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ment. This relation is an angle- and energy-independent
statement. In the case of ™*production we obtained
a result, not in agreement with experiment, such as
that derived from SU(6)sr. There are many more
results which we have not been able to analyze because
of a lack of experimental information.

If group theory is to compete in any serious way
with dispersion or Geld theories then one must be able
to make comments on the momentum dependence of
form factors (or in our language, matrix elements).
In our approach, this is equivalent to the statement
that the invariance group must include the Poincare
group, and the noninvariant generators (belonging to
a suitable NIG) must mix states of the different repre-
sentations of the invariance group (hence, different
momenta). If we identify the noninvariant generators

as, say, the isovector current, then the analytic ex-
pressions of the matrix elements of this operator will

be our isovector form factors, and their momentum
dependence will be known. Even though the problem
can be formulated so easily, the task of solving it is a
diKcult one.
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Current commutation relations and Fubini sum rules are saturated in a model that is a relativistic version
of the three-dimensional harmonic oscillator. The model is essentially determined by the requirement that a
local nonderivative relativistic coupling of the oscillator to an external electromagnetic Geld give rise to
form factors that reduce to the usual result in the nonrelativistic limit. The relativistic form factors decrease
as a power of the invariant momentum transfer, although they fall o8 exponentially in the limit c -+ ~.
Vertex functions and scattering amplitudes are investigated, and it is found that (i) the Compton scattering
amplitudes for current-particle interactions satisfy Fubini sum rules. (ii) All strong-interaction amplitudes
are superconvergent in the Born approximation, in which an infinite/equal-mass multiplet is either ex-
changed or forms a set of intermediary states. (iii) Scattering amplitudes can be arranged in a hierarchy of
increasing convergence (e.g., no spin flip, single spin flip, double spin flip), as suggested by de Alfaro et al
Finally, the problem of introducing the mass spectrum in the one-particle propagator is discussed.

X. I5'TRODUCTION

ECENT work on current algebras and super-
convergence relations has been directed towards

the construction of more or less realistic models, in
which the attempt is made to saturate these relations
with a number of idealized states. ' In a nonrelativistic
framework this is certainly possible; the success of the
bootstrap in the static model may be cited as an example
of saturation of a superconvergence relation with a
small number of single-particle states. On the other
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t Present address: International Centre for Theoretical Physics,
Trieste, Italy.' V. de Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Institute
di Fisica Dell Universita, Torino Report, December, 1966
(unpublished).

hand, it has been discovered that saturation of super-
convergence relations in a relativistic theory requires an
ininite number of states. ' As has been emphasized
repeatedly, the technical complications that arise from
an infinite number of single-particle states are com-
pensated by unexpected dividends. In fact, it has been
shown that what is originally introduced as a discrete
set of one-particle states sometimes turn out to repre-
sent a continuum of two-particle states, in addition to
a number (finite or infinite) of physical one-particle
states. 2

The three-dimensional harmonic oscillator seems to
provide a suitable starting point for a relativistic model
because the energy spectrum is not unlike that which
might be expected for elementary particles. The absence

' C. Fronsdal, Phys. Rev. 156, 1665 (1967).
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of ionization is also tantalizing; it suggests a picture of
elementary particles as bound systems of quarks, with-
out the need to discover free quarts in the laboratory,
and it avoids the technical complication of a continuum
of states in the completeness relation. This paper de-
scribes a model that reduces to the three-dimensional
harmonic oscillator in the nonrelativistic limit. It has
a countably infinite number of one-particle states, no
ionization, and a number of physical features, including
a current algebra and superconvergent amplitudes.

In Sec. II we construct a relativistic generalization of
the three-dimensional harmonic oscillator. The model is
essentially determined by the requirement that a local
nonderivative relativistic coupling of the oscillator to an
external electromagnetic field give rise to form factors
that reduce to the usual result in the nonrelativistic
limit. It is found that, for finite light velocity, the form
factors decrease as a power of the invariant momentum
transfer, although they fall oR exponentially in the limit
c —+ x) ~

In Sec. III we investigate vertex functions and
scattering ™plitudesin the model and 6nd that (i) The
"Compton scattering" amplitudes for current-particle
interactions satisfy Fubini sum rules, at least when the
mass diRerences of the virtual particles are ignored.
(ii) Strong-interaction scattering amplitudes are calcu-
lated in the lowest order of perturbation theory, in
which an infinite tower is either exchanged or forms a
set of intermediary states. If the mass differences within
the virtual tower are ignored, then al 1 scattering ampli-
tudes are superconvergent. (iii) Alfaro et al.' have
shown that scattering amplitudes that exhibit Regge
behavior, and can be continued analytically from one
channel to another, can be expanded in a hierarchy of
increasingly convergent terms (no spin fhp, spin Qip,
double spin flip, etc.). In the present model, amplitudes
are found to have this property, independently of the
assumptions of Regge poles or analytic continuation.
(iv) The dificult problem of introducing the mass
spectrum into the one-particle propagator is brieQy
discussed.

and so on. The conimutation relations between the
elements of S are covari ant, for exampl e,

[spvpxpj= &gp'pvp+ igvxspp &gppsxp+&gppsxp ~

If S contains the symmetry algebra U(3), and hence the
generators of the internal (spin) angular momentum,
then it contains a subalgebra that is isomorphic to the
(homogeneous) Lorentz algebra, spanned by a set of six
generators s„„=—s„„with the commutation relations
just written. The generator of Lorentz transformations

='(p rjlrjp" p ~l~p")+
includes an external part (p„ is the total energy-
momentum vector of the system), and an internal part
which 1s s~„.

