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plays the same role as Regge poles in determining the
asymptotic behavior of the scattering amplitudes. Thus,
if E(u, r) has the form r/(7 T—p 0—), 0(re(1, then in
the asymptotic limit s- —+~, u'=0, the amplitude is
deminated by the Regge-pole contribution

~X 2X—TP gX TP

If the scattering particles (sxlermat Hoes) have different
mass, then this is modi6ed. Thus, if m~ ——m2'=m and

m~'=m2 ——p, then the erst factor becomes

[~s (m2 +2)s/2~@]2' rp—
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Arguments for the existence of angular-momentum branch points based on the necessity for the Gribov-
Pomeranchuk singularities to be fixed poles rather than essential singularities are reviewed. Sum rules for
scattering amplitudes on the second sheet are then deduced. Reasons are given for expecting two kinds of
branch points to be present, namely, those described as "Regge pole plus Regge pole" and "Regge pole plus
elementary particle" (called types 1 and 2, respectively). It is argued that the latter must be concealed by the
former in the scattering region, and from the requirement that the branch points are suitably positioned in
general, an inequality on derivatives of Regge-pole trajectories is derived. A model of the Amati —Fubini-
Stanghellini type is examined to indicate why type-2 branch points may be expected to occur in a theory
without elementary particles.

1. I]%TRODUCTIOH

EVERAL features of branch points in the angular-
momentum plane for two-body scattering ampli-

tudes are discussed in this paper. Recently, there has
been signi6cant progress' in understanding the way in
which moving branch points eliminate the once-
suspected need for essential singularities' at wrong-

signature nonsense points and allow fixed poles to be
present instead. We shall assume this mechanism to be
generally valid and utilize it to make several deductions
about the branch points. We emphasize the theme that
while the branch points are extremely dificult to discuss
in terms of Feynman diagrams, there is a great deal that
can be learned about them from a liberal application of
unitarity without getting involved with overwhelming
complexities. Although not yet at the point of being
able to present reliable formulas for their contributions
to asymptotic behavior, we believe that there are
grounds for optimism in this regard.

In Sec. 2 we review the arguments for the existence of
angular-momentum branch points and the inferences
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Air Research and Development Command under Contract No.
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that are drawn for the behavior of partial-wave ampli-
tudes at wrong-signature nonsense points. Also, a sum
rule for amplitudes on the second sheet of the elastic
cut is deduced. In Sec. 3 we explain why two essentially
diferent types of branch points are required, and in-
dicate some interesting features of their sheet structure.
In order to satisfy a requirement on the positioning of
the two types of branch points in general, we conjecture
an inequality involving derivatives that should be
satisfied by any Regge-pole trajectory function. The
structure of the branch points is explored. further and
illustrated in a simple model in Sec. 4. The model con-
sists of an integral of the AFS type, ' and while its
relevance4 may be questioned, it nevertheless offers an
instructive example. Section 5 contains some comments
about possible generalizations 'and applications and
summarizes the conclusions.

2. NEED FOR BRANCH POINTS AND
RESULTING SUM RULES

The existence of moving branch points in angular mo-
mentum can be most easily demonstrated by arguments
given originally by Mandelstam. ' Simply stated, the

'D. Amati, S. Fubini, and A. Stanghellini, Phys. Letters 1, 29
(1962), hereafter AFS; Nuovo Cimento 26, 896 (1962).

4 S. Mandelstam, Nuovo Cimento 30, TT27 (1963);H. J.Rothe,
Phys. Rev. 159, 1471 (1967). Most of the conclusions of Sec. 4
are also reached in Rothe's paper.' S. Mandelstam, Nuovo Cimento 30, 1148 (1963).
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idea is that in the absence of moving branch points, the
arguments of Gribov and Pomeranchuk for essential
singularities at wrong-signature nonsense points would
be valid, since they depend only on analytically con-
tinued elastic unitarity and noncontroversial aspects of
the Mandelstam representation. Such a picture is un-

satisfactory, however, because it cannot be reconciled
with the Froissart limit' (which is a consequence of
unitarity and very weak analyticity assumptions) when
there is sufhcient helicity for nonsense points to occur
above J= i. Mandelstarn showed for a certain class of
diagrams having third double-spectral functions that
there is a znoving branch point and that the Gribov-
Pomeranchuk singularity does not contribute to the
asymptotic behavior.

