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Using recent 24-MeV ~+-n elastic scattering data we critically analyze the Hofstadter-Sternheim proposal
for measuring the pion electromagnetic form factor. A phenomenological nonlocal potential, whose param-
eters are fixed directly from the data, is used to describe the nuclear interaction. Using these parameters, a
type of distorted-wave Born approximation is then employed to calculate the Coulomb contributions. We
conclude that (i) nuclear distortion effects on the Coulomb contribution are large; (ii) the fits are not very
sensitive to the pion radius and from the data only a conservative upper limit of ~1.5 F can be reasonably
given; (iii) experimental statistics need to be greatly improved before a more de6nitive result can be ob-
tained; (iv) sensitivity to the model parameters seems to be smallest in the region of backward scattering
(8h,b &100 ), where sensitivity to the pion radius is greatest; and (v) the fruitfulness of going to much higher
energies ()100 MeV) is probably quite limited. Some suggestions for present and future experimental and
theoretical work are briefly discussed.

I. INTRODUCTION

~

NE of the more striking successes of the dispersion-
theory approach to strong-interaction physics is

the insight it gives into the nature of the electromagnetic
(em) form factors of the nucleons. ' Via the dispersion
relations one can directly relate the nucleon form factors
to the integrals over the pion-nucleon (sr-n) scattering
amplitudes folded into the form factor of the pion, F .
Quantitative ignorance of Ii has not yet allowed the
direct verification of such a relationship, and further
progress can only be made by subjecting F itself to a
dispersion treatment, thereby relating it to zr-x ampli-
tudes. This approach culminated in the early j.960's
with the work of Frazer and Fulco, ' who concluded
that one could fit the known data only if there existed
strong resonances in the m.-x system such as those
earlier suggested by Nambu. ' The existence of these
resonances is now well substantiated, and nowadays
one commonly parametrizes Ii by the spectral
representation

F ~(1—q'/nt ')—'

where m, is the mass of the 2x resonant state, the

p meson, and q is the usual 4-momentum transferred
to the pion. ' A good measurement of Ii would certainly
be welcome supporting evidence towards a fuller under-
standing of the em structure of the hadrons. This paper
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t Present address.
'For a comprehensive review of this work which includes a

complete list of references, see S. D. Drell and F. Zachariasen,
Electromagnetic Structure of Nucleons(oxford University Press,
New York, 1961).' W.rFrazer and J. Fulco, Phys. Rev. 115, 1763 (1959); 117,
1609 (1960);Y. Nambu, ibid 106, 1366 (195.7).

~ In this paper we use the metric in which the product of two
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will be devoted to a critical study of a new method
proposed by Hofstadter for measuring E .4'

Before discussing this method, let us brieQy review
and discuss previous methods used to obtain Ii .
Basically there are only two:

(i) The "direct" method: Pions are scattered from
atomic electrons. Since the massive pion cannot transfer
very much momentum to the relatively light electron,
this method is limited to only very low q' values. ' In
an experiment performed at Princeton, Cassel et ul. '
have been able to deduce an upper bound for the root-
mean-square pion radius of 3 I'.

(ii) The "indirect" method: One attempts to isolate
the pion-pole contribution (directly proportional to Ii )
in the electroproduction of m's from protons. The main
drawback to this method is that the production process
itself is not su%ciently well understood. Before a reli-
able Ii can be deduced, the dominance of the E and S*
contributions, for instance, must be known quite ac-
curately. Nevertheless, Berkelman et a/."have been able
to deduce reasonable and consistent values of Ii by
using a coincidence experiment in which the kinematics
are arranged so as to maximize the pion-pole contribu-
tion. Gourdin" has recently suggested a program based
upon a pure isobar model (successful in photoproduction
studies) from which one might eventually hope to