In the case of the harmonic oscillator, the obvious
choice of S is the algebra U(3, 1),3 whose generators are
the components of a tensor C„„with the following
commutation relations:

g i ~p p+—gppci'
The syniinetry algebra U(3) is the compact subalgebra,
and

sp = t (Cp Cap)

The states are described by an in6nite set of fields jt', (x),
where g„ is the "center-of-mass" (c.m. ) coordinate, that
is, the coordinate whose conjugate momentum is the
total inomentum p„, and o is an index that takes on an
infinity of values. The operators of 5 act on the index
only, not on the argument.

A local, moederivatiee Azteraction between two or three
or more fields is an S-invariant coupling of the form

p p.( )y„( )x,(*)c.„,
where the C z, are constants. More generally, a local
interaction may include Gnite-order derivatives of the
fields. Similarly, a local clrrerIt is of the form

~( ) =E jt'.*(*)~.( ), (1)

01

II. THE

HARMONY'IC

OSCILLATOR

A. The Suggestion of Local Field Theory

The three-dimensional harmonic oscillator shares
with a number of other physical systems the property
of possessing a symmetry algebra that includes the
angular momentum. Suppose that a relativistic version
of the oscillator has a current algebra S that includes
the symmetry algebra U (3); then S must have the
following general structure. The generators form sets
of covariant entities, scalars s, s', , vectors s„,s„',
tensors s„„,s„„', ~ ~, and so on. The commutation rela-
tions between these generators and the generators L„„,

of the Poincare group are

[Lp„,s)= [P„,sj=0,
[~ppp&j = &gp&sv+&gp&sp & [Pp&sv)

and so on. If the fields jt', (x) satisfy canonical commuta
tion relations, then it is clear that there exist currents
that satisf y equal-time commutation relations rel ated
to the corrnnutation relations of the C„„.

Consider the simplest type of local current, the scalar
density (1)~ In momentum space,

~(p,p )=Z ~.*(p)~.(p )

I A. O. 8arut (private communication); also, A. O. Barut, Phys.
Rev. 139, B1433 (1965). An alternative to U (3,1) is the group
gp {6);this group was used by G. Bisiachi and p. Budini, Xuovo
Cjmeoto 44, 418 (1966); and Nuovo Cjmejito (to be pubjiebed).
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LCpp~Cgpj gpgCpp+gppCgp
e(p') = exi L'1-(p,p')3 (p),

I.(p,p') = fj""(p,p')I." and the Hermiticity condition

The field p(p') is related to p(p) by a Lorentz trans- the conunutation relations
formation,

(3)

Consequently, the matrix elements of the current

J(P,P') are related to the matrix elements of a finite
Lorentz transformation;

8 I ~(p,p')14»=(mls'"" "'I&&.

If the states III(), I p) are identical, then this expression
is a form factor for the state

I p). Our principal point is
this: because of the very attractive features of form
factors of this type, ' it is proposed to obtain physical form
factors and suPerconi/ergent amP/itudes from currents /2nd

imteractiorIs that are local irI, the sense described above. It is
known that a relativistic description of the hydrogen
atom is possible, in which the correct form factors and
transition amplitudes are matrix elements of local
currents. Here it will be shown that this idea also works

very well in the case of the harmonic oscillator. In fact,
we shall use it as the guiding principle for obtaining a
relativistic generalization of that system.

B.The Harmonic Oscillator in a Relativistic Framework

In terms of canonical coordinates y; and momenta q;,
satisfying the commutation relations5

the Hamiltonian for the three-dimensional harmonic
oscillator is

C„, =C,„. (4)

The question is, what are the extra generators C,p, Cp;,
and CppP More precisely, we wish to determine the most
convenient choice of these operators.

In the preceding section it was suggested that
relativistic form factors should have the form of matrix
elements

of finite Lorentz transformation operators. If IIP) is at
rest (p=0), then this is a matrix element of expi&, 1.;p.
On the other hand, the form. factors of the nonrela-
tivistic harmonic oscillator are matrix elements of
exp';y;. We therefore try to relate 1.;p to y;.

Adjoining y; to C;;, we obtain a nonsemisimple algebra
with 16 independent generators. It is spanned by C;;, y;,
q;, and I, the identity operator. This algebra does not
contain the I.orentz algebra, but it does contain the
Galilei algebra, spanned by

s,j=i (C;; C;;),—y, .

This algebra is the nonrelativistic limit of the Lorentz
algebra; it may be obtained by the contraction c —+~,
where c is the velocity of light. In fact, the 16-parameter
algebra that has just been introduced can be obtained
by contraction of U(3, 1). We shall therefore try to
choose the C p, Cp,;, Cpp in such a manner that

&=2~ Z(y"+q"), s p
= i (C 'p Cp ') r

&~00

where m is the excitation frequency. This Hamiltonian
is invariant under a group of transformations generated

by an algebra of quantum-mechanical operators that
satisfy the commut'ation relations of U(3). A suitable
basis in the algebra is

This is actually possible. The operators'

.—(~2+r) I/2/I,

C. —Ii.t(~2+r)I/2

Coo=7'+r,

where y is a real constant and

/I, = 2-' '(yi+iq;), Is;t= 2-"'(y;—iq, ) .

