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Optical-Model Analysis of Pion-Nucleus Scattering
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Determination of nuclear-density parameters and of the rms pion charge radius r from the elastic scatter-
ing of pions by nuclei has been studied using the optical model proposed by Kisslinger. Good Gts to the
available data in the kinetic-energy region 24 MeV& T &.153 MeV have been found by searching the param-
eter space. For 7 =80 MeV, i.e., T„large compared to nuclear binding energies but well below the ¹ reso-
nance, the best-Qt parameters are close to those predicted from pion-nucleon phase shifts. The nuclear radii
obtained are consistent with electron-scattering radii; the calculated differential cross sections are sensitive
to a second nuclear-density parameter for large angles. "Distortion" of the Coulomb amplitude in 24-MeV
n -n scattering reduces y from 1.8+0.8 F to r (2.0 F (two standard deviations), in agreement with West's
recent calculation.

I. QTTTRODUCTIO5
' ~N this paper we present the results of a systematic
~ ~ optical-model analysis of low-energy elastic pion-
nucleus scattering. ' Our primary goal was the develop-
ment of a method of extracting the root-mean-square
(rms) pion charge radius y„ from sr+ cr elas-tic scattering,
as proposed recently. ' Another objective was to explore
the use of pions as nuclear-density probes. All available
experimental data of sufficient precision in the labora-
tory kinetic-energy region 24 MeV& T &153MeV were
studied. These include scattering by helium and carbon
at several energies, and by lithium, aluminum, copper,
and lead at one or two energies.

Other methods have been proposed and applied to
studying the electromagnetic structure of the pion,
Elastic m-e scattering' has given r &3.0 F. Electro-
production of the sr+ in the reaction e +p~e +yt+sr+,
when analyzed with a one-photon exchange model,
gives 4

r~=0 66—o.si+0'26 F,
in good agreement with the y =0.6 F obtained by as-
suming that the pion couples to the photon through the
exchange of po. However, both of these methods have
sufhcient experimental and theoretical dBFiculties to
justify seeking alternative approaches to the pion struc-
ture problem.

For a 7=0 nucleus such as the o. particle, the amph-
tude fN(8) for scattering by the purely nuclear forces is

~ Supported by the U. S. Atomic Energy Commission.t Supported in part by the National Science Foundation.' A preliminary account of some of this work was given by M. M.
Sternheim and E.H. Auerbach, in Proceedings of the Williamsburg
Conference on Intermediate Energy Physics, Williamsburg,
Virginia, 1966, p. 439 (unpublished). The results given were in-
accurate because of an error in the computer program.

'M. M. Sternheim and R. Hofstadter, Nuovo Cimento 38,
1854 (1965).' D. G. Cassel, Ph.D. thesis, Princeton University, 1965
(unpublished).

4 C. W. Akerlof, W. W. Ash, R. Berkleman, and C. A. Lichten-
stein, Phys. Rev. Letters 16, 528 (1966).

the same for m+ and m . Using the Born approximation

fo for the Coulomb amplitude, the differential cross
section for elastic x+ scattering is

do+
(0)= I

f~(t))+fc'(0) I'.
dQ

Thus the difference of cross sections D=da /dQ
—dtr+/dQ= —4 Re(ftv+fc+) is linear in the Coulomb
amplitude. An estimate for f~ was obtained using the
single scattering (or impulse) approximation, together
with approximate multiple scattering calculations of
dubious validity at large angles. From this estimate, it
was concluded' that at 100 MeV D is sensitive to devi-
ations from the point Coulomb amplitude near the mini-
mum in fthm occurring at about 75 . It was also suggested
that an optical-model analysis would be needed to
extract the small deviations caused by the charge struc-
tures of the x and e.

At 6rst inspection this optical-model analysis might
not seem necessary. Nordberg and Kinsey, ' for example,
recently published their measurements and analysis
of 24-MeV x+-0. scattering. They used a partial-wave
expansion for ftv with complex phase shifts for t= 0 and

1,and a real phase shift for t= 2. For the Coulomb ampli-
tude, they multiplied the point Coulomb Born fcP
approximation by (I—qsy2/6). Fitting the six free
parameters to their data gave

y (ys y 2)1/2 I g+0 Q F

However, this analysis does not include all the con-
tributions to the amplitude which are linear in the
Coulomb potential, as was emphasized by SchiR. ' The
incident wave on which the Coulomb potential operates
is distorted by the nuclear forces. (Alternatively, one

~M. E. Nordberg and K. F. Kinsey, Phys. Letters 20, 692
(1966).

L. I. Schiff, Progr. Theoret. Phys. (Kyoto) Suppl. , Extra
Number, 400 (1965).See also, M. Ericson, Nuovo Cimento 47, 49
(1967).
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can say that f~ is not the same for s+ and w, since the
Coulomb potential distorts the incident wave on which
the nuclear forces operate. ) Thus there is an additional
distortion term +fD which has to be included in Kq.
(1). It must be estimated, e.g. , by use of an optical
potential, before a phase-shift analysis can be employed.