4 R. Hofstadter (private communication).
'M. M. Sternheim and R. Hofstadter, Nuovo Cimento 38,

1854 (1965).
e See, however, B. Msglic and G. Costa, in Proceedings of the
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tion process are N. Zagury, Phys. Rev. 145, 1112 (1966); F. A.
Behrends et al., Cern report (unpubhshed)."C. W. Akerlof et al , Phys. Rev. Lette. rs 16, 147 (1966);
K. Berkelman (private communication)."M. Gourdin (private communication); see also J.P. Loubaton,
Nuovo Cimento 39, 591 (1965).
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ftot = f&r~+c I (2)

where f&r is the (dominant) scattering amplitude for
purely nuclear scattering and 5, is some Coulomb cor-
rection amplitude whose sign, to 6rst order in the Qne-

structure constant o., should depend only upon the sign
of the pionic charge. The corresponding cross section is

~t.t+=
l f~~&.l'

=
I f&v l2a2 Ref~+F,+

Hence to 6rst order in 0., the difference, de6ned by

60'= (rrtot+ 0 t~t—)=4 Ref+ Fq &l (4)

is expected to be sensitive to F, while from the average

Ox= ~ &~o~ &~0~

one can deduce f~ and make the determination of F
model-independent. Since f~ has the characteristic
"diffraction m!nimum" at about 80' )in the center-of-
mass (c.m. system)), one might hope that in this region
5', would be sufficiently large for a good determination
of Il to be made. Data from a recent experiment at
Rochester by Nordberg and K.insey" have recently
been published, and we shall use them as an example
to illustrate the method one employs to extract F .
Since the data are only at eight diGerent c.m. angles
and the statistics are poor, it is doubtful that we can
obtain a definitive result for F . Rather, we view the
work as a preliminary study to investigate just which
aspects of the experiment need the most improvement,
e.g., how much better do the statistics have to be? Or, is
the di6raction minimum the best place to look?, etc.

Prior to the Rochester experiment, Sternheim and
Hofstadter' had investigated the feasibility of the
method and had concluded that, indeed, with presently
available x beams the idea could be made to work.
They calculated f&v from an approximate multiple-
scattering formalism and replaced F, by f,&~&, the pure
Born Coulomb am.plitude:

where F (q2) is the form factor of the n particle assumed
known from e-o, experiments. Schi6" pointed out that
the use of f, te& may be an inconsistent approximation

"M. E. Nordberg and K. F. Kinsey, Phys. Letters 20, 692
(1966).

obtain reliable and model-independent values for the
neutron charge form factor as well as for F .

Hofstadter's idea is also an "indirect" method (i.e.,
the Ji vertex is not the dominant contribution); how-

ever, by using the charge independence of nuclear forces
one hopes to minimize the model dependence of the
strong interactions. The idea is to scatter positively and
negatively charged pions elastically from the isoscalar
nucleus He4, the a particle. The complete scattering
amplitude can presumably be written as

in that there could be large nuclear contributions to 5,.
He therefore developed a type of distorted partial-wave
Born expansion in which all nuclear effects are correctly
taken into account to erst order in a. Unfortunately,
his result swered from the occurrence of logarithmic
divergences so characteristic of Coulomb problems.

Bell and, independently, Yennie and Gross erst
showed how to make Schiff's result convergent to erst
order. " In attempting to generalize their procedure to
all orders, Antoine" could only show that the diver-
gences cancelled for a limited subclass of terms. %e
have investigated this problem in some detail in a
previous paper" and 6nd that the scattering amplitude
can be written in an explicitly convergent form whose
first order iteration is also convergent. %e can express
the result in the form

where R~ is the radial wave function for scattering from
the nuclear potential U alone and 5~ is the corresponding
phase shift. '~ The pion wave number is k and the c.m.
scattering angle is 8. Hence q=2k sin-,'8. The Coulomb
potential V(r) is related to the form factors via

Its strength is represented by

g—:2mQZ )

where m is the reduced mass of the x and Z is the
nuclear charge. An important gauge of the Coulomb
strength is given by the quantity

n =—g/2k =mnZ/k.