The mechanism by which moving branch points
enable the Gribov-Pomeranchuk singularities not to
appear in asymptotic behavior has been clarified re-
cently. ' The critical step in the reasoning of Gribov
and Pomeranchuk that fails is their claim that the
existence of a pole in the left-hand-cut discontinuity of
the analytically continued partial-wave amplitude
generates an essential singularity (consisting of an ac-
cumulation of moving Regge poles) as a consequence of
unitarity. They did not consider the possibility that the
region in which elastic unitarity holds shrinks to a point
as J' is decreased to the nonsense point in question. In
other words, the existence of a moving cut, with tra-
jectory given by J=a,(t), and having the property that
n (ip) =J~, where ip is the normal threshold and J~ is
the nonsense point, can make it possible for a 6xed pole
in J, located at J=J~, to be consistent with the
analytically continued elastic-unitarity equation

b+(J)1)—b+(J) izz) = 2ip(J, t)b+(J, t)b+(J, tzz) . (1)

The branch points studied by Mandelstam possess the
necessary properties for this to be the case. What
happens is that b+(J, t) has the fzxed pole while b+(J, tzz),
the amplitude contained to the corresponding point on
the second sheet of the elastic-unitarity cut, takes a
determined 6nite value at J=J~. It is consistent for
b(J, tzz) not to be an analytic continuation of b(J,t) at
J=J~ if the cut through which one continues to reach
the second sheet shrinks to a point as J approaches J~.
Furthermore, since 6xed poles at wrong-signature non-
sense points are easily shown not to contribute to
asymptotic behavior, only the contributions of the
moving poles and cuts reznain. In fact there does not
appear to be any obstacle, in principle, to deforming
the background-integral contour in the Mandelstam-
Somrnerfeld-Watson representation~ arbitrarily far into
the left half-plane.

While the above reasoning rigorously establishes the
existence of Axed poles and the nonexistence of essential

' M. Froissart, Phys. Rev. 123, 1053 (1961); Y. Hara, Phys.
Rev. 136, 3507 (1964).

r S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962).

singularities as a consequence of branch points only for
wrong-signature nonsense points above the Froissart
limit, there seems to be little question of its general
validity. Therefore, we assume the presence of branch
points passing through nonsense points at energies cor-
responding to normal thresholds and the absence of
essential singularities.

In a recent paper' we have explored the possibility
that the fixed poles may have weak residues, citing as
evidence the experimental observation of dips in certain
di6erential cross sections, thereby obtaining sum rules
of the form

40

ImT(s, t)d$=0. (2)

Equation (2) resembles the usual superconvergence
formulas, ' but it pertains to those cases having the
wrong crossing symmetry to give a superconvergence
formula. It is interesting to observe that (2) can be re-
expressed in an exact version. The key observation is
that the second-sheet function b+(J, tzz) does not contain
the fixed pole at the nonsense point, as indicated above.
Therefore, by setting equal to zero the residue of the
apparent fixed pole given by the Froissart-Gribov
formula, one obtains

ImT($)zzz)4$= 0) (3)

where

ImT(s, tzz) = ImT(s, t) —2i p, p'(s, t) .

p„"(s,t) is the elastic part (with respect to t) of the
double-spectral function, analytically continued in t.
Equation (3) should be valid whenever the integral
converges. If the moving branch point is the leading
singularity controlling the asymptotic behavior of
ImT(s, tzz), the integral would converge for t below
threshold. However, we should point out in this con-
nection that in all probability a moving pole (Regge
pole) on the second-sheet asymptotes to the nonsense
point at in6nite t.' It remains to be clari6ed what
bearing, if any, this pole will have on the convergence
of (3)."

