can also perform gradient searches to find “best-fit”
parameter values which minimize X2 for a given set of
experimental data. An average of about 1 sec was re-
quired to solve a set of partial-wave equations on a
large digital computer. Several hours of computer
time were needed to do the various scans and searches
discussed below.

Two different nuclear-density functions were used:

T T LI T T T T
1.2 r —
1.0 o He —
o C
a O
w 0.8 - L s Al 1
“ e Cu
£
€ 0.6 -
=
THEORY (7 -NUCLEON
0.4 - PHASE SHIFTS) —1
0.2 -
o o
[«
o 1 1 1 | | | | |
o 40 80 120 160

PION LAB KINETIC ENERGY, MeV

F16. 3. Theoretical and phenomenological best-fit values for
the imaginary part of the optical-model well-depth parameter
bo. The theoretical values and error bars are obtained as for Fig. 1.
The best-fit Im & for 7#-lithium is-omitted; it is —0.95.

22 E. H. Auerbach, Brookhaven National Laboratory Report
No. BNL 6562, 1962 (unpublished).

(1) the modified Gaussian
pe(r)=po[1+(Z—2)r*/30*] exp(—r*/a?),
po=2/m%3Z
This density is obtained from shell-model wave func-
tions for the 1p shell nuclei, and is consistent with

electron scattering experiments on these nuclei.?? (2) the
familiar Saxon-Woods density?*

ps(r)=po[ 1+exp(r—R)/c]™,
oo~ (3/4wR3)(1+72c2/R¥)™. (28)

Both densities were set exactly equal to zero once
they had reached very small values. For the Coulomb
potential, we used as the charge distribution a modified
Gaussian with pg, and either a uniform sphere or modi-
fied Gaussian with p,. The corresponding charge
radius parameters are referred to below as ¢, and R,
respectively.

27)

A. Phenomenological Best-Fit Parameters

We began by studying elastic scattering of pions by
helium and carbon for 24<7,<92 MeV. Since a princi-
pal objective was to determine the uniqueness of the
optical potential, we “mapped” the parameter space,
i.e., obtained X? for many values of the complex con-
stants bo and ;. The theoretical parameters were used
only to determine suitable orders of magnitude for
initial investigation. The search program was used to
locate X? minima more precisely once their approximate
positions were found in these scans. Nuclear-density
parameters were also varied in some cases; this will be
discussed in Sec. IV.

We selected two representative experiments and per-
formed an error analysis on the corresponding best
fits. We assumed that X2 depends quadratically on the
parameters near its minimum, and computed the error
matrix in the usual way. The best-fit &’s are strongly
correlated to each other, but not to the nuclear-density
parameters; this would not have been true had we used
the C’s of Baker ef al.'* The standard deviations thus
obtained provide a crude estimate of the errors associ-
ated with the best-fit parameters for other experiments.

For no helium or carbon experiments was more than
one region of good fit found in the scans. Although
searches sometimes found equally good fits with two or
more parameter sets these sets always agreed within
the estimated errors. This is illustrated in Table 1.