The corruxzutation relations are

[Cij&Cslj 5jsCiI biICs j&

$a;,IJj= tt//J;, I a, ,/sjtf= b,j,

(2)
v=m '8 —-'=0, 1, 2,2 7

together with the C,, defined by (2), satisfy the com-
rnutation relations of (3) of U(3,1), as well as the
Hermiticity conditions (4). The Lorentz generators

(pp8/ p p"8/Bp )+sp
An obvious candidate for a relativistic extension of

this algebra is U(3,1), with basis elements satisfying

'C. Fronsdal and R. White, Phys. Rev. 151, 1287 (1966);
G. Cocho, C. Fronsdal, Harun Ar-Rashid, and R. White, Phys.
Rev. Letters 17, 275 (1966); G. Cocho, C. Fronsdal, Harun
Ar-Rashid, and R. White, international Center for Theoretical
Physics Report No. IC//66j84, Trieste (unpublished); A. O.
Barut and Hagen Kleinert, Phys. Rev. 156, 1546 (1967); C.
Fronsdal, ibid. 156, 1653 (1967).

SThroughout this paper we consistently use the letters p, x
for c.m. coordinates. The nonrelativistic internal variables y and q
p,re replaced by fensqt. ' jnQjges in the covariant description.

reduce to s„„in the static limit; in particular,

I.;o ~ s;p ——i (C,o Co;)—
=2(+2+ r)I/2/s, t—zII '(+2+ r) I/2

In order to achieve our goal of having I.;p tend to y, in
the nonrelativistic limit, we must relate y' to the

6 The fact that the following operators yield a representation of
SU(3,1) was discovered by Nambu and Rosen. We are very
grateful to Professor Nambu for informing us of his results prior
to publication.
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velocity of light, so that y2 tends to in6nity when c does.
Now y is one of the Casimir operators of U(3,1);hence
sending c to infinity takes the operators through a one-
parameter sequence of representations of U(3, 1), a
phenomenon that is not unusual in group contraction.

It is now clear that if )p, (x) forms the basis for a
Hermitian representation D(—y2) of U(3, 1), and if the
relativistic form factors are the matrix elements of local
currents, then these form factors reduce to the form
factors of the harmonic oscillator in the nonrelativistic
limit y' —&. The algebraic construction of unitary
representations of U(3, 1), and the calculation of the
form factors, is carried out in the next two sections.

8
C..f()=-. f().

Bz
(6)

These operators satisfy the commutation relations (3) of
U(3, 1,). They all commute with the operator —g""C»
= z„8/Bs„;hence this operator must be a multiple of the
identity in an irreducible representation:

8
f(s) =1Vf(s).

BZp

Equivalently, for every complex number X,

f(xs) =AN f(s) .

The number 1V, the degree of homogeneity of f(s),
characterizes an irreducible representation, D(E), say.

Next, we introduce a countable basis of monomials;

s2~s2's2's0~ a+6+c+a=1V .

For fixed n, these monomials span a representation of
the U(3) subalgebra (C;;). This is compact, and has
only finite irreducible representations; therefore the
exponents a, b, and c must be positive integers. When
a, b, and c vary over all positive integers consistent with
a+b+c=1V n=fi edx, then th—e monomials span an
irreducible, triangular representation of U(3). It is
convenient to replace the monomials by three-dimen-

C. Hermitian Representations of U(3,1)

Only a special kind of representations of U(3) are
realized by the three-dimensional harmonic oscillator;
they are the "degenerate" representations, whose weight
diagrams are triangular. The following construction
gives all those representations of U(3, 1) that have the
property that only degenerate representations of U(3)
occur.

We start with a representation in a function space,
without specifying the definition of the inner product,
pass quickly to an algebraic representation induced on
a canonical basis, and construct the inner product so as
to make the operators Hermitian.

Consider functions f(s) of four complex variables z„,
and put

sional tensors;

fA, "A,=C(r) sA, sA, (s0)"-'

where C(r) are complex normalizing coeKcients to be
chosen presently.

Direct application of the differential operators (6)
gives

()
COD)" Ar S4gr'O'Ag A", )

C(r—1)

C(r)
C;04A," A, = (r &)—

C(r+1)
C004Ay "Ar (r 1V)4'Ag" Ar ~

The Hermiticity condition (4) requires that 1V=1V~,
and determines the C(r);

I C( )/C( —1)I'= ( —1V—1)/,
This can be solved for ~=0, 1, 2, if and only if
1V(0; hence D(1V) is a Hermitian representation for
every negative real S, provided that we choose the
normalization

C(r) =L(r—1V—1)!/r!$U2.

Irreducibility of D(1V) is obvious by inspection.

D. Relativistic Form Factors

The prototype of relativistic local form factors is

I'oo(p p)=2 4' *(p 0)4.(p 0)

where )It. (p,0) is the wave function for the ground state
of the oscillator in the reference frame where the total
momentum is p„. If y=0, then this state is a U(3)
singlet; otherwise it is a singlet of U(3)„, which is the
subalgebra of U(3,1) that is spanned by the "transverse
generators";

8„"8),&C„p )

f!."=~." p.p"/p'. —
To evaluate this form factor in the simplest possible
way, we introduce the notation of generalized tensors.