The 1=0 part of fn is particularly important; for
with fcon q ', we have

d fc—=fc—f ao q '(1—q'r'/6) —q' —r'/6. (4)

Thus the largest e6ect~ on x+-n scattering of a deviation
from the point Coulomb potential is a sign-changing
s-wave amplitude proportional to r'. The s-wave part of

fn can be comparable to the contribution of the pion
radius, and therefore may not safely be neglected; dis-
tortions in other partial-waves may also alter the
analysis significantly. Very recently, West has applied
a simplified optical model' to the 24-MeV data, and
has found that the inclusion of distortion changes the
result from r =I.8&0.8 F to r &1.5 F.

Another incentive to undertaking these calculations
was the general lack of detailed pion-nucleus elastic
scattering calculations in the published literature. It
was not initially clear whether good over-all fits to
experimental data could be obtained with either theo-
retical or phenomenological models and parameters.
Despite the considerable amount of theoretical work by
Watson' and others, most existing calculations did
not yield full agreement with experiment. Optical po-
tentials proportional to the nuclear density p(r) give
good results for small angles, using well depths close to
those predicted from x-nucleon phase shifts. "However,
these depths cannot be adjusted to fit experimental
data for large angles. Similarly, approximate multiple
scattering calculations" using m-nucleon data and
electron-scattering nuclear-density functions fit only
to the region of the first minimum.

The velocity-dependent optical potential derived by
Kisslinger" would appear on theoretical grounds to
have considerable promise. It has been applied so far
only in a modified form by Rainwater and his co-
workers, "' who analyzed their several experiments

' This was erst pointed out to us by M. Block who attributes the
observation to Cabibbo. It has also been discussed by M. Kricson
(Ref. 6).

s G. B. West, Phys. Rev. (to be published). His analytic non-
relativistic calcu1ation uses a uniform sphere nuclear density and
the modified Kisslinger model which we discuss at the end of
Sec. II.

'K. M. Watson, Rev. Mod. Phys. 30, 565 (1958); also earlier
papers given here."L.D. Roper and R. M. Wright, University of California Radi-
ation Laboratory Report No. UCRL 1'846, 1964 (unpublished);
L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. 138,
B190 (1965), solutions 14 and 24.

"M. M. Sternheim, Phys. Rev. 135, 8912 (1964)."L.S. Kisslinger, Phys. Rev. 98, 761 (1955).
"W. F, Baker, J. Rainwater, and R. E. Williams, Phys. Rev.

112, 1763 (1958);W. F. Baker, H. By6eld, and J. Rainwater, ibid.
112, 1773 (1958)."R.M. Edelstein, W. F. Baker, and J. Rainwater, Phys. Rev.
122, 252 (1961).

around 80 MeV, and were able to fit their data quite
well. The modification of the Kisslinger model makes it
dificult to compare their phenomenological well parame-
ters with the corresponding two-body data. West' also
used this modified model. To date, no calculations have
been published based on the original Kisslinger model.

Thus independently of the pion form factor problem,
it appeared quite interesting to study the Kisslinger
model in its original form. Much better pion-nucleus
experiments are becoming feasible, and pions are likely
to be quite useful as nuclear probes. "Therefore, we set
out to answer these questions: (1) Does the Kisslinger
model work, i.e., can a set of parameters always be
found which leads to the observed elastic scattering?
(2) Do the "best-fit" optical-model parameters obtained
by searching the parameter space agree with the
"theoretical" parameters calculated from ~-nucleon
phase shifts or at least vary reasonably with the nu-
clear mass A and with T? (3) Are the "best-6t"
nuclear-density parameters consistent with electron
scattering experiments? (4) Can unique values be ob-
tained for fn, the distortion amplitude in s.-n scattering?

In the next section we suriu~arize the derivation and
limitations of the Kisslinger model. In Sec. III we
compare the best-fit and theoretical parameters, as
well as the measured and computed cross sections.
Applications to nuclear density and radius determi-
nations and to the pion form factor are discussed in
Secs. IV and V, respectively.

II. OPTICAL-MODEL DERIVATION

We surrnnarize briefly Watson's derivation' of the
optical model. Consider a pion incident upon a nucleus
of A nucleons. The Hamiltonian is

P= (H~+h)+Q V;=—Po+ V,

where B~ is the nuclear Hamiltonian, h is the pion
kinetic energy operator, and V; is the m-nucleon po-
tential. The scattering amplitude T is a solution of

T=V+Va 'T,

where a=E IIo+ie. An exact —formal solution of Eq.
(5) is

where t is the amplitude for pion-bound nucleon scat-
tering. Q' means that two successive scatterings by a
single nucleon are to be excluded.

The "coherent part" Og of an operator 0 is defined by

'~M. Ericson and T. Kricson, Ann. Phys. (N. Y.) 36, 323
(1966).
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where 8'~ is the nuclear energy. Thus the elastic scat-
tering amplitude is

Tc=t c+P'(t a 't —)c+ (8)

or
Tc=D''c=P&''ca 'Tc

'U=gt c.