3. TWO TYPES OF BRANCH POINTS

Let us consider the elastic scattering of particles 2
and 8, having masses m~ and m~, spins J~ and J~,
and lying on Regge trajectories az(t) and cr&(t), respec-
tively. An analytically continued partial-wave ampli-
tude for this scattering contains a moving branch point

s J. Schwarz, Phys. Rev. 159, 1269 (1967).
9V. de Alfaro, S. Fubini, G. Rossetti, and G. Furlan, Phys.

Letters 21, 576 (1966).
I am grateful to V. Teplitz for bringing this point to my

attention.' It may be worth noting that by saturating with resonances
alone one does not discern any difference between (2) and (3),
because the pole contributions to the two of them are the same.
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due to exchange of the two Regge poles 3 and 8, in
particular. To give formulas for its location, it is helpful
to express the trajectories as functions of x= t'I' (even
functions for boson trajectories) and to define nAB(x, y)
by

~AB(x,y) =(rA(x —y)+~a(y) —1

and y= f(x) as a solution of the equation
—

g
&A"e'(x)

I

8—nAB(x,y) =0.
Bp

Then the branch-point trajectory is given by

nAB(&) (x) =nAB(x, f(x)) . (6)

The function nAB(') (x) is symmetrical in A and B.
In the case that A and 8 are the same trajectory, a

solution of (5) is y = ~~ x, so that

nAA(') (x) = 2nA(x/2) —1. (7)

Thus at the AA threshold the branch point has the
property stipulated in Sec. 2 to be the crucial one. How-
ever, this desirable circumstance no longer holds at a
threshold corresponding to two different particles. One
can readily verify that the condition nAB~')(mA+ma)
= JA+ Ja—1 implies (&.A'(mA) =aa'(ma) The l.atter con-
dition surely fails in general for many reasons. In
particular, if it were interpreted to imply that tra-
jectories are linear in energy, it would require the mass
of the first recurrence of the 6(1236) to equal the aver-
age of the masses of the A(1236) and its second recur-
rence, which is not the case. It follows, in view of the
considerations of Sec. 2, that additional branch points
are required.

In his paper on branch points, Mandelstam studied
diagrams involving exchange of a ladder (Regge pole)
and an elementary particle. The positions of the branch
points determined in this way are

aAB
('& (x)=nA(x —ma)+ Ja—1 = (rAB(x,~a), (Sa)

n» "&(x)=JA+na(x —mA) —1=nAB(x,x—mA). (Sb)

These functions do have the desired property

(&(AB (&r&A+tr&B) +BA (~A+'&r&B) JA+ JB 1 ~ (9)

This suggests that such branch points should, in fact, be
present. In Sec. 4 we will indicate the way in which the
type-2 branch points are to be understood in a theory
without elementary particles. For the time being, let
us just accept that such branch points are present, and
that this has nothing to do with the question of whether
or not there are elementary particles among the hadrons.

Attempting to seek maximum simplicity, one might
at this point suspect that the type-2 branch points alone
are sufhcient to give a consistent theory. This is wrong,
however, for the simple reason that in cases with enough
spin the type-2 branch points can rise above the Froissart
limit. For example, combining two identical boson trajec-

x=Vt

I'xo. 1. A typical branch-point configuration. Nonsingular
portions are shown as dashed lines.

dnAB ')(x) (BnAB(x,y) BnAB(x,y)+ f'(x)
I

dx k ax &y f'„=,(.)
~~AB(x y)/~x I u f( )~A'(x —=f(x'))

(11a)

do(AB('&(x)/dx= nA'(x ma) . — (11b)

These two slopes agree for f(x) =ma, which is precisely
the condition for nAB "&(x) to equal nAB(2)(x). Therefore,
the branch point trajectories are tangent (assuming
they meet at all) —a very typical behavior when one
singularity moves behind another one. In order to
respect the Froissart limit in general, we conclude that
on the "6rst" sheet there is no singularity at the posi-
tion described by the type-2 trajectory for x to the left
of the tangency. The nonsingular portions of the tra-
jectories are shown as dashed lines in Fig. 1. This

tories we 6nd nAA(0) = 2JA —1, which exceeds the I'rois-
sart limit for J~&1.The most natural way to overcome
this difficulty is for the type-2 branch point to move be-
hind another one as x is decreased, and for this other
one to remain below the Froissart limit. Apparently,
this role is played by the type-1 branch points. Notice
that they respect the Froissart limit, assuming the
Regge poles do, since

nAB(')(0) =nA(0)+na(0) —1, (10)

at least for two boson poles. This formula may fail for
fermion poles, because they can contain terms linear
in x.