We replace the monomial basis by a single four-
dimensional tensor field. ;

&. -'N(p) s., "s. . —

The reduction of this tensor according to U(3)„ is
given by

4')rX "uN(p) ~ Z C(r)4')r~ "),(p)p» p„N(p2) ~' N)~2

(~)
where C(r) is given by ($), and

$„,...„,(p)=C(t)0„," . ~

g rrpr r+1. . .
prN (p2) (r N)/2p (p)—

is an irreducible U(3)„ tensor.
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PIG. 1. Two contributions to Compton scattering. The in-
variant momentum variables are s = (p&+qr)', t = (P&—P2)',
and n= (Pr —qs)'.

The invariant inner product is

~(p)4 (p )=~*"-'-(p)4..- ..(p )

When p =p', it reduces to

In particular, the form factor for the ground state is
found by inserting the first term in the expansions (9)
of g (p) and y(p'):

p(p p/) por. . polv. p/ . .. .p/ (ps)
—N/2(pl 2) N/2—

' m'c4 ~.
In the last expression we have put

p =p =tire

where m is the rest mass and c is the velocity of light.
To evaluate the nonrelativistic limit, we erst note

that y'= —E; for
Coo= v'+r,

from Sec. IIB, Eq. (5), and

Coo= 7-—E
according to Sec. IIC, Eq. (7). In the nonrelativistic
limit 7' tends to ~, hence E tends to —~. Thus

E(P,P') = (1—f/2m'c')~ -+ e pkx1V/s2 'cr'/t&

t = (p —p')'/c' ~ —k'.

If the nonrelativistic oscillator is a particle mass p in a
fixed-force field, then the form factor is exp( —k'/4/rttt);
hence the correct nonrelativistic result is obtained if

—Ã =y'= rn'c'/2/rw. (10)

III. IMPLICATIONS FOR HADRON PHYSICS

A. Form Factors

The simple three-dimensional harmonic oscillator
considered here falls far short of describing actual
hadrons and their interactions, for several reasons.

When p&p' it defines the forin factors and transition
amplitudes;

Kp)~(p') = E &„-.„"' ""(p,p')P" "(p)~.,-.,(p').

Firstly, it must not be supposed that the symmetry
group U(3) of the oscillator have anything to do with
the eightfold way. Instead there are strong analogies
with Pock's SO(4) synnnetry of the nonrelativistic
hydrogen atom, or with some type of subgroup of
SU(6), without isospin. If this analogy is stressed, then
one could try to do particle physics by replacing U(3)
with SU(6) and the relativistic extension U(3, 1) with
SL(6,C) or SU(6,6). If it should turn out that SU(6)
is of less than fundamental importance, then one could
investigate smaller groups in which the bond between
isospin and angular Inomentum is less strong. ' Secondly,
only integer spins have been considered so far; the
model comes closer to describing mesons than baryons.
It is a simple matter to introduce half-integral spins, but
if the three-quark picture of baryons contains an
element of truth, then a more complicated oscillator
model might be more appropriate.

Let us be permitted to stress, nevertheless, the
physical features of the oscillator model. Firstly, the
mass spectrum is at least reasonable. Secondly, the
qualitative features of the form factors are quite attrac-
tive. Although Gaussian in the limit when the velocity
of light (or the ratio of the rest energy to the excitation
energy) goes to infinity, they decrease like a power of
the invariant momentum transfer squared in the
relativistic domain. Recent data on the proton magnetic
form factor, which extended all the way from —1=0 to

t=10 (GeV/c)—', s may be fitted very well with the
function (1—t/2r/zs)~ if 1V= —2 and 2m' is taken as a
free parameter.

It has recently been stressed by Gell-Mann' and by
Fubini' that many physical requirements can be met by
models with infinite numbers of one-particle states. The
vast arbitrariness of such models can be greatly reduced
by (i) relying on infinite irreducible representations of
noncompact groups that include the spin, for the
technical reason of rendering the algebraic structure
inan age able, and (ii) accepting the suggestions of
infinite-component local-held theory for specific forms
of currents and interactions. We now develop the local
field-theoretic aspects, in order to show that current
algebras and superconvergence are among the im-
mediate consequences.

B Current Algebras and Fubini Sum Rules

If a local Lagrangian density is constructed from the
fields f,(oo), and if canonical equal-time commutation
relations are postulated for the Geld components, then

' A. 0. Barut, in Bigh Energy Physics and Elementary Particles
(International Atomic Energy Agency, Vienna, 1965), pp. 689 ff;
and in Eon-compact groups in Particle Physics (W. A. Benjamin,
Inc. , New York, 1966},pp. 1—22; W. Ruhl, Nuovo Cimento 46A,
115 (1966). This possibility has been stressed repeatedly by
M. Gell-Mann.

8 S. D. Drell, Proceedings of the Thirteenth International Confer-
ence on High Energy Physics, Berkeley, -f966 (University of Cali-
fornia Press, Berkeley, 1967).' M. Gell-Mann, Lecture notes, International School of Physics,
"Ettore Majorana" Erice, Sicily, July, 1966 (unpublished).
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it is superQuous to point out that local currents exist
that satisfy equal-time commutation relations. Instead,
we shall give an example of a Fubini sum rule that
depends less intimately on the canonical formalism.

Consider the local interaction

where

2»(x)J»(x),

J„„(x)=&*(x)C„.P(x) .