(10)

The impulse approximation, or the replacement of the
bound amplitudes t by the free x-nucleon amplitudes
t, , is reasonable for energies large compared to nuclear
binding energies. If the nucleon recoil is also neglected,
Kq. (11) becomes

The optical potential 'U in analogy with Eq. (5) is
defined by

Tc='U+5Ua 'Tc. (9)

Thus, formally at least, calculating the pion-nucleus
elastic scattering has been reduced to solving a one-
particle problem with the Hamiltonian tr+'U.

Useful expressions for 'U can be obtained if sufficient
approximations are made. Neglecting excited. nuclear
states, we have

(t, a 't; )c=t; ca 't; c

If A is large or if the two-body forces are weak, we can
set P'=P. Then Eq. (8) implies

amplitudes. Calculations based on this simple model

invariably 6t only small-angle data, as noted in the
Introduction. "'7 "

This model fails to take into account the largely
p-wave character of low-energy z.-nucleon scattering.
Noting that usually tr p" holds, Kisslingerts substi-
tuted into Eq. (12)

obtaining

(P I tl P) = a0+alp cosa a0+alP P (16)

&r 1&0&= (2 )'ALaop& —a & (»&)1, (17)

or, in terms of momentum operators,

'U(r) = (2~)'ALaop+arp pK

We shall see shortly that Kq. (16) is fairly consistent
with experimental (i.e., on the energy shell) z.-nucleon

scattering at kinetic energies mell below the N* reso-
nance near 200 MeV. However, its validity for Ipl
4 I

p'I is unknown, and it clearly violates unitarity for
large momenta. Furthermore, at best only a small

region near T =(20&(200)'I'=65 MeV is compatible
with Eq. (16) and a,iso with the impulse approximation.

The loss of pions from the elastic channel is pro-
portional to

&p'
I

U
I
P&= 2 &p'

I 1*
I p&p(P' —P),

iPe (V —'U+) tPdsr = 2(2z) 'A
(12)

where p' and p are the pion momenta. Here
&& ImLasllt Is+at I V'/Is)pdsr. (19)

p(tl) =— e's'p (r)d'r (13)

is the nuclear form factor or Fourier transform of the
nuclear density function, which is normalized to unity:

p(r)dsr= 1.

The approximation of neglecting recoil is apparently
not very good" for off-shell matrix elements of 'U, which
contribute signiicantly to large-angle scattering. "

The simplest optical model is obtained from Eq. (12)
with a forward scattering approximation for t:

Since p&0, both terms in Kq. (18) always correspond to
sinks (sources) of pions if Im as and Im ar are negative
(positive). For spin zero, Kq. (18) is the simplest
velocity-dependent potential having this property which
is consistent with the usual symmetries.

Following Baker et at.",we introduce '0 into a Klein-
Gordon equation as a fourth component of a four-
vector and drop the 'U' term. Thus if V~ is the Coulomb
potential

This is the equation we actually solve. With Eq. (18),

UP = 2E.'UP

Abspsspp+Ab—rV (pVQ)
&p'I tip&p(p' —p) = &pl tip&p(p' —p) =&pol tl po&p(p p)

(21)
Here one assumes ftrst that p(tt) drops off rapidly with
increasing q, and then that the wave function in mo-
mentum space is strongly peaked about the incident
momentum p(). In coordinate space, '0 is now a local
potential

where
bo —2(2z.)sE ap/Pss-—
bt —2 (2')sE.a——r .

(22)

&(r)= (2~)'A&pol tl ps&p(r),

where (pal tips& is suitably averaged. over z-p and z.n-,' T. A. Fujii, Phys. Rev. 113, 695 (1959)."Yu. A. Budagov, P. F. Krmolov, E. A. Kushnirenko, and V. I.
Moskalev, Zh. Eksperirn. i Teor. Fiz. 42, 1191 (1961) LEnglish
transL: Soviet Phys. —JETP 15, 824 {1962)j."E.Leader, Nucl. Phys. 26, 177 (1961).

The b's are proportional to rr-nucleon amplitudes and
15
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are independent of nuclear parameters; they differ
from the C's of Baker et al. is by a factor —A p(0).

We must re)ate the optical potential in the lab system
to phase shifts in the x-nucleon center-of-mass system.
Let k be the pion momentum in this c.m. system. The
usual connection between t and f(e) gives

(pl &la)i"= —f(o)i"/(4~'&-) (23)

With the optical theorem and the invariance of total
cross sections,

8,0

7.0—

6.0—

5.0—
u

4.0—
E

3.0—

1 T T

f(o) i.~/p = f(0) .-./&.