Let us next show that the type-1 and type-2 branch
points have a point of tangency. (A typical configura-
tion is shown in Fig. 1.) We accomplish the proof by
showing that when nAB(')(x) and aAB(')(x) meet, they
also have the same slope. Therefore we compute the
derivatives using Eqs. (4)—(6), (Sa) and obtain
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very nearly along a straight line in t and hence the
nucleon trajectory satisfies (13).Each time t is increased
past a new inelastic threshold, , the resonance region
corresponds to a new sheet, the sheet immediately adja-
cent to the physical region. Therefore, strictly speaking,
each recurrence of the nucleon belongs to a digerer2t
Regge pole. Only to the extent that the inelastic thresh-
olds are weak singularities is it meaningful to speak of
one nucleon Regge pole. It is even conceivable that the
"trajectory" obtained by connecting up all the nucleon
recurrences extends to infinity while any single Regge
pole asymptotes to a finite point. The condition (13)
should apply to each Regge pole separately and not
necessarily to a curve joining the resonances.

analysis indicates that the type-1 branch points control
asymptotic behavior for physical momentum transfer
(besides the poles, of course), while the type-2 branch
points play the crucial role described by Eq. (9).

The type of behavior discussed above for two-pole
branch points can be generalized to n-pole branch
points. In this case the "one Regge n —1 elementary"
branch point goes through the e-body normal threshold
at a nonsense point and is subsequently covered up by
the "two Regge n —2 elementary" branch point at a
point of tangency. Such tangencies are repeated until
Anally the "n Regge" branch point is leading. It appears
that the necessity for such behavior as a consequence of
unitarity could only be understood by studying e-body
scattering.

Returning to the study of two-particle channels,
notice that as drawn in Fig. 1 only one of the two type-2
branch points is singular when passing through the
normal threshold. This is because one of them has its
tangency with the type-1 branch point to the right of
the normal threshold and the other to the left. Clearly,
if both tangencies were to the right of the threshold, we
would be in trouble. Requiring that this should. never
happen leads us to a weak, but not entirely trivial,
restriction on the shape of Regge-pole trajectories. The
positions of the two tangencies, x& and x2, are given by

ii,A'(222A) =nB'(Xi —222A) (12a)

4. SINGULARITY STRUCTURE IN
A SIMPLE MODEL

As stated in Sec. 3, a consistent theory without
elementary particles should contain the type-2 branch
points, which are ordinarily described as arising from
exchange of a Regge pole and an elementary particle.
In the following we attempt to show in terms of a simple
model the way in which their occurrence can be
understood.

Before getting into the details of the model, a few
words of apology are required. The formulas to be con-
sidered are elastic-unitarity integrals, i.e., formulas of
the type studied by Amati, Fubini, and Stanghellini.
It is well known4 that any diagram that contributes to
the two-particle discontinuity cannot contain third
double-spectral functions in a suitable fashion to gener-
ate angular-moxnentum branch points. Therefore, the
resulting singularities are known to be canceled, while
the "true" singularities arise only from more com-
plicated diagrams. On the other hand, our experience
indicates that the more complicated diagrams always
end up giving back essentially the same singularities.
Therefore, perhaps there is some justification for count-
ing in a diferent fashion. Namely, if we are interested
in the behavior of T(s, t) at large s we can regard it as
consisting of a sum of contributions g T„(s,t), where
T„(s,t) arises from dispersing the elementary dis-
continuity across an e-particle cut. From this point of
view there would seem to be reason to study T2(s, t),
especially since it is by far the simplest term. This sug-
gestion only applies to investigations of singularity
structure and not to quantitative matters. We shall
find, in fact, that even the singularities obtained in this
way have some unsatisfactory features.