2 D. G.-Ravenhall, Rev. Mod. Phys. 30, 430 (1958).

24P, E. Hodgson, The Optical Model of Elastic Scaltering
(Clarendon Press, Oxford, England, 1963).
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Fic. 4. n-carbon elastic scattering at 69.5, 80, and 87.5 MeV.
The 80-MeV experimental data are those of Baker ef al. (Ref. 13)
and the others were obtained by Edelstein e al. (Ref. 14). The
solid curves give our cross sections calculated with theoretical
parameters which in some cases differ by amounts which are not
significant from those of Fig. 1-3; these are by=—0.66+4-0.41 ¢
5,=6.30+1.30 7 for 69.5 MeV, by=—0.62-+0.39 7, b,=06.30
+1.70 7 for 80 MeV, and bo= —0.63+0.36 7, b, =6.30-1.85 7 for
87.5 MeV. The dashed curves give the best fits obtained by varying
both well depths and nuclear-density parameters. The best-fit
b’s are bo=—0.66+0.73:, b,=6.8140.93; for 69.5 MeV, (A)
bo=—0.7540.28;, b;=5.91+1.94; and (B) bo=—1.24+0.237,
b =6.41+41.44; for 80 MeV, and bo=—1.8340.16s, b;=6.83
+1.117 for 87.5 MeV. All the theoretical curves are computed
using modified Gaussian nuclear densities with the same radii
as in the best modified Gaussian fits, i.e., 1.47, 1.47, and 1.49 at
69.5, 80, and 87.5 MeV, respectively. The best-fit modified
Gaussian 80-MeV cross section is omitted, since it is very much
like the plotted Saxon-Woods curve (B) which has R=1.97,
¢=0.45. Both of these differ considerably at large angles from the
curve (A) obtained with R=2.45, ¢=0.25. The nuclear charge
density used in all cases is a modified Gaussian with a.=1.6.
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Fi1c. 5. w*-carbon elastic scattering at 31.5 and 40 MeV. The
experimental data are those of Kane (Ref. 25) and Perry (Ref. 26),
respectively. Theoretical parameters used are bo= —0.50-+0.537,
5,=6.30+40.40; for 31.5 MeV, and bo=—0.80+40.507, b,=6.30
+0.55; for 40 MeV. Best-fit parameters are bo=—3.7140.13;,
5,=5.90+0.16; for 31.5 MeV, and bo=—3.204-0.354, b;=5.20
~+0.55; for 40 MeV. The nuclear density and charge distribution
used are modified Gaussians with ¢=a,=1.6; these radii were not
varied.

Experiments on Li, O, Al, and Cu near 80 MeV were
analyzed using searches started from the carbon best-fit
parameters.

Figures 1-3 summarize the results of these parameter
searches. The largest parameter, Re by, is very close to
the predicted value in all cases. Im by is small, as ex-
pected, but the associated errors are very large. Re b
is very large in magnitude compared to the theoretical
value, approaching it with a 1/p? dependence as T’
increases; we noted this possibility in Sec. II. Im &,
is somewhat smaller than predicted for most nuclei;
for He, it is very small. The reason for this is not ap-
parent. Note, however, that the larger nuclear density
of He makes the replacement of free amplitudes for
bound amplitudes less valid.
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In short, the phenomenological best-fit parameters
below 100 MeV are for the most part consistent with
the pion-nucleon data, vary smoothly with T', and are
nearly independent of A. They are quite close to the
predicted values for 7,~80 MeV, as expected from
our arguments in Sec. II.

B. Experimental Comparison

We now examine more closely the agreement between
our calculations and the available data, considering
first 7-<100 MeV. Slightly inelastic scattering due to
excitation of low-lying nuclear levels complicates the
elastic-scattering experiments. Some inelastic cross
sections increase rapidly with momentum transfer and
become much greater than large-angle elastic-scattering
cross sections. In some experiments the unresolved in-
elastic contamination is so large that the reported
cross sections are useful only as upper bounds on the
large-angle elastic scattering, despite the small statis-
tical errors quoted.

Carbon: Since the first excited state is 4.4 MeV above
the ground state, the separation of elastic events is
feasible. Useful #* data are available at 31.5 MeV?%
and 40 MeV,? and =~ data at 69.5 MeV,* 80 MeV,?
and 87.5 MeV." In Fig. 4, we see that for the three
higher energies pe and the theoretical parameters give
results very close to the experimental data; the slightly
different best-fit parameters give X?/NS1, where N
is the number of data points.

At the lower energies the theoretical parameters give
curves of the right qualitative behavior, but they are
too high in front and too low in back. In the Born
approximation, f(6)~by+b; cosf. Since Re b, is nega-
‘tive and Re by, Im by, and Im b, are positive, increasing
|Re bo| will improve the fit. The search yields relatively
large values of |Re | and good fits to the data. Both
experiments have poor statistics and our search program
was relatively ineffective. See Fig. 5.

Owxygen: Pure elastic 7 -oxygen scattering has been
measured at 87.5 MeV.!* The theroetical parameters
and p¢ yield an excellent fit; the best-fit parameters
improve the fit slightly. See Fig. 6.

Aluminum, copper: The 80-MeV 7~ measurements on
these nuclei'® contain some inelastic events. Figure 6
gives our results with p, and theoretical parameters,
which are consistent with the data if they are treated as
upper bounds. Excellent fits can be obtained if one as-
sumes the measured cross sections are purely elastic.