Thus we obtain readily for t=0, 1

4x
I:V(o). ji

k'

4ir p'+cV'+2E, 3I
L&f(o)..-.ji

p' M'

(24)

(25)

2.0—

I.O—

0
0 20 40 60 80 IOO 120 140 160 I 80

PION LAB KINETIC ENERGY, MeV

Fxo. 2. Theoretical and phenomenological best-6t values
for the imaginary part of the optical-model well-depth parame-
ter b1. The theoretical values and error bars are obtained as
for Fig. 1. The best-6t value for lithium has heen reduced by
Im(b~)~=~, z=s —Im(bi)z=. sz=0.3.

where p and M are the pion and nucleon masses,
respectively.

The amplitudes in Eq. (25) must be suitably averaged,
over spin and isospin variables. Let u, =exp(ib, ) sinb;,
where the 8; are the ~-nucleon phase shifts and
i= (2T,2J). For a m and a nucleus (A,Z), we find

Lkf(0), js——
l Z(ns+2ni)/3+(A —Z)nsjA ',

L&f(o). ji= LZ(2~ss+~si+4cris+2~ii)/3
+ (A —Z) (2nss+rrsr) )A—'. (26)

For ir+ scattering, the factors Z and (A —Z) are inter-
changed.
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3.0—
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Fro. 1. Theoretical and phenomenological best-Qt values for
the real parts of the optical-model well-depth parameters bo and
b1. The bands of theoretical values indicate the extremes of those
calculated for A =2Z nuclei from the three sets of pion-nucleon
phase shifts listed in Ref. 10. The error bars shown were obtained
by an error-matrix analysis, as described in the text; other best-fi. t
values probably have similar errors. For ~=lithium, the best-6t
Re bi has been reduced by Re (bi)x 4, z=s —Re(b&)z sz=-0.7, and
) Re bo) has been similarly reduced by 0.4.

We used three different sets of phenomenological
w-nucleon phase shifts obtained by Roper et al." to
evaluate bo and b~. They give similar but not identical
results, as is seen in Figs. 1—3 plotted for the case A = 2Z.
Since bi is dominated by ass/ps= (hss+ibsss)/ps and ass

has the expected p' behavior, we ind Re bi is almost
constant at about 6.3 for T &130 MeV." Hence
Im bj is rapidly increasing; it is 0.2 at 20 MeV, 1.8 at
80 MeV, and 6.8 at 150 MeV. The empirical leading
terms" linear in p in 2bs and in bi nearly cancel, so that
Re bs (28s+bi)/p' is surprisingly constant at —0.7
except at very low energies; one expected a 1/p'
behavior. Im be (2bss+bi')/P' has the exPected 1/P
dropoff from a value of 0.6 at 25 MeV.

From this discussion, it is clear that the largest
theoretical uncertainty is associated with Re bo, since
moderate deviations from the free pion-nucleon ampli-
tudes may spoil the accidental cancellations and lead
thereby to much larger values and to a 1/p' variation.

A few remarks are in order before concluding this
section. We have not included corrections for the
"effective kinetic energy" of the pion inside the nu-

cleus, "for the Lorentz-Lorenz e8ect,""and for pion
capture. ""Our actual calculations are made in the
m-nucleus c.m. frame; we neglect the small effects on
the theoretical parameters of the transformation from
the lab frame.

The modified Kisslinger model mentioned in the
Introduction is obtained from the above by the replace-
ment

(1+bipA)V'iP —+ (1 Abip) 'VQ—

~9 All radii are given in fermis; the b's have units of F'.
~ R. M. Frank, J. L. Gammel, and K. M. Watson, Phys. Rev.

101, 891 (1956).
~' N. M. Kroll, quoted in Ref. 14.
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Terai.K I. Best-ht parameters for 80-MeV ~ -C scattering.

Density

Saxon-Woods, E.=2.45F~0.11F, c=0.25F
Saxon-Woods, E.= 1.97F, c=0.45F
Modified Gaussian, a= 1.47F
Theory (2-body phase shift)

Rebo (F')
—0.75&0.54—1.24—1.14—0.75a0.10

Imbo (F3)

0.28&0.87
0.22
0.22
0.34+0.02

Reb1 (F')

5.91&0.93
6.41
6.16
6.5 &O.i

Imb, (F3)

1.94~0.30
1.44
1.32
1.8 ~0.1

r- (F)

2.11~0.10
2.26
2.14

Since Im b~/0, this replacement is not needed to avoid
singular points. It introduces a further diKculty in
comparing phenomenological and theoretical parame-
ters. We have used this model only to help verify our
computer programs: we obtain good agreement with
the older calculations. "

I.2—

I.O—

tt

0
Ch 0.6—

0.4—

He

0 C

a 0
~ Al

~ CU

THEQRY(v-NUCLEQN
PHASE SHIFTS)

0.2—

0
0

I I I - I I

4Q 80 . 120

PION LAB KINETIC ENERGY, Mev

I

I60

Fro. 3. Theoretical and phenomenological best-6t values for
the imaginary part of the optical-model well-depth parameter
b0. The theoretical values and error bars are obtained as for Fig. 1.
The best-6t Im bo for ~ -lithium is omitted; it is —0.95.