The fields A»(x) may be identified with the electro-
magnetic 6eld strengths P»(x) if it is antisynunetric in

ti, i and with the gravitational potentials g»(x) if it is
sylnmetric, but for simplicity we shall not assume either
syrrunetry or antisyDUnetry. Relying on Feynman rules
rather than the grandiose machinery- of local-field
theory, we notice that this interaction gives two con-
tributions to Compton scattering, represented by the
two Feynman diagrams in Fig. 1. The corresponding
amplitude is

$*(Pi)PC„„(s m') 'C—&„+Ci,(u m') 'C—»$$(P2) . (11)

Here we have used the propagator (s—m') ' which
would have been appropriate if the masses of all the
levels of the oscillator were equal. Naturally, it would
be much better to use a propagator that corresponds to
the actual mass spectrum, but for the moment the best
that we can do is to ignore the mass di6erences. The
absorptive part of the amplitude (11) is

irtp*(pi) $C»C), gati(s m') C—i,,C»—b (I m')]tp(—pi)
= t„., ),i(s, t, qi2, q22) . (12)

Integrating over s, we obtain

2N, P

FIG. 2. River diagrams for the nucleon-nucleon-deuteron vertex
and the nucleon-nuc1eon meson vertex. The quark number is E
for nucleons, —Ã for antinucleons, 2E for deuterons, and 0 for
meson s.

ds g P, (m, ')8(s—m, ') =Q P, (m, ') =1.

The other term, with (I—m') ', cannot be discussed
with any confidence, since n is negative and the physical
content of the propagator for spacelike momentum is
less obvious. It is possible that (I—m2) ' should be
replaced by

dr P, (u) (I—m, ')—',

where P, (m, ') is a complete set of projection operators
satisfying a completeness relation

dr P, (m, ') =1.

In that case the sum rule could be derived without
neglecting the mass differences. We shall return to the
problem of propagators with mass spectra in Sec. IIIF.

t», ip(s)t)qi )q2 )ds

(P4P2) g ~& (P4P2) . (13)

The right-hand side is a form factor, and the equation is
a Fubini sum rule.

One may notice that the absorptive part, for fixed t,
is independent of q&' and q2', and depends on s through
the 5 functions only. If a more realistic propagator had
been used, it is possible that (s—m~) ' in (11) would
have been replaced by

P P, (s)(s—m, ') ',
0

where I', is an operator that, at least when s=m, ', is
a projection operator for the zth level. Instead of.

8(s—m'), the absorptive part (12) would then have had
the expression

C. Evaluation of a Vertex Function

Whereas the Compton scattering amplitude (12) de-
creases like s ' for very large s (and constant t), the
analogous "strong-interaction" scattering amplitudes
have a quite diferent asymptotic form. " We shall
calculate several scattering amplitudes, but erst let us
investigate invariant vertex functions.

I.et D(N, M) be an irreducible representation of
U(3,1), realized on a generalized tensor with N-covari-
ant (lower) and M-contravariant (upper) indices. Up to
now we have considered D(N, O) and the contragredient
D(O, N); the corresponding states will be referred to as
"nucleons" and "antinucleons. " In addition, the states
of D(2N, O) will be called "deuterons, "and the states of
D(M, M) will be called "mesons. "Two kinds of Yukawa
interactions may be considered,

P+ga .uu(x)P+sa+i" g2u(x)x (x)
and

P P, (m, ')8(s—m, ').
(x)&~x" ~z(x)Ai" sx"'"" 4@+i" +' ' ' ~mr"

(15)
Integration over s would then have given the same io I B.Qronzanet a$., phys. R.ev. t.etters $8, 3$ (]967);pirendra
result (13)as before, since s occurs in the 8 function only, Singh, ibid 18, 36 (1967). .
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coxnplete amplitude is

5
/+Pl'''PN(P1)f+PN+1 ' P2N(P )

S—5$

p p~

FIG. 3.Feynman diagram and river diagram for nucleon-nucleon
scattering via deuteron intermediary states. The invariant
variables are s=(p1+p2)', t=(p1 —p1')', and N=(p1 —p2')'.

Xp„,...„„(p')p„„„...„, (p ')

=P1P1 ~ ~ ~ P1I NP2PN+1. . .P2P2N

S—SPY

The corresponding vertices may be represented by the
"river diagrams" of Fig. 2, in which each index (quark,
as it were) is represented by a directed line. We shall
evaluate the nucleon-nucleon-deuteron vertex in the
case when all three momenta are positive timelike, the
nucleons are in the ground state,

/+PI'''PN~P(P )P Pl ~ ~ .P PN

f+PN+I' 'P2N~ f+(P )P PN+1. . .P P2N

Xp 1P1' ' 'p 1PNp 2PN+1' ' 'p 2P2N ~ (18)

The syrrumetrizer S eliminates the contributions of all
intermediary states except those that make up the
irreducible representation D(21V,O), i.e., the deuteron
states.