%e have also introduced the amplitude

f (&&&= P (r)e2t'n In22rj (qr) dr

In Ref. 16 we have shown that, provided one does not
look near t& 0', f, & & can be replaced by f, & &. The
above form for ft,t is not unique, this particular one
being chosen purely for reasons of convenience. As with

"L. I. Schiff, Progr. Theoret. Phys. (Kyoto) Suppl. , Extra
No. 400 (1965)."L. I. Schiff, addendum to Ref. 13, Stanford report No.
ITP-244 (unpublished)."I.P. Antoine, Nuovo Cimento 44, 1068 (1966).

"G. B. West, J. Math. Phys. 8, 942 (1967). The reader is
referred to this paper for a fuller discussion of the divergence
problem." In a recent paper LNuovo Cimento 47, 49 (1967)j, M. Ericson
has set up the problem using the conventional Coulomb-wave
approach.

f =f&v gf "'—gZ(—2~+1)~r(co») V(2)
L=o 0

Xfe""RP—jP(kr) ((e"2'——1)/2k'r )gr'dr, (7)
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Schiff's expression, only terms for which b~&0 occur.
This assures rapid convergence of the l sum. Further-
more, the integrals are in a highly convenient form for
numerical integration; in contrast to this it is to be
noted that Schiff's original result with a cutoff would
encounter problems with consistent convergence when
integrated numerically.

In treating the purely nuclear part of the potential,
we shall follow more closely the method of Schiff than
that of Hofstadter and Sternheim. We simulate the
strong interactions by some phenomenological potential
whose parameters are fixed by fitting the average cross
section o-~ to the data. The point is that an attempt to
calculate f~ from s-e amplitudes and cs-particle wave
functions only serves to complicate the analysis at this
stage and should be treated as an independent problem.
In choosing a form for U(r) we shall be strongly guided
by the results of previous calculations on ~-nuclear
scattering.

In Sec. II we present a Inodel from which we calculate
the nuclear and Coulomb contributions. Throughout,
our emphasis will be on the simplicity and tractability
of the model rather than the "best" or "most realistic. "
In Sec. III we apply our calculations to the 24-MeV
data of Nordberg and Kinsey. We conclude that, con-
trary to their claims, (at best) only a modest upper
limit for r can be given without greatly improving the
data. However, we are able to indicate an empirical
method by which the results could possibly be made
model-independent. This involves taking good data in
the tI&100' region rather than near the minimum,
0 80', where one expects the Coulomb contribution
to be maximized.

II. CALCULATION

One of the first successful optical-model potentials
used to describe x-nuclear scattering was that derived
by Kisslinger. '8 He used a simple impulse approximation
to obtain the following nonlocal potential:

UQ=Cskspf CgV (pVQ)—
=Cskspf CqVQ CqVp V—f —(10).

Here p(r) is the nuclear density function normalized to
unity at the origin and the Cs (A=O, 1) are complex
parameters related to the S- and P-wave x-n amplitudes.
The gradient term, which has its origins in the im-
portant P wave (A= 1) s.-e a-mplitude, has been shown

by Baker et al."to be indispensa, ble for fitting the data
for a whole series of light nuclei. With the recent re-
newed interest in ~-mesonic atoms, more sophisticated
calculations have been performed. In particular, Eric-
son and Ericson" have used the Watson formalism to
derive, again in terms of z-e scattering amplitudes, a

's L. S. Kisslinger, Phys. Rev. 98, 761 (1955)."R. M. Edelstein, W. I'. Baker, and J. Rainwater, Phys. Rev.
122, 252 (1961),and references quoted therein.