"E. H. Auerbach, Brookhaven National Laboratory Report
No. BNL 6562, 1962 (unpublishedl.

III. CALCULATION 8

The solutions of the optical-model wave equation,
Eq. (20), were obtained using a suitable modification of
the ABAcUs code originally developed by one of us for
nonrelativistic velocity-independent optical potentials. '2

For each partial wave required the program solves for
the wave functions using difference equations with as
many as 500 mesh points. These are joined to solutions
of the Klein-Gordon point Coulomb equation outside
the nuclear force region.

ABAcUs can scan parameter sets, i.e., repeat the
calculations for systematically varied parameters. It
can also perform gradient searches to Gnd "best-fit"
parameter values which minimize X' for a given set of
experimental data. An average of about 1 sec was re-
quired to solve a set of partial-wave equations on a
large digital computer. Several hours of computer
time were needed to do the various scans and searches
discussed below.

Two diHerent nuclear-density functions were used:

(1) the modified Gaussian

pa(r) =pe/1+ (Z 2—)r'/3a'5 exp( —rs/a'),
(2&)

pe= 2/vr stsa'Z.

This density is obtained, from shell-model wave func-
tions for the 1p shell nuclei, and is consistent with
electron scattering experiments on these nuclei. 's (2) the
familiar Saxon-Woods density'4

p, (r) =peL1+ exp(r —R)/c5 ',
pe= (3/4trR') (1+7r'c'/R') '. (28)

Both densities were set exactly equal to zero once
they had reached very small values. For the Coulomb
potential, we used as the charge distribution a modified
Gaussian with p6, and either a uniform sphere or modi-
fied Gaussian with p, . The corresponding charge
radius parameters are referred to below as a, and R„
respectively.

A. Phenomenological Best-Fit Parameters

We began by studying elastic scattering of pions by
helium and carbon for 24& T &92 MeV. Since a princi-
pal objective was to determine the uniqueness of the
optical potential, we "mapped" the parameter space,
i.e., obtained X' for many values of the complex con-
stants bo and b». The theoretical parameters were used
only to determine suitable orders of magnitude for
initial investigation. The search program was used to
locate X' minima more precisely once their approximate
positions were found in these scans. Nuclear-density
parameters were also varied in some cases; this will be
discussed in Sec. IV.

We selected two representative experiments and per-
formed an error analysis on the corresponding best
fits. We assumed that X' depends quadratically on the
parameters near its minimum, and computed the error
matrix in the usual way. The best-6t b's are strongly
correlated to each other, but not to the nuclear-density
parameters; this would not have been true had we used
the C's of Bah.er et al."The standard deviations thus
obtained provide a crude estimate of the errors associ-
ated with the best-6t parameters for other experiments.

For no helium or carbon experiments was more than
one region of good fit found in the scans. Although
searches sometimes found equally good fits with two or
more parameter sets these sets always agreed within
the estimated errors. This is illustrated in Table I.

&' D. G. Ravenhall, Rev. Mod. Phys. 30, 430 (1958)."p. K. Hodgson, The Optical Model of Elastec Scatter&kg
(Clarendon Press, Oxford, England, 1963).
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In short, the phenomenological best-6t parameters
below 100 MeV are for the most part consistent with
the pion-nucleon data, vary smoothly with T, and are
nearly independent of A. They are quite close to the
predicted values for T 80 MeV, as expected from
our arguments in Sec. II.

B. Experimental Comparison

We now examine more closely the agreement between
our calculations and the available data, considering
6rst T &100 MeV. Slightly inelastic scattering due to
excitation of low-lying nuclear levels complicates the
elastic-scattering experiments. Some inelastic cross
sections increase rapidly with momentum transfer and
become inuch greater than large-angle elastic-scattering
cross sections. In some experiments the unresolved in-

elastic contamination is so large that the reported
cross sections are useful only as upper bounds on the
large-angle elastic scattering, despite the small statis-
tical errors quoted.

Ctzrborz: Since the first excited state is 4.4 MeV above
the ground. state, the separation of elastic events is
feasible. Useful x+ data are available at 31.5 MeV"
and 40 MeV" and m data at 69.5 MeV "80 MeV "
and 87.5 MeV. " In Fig. 4, we see that for the three
higher energies pg and the theoretical parameters give
results very close to the experimental d.ata; the slightly
different best-fit parameters give Xz//&1, where X
is the number of data points.

At the lower energies the theoretical parameters give
curves of the right qualitative behavior, but they are
too high in front and too low in back. In the Born
approximation, f(8) bp+bi cos8. Since Re bs is nega-
tive and Re b~, Im b~, and Im bo are positive, increasing

~
Re bs

~
will improve the fit. The search yieMs relatively

large values of
~

Re bs~ and good 6ts to the data. Both
experiments have poor statistics and our search program
was relatively ineffective. See Fig. 5.

Oxygen: Pure elastic m -oxygen scattering has been
measured at 87.5 MeV. ' The theroetical parameters
and pz yield an excellent fit; the best-6t parameters
improve the Gt slightly. See Fig. 6.