We now consider

(12b)irB (rriB) irA (X2 222B) ~

In the case that A and 8 are stable particles, the condi-
tion n A( )&~x0 for every Regge pole below threshold is
sufEcient to guarantee that x~ and x2 lie on opposite
sides of 222A+222B. This condition, restated in terms of t,
becomes

a'(t)+2'" (t) &0 for 0& t & to. (13)

Notice that assuming a once-subtracted dispersion
relation

siis sr(s i) ff(s i', S")sio, —
where

f(s, t', t")= T(s,t') T(s», t") .
In the formulas of this section we neglect all but leading

and Imn(t) &~0 on the:right-hand. cut is suKcient to
ensure that (13)holds for boson trajectories. For fermion
trajectories one has to work in the x plane. The cor-
responding assumptions in that case also yield (13)
without any difficulty, however. There must also be a
restriction on the trajectory functions along the rest
of the curve in the t plane on which i2(t) is real, in order
to include the case of unstable particles. The condition
is awkward to state in an exact form, but when Imn(t)
is small, we would expect (13) to hold for Ren(t), along
the real t axis.

In the sense just described, the known trajectories
are apparently consistent with (13).A word of caution
should be given in this regard, however: It is not en
tirely correct to say that the nucleon recurrences ]je
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asymptotic powers of s, and we also drop unimportant
constant factors. Thus we may rewrite (15) in the form

0 t+t'+2 (tt') ~

discT(s, t) — dt'
t+t'-2 (tt') ~

sI I
dt" f(, , )

16
La(t, t', f') j'/'

aB(t")

where

Z(~, ~7,&77) =ts+&72+~772—2(urgu77PA77). (17)

Next, we make the charge of variables

Z'=-', &(&+f)2 and /,
"= ', t(q l-)2, —

so that (16) becomes

j(s,t,',t")
s —mg x —58+

(20)

where we have used x's for square-root variables as in
Sec. 3, i.e., x'= t and

x'=-', x(r/+ f') and x"=—2'x(7/ —l ) . (21)

The familiar 1//sin1rrr factors have been replaced by
simple poles and signature has been neglected in (20).
These simplifications are permissible for present pur-
poses. Thus we now have

disc T(s,t)
(~2 1)1/2 (1 f 2) 1/2

(1/2 f 2)gaA(a')+ar7(a' )—1

(22)(x'- mg) (x"—rig)

The contribution to the partial-wave amplitude can be
obtained. by substituting (22) into the Froissart-
Gribov formula. In the approximation of keeping only
leading asymptotic behaviors, one 6nds

bs(J, t)
(~2 1)1/2 (1 l.2) 1/2

1
X

n~(x')+re(x") —1—J x' —mg x"—mn
~ (23)

t "
dr/ ' df

disc T(s,z)-—
$ (7/2 1)1 2 (1 f 2)1 2

X (r/' —VV(s7/!', $") . (19)

As part of our asymptotic approximations we have set
the upper limit of the p integration to inanity. The
change of variables in (18) is singular for t=0, but is
otherwise all right. For this reason, the /, in front of the
integral in (19) does not imply a vanishing of the func-
tion at t=0.

For the integrand of (19) we substitute Regge asymp-
totic behavior. A suitably descriptive diagram is
given in Fig. 2. Let us take

eg (x') 0.~ (x")

Fzo. 2. Diagrammatic description of the integral in Eq. (22).

The subscript 2 indicates that we have only considered
two-particle intermediate states in the s channeL The
remaining project is to study the analytic structure of
b2(J, t), given by (23) .