's M. Ericson and T. Ericson, Ann. Phys. (N. Y.) 36, 323 (1966).

rather complicated expression for U(r) H. owever, their
result does not differ in its essential characteristics
from that of Kisslinger. These characteristics are well
illustrated by the three terms in Eq. (10) and can be
summarized as follows:

(a) A repulsive interaction term corresponding to
the 5-wave (A=O) ~-I amplitude.

(b) An effective-mass term which is always attractive.
(c) A term sensitive to the nuclear surface effects

(these will be of particular importance in light nuclei).
We therefore take Eq. (10) as the basis for our nuclear

model and choose the simplest possible form for p(r);

p(r)=1 for r(b
=0 otherwise.

We shall treat the (complex) Cs and the (real) b as
phenomenological parameters.

The Schrodinger equation is

(1+C p)(V +k )P= (Co+C )k pP C~Vp ~ VP—. (12)

Baker et a/. have pointed out that the effective-mass
term (1+Czp) can introduce an unphysical singularity
into the potential and suggest replacing (1+C&p) ' by
(1—Cqp). We shall follow this procedure. Upon per-
forming a partial-wave separation, we obtain the usual
radial equation with an effective potential term

(1—Cgp)L(Ca+Cd)k'pRi —Cg p'Ri'7. (13)

lim
~0+

One easily obtains

1nRI,'(b+ e)/Rg'(b —e) =— dp
(1 C~p)cr dr- —

dr

C1Lp sC1p 7b-e ~

Taking limz 0+ followed by lim, 0+, we find that,

R((b+)/Rg'(b —)=e &&'—&»=A. (14)

(Note that for a regular optical potential Cr ——0, and
the above reduces to the usual continuity condition for
the first derivative. ) The solutions are now easy to

With our chosen form for p, the p' term behaves like
a surface b function, 8(r—b), and we now show that
the only effect that this introduces is to modify the
boundary condition for R&' at r=b. We first consider
p(r) to be parametrized by some X()0) such that for
any finite X, p(r, )) and its first r derivative are every-
where continuous. Furthermore, we demand that for
X ~ 0, p reduce to the step function, Eq. (11).We now
divide the radial Schrodinger equation throughout by
R~ and perform the operation



obtain. %'e have

r& b: R&(r) = cosh& j&(kr) —sing&n&(kr), (15)

TAsLE I. Differential scattering cross section d~/da for
2.+-u elastic scattering (c.m.).

where
r&b: R, (r)=a,j,(r),

rr2= k2L1 —(1—Ci) (Cp+Ci)$.

(16)

The constants B~ and the phase shifts 8~ can be obtained
by imposing the boundary conditions at r=b; e.g., one
finds

k j&'(kb) —y( j& (kb)
tan8i=

kni'(k b) —pin ) (kb)
where

8, (mb)
(deg) d0 L = -', (0+— )g

51.6 0.27+0.05 —0.26
61.8 0.38+0.06 +0.01(5)
76.9 0.44+0.05 +0.06
92.0 0.73+0.05 +0.20

107.0 1.04~0.08 +0.14(5}
121.8 1.53+0.15 +0.10
139.3 2.33+0.16 +0.29
150.9 2.48+0.12 —0.13 (5)

0.79&0.) 1
0.35~0.08
0.12m 0.05
0.33+0.12
0.75+0.10
1.33+0.13
1.75&0.27
2.75~0.22

= -'(o-++o=)
dQg

0.53~0.06
0.36~0.05
0.28m 0.04
0.53m 0.07
0.89~0.06
1.43m 0.10
2.04~0.16
2.61~0.13

F-(C') =3i i(zb)lab (18)

This is the Fourier transform of Eq. (11) and so in
some sense we are treating the n particle consistently.
However, in choosing this form for Ii we were again
guided more by tractability, for in this case one can
give a comparatively simple analytic form for V(r):

3 r 3a 3e ' (1+ah) sinh(ar)
V(r) =——— + , r&b

2b 2b' (ab)' (ab)' r

38
1———

Jab cosh(ab) —sinh(ab)), r) b. (19)
r (ab)'

Note that it is not necessary to assume that the b used
here be the same b as was used in describing the optical-
model radius.