Alztztzizzum, copper: The 80-MeV zr measurements on
these nuclei" contain some inelastic events. Figure 6
gives our results with p, and theoretical parameters,
which are consistent with the data if they are treated as
upper bounds. Excellent fits can be obtained if one as-
sumes the measured cross sections are purely elastic.

LAhilm: x+-lithium scattering was 6rst measured'-~
with relatively poor energy resolution at 78 MeV. m

scattering at 80 MeV was also measured later" with
resolution suQicient to discriminate against all nuclear

'~ P. P. Kane, Phys. Rev. 112, 133/ (1938)."J.Perry, thesis, University of Rochester, 1953 (unpublished);
see also Ref. 25."R.E. Williams, W. F. Bal"er, and J. Rainwater, Phys. Rev.
104, 1695 (1956}.

excitations except the level at 0.48 MeV; this experiment
reduced large-angle cross sections by a factor of about 3.
Electron scattering data was used to argue that the
contribution of the 0.48-MeV state is small. Thus at
large angles the x+ data give only upper bounds, and,

the m data may also contain some inelastic background.
Calculating zr+ scattering with pg and the theoretical
parameters for Li', we obtained cross sections (see Fig.
7) which are too low for large angles for zr~, and too
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Iooo-iE
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-Al 80 MeV
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!

20 40 60 80 100 120 140
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Fxo. 6. x elastic scattering by copper and aluminum at 80 MeV,
and by oxygen at 87.5 MeV. The 80-MeV experimental data are
those of Baker et al. (Ref. 13), and contain some inelastic events;
the oxygen data are those of Edelstein et aL (Ref. 14) and are pure
elastic scattering. The theoretical parameters used were not
adjusted for A /2Z. They are bo= —0.60+0.40i, b& =6.30+1.80i
for Cu and Al, and ho= —0.60+0.38i, bi ——6.30+1.85i for Q. Sest-
et parameters are bo= —0.64+0.15i, bi=5.69+1.02i for Cu,
bo= —0.60+0.39i, bi=6.26+1.44i for Al, and bo= —1.12+0.28i,
b1 =6.49+1.46i for O. Corresponding best-6t „densities are Saxon-
Woods densities with R=4.29, c=0.50 for Cu and R=3.12,
@=0.54 for Al; for oxygen, the best density is a modified Gaussian
with u=1.63. The cross sections with theoretical parameters were
evaluated with the same densities. The charge distributions used
were uniform spheres with R,=5.6 for Cu and 4.2 for Al, and a
modified Gaussian with g, =1.6 for O.
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the measured cross sections. His attempts to fit the data
with a simple density-proportional optical model led to
cross sections too large for large angles; this is in con-
trast to the situation at lower energies" where the calcu-
lated results are too small for large angles. The Kiss-
linger model with theoretical parameters (which are
quite difierent trom those at lower energy) gives results
which a,re somewhat below the data at large angles, but
which are fairly good at small angles, as seen in Figs.
10 and 11.Because of the large inelastic component, we
did not search extensively for phenomenological fits.

Budagov et a/. "have studied elastic x -helium inter-
actions at 153 MeV in a cloud chamber. Our theoretical
curve in Fig. 11 is below the data. A good fit was
obtained with parameters much closer to those predicted
at considerably lower energies.

Additional experimental data with good energy reso-
lution in the energy region from 100 to 200 MeV are
needed to determine the applicability of the Inodel in
this region.

O. I
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I40 I60
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Fro. 7. m -lithium scattering at 78 MeV, and m -lithium scat-
tering at 79 MeV. All x+ experimental data are those of Williams
et al. (Ref. 27), and contain considerable inelastic background at
large angles; m+ data for angles less than 40' are also from Ref. 27.
The remaining m data are 80-MeV measurements of Baker et al.
(Ref. 27) which include elastic scattering plus excitation of the
level at 0.48 MeV; they expect the latter cross section to be small,
in analogy with electron scattering. Theoretical parameters are
b0= —0.39+0.43i, b~=6.22+1.79i for m+, and bo= —0.84+0.43i,
b~=7.17+2.06i for x . Best-Gt parameters for m are bo ———2.74-0.95i, b~ =7.56+1.02i. A good fit to m-+-Li could not be found. A
modified Gaussian nuclear density and charge distribution with
a= c,=1.6 was used in all calculations.
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—— ae = I.O, X =4.73A

0 =20X =656

I20 l60
high for small angles for m=. The search found a good
6t for the x, but could not fit the poor x+ data.

Helium: Published data on x+ at 24 MeV ' and m+ at
48 and 66 MeV' have been studied, as well as prelimi-
nary unpublished x+ data at 66 and 92 MeV." The
theoretical parameters and a Gaussian density yield
curves which are too high for small angles and too low
for large angles. Good fits were found in each case.
However, the "best-6t" values of Re bo and Im b~ did
not approach the theoretical parameters as T increased,
unlike other nuclei studied. See Figs. 8 and 9.