The problem of carrying out the contractions on the
indices in (18) is a combinatorial one. The solution is a
special case of the formula

and the deuteron is in a vth excited state, represented
by the (r+1)th term in the expansion (9) (replace
tV by 2Ã):

where

P 1P1'''P 1P2P 2P2+I'''P 2P

XPr(—a, b; —c;z)—, (19)

PI...P2N 5C (r)XPI."Pq(. ) Pq+1'' P2N

P=P1+P2, S=P',
C'(r) =I (r-»V-1) /r'3"'.

inserting these expressions into (14) we hand, after a
short calculation, using old tricks, 4 that the vertex
reduces to

'" "IP(p.)P(p )x.,-.,P')j,
VI"1 .I" —t/' Qf'1. . .QI'rT~ 7

1)!t(„2"—2) t t-U2

r even (16)r!!(r—2X—1)!! A(s, t) =
r/2=0, 1 ~ ~-

"' "(— ') ' PI"'„

(P1P1)(P2P2)/(P1P2) (P2P1)

The amplitude for the elastic scattering of ground-state
nucleons is thus, when deuteron mass differences are
ignored,

A(SIt) =(1—I/2m2)2N(S —M2) —'

XuF2(—X, —1V; —21V;z). (20)

As long as P1+Ps is positive timelike, it is possible to
reduce the amplitude to a sum over intermediary
deuteron states, using the vertex functions calculated
above, Eq. (16):

=0) ~ odd

Q=pr —P2
am=0 1 ~ ~ ~

(-: -l)!(!-~—1)!
s2%

(2')!(2'—2
—+)!

Since E is negative, the amplitude V»'"& goes to zero
as s —+~.

The nucleon-nucleon-meson vertex may be calculated
too, but we shall postpone that to another paper.

D. Scattering of Spin-Zero Particles

We shall evaluate the amplitude for nucleon-nucleon
scattering proceeding through deuteron intermediary
states, as shown by the diagrams of Fig 3. Again the
deuteron mass differences will be ignored, so that the
propagator is just

(S—m2) 'S,

where S is the index symmetrizer. Then there is no need
to reduce the amplitude to a sum over deuteron states.
If all four nucleons are in the ground state, then the

s—3f'

S )2N
(&—~2)—1

4m2)

t—I '
X2&'1 2, —CV;-'2 —1V; —— . (21)

s

By one of the standard quadratic transformations of
hypergeometric functions, it may be shown that (20)
and (21) are the same function.

Asymptotically, as s —&~, this amplitude tends to
zero as s2~—' lns, which is very fast if 37 is a reasonable
number like —2, as is suggested by the form-factor
results. The introduction of a more realistic deuteron
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A*(s*,t*)=
N-fr'~0, 1, ~ ~ ~

V"'"" (u*—Ms) lV

X (Sz p)slVI
I

(uz ~2)-1
Es.—Vi

"C.Fronsdal and R. White, Phys. Rev. (to be published).

propagator, reQecting more accurately the spectrum of
resonances that is represented by the deuteron inter-
mediary states, will modify this asymptotic behavior.

The amplitude for nucleon-antinucleon scattering
with deuteron exchange is related to the amplitude for
nucleon-nucleon scattering via deuteron intermediary
states, by a simple substitution rule that may be called
crossing, but rot by analytic continuation. " All mo-
menta are to be considered as physical positive timelike
momenta; the direct evaluation of the complete ampli-
tude is carried out as above, without regard to whether
the external lines are entering or leaving the diagram.
If s = (pi+pi')', ~.= (pl —ps')', and u = (pl —ps)' are
the energy and momentum-transfer variables in the
annihilation channel, then the amplitude is

A *(s*,t*)= (1 V/—2m )' (u* M—') '

X,F,(—N, N; 2—N; s)—
((sx p)/4rrls)2lv (us 1!Ils)—l

XPiI l, N; ', N—; (u —/—(s —~ ))'j (22)

Note that this result was obtained by a direct evalua-
tion of the complete amplitude. It is also possible to
obtain the second expression directly, by the type of
calculation that led to the result (21), although the
deuteron momentum is now spacelike, so that the sym-
metry group U(3)p is isomorphic to U(2, 1).

The reduction of a unitary representation of a non-
compact group to irreducible representations of a non-
compact subgroup is usually continuous (direct inte-
gral), but in the present case it happens to be discrete.
This is because the basis states z0 'z~ z2'z3', which are
eigenvectors of the Casimir operator Ces of U(3), are
eigenvectors of the Casimir operator Cll of U(2, 1) as
well. The spectrum of eigenvalues of the latter operator
is 0, 1, 2, ~ . The operator r is dered covariantly by

r=N pp"C„„/p'— (23)

for both spacelike and timelike p&; consequently the
spectrum of r is X, E—1, E—2, ~ ~, for spacelike
momentum. This means that the tensor-reduction
formula (9) can be used for spacelike momentum,
except that the sum now goes over the values E, S—1,
iV—2, ~ ~ of r.

The expression (16) for the vertex function is valid for
spacelike I' as well, except that now I'=pl —ps, and
F2= N, instead of s. The scattering amplitude may be
represented as follows:

where r'= 2S—7. Although this formula represents the
natural decomposition of the amplitude, it is of course
possible to perform a Sommerfeld-watson transforma-
tion and write

(s+ P) —c(uz ~2)—1(ux) slav

(—,"—1)!(N ——;——;.)!(-;,—N —1)!

(——:r—l).
/s* tq s—

X —
I I d(r/2), (24)
4 u i

where the contour follows the line Re(-', r) =N and loops
the point r=2X on the right. After a change of the
variable of integration from -', r to -2r'=S —-', r this be-
comes Barnes' integral representation" for the hyper-
geometric function that appears in (22).

E. Spin-I and Superconvergence

It has been suggested that'3 if one of the two particles
in an elastic scattering process has spin diferent from
zero, a part of the amplitude, the double spin-Rip ampli-
tude, goes to zero as s —+~ faster than the other parts.
It is almost obvious that our deuteron exchange arnpli-
tude has this property; we shall verify it by explicit
evaluation.