III. NUMERICAL CALCULATIONS AND RESULTS

~i=~~Lji'(~b)/ji(~b) j
In order to calculate the Coulomb contribution, we

require an explicit form for V(r) which in turn requires
explicit forms for Ii and Ii . It turns out to be con-
venient to take the form of Eq. (1) for F,2' which
readily allows us to compare our results with other
estimates, and to choose for F

s -o (exp) (g ) o. (theor) (g.)-2
g2 2

a~{exp) (g.)
(20)

was minimized to find the "best" fit to the experimental
data. The parameters were varied in steps of not less
than 0.05 over a large region: b from 1.5 to 2.8; ReC~
from —0.5 to —1.5; ImCi from —0.5 to +0.1. ; ReCs
from 0.1 to 0.8; ImCs from —0.8 to +0.1.

There were several sets of parameters which seemed
to fit the data extremely well (5 5%). The distinction
among them seemed to depend only upon how closely
they came to fitting the eighth (151.9') point. In
Table II, we have listed three such representative sets
(1 —+3). For comparison, we have included one set,
nuinbered 4, which has 5 10%.This is representative
of sets which fit the 100'—140' region equally as well as
the first sets but have greater difficulties with the

better statistics would have been invaluable. Nordberg
and Kinsey claim r„=1.8%0.8 F. However, they make
essentially no remarks concerning how these numbers
were obtained, so it will be difficult to make a detailed
comparison of their results with ours.

We have evaluated cr~ for a large number of sets of
the five parameters Cp, Ci, and b. The mean-square
deviation defined by

In this section we present the results of our analysis
of the recent 24-MeV experiment performed by Nord-
berg and Kinsey.

The data are shown in Table I. The errors quoted
in columns 2 and 4 (5~, say) are those of the experi-
menters. We have estimated corresponding errors in o-N

and 60. by taking the optimistic viewpoint that the S's
represent standard deviations resulting from indepen-
dent observations. In that case the errors in o-~ and
Aa are each

2 (g 2++ 2)1/2

Unfortunately, data were taken at only eight different
angles. As we shall see shortly, further data with a little

3,0)

2.5—

2.0-
I

b

+
+ l5-
b

I l0-
z'.

b

0.5—

Pure Nuclear
24 MeV w-a
Scattering

20 40 60 80 IOO l20 l40
8 c.m. (degrees)

l60 l 30

O'For reasons of clarity we replace es, of Eq. (1) by a variable
parameter a. The corresponding root-mean-square radius for the
pion is r = (g6)/a. For m,~750 MeV, one Gnds that r ~0.6 F.

FIG. 1. Sensitivity of the theoretical Ao. to the nuclear-model
parameters for a Axed pion radius r of 1.25 F. Note that the
differences in the region 100' are actually exaggerated in this

figure.
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TA'BLE II. Four sets of parameters which give good 6ts to the data. The division of each of the four columns indicates Re and Im part
of the parameters listed on the far left. The number of decimal points retained in the 6~ is not supposed to be significant.

Radius b (F)
Ci
Cp
5o (rad)

Mean-sq. dev.
~(%)

2.08—0.90
0.50—0.0747
0.0609
0.0045
5.1

—0.25—0.55
0.0442
0.0207
0.0013

2.05—0,90
0.60—0.0766
0.0589
0.0043
5.3

—0.30—0.55
0.0416
0.0229
0.0014

2.10—0.90
0.50—0.0769
0.0622
0.0047
6.0

—0.25—0.50
0.0404
0.0207
0.0013

2.10—0.80
0.60—0.0856
0.0542
0.0042

11.0

—0.25—0.40
0.0390
0.0217
0.0014

0.3
Coulomb Interference
Contribution To

0.2- 24 MeV
Scattering

Ql-E
I

b
I

0

I
ab

—(Pure
Born

Coulomb
res I.O)

W(r„si.o)
(r =l.6)7r
(r~4.9)

ll

-0.3-
0

l I " I I l I I 1

-20 40 60 80 IOO I20 I40 I60

ec.m. (degrees)

FIG. 2. Variation of the 6rst-order Coulomb contribution with
the pion radius r (expressed in fermis). The "best" 6t set of
nuclear parameters from Fig. 1 were used (set 1 oi Table II).