150 Ate V Experi rleets:-Fujii'r has measured 150-MeV
scattering by C, Al, Cu, and Pb with an energy

resolution of 10MeV and an angular resolution of several
degrees. For angles greater than 45, he estimates that
corrections for inelastic scattering are comparable to

~M. M. Bloch, I. Kenyon, J. Keren, D. Koetke, P. K.
Malhotra, R. Walker, and H. Wenzeler, in Proceedings of the
%'illiamsburg Conference on Intermediate Energy Physics,
Wilhamsburg, Virginia, 1966 p. 447 (unpublished).

's K. Crowe (private communication).
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Fro. 8. ~+-helium elastic scattering at 24 MeV. Experimental
data are from Nordberg and Kinsey (Ref. 5). Theoretical parame-
ters used are bo= —0.03+0.55i, b~=6.30+0.27i; best-fit values
are b0 ———4.42+0.77i b» =6.06+0.13i.A Gaussian nuclear density
with a=1.22 is used for all calculations. The theoretical curves
are based on a Gaussian charge distribution with a, =1.5; the
best-fit curves shown are for a, =1.0 and 2.0. The best value for
g, is 1.03~0.55, corresponding to —2.4(s '&1.0 (one standard
deviation) or r &2.0 (two standard deviations), in agreement
with West's result (Ref. 8}.
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Using p„a search begun at c=0.5 led to an equally good
fit with c=0.45, 8=1.97 (r=2.26). Comparison of the
two cross-section curves showed them to be nearly
identical; the two densities were also quite similar when

plotted.
Unfortunately, this remarkable result was fortuitous,

since 6xing c at 0.25 led again to an equally good 6t for
R=2.45&0.11 (r=2.11+0.10). The last density is
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FrG. 9. m+-helium elastic scattering at 48 and 66 MeU. Experi-
mental data are those of Block et al. (Ref. 28). Theoretical parame-
ters used are bo

———0.80+0.48i, br =6.30+0.71i for 48 MeV, and
bo ———0.70+0.40i, b1 = 6.30+1.20i for 66 MeV; best-fit parameters
are bo = —2.81+0.12i, b1 =5.94+0.24i for 48 MeV, and bo= —2.57
+0.09i, b1=5.53+0.19i for 66 MeV. Gaussian densities with
a=1.22 and u, =1.45 were used.
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vr -Cu l50 MeV

SNnsmury: We conclude that the Kisslinger model
with theoretical parameters gives a qualitative 6t to
all the available data, and an excellent 6t with phenom-
enological parameters in most cases. The theoretical
curves give excellent 6ts for the energies and nuclei
where one expected the approximations to be reasonably
good.

IO—
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IV. NUCLEAR DE5'SITIES AND RADII

An important result of our calculations is the syste-
matic agreement of the nuclear parameters needed to
6t pion scattering with those obtained from electron
scattering. The best-6t density parameters were de-
termined by varying them along with the potential
parameters bo and b~ when the data had good statistics
and energy resolution.

The 80-MeV x -C data were 6tted both with pg and
with p, in an attempt to observe a shape dependence,
i.e., to determine a second density parameter. Excel-
lent agreement was found with pg for tt=1.47 (rms
radius r = 2.14) using b's close to the theoretical values.

0
IO 50 50

I

70 90
~em'd'g

I

IIO

I

I50

Fzc. 10. ~ elastic scattering by copper and aluminum at 150
MeV. Experimental data are those of Fujii (Ref. 17);he estimates
with a model that subtraction of inelastic contributions would give
the cross sections indicated by open circles. The theoretical param-
eters used are bo= —0.60+0.30i, b1=4.70+7.0i. We have not
folded the experimental angular resolution into the calculated
curves nor searched extensively for phenomenological fits. Saxon-
Woods nuclear densities with R=4.3, c=0.5 and R=3.3, c=0.5
and uniform sphere charge distributiorrs with R.=6.0 and R, =4,2
~ere used for Cu and Al& respectively,
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The contribution of the ion11.
si y for each particle. This is e u'
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It is convenient to write the amplitude as

f (+&(e)=—+fr(+&Pr(cos8)(2l+1) = (1/2ip)

XQ(rfrrr~rf j)r+rfn)Pr(cos8)(2t+1) ~fop(0),

where tlirt, rf~r, and rfqr correspond to f~, fn, and
&fc=fc—fc—p, respectively. We found that q&t and
rip&t are nearly independent of a, (or r„) A.t each energy,
several slightly diferent optical-parameter sets gave
the same X', all of these gave the same pa~. The vari-
ations in g~~ due to changes in r or in the choice of
optical parameters are &0.001, and are negligible.

Figure 13 gives the g~~'s, and Fig. 14 gives Im ggo for
three r values as well as the rf~~'s. The distortions are
small compared to the g~~'s, but are larger than the
variation in Im gqo due to changes in r .