In the Feynman diagram of Fig. 3, let pl and pl' be
the momenta of a nucleon-antinucleon initial state, and
let the incoming and outgoing nucleons (rnoinenta pl
and ps') be in the first excited state, while the anti-
nucleons (moinenta pl' and ps) are in the ground state.
The amplitude is given by

2;.*(",~ )!te"(P )0"(Ps')(u*-~')
=p&spilt ~ ~ ~ piRNpsslv+l ~ ~ pg&sN+pl Pj

lr. y, 1 I
P1laN v'PN+lPssNys

' ' '
Psssrr

or

Tsy (s )3 ) 4&ply pgp+2p(pss psst+ ply pie)

+71Pss Plv+ Ysgsv p

where

a= (1V/2)'(plpl )' 'sFl(1 —N, 1—1V; 2 —21V; z),
sN(~~ 1)(plpl ) (pips )2+i

X(1—N, 2—N; 2—21V; s),
Vi= (N —1)'(pipl')'"-'(pips')'spi

X(2—N, 2—N; 2—2N; s),
Vs= (plpl')' '(pips')ski(1 —N, 1—N; 1—21V!s),
s= 1—(PlPs'/PlPi')',

s =(Pl+Pl')',
t = (Pl—Ps')'.
"Bateman Project ManuscriPt, Bigher Transcendental Functions,

edited by H. Erdelyi {McGravr-Hill Book Company, Inc.,
New York, 1953), Vol. 1, p. 62.

» V. de Alfaro, S. I"ubini, C. Rossetti, and G. Furlan, Phys.
Letters 21, 5'j6 (1966).
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The high-energy limits (s*—+~, t fixed) of these
invariant amplitudes are

Sx 2N—2-
n= (1—2~V)

$72
—y+in 2' —$

Sx 2N—1

P= —(1—2') (2m' —t*) ',
E

F. Mass Sylittilig

The amplitudes that have been calculated so far are
not true predictions of the harmonic oscillator rn.odel,
since the operator 5(s—3f2)—' is a poor substitute for
the real propagator. Clearly, the propagator must have
a pole at each of the points s=m'(r), r=O, 1, 2, ~ ~,
where m(r) is the rest energy of the rth level of the
oscillator. The precise form of the m(r) might be
m+rco, but the nonrelativistic theory allows m(r) to
be any increasing function of v that tends to m+r~ in
the limit m/~ ~~. The relativistic theory places de-
mands on the propagator for spacelike as well as time-
like momenta, which restricts the functional dependence
of m(r) on ~. For example, there is a domain of s and 7

where a singularity of the propagator would give a non-
causal Smatrix. In a local-Geld theory, questions of this

type are related to the existence of unphysical solutions
of the field equations. One natural way to select the
propagator is to set up a complete local-field theory, and.

define the propagator as the Green's function of the
relativistic field equation.

Unfortunately, we have not yet found a relativistic
6eld equation that can be postulated with any degree

'4 See Ref. 12, p. 11.0. The constant y is the Euler-Mascheroni
constant.

pi= 2(1—2$) (s*)'"(2m'—t )
—',

+ —(&x)2N (2mB p)—i

%e notice that as s ~~ for fixed momentum trans-
fer, P tends to zero faster than yi and y2, and n faster
than P. Identical results, except for the logarithiiuc
term in 0., were obtained by de Alfaro et a/. ' It is
worth emphasizing that this superconvergent asymp-
totic behavior of the various amplitudes for spin-0—
spin-1 scattering is completely independent, in our
model, of the postulates introduced by these authors;
we have used neither Regge hypotheses nor analytic
continuation. The amplitudes P and n are super-
convergent for any value of E for which the representa-
tion D(X,O) is unitary. If E is of the order of —2, as
suggested by the form-factor results, then p& and y2 are
also superconvergent, and all amplitudes fall oB much
faster than what appears reasonable. It is to be hoped
that the introduction of mass breaking in the one-
particle propagator will tend to temper the convergence
of all amplitudes, while preserving the hierarchy of
superconvergence.

of con6dence. Part of the diAiculty is uncertainty about
the right criteria. If one insists, for example, on a local
equation (in order to prepare for the introduction of a
minimal electromagnetic interaction) then extra, un-
wanted solutions always spring up. Some would con-
clude from this that field theory, and particularly
locality, is irrelevant, and abandon it, at the price of
losing all predictive power; the form factors and the
scattering amplitudes that were calculated above are
suggested. by the locality of the interactions. An alter-
native, that will be pursued a short way here, is to
retain the idea of local interactions, and to postulate in
addition that scattering amplitudes are defined by a set
of Feynman rules, in which the one-particle propagator
is some smooth function of p„and 7 (and j, if we wish
to introduce Qne structure), that is to be determined
phenomenologically, and into which one attempts to
pack as much physics as possible.

Lacking a complete 6eld theory, we have to postulate
the Feynman rules of the theory with sufhcient detail to
make the amplitudes well defined. The following pre-
scriptions seem to be reasonable, at least as far as simple
diagrams are concerned.

1. In the region of timelike momentum transfers,
s&0, the propagator is of the form

P P,K(s,r),
r=p

where K(s,r) is some reasonably smooth function of s
and v, and P, is the projection operator for the subspace
de6ned by 7..

P,P;=8„P,, Q P,=1.
2. » a region s&sp, for suKciently large negative sp,

the propagator is of the form

where P, has the same interpretation as above. The
value of sp is de6ned by the requirement that no singu-
larit;y of K (s,r) cross the contour C as s decreases from
sp to —~.