"Note that near the diB'raction dip (~50') the strong and
Coulomb amplitudes are comparable. However, the analysis in
terms of Ao and o ~ I Eqs. (4) and (5)) still goes through since it
is f~ which becomes small there, rather than P, which becomes
anomalously large; in other words corrections are still of order

(i.e., &1')."H. Frank, D. Haas, and H. Prange, Phys. Letters 19, 391
(1965).

eighth point and were not quite so good in the region
near the minimum. These results are suminarized in
Fig. 1.22

Using several such sets of parameters, we have calcu-
lated the Coulomb interference term Acr. The charge
radius of the u was always taken to be that derived from
the optical-model fits. These values of b ( 2.08 F) are
in remarkably good agreement with those derived from
electron-scattering experiments. '3 Figure 2 shows a plot
of our calculated 60- for various values of the pion
radius: The nuclear parameters used were those which
gave the best fit to o.~ (set I). For comparison one plot
is shown in which Ao was calculated using f,&~& only.
The plots make it abundantly clear that we can derive
very little definitive information about r from this
particular experiment. The most one could possibly
claim is that a&1.5 F—'. This would imply r & 1.5 F.

The following observations concerning Fig. 2 are
worth noting:

(i) Effects due to nuclear distortions on the Coulomb
scattering are large. Unfortunately, because of the poor

statistics in the seventh and eighth points, it is not
possible to conclude that the Born term is definitely
insufIicient. In fact, the Born term probably 6ts the
data better than our theory. We would like to argue
that the seventh point is anomalous and suggest that
it be ignored. The large effect of the nuclear-distortion
terms can be understood when it is realized that they
introduce imaginary contributions into 5, which are
enhanced by interference with the large imaginary part
of f~ The pu. re Born Coulomb term f,&~& is real and
can therefore interfere only with the smaller real
palt of fN

(ii) Even if statistics are greatly improved, it is still
doubtful that at this energy the experiment can give a
definitive result. The sensitivity of 60. to r in the
region of p dominance (r 0.6 F) is clearly extremely
poor.

(iii) What sensitivity there is seems to occur near
the region of the minimum md cortices through all
backward-scattering angles.

It is this last observation that leads us to the only
encouraging aspect of this analysis. The curves in Fig. 2
were obtained using the one best-fit set of parameters.
Now observe Fig. 3. The plots here were obtained

0.3—

0.2-

O.l-

b
I

+ 0
b

~lb'
I
b -0 I-

-0.2-

20 40 60 80 IOO l20 l40 l60 180

8 c.m (degrees)

FIG. 3. Representative sample of some of the best Gts to the
purely nuclear contribution. The points are from the experimental
work of Nordberg and Kinsey (Ref. 12). For key to numbering
of curves, see Table II.