Lithium: w*-lithium scattering was first measured?
with relatively poor energy resolution at 78 MeV. =~
scattering at 80 MeV was also measured later!® with
resolution sufficient to discriminate against all nuclear

% P, P. Kane, Phys. Rev. 112, 1337 (1958).

26 J. Perry, thesis, University of Rochester, 1953 (unpublished);
see also Ref. 25.

% R. E. Williams, W. F. Baker, and J. Rainwater, Phys. Rev.
104, 1695 (1956).
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excitations except the level at 0.48 MeV; this experiment
reduced large-angle cross sections by a factor of about 3.
Electron scattering data was used to argue that the
contribution of the 0.48-MeV state is small. Thus at
large angles the =+ data give only upper bounds, and
the 7~ data may also contain some inelastic background.
Calculating =% scattering with pg and the theoretical
parameters for Li’, we obtained cross sections (see Fig.
7) which are too low for large angles for %, and too
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Fi16. 6. n~ elastic scattering by copper and aluminum at 80 MeV,
and by oxygen at 87.5 MeV. The 80-MeV experimental data are
those of Baker ef al. (Ref. 13), and contain some inelastic events;
the oxygen data are those of Edelstein ef al. (Ref. 14) and are pure
elastic scattering. The theoretical parameters used were not
adjusted for A2Z. They are bo= —0.6040.40;, b, =6.30+1.807
for Cu and Al, and b= —0.60+0.38;, b;=6.304-1.857 for O. Best-
fit parameters are bo=—0.64+40.15, 5, =5.69+1.02; for Cu,
bo=—0.60-0.397, b;=06.26+1.44¢ for Al, and o= —1.1240.287,
b1=6.49+1.46¢ for O. Corresponding best-fitdensities are Saxon-
Woods densities with R=4.29, ¢=0.50 for Cu and R=3.12,
¢=0.54 for Al; for oxygen, the best density is a modified Gaussian
with ¢=1.63. The cross sections with theoretical parameters were
evaluated with the same densities. The charge distributions used
were uniform spheres with R,=35.6 for Cu and 4.2 for Al, and a
modified Gaussian with ¢.=1.6 for O.
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F1c. 7. o*-lithium scattering at 78 MeV, and #-lithium scat-
tering at 79 MeV. All 7+ experimental data are those of Williams
et al. (Ref. 27), and contain considerable inelastic background at
large angles; =+ data for angles less than 40° are also from Ref. 27.
The remaining =~ data are 80-MeV measurements of Baker et al.
(Ref. 27) which include elastic scattering plus excitation of the
level at 0.48 MeV; they expect the latter cross section to be small,
in analogy with electron scattering. Theoretical parameters are
bo=—0.3940.434, b;=06.224-1.79; for =+, and bo= —0.84+0.43;,
b1=7.1742.06: for 7~. Best-fit parameters for =~ are bo=—2.74
—0.952, b,=7.56+1.027. A good fit to #*-Li could not be found. A
modified Gaussian nuclear density and charge distribution with
a=a.=1.6 was used in all calculations.

high for small angles for #—. The search found a good
fit for the 7, but could not fit the poor #* data.

Helium: Published data on 7+ at 24 MeV % and =+ at
48 and 66 MeV? have been studied, as well as prelimi-
nary unpublished =%+ data at 66 and 92 MeV.? The
theoretical parameters and a Gaussian density yield
curves which are too high for small angles and too low
for large angles. Good fits were found in each case.
However, the “best-fit” values of Re by and Im &; did
not approach the theoretical parameters as 7' increased,
unlike other nuclei studied. See Figs. 8 and 9.

150-M eV Experiments: Fujii'” has measured 150-MeV
7~ scattering by C, Al, Cu, and Pb with an energy
resolution of 10 MeV and an angular resolution of several
degrees. For angles greater than 45°, he estimates that
corrections for inelastic scattering are comparable to

2 M. M. Bloch, I. Kenyon, J. Keren, D. Koetke, P. K.
Malhotra, R. Walker, and H. Wenzeler, in Proceedings of the
Williamsburg Conference on Intermediate Energy Physics,
Williamsburg, Virginia, 1966 p. 447 (unpublished).