As a Grst observation, we point out that for physical x
(imaginary), the poles of the integrand of (23) at x' = 112&

and x"=m~ are well separated from the integration
contour and therefore cannot participate in a singularity-
producing pinch. On the other hand, it is easy to show
that the factor fn~(x')+nn(x") —1—Jj ' pinches with
the contour to produce a singularity when J=nzz/ "&(x),
with (r~n("(x) as defined in (4)-(6).Let us next consider
continuing x to positive values so that additional
pinches can occur. One finds a pinch involving Ln~(x')
+an(x")—1—Jg ' and (x'—2/sg) ' for J=rr/7~(2&(x),
and analogously (x"—2/sn) ' participates in a pinch for
J=rrgn(2'(x). There is also a pinch involving all three
poles for J=J~+Jz/ —1, and another one involving
(x'—212g) ' and (x"—rl/7) ' for x=212~+mn. We there-
fore see that there are a number of possible singularities,
but none really too surprising. The point we wish to
emphasize most is the occurrence of the type-2 branch
points in the positive x region and their nonoccurrence
in the physical-scattering region. This is precisely the
behavior deduced in Sec. 3. Despite the previously dis-
cussed deiciencies of the model, this feature is believed
to be quite general.

In the present model one can work out the type of
singularities that arise as well as determine their loca-
tion and sheet structure. The type-1 branch points are
found to be of the kind ln(J —n~n("(x))7 while t'he
type-2 branch points behave as PJ—n~n"&(x)g "'.
Both of these behaviors are wrong for the complete
partial-wave amplitude because they violate the condi-
tion, deduced by Bronzan and Jones, "that the branch
points cannot be inGnite singularities. A simplified
version of their argument runs as follows. Since the
branch-point trajectories do not contain the normal
threshold at t= (2/2&+2/217) 2, they occur at the same posi-
tion in b(J, t) and b(J,zzz), the amplitudes on the first
and second sheets of the elastic cut, respectively. Con-
sequently, it is evident that an infinite singularity can-
not be reconciled with the elastic unitarity equation,

'2 J. B. Bronzan and C. E. Jones, Phys. Rev. 160, 1494 (1967).
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Eq. (1).It may be a. reasonable guess for the singularities
of the complete amplitude that they are one power less
singular than found in this model, i.e., [J—tr»'"(t)j
Xln[J—rr»&" (t)) and [J—n» "&(t)$'", respectively.

5. CO5'CLUSIO5S

It has been shown that there are two essentially dif-
ferent types of angular-momentum branch points,
which can be expected to occur. The reasoning that led
to the necessity for their existence and certain details
of their sheet structure involved three applications of
unitarity. First, we required that there be fixed poles
rather than essential singularities so as not to violate
the Froissart bound. Second, 6xed poles couM only be
reconciled with analytically continued elastic unitarity
by requiring that branch points having the property
of Eq. (9) be present. Third, the branch points satisfying
(9) ca,n rise above the Froissart limit, and therefore
additional branch points were required to conceal them.

Branch points having the required positioning and
sheet structure were shown to be contained in integrals
of the AFS type. We argued that although such integrals
are in a certain sense not relevant, they nevertheless
serve as a useful guide in showing that the postulated
mechanism is plausible. If an analysis of this kind is to
be extended to multiparticle unitarity integrals, it will

be necessary to have suitable asymptotic expressions
for the production amplitudes" that enter into the
integrals.

~' Some progress in understanding production amplitudes has
been made by V. N. Gribov, I. Ya. Pomeranchuk, and K. A.
Ter-Martiroysan, Phys. Rev. 139, 3184 (1965); A. A. Anselm,
Ya. I. Azimov, G. S. Danilov, I. T. Dyatlov, and V. ¹ Gribov,
Ann. Phys. (N.Y.), 37, 227 (1966).

The optimism expressed in the Introduction regard-
ing the possibility of obtaining expressions for asymp-
totic behavior arising from branch points is based on
the following considerations. The cut discontinuities
may be dominated by the wrong-signature nonsense
poles, whose residues can in turn be determined by
saturating integrals of the form

ImT(s, t) tts

with resonances, as one often does in the case of super-
convergence. Another possibility is to use Eq. (3) in
conjunction with some theoretical knowledge of the
double spectral function. The complications that would
arise in carrying out such a program are numerous,
however. First, in order to study a branch point not as-
sociated with the Regge poles of the external particles,
a many-channel treatment is required. Second, it is
difhcult to introduce the Pomeranchuk trajectory into
such a calculation because of the uncertainty about
which particles, if any, lie on it. Third, other singularities
than the fixed pole may give appreciable contributions
to the cut discontinuities.
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