If we take into account only Im g~o, which interferes
directly with the form-factor term Im riop, the 24-MeV
result for r is considerably altered. Instead of

r = 1.8+0.8 or 1.0&r~'&6.76,

.15 + I2
—R 0

we 6nd

—0.8&r.2&4.0.

.10 Furthermore, if we include all the distortion effects by
fitting our optical-model calculations directly to the

.05 —R 2

0
20 40 60 80 100 120

= 2. 1

r~ = 2.0
E log j MeV b: ac 1.8

Frc. I3. Amplitudes obtained from optical-model analysis of
m--helium scattering at 24, 48, 66, and 92 MeU (Refs. 5, 28, 29).
See Sec. V of text.

C: Oc 1.5

r~ = 15

a, '= a '+a ', and the rms pion radius is p Imqco

(29) 6 2
g

O
OElectron scattering gives" u = 1.35, so that a measure-

ment of a, determines r .
In the Introduction we noted that a Born-approxi-

mation Coulomb amplitude plus a phase-shift expansion
for f~ will lead. to erroneous results for r if the distor-
tion amplitude fn is comparable to the contribution of
the pion charge distribution. We calculated fD as follows
The optical parameters were varied so as to obtain a
fit to the x—n data at 24, 48, 66, and 92 MeV '" ""
The partial-wave amplitudes f(+ thus obtained for
m + were compared to those found with no nuclear forces,
i.e., with only Coulomb forces; the latter satisfied

I fo(+I —
I fq( )

=0, as expected. The nuclear and, dis-
tortion amplitudes were then found from

I

40
I

80
I

IOO

-2
20 60

E,cf, , MeY

(30) Fro. 14. Distortion amplitudes gn( and 6nite-size Coulomb
amplitudes qo, obtained from optical-model analysis of s-helium
scattering. See Fig. 13 and Sec. V of text.
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sr+ data, we find (see Fig. 8) the best fit at a,=1.03
&0.55, or

—2.4&r.'&1.0 (1 std. dev. )

or, corresponding to a, = 2.13,

r &2.0 (2 std. dev. ) (32)

in complete agreement with West's conclusions. Note
that at this energy the cross sections are sensitive to
r at all angles.

In a future paper, we will present a determination of
r from Crowe's data" and a discussion of the optimum
energies for further study of the pion form factor.
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General Sum Rules and the Form of the Eilual-Time Commutator*
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Using a method introduced in a previous paper, we de6ne covariant functions corresponding to the re-
tarded product and the equal-time commutator. From these we obtain general sum-rule identities, em-

ploying three independent infinite limits. These identities considerably limit the form of the equal-time
commutator. The simplest form consistent with the general covariance properties is discussed.

I. INTRODUCTION

METHOD has been introduced in a recent paper'
for the manipulation of the retarded product, the

equal-time commutator, and the related functions in
the theory of currents. It provides an understanding of
the manner in which the argument of the integrand (in
integrals from which these functions are obtained)
varies during the integration. This clearly indicates
three independent in6nite limits in which the functions
can be evaluated, with all the external invariants kept
6nite, and with the integration contour running along
the real axis of one invariant (the integration variable)
while the remaining invariants are kept Gxed.

To keep the discussion simple, conditions have been
imposed in Ref. 1 to ensure the covariance of the re-
tarded product of two vector currents. Under these
restrictions, and with the assumptions of convergence of
the integrals and vanishing contributions from inhnite-
mass intermediate states, conditions for the equivalence
of the three limits have been obtained. Such conditions
are based on the fact that an expression for an invariant
or a covariant function obtained in any one limit, for
all Gnite physical values of the invariants, and taking a

*Research sponsored in part by the Air Force Once of Scientific
Research under Grant No. AF EOAR 65-36 through the European
Once of Aerospace Research {OAR), U. S. Air Force.

' M. O. Taba, Cambridge University Report, 1967 (un-
published).

form explicitly independent of the limit, must continue
to hold in general and be equivalent to a similar ex-

pression obtained in another limit. These conditions of
equivalence are very fruitful since they immediately
generalize results obtained in one limit, and simul-

taneously considerably limit the form of the functions
involved. ' ' This last consequence allows sum rules for
the strong interactions completely independent of cur-
rent algebra.

It is our purpose in the present paper to remove the
conditions that have been imposed in Ref. 1 to ensure a
covariant retarded product and treat the general case
by the same method. When the retarded product is no
longer covariant, and still figures in the formalism, one
has to satisfactorily define in terms of it a covariant
function that represents the amplitudes for the scatter-
ing processes. (We refer here to the weak and electro-
magnetic interaction amplitudes). In Sec. II we define
such functions employing the three infinite limits and
the method of Ref. 1.This amounts to the construction
of invariant and covariant functions corresponding to
the retarded products. We then construct a covariant
function C„'& corresponding to the Fourier transform
Eo„'& of the equal-time colrunutator involving the time
component.

The equivalence conditions are then derived in Sec.

~ M. O. Taha, Cambridge University Report, 1967 (un-
published).