29 K. Crowe (private communication).
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the measured cross sections. His attempts to fit the data
with a simple density-proportional optical model led to
cross sections too large for large angles; this is in con-
trast to the situation at lower energies'® where the calcu-
lated results are too small for large angles. The Kiss-
linger model with theoretical parameters (which are
quite different from those at lower energy) gives results
which are somewhat below the data at large angles, but
which are fairly good at small angles, as seen in Figs.
10 and 11. Because of the large inelastic component, we
did not search extensively for phenomenological fits.

Budagov et al.'® have studied elastic #—-helium inter-
actions at 153 MeV in a cloud chamber. Our theoretical
curve in Fig. 11 is below the data. A good fit was
obtained with parameters much closer to those predicted
at considerably lower energies.

Additional experimental data with good energy reso-
lution in the energy region from 100 to 200 MeV are
needed to determine the applicability of the model in
this region.
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Frc. 8. 7t-helium elastic scattering at 24 MeV. Experimental
data are from Nordberg and Kinsey (Ref. 5). Theoretical parame-
ters used are bo=—0.0340.554, b, =06.30+0.27Z; best-fit values
are by= —4.4240.774, b;=6.064-0.13;. A Gaussian nuclear density
with ¢=1.22 is used for all calculations. The theoretical curves
are based on a Gaussian charge distribution with a,=1.5; the
best-fit curves shown -are for a.=1.0 and 2.0. The best value for
ac is 1.03+0.55, corresponding to —2.4<7,2<1.0 (one standard
deviation) or 7,<2.0 (two standard deviations), in agreement
with West’s result (Ref. 8).
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F16. 9. 7*-helium elastic scattering at 48 and 66 MeV. Experi-
mental data are those of Block et al. (Ref. 28). Theoretical parame-
ters used are bo= —0.80--0.487, b, =6.304-0.717 for 48 MeV, and
be=—0.70+-0.40z, b; = 6.30+4-1.20¢ for 66 MeV; best-fit parameters
are b= —2.814-0.127, b; = 5.94+-0.247 for 48 MeV, and bo= —2.57
+0.094, ,=5.534-0.19; for 66 MeV. Gaussian densities with
a=1.22 and a.=1.45 were used.

Summary: We conclude that the Kisslinger model
with theoretical parameters gives a qualitative fit to
all the available data, and an excellent fit with phenom-
enological parameters in most cases. The theoretical
curves give excellent fits for the energies and nuclei
where one expected the approximations to be reasonably
good.

IV. NUCLEAR DENSITIES AND RADII

An important result of our calculations is the syste-
matic agreement of the nuclear parameters needed to
fit pion scattering with those obtained from electron
scattering. The best-fit density parameters were de-
termined by varying them along with the potential
parameters bo and b; when the data had good statistics
and energy resolution.

The 80-MeV 7—-C data were fitted both with pg and
with p, in an attempt to observe a shape dependence,
i.e., to determine a second density parameter. Excel-
lent agreement was found with pg for a=1.47 (rms
radius 7=2.14) using &’s close to the theoretical values.
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Using p,, a search begun at ¢=0.5 led to an equally good
fit with ¢=0.45, R=1.97 (#=2.26). Comparison of the
two cross-section curves showed them to be nearly
identical; the two densities were also quite similar when
plotted.