3. In the region sp& s&0, the propagator is defined by
analytic continuation in s, from the region s&sp, cot
from positive s. Hence it is not necessary to assume a
direct analytic connection between different channels.
As s approaches zero, it is possible that singularities of
K(s,r) migrate across the contour C, necessitating
deformation of the contour of integration.

In Sec. IIID it was shown that these prescriptions
give the correct answers in the equal-mass case. In that
case the asymptotic behavior of the amplitude (23) is
(s )'~ 1ns~. In the general case the amplitude (24) is to
be modified by replacing the factor (u~ —3P) ' by
K(g*,r). The manifold of singularities of this function



RELATIVISTIC HARMONIC OSCILLATOR 1671

plays the same role as Regge poles in determining the
asymptotic behavior of the scattering amplitudes. Thus,
if E(u, r) has the form r/(7 T—p 0—), 0(re(1, then in
the asymptotic limit s- —+~, u'=0, the amplitude is
deminated by the Regge-pole contribution

~X 2X—TP gX TP

If the scattering particles (sxlermat Hoes) have different
mass, then this is modi6ed. Thus, if m~ ——m2'=m and

m~'=m2 ——p, then the erst factor becomes

[~s (m2 +2)s/2~@]2' rp—

ACKNOWLEDGMENTS

We gratefully acknowledge fruitful conversations
with V. Nambu. The discovery, by V. Nambu and
P. Rosen, of the representation (5) of U(3,1) was
crucial to this work.

P H YSICAL REVIEW VOLUME 162, NUM BER 5 25 OCTOBER 196 j

Some Features of Angular-Momentum Branch Points*

JOHN H. SCHWARZ

Palmer Physical Laboratory, Princeton University, Princeton, Rem Jersey
(Received 21 March 1967; revised manuscript received 14 June 1967)

Arguments for the existence of angular-momentum branch points based on the necessity for the Gribov-
Pomeranchuk singularities to be fixed poles rather than essential singularities are reviewed. Sum rules for
scattering amplitudes on the second sheet are then deduced. Reasons are given for expecting two kinds of
branch points to be present, namely, those described as "Regge pole plus Regge pole" and "Regge pole plus
elementary particle" (called types 1 and 2, respectively). It is argued that the latter must be concealed by the
former in the scattering region, and from the requirement that the branch points are suitably positioned in
general, an inequality on derivatives of Regge-pole trajectories is derived. A model of the Amati —Fubini-
Stanghellini type is examined to indicate why type-2 branch points may be expected to occur in a theory
without elementary particles.

1. I]%TRODUCTIOH

EVERAL features of branch points in the angular-
momentum plane for two-body scattering ampli-

tudes are discussed in this paper. Recently, there has
been signi6cant progress' in understanding the way in
which moving branch points eliminate the once-
suspected need for essential singularities' at wrong-

signature nonsense points and allow fixed poles to be
present instead. We shall assume this mechanism to be
generally valid and utilize it to make several deductions
about the branch points. We emphasize the theme that
while the branch points are extremely dificult to discuss
in terms of Feynman diagrams, there is a great deal that
can be learned about them from a liberal application of
unitarity without getting involved with overwhelming
complexities. Although not yet at the point of being
able to present reliable formulas for their contributions
to asymptotic behavior, we believe that there are
grounds for optimism in this regard.

In Sec. 2 we review the arguments for the existence of
angular-momentum branch points and the inferences

*Work. supported by the U. S. Air Force Once of Research,
Air Research and Development Command under Contract No.
AF49(638) -1545.

' C. E. Jones and V. Teplitz, Phys. Rev. 159, 1271 (196'7); S.
Mandelstam and L. L. Wang, Phys. Rev. 160, 1490 (196'7).

~ V. N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2, 239
(1962);Ya. I.Azimov, Phys. Letters 3, 195 (1963);S. Mandelstam,
Nuovo Cimento 30, 1113 (1963).

that are drawn for the behavior of partial-wave ampli-
tudes at wrong-signature nonsense points. Also, a sum
rule for amplitudes on the second sheet of the elastic
cut is deduced. In Sec. 3 we explain why two essentially
diferent types of branch points are required, and in-
dicate some interesting features of their sheet structure.
In order to satisfy a requirement on the positioning of
the two types of branch points in general, we conjecture
an inequality involving derivatives that should be
satisfied by any Regge-pole trajectory function. The
structure of the branch points is explored. further and
illustrated in a simple model in Sec. 4. The model con-
sists of an integral of the AFS type, ' and while its
relevance4 may be questioned, it nevertheless offers an
instructive example. Section 5 contains some comments
about possible generalizations 'and applications and
summarizes the conclusions.

2. NEED FOR BRANCH POINTS AND
RESULTING SUM RULES

The existence of moving branch points in angular mo-
mentum can be most easily demonstrated by arguments
given originally by Mandelstam. ' Simply stated, the

'D. Amati, S. Fubini, and A. Stanghellini, Phys. Letters 1, 29
(1962), hereafter AFS; Nuovo Cimento 26, 896 (1962).

4 S. Mandelstam, Nuovo Cimento 30, TT27 (1963);H. J.Rothe,
Phys. Rev. 159, 1471 (1967). Most of the conclusions of Sec. 4
are also reached in Rothe's paper.' S. Mandelstam, Nuovo Cimento 30, 1148 (1963).