'4%e choose this value of r, rather than a more realistic one,
because for this value there will still be some sensit;ivity to changes
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keeping u constant (r 1.25 F)~4 and varying the
nuclear parameters. Several sets were used, and it was
found that all those with S 5% fell between curves 1
and 2, while those with S 10% lay on a curve such
as 4. The important point to note is that beyond 95'
it is almost impossible to discriminate among any of
these curves (the differences are actually slightly ex-
aggerated in the diagram). In other words, in the back-
ward-scattering angles where 60- is most sensitive to r
it is apparently least sensitive to the variations in the
nuclear model. This strongly suggests that, in order to
obtain the most reliable and least model-dependent
results, the experiment should be performed with the
emphasis on getting good statistics at several points in
the region 90'—180'. Repeating the calculations and
obtaining similar conclusions using different shapes for
both the nucleus and the pion would certainly lend
weight to this reconnnendation. In the energy range
considered (&100 MeV), the results are unlikely to be
sensitive to the shape of the form factors. However, it is
difficult to argue in an entirely convincing fashion con-
cerning the sensitivity of the conclusions to the nuclear
shape. The model dependence enters into the calculation
only via the quantity EP in the region r&b Lsee Eq.
(7)$; for r) b, Rg is essentially model-independent and
is given by Eq. (15). Presumably, if one could show
that for our particular model the major contribution to
the Coulomb integral came from outside the nucleus

(r)b), one could then extrapolate the result to all
reasonable models. Unfortunately, such a numerical
calculation shows that contributions to the integral
come about equally from inside and outside the nucleus
and an extrapolation is not possible. However, it is to
be strongly emphasized that the analysis is a self-
consistent one (all of the phenomenological parameters
are determined from the experimental data), and it
would indeed be unreasonable for the Coulomb effects
to be appreciably changed by introducing a change in
the nuclear shape.

We conclude this paper with a brief discussion of
some of the problems introduced by going to higher
energies'5 where one might expect the sensitivity to F
to be greatest:

(i) Suppose that we neglect the nuclear-distortion
eHects; we can then write

d,o. ~ P (1—q'/a') '.

25 Such experiments are already underway: M. Block (private
communication) at Argonne and K. Crowe (private communica-
tion) at Berkeley. Our investigation of Crowe's preliminary data
has not yet proved very encouraging. Results of these analyses
will be presented at a later time wben the data have been more
thoroughly analyzed,

Hence
d(Ao)/Aa (2q'/a2)da/e.

At 24 MeV, q'/a~ 0.06, which means that even a large
change in a produces only a comparatively small change
in 60-. This, of course, is well illustrated by Fig. 2. The
situation can presumably be improved by going to
much higher q'. In fact, at 100 MeV, q'/a' can reach
0.5 near the position of the minimum. Unfortunately,
however, 60 0- 1/q', and so, even though the sensitivity
to a has increased by an order of magnitude, the
absolute value of Ao- may be too small to obtain reliable
measurements. The only hope then is that the nuclear-
distortion contributions do not decrease quite so dras-
tically with q'.

An analysis then should be undertaken to determine
the optimum energy at which the sensitivity is still high
and the interference term still measurable.

(ii) At higher energies inelastic processes assume far
greater importance and, as a check on the fits, the total
inelastic cross section should be accurately measured.
Our phase shifts Bg give a total inelastic cross section
of 70 mb. This is to be compared with the 13 mb
estimated by Nordberg and K.insey; they point out,
however, that this number is probably a gross under-
estimation of the correct estimate.

(iii) At energies approaching 100 MeV, even if one
still believes that a phenomenological potential can be
used, one must begin to have serious doubts about the
use of the purely nonrelativistic Schrodinger equation.
To modify our previous approach without using mani-
festly covariant quantum mechanics is not straight-
forward and one runs into matters of principle. The
problem is basically one of how we treat the two po-
tentials U and V when we try to incorporate them into
the Klein-Gordon equation. Are they to be considered
as scalars or as the fourth component of a 4-vector, for
instanceP Depending upon how one proceeds, one can
obtain somewhat diferent expressions for the Coulomb
contribution and this will clearly a6ect one s interpre-
tation of the Ii contribution. "
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"In Ref. 17, M. Ericson mentions a remark of S. M. Berman's
to the effect that the potential approach ignores whole classes
of diagrams which conceivably could contribute to the Coulomb
contribution. Presumably, one expects these contributions to be
larger at higher energies.