Unfortunately, this remarkable result was fortuitous,
since fixing ¢ at 0.25 led again to an equally good fit for
R=2454+0.11 (#=2.11240.10). The last density is
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Fic. 10. 7~ elastic scattering by copper and aluminum at 150
MeV. Experimental data are those of Fujii (Ref. 17); he estimates
with a model that subtraction of inelastic contributions would give
the cross sectionsindicated by open circles. The theoretical param-
eters used are bo=—0.60+0.307, b;=4.7047.0;. We have not
folded the experimental angular resolution into the calculated
curves nor searched extensively for phenomenological fits. Saxon-
Woods nuclear densities with R=4.3, ¢=0.5 and R=3.3, ¢=0.5
and uniform sphere charge distributions with R;=6.0 and R, =4.2
were used for Cu and Al, respectively.
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I16. 11. 7~ elastic scattering by lead and carbon at 150 MeV,
and by helium at 153 MeV. The experimental data for Pb and Cu
are those of Fujii (Ref. 17), and the He data are the elastic cross
sections of Budgov et al. (Ref. 18). Approximate corrections fo- Pb
and Cu inelastic events give the cross sections indicated by black
circles; for large angles, the estimated corrections are comparable
to the data. Theoretical parameters are &= —0.60+0.30z,
b1=4.70+7.0z; best-fit values for He are by=—1.09—1.02;,
b,=5.274+0.18;. We used a Saxon-Woods nuclear density with
R=6.4, ¢=0.5 and a uniform-sphere charge density with R.=8.4
for lead, a modified Gaussian with ¢=1.55, a.=1.65 for carhon,
and a Gaussian with ¢=1.22, ¢.=1,50 for heliym,
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F1c. 12. Three densities for carbon giving equally good fits to
the 80-MeV data (see Fig. 4): Modified Gaussian, a=1.47,
7=2.14; Saxon-Woods, R=1.97, ¢=0.45, #=2.26; Saxon-Woods,
R=245¢=0.25 7=2.11.

somewhat different from the first two, as is seen in Fig.
12. (It is interesting that Baker et al.1® obtained ¢=0.25,
R=1.084%%=2.48 with the modified Kisslinger model,
in excellent agreement with our last result.)

The three densities give consistent results for #, and
agree very well with the values ¢=1.47 and 1.49 found
at 69.5 and 87,5 MeV respectively, and also with the
electron-scattering? value ¢=1.55 (1.60 before correct-
ing for finite proton size). Furthermore, the Saxon with
¢=0.25 did give a much larger cross section than the
other densities for angles near the second minimum. (See
Fig. 4.) Thus experiments with good energy resolution
at large angles could distinguish between these densities
and determine a second density parameter.

Best Gaussian fits to the helium data gave values for
a between 1.22 and 1.27; the electron-scattering® value
is 1.22 (1.35 less proton size correction). The 80-MeV
Al and Cu Saxon-Woods fits correspond to R=1.1041/?
and 1.084'3 respectively; the average electron-scat-
tering?® result is (1.072420.02)A4 /3. The best ¢’s are also
comparable to those found in electron scattering. Our
modified Gaussian fit for oxygen gives ¢=1.63; the
electron-scattering?? result is 1.67 (1.72 less proton size
correction).

Thus all the pion-scattering radii are in excellent
agreement with electron-scattering data. The results
obtained so far indicate that additional experimental
and theoretical work may lead to useful new information
about nuclear densities.

V. PION CHARGE RADIUS

The contribution of the pion charge radius to 7*-a
scattering was calculated by assuming a Gaussian charge
density for each particle. This is equivalent to a point
charge and a single Gaussian exp[—72/a.%], where

30 R. Herman and R. Hofstadter, High Energy Eleciron Scal-
terim); Tables (Stanford University Press, Stanford, California,
1960),
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F16. 13. Amplitudes obtained from optical-model analysis of

w-helium scattering at 24, 48, 66, and 92 MeV (Refs. 5, 28, 29).
See Sec. V of text.

a.’=a.*ta,? and the rms pion radius is
r.=[1.5(a.2—a.2)]12. (29)

Electron scattering gives® a,=1.35, so that a measure-
ment of @, determines 7.

In the Introduction we noted that a Born-approxi-
mation Coulomb amplitude plus a phase-shift expansion
for fx will lead to erroneous results for 7, if the distor-
tion amplitude fp is comparable to the contribution of
the pion charge distribution. We calculated fp as follows
The optical parameters were varied so as to obtain a
fit to the 7—a data at 24, 48, 66, and 92 MeV.528:29
The partial-wave amplitudes f;* thus obtained for
m* were compared to those found with no nuclear forces,
ie., with only Coulomb forces; the latter satisfied
| feit|— | feir | =0, as expected. The nuclear and dis-
tortion amplitudes were then found from

Ioi=3(fiY— fiD=2fc),
=3 i+ f19).

(30)
(1)
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It is convenient to write the amplitude as

IfDO)=X fi'PPi(cosd) (214+1)=(1/2ip)
X2 (i npiz=ner) Pi(cost) (2041) = feo(6)

where nyi, 7p;, and n¢r correspond to fy, fp, and
Afe= fo— fco, respectively. We found that zy; and
np: are nearly independent of ¢, (or 7,). At each energy,
several slightly different optical-parameter sets gave
the same X2; all of these gave the same 5p;. The vari-
ations in np; due to changes in 7, or in the choice of
optical parameters are <0.001, and are negligible.

Figure 13 gives the nx/’s, and Fig. 14 gives Im 5o for
three 7, values as well as the 4p;’s. The distortions are
small compared to the ny/’s, but are larger than the
variation in Im %¢p due to changes in 7,.

If we take into account only Im 5p,, which interferes
directly with the form-factor term Im 7¢o, the 24-MeV
result for 7, is considerably altered. Instead of

r.=18+08 or 1.0<7,2<6.76, 3)
we find
—0.8<r,2<4.0.

Furthermore, if we include all the distortion effects by
fitting our optical-model calculations directly to the

I I T T
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Fic. 14. Distortion amplitudes np; and finite-size Coulomb
amplitudes 7, obtained from optical-model analysis of w-helium
scattering. See Fig. 13 and Sec. V of text.
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w* data, we find (see Fig. 8) the best fit at a,=1.03
+0.55, or

—24<7r.2<1.0 (1 std. dev.)

or, corresponding to a,=2.13,

7:<2.0 (2 std. dev.) (32)

in complete agreement with West’s conclusions.? Note
that at this energy the cross sections are sensitive to
7= at all angles.

In a future paper, we will present a determination of
7. from Crowe’s data?® and a discussion of the optimum
energies for further study of the pion form factor.
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Using a method introduced in a previous paper, we define covariant functions corresponding to the re-
tarded product and the equal-time commutator. From these we obtain general sum-rule identities, em-
ploying three independent infinite limits. These identities considerably limit the form of the equal-time
commutator. The simplest form consistent with the general covariance properties is discussed.

I. INTRODUCTION

METHOD has been introduced in a recent paper!

for the manipulation of the retarded product, the
equal-time commutator, and the related functions in
the theory of currents. It provides an understanding of
the manner in which the argument of the integrand (in
integrals from which these functions are obtained)
varies during the integration. This clearly indicates
three independent infinite limits in which the functions
can be evaluated, with all the external invariants kept
finite, and with the integration contour running along
the real axis of one invariant (the integration variable)
while the remaining invariants are kept fixed.

To keep the discussion simple, conditions have been
imposed in Ref. 1 to ensure the covariance of the re-
tarded product of two vector currents. Under these
restrictions, and with the assumptions of convergence of
the integrals and vanishing contributions from infinite-
mass intermediate states, conditions for the equivalence
of the three limits have been obtained. Such conditions
are based on the fact that an expression for an invariant
or a covariant function obtained in any one limit, for
all finite physical values of the invariants, and taking a

* Research sponsored in part by the Air Force Office of Scientific
Research under Grant No. AF EOAR 65-36 through the European
Office of Aerospace Research (OAR), U. S. Air Force.

1M. O. Taha, Cambridge University Report, 1967 (un-
published).

form explicitly independent of the limit, must continue
to hold in general and be equivalent to a similar ex-
pression obtained in another limit. These conditions of
equivalence are very fruitful since they immediately
generalize results obtained in one limit, and simul-
taneously considerably limit the form of the functions
involved.:? This last consequence allows sum rules for
the strong interactions completely independent of cur-
rent algebra.

It is our purpose in the present paper to remove the
conditions that have been imposed in Ref. 1 to ensure a
covariant retarded product and treat the general case
by the same method. When the retarded product is no
longer covariant, and still figures in the formalism, one
has to satisfactorily define in terms of it a covariant
function that represents the amplitudes for the scatter-
ing processes. (We refer here to the weak and electro-
magnetic interaction amplitudes). In Sec. IT we define
such functions employing the three infinite limits and
the method of Ref. 1. This amounts to the construction
of invariant and covariant functions corresponding to
the retarded products. We then construct a covariant
function C,% corresponding to the Fourier transform
Ey% of the equal-time commutator involving the time
component.

The equivalence conditions are then derived in Sec.

2M. O. Taha, Cambridge University Report,
published).

1967 (un-



