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The concept of a noninvariance group is introduced by considering some classical systems. This is then
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INTRODUCTION
' 'X the past few years, group theory has emerged as

a powerful tool in the study of elementary particles.
The conventional approach in applications of group
theory to particle physics is to postulate that the
particles form a multiplet which furnishes a unitary
irreducible representation (UIR) of a symmetry group
K, and that E is an invariance group of the interaction
Hamiltonian. The consequences of this postulate can
be worked out systematically and checked against
experiment.

If the invariance group is a small one, e.g., SU(2)
as isospin symmetry group, then the symmetry may
be a fairly accurate description of nature. However,
this will enable us to relate only a small number of
particles with one another. In order that a larger
number should be included in a multiplet, one is
necessarily forced to consider higher symmetry groups
such as SU(3), G(2), etc. Deviations from such sym-
metries are attributed to symmetry-breaking interac-
tions. For groups such as SU(6), this symmetry-
breaking interaction has to be invoked quite early in
the game, and the invariance one talks of is, at best,
only a crude approximation.

One could, on the other hand, postulate a lower
symmetry for the Hamiltonian and imbed this group
in a larger one which is not an invariance group, but
whose structure is determined by the dynamics of the
physical system under consideration. This procedure
has the attractive feature that one is able to relate
various multiplets without invoking a larger symmetry
breaking. The approach based on this noninvariance
group' (henceforth called NIG) will be pursued in this
paper.

*Submitted in partial fulfillment of the Ph. D. degree at
Syracuse University, 1966. Research supported in part by U. S.
Atomic Energy Commission and the National Science Foundation.

t Present address.
'N. Mukunda, L. O'Raifeartaigh, and E. C. G. Sudarshan,

Phys. Rev. Letters 15, 1041 (1965);Phys. Letters 19, 322 (1965).
A. O. Barut and A. Bo*hm have also considered this approach,
and references to their work are given in Barut's lectures, in
Proceedings of the Seminar on High-Energy Physics and Elementary

162

In order to understand this approach, it is best to
consider how the NIG's enter into the study of
"classical" systems. We may then use this analogy as
a guide in applying the approach to strongly inter-
acting particles. Historically, this is the way the sub-
ject has developed, and we shall not deviate from this
pattern.

In Sec. I we introduce the concept of the NIG by
considering some examples from classical physical sys-
tems. By analogy, we apply NIG techniques to particle
physics. In Sec. II, SU(4), SL(4,R), and Te&&SU(2)
SU(2) are considered as NIG's. In Sec. III, SU(6) is
considered as a candidate for an XIG. In Sec. IV, we
summarize the results of this approach.

I. THE NOTION OF NONINVARIANCE GROUPS

We recall that a sequence of states with common
relevant properties is usually the clue to the identifica-
tion of a simple underlying dynamical structure. For
example, the doublet structure of the levels of atoms
with one optical electron is a manifestation of the two-
valued electron spin orientation; the singlet and
triplet states of "two-electron" spectra relate to the
composition of the spins of the two electrons. Further,
the sequence of levels with splitting corresponding to
the Lande interval rule furnishes evidence for a total
orbital angular momentum L and total spin S which
couple to form the total angular momentum J. In
these cases, the sequence of levels of the atomic system
was simply understood in terms of a dynamical sub-
structure described by the O(3)O(3) group, which
was, however, not an invariance group of the Hamil-
tonian. We could proceed further and try to identify
the set of all states of a dynamical system as a realiza-
tion of a group; unless the Hamiltonian is a constant,

Particles, Trieste, 1965 (International Atomic Agency, Vienna,
1965); E. C. G. Sudarshan, Conference on Symmetries, 1965
(unpublished); Syracuse University Report No. NYO-3399-55
(unpublished}, E. C. G. Sudarshan, invited paper at the Eastern
Theoretical Physics Conference, Stony Brook, New York, 1965
(unpublished).
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it is evident that this group cannot leave it invariant.
We may therefore refer to such a group as a NIG.

For the hydrogen atom one could explicitly construct
the generators of 0(3) and the Lenz vector )together
they constitute an 0(4) group), which commute with
the Hamiltonian. The representations' of 0(4) that
one uses to classify the (negative) energy levels of the
hydrogen atom are the degenerate representations —and
the 0(4) labels uniquely specify an energy level. ' For
the positive energy states, one could use, similar1y, the
representations of the noncompact group 0(3,1). In
the strong-coupling limit (g —+ oo) or the free-particle
limit, the symmetry group is E(3), the Euclidean group
in three dimensions.

Ke can incorporate the dynamical information that
there are various bound states by classifying a finite
number of bound states in one representation of 0(5),
or all except the first n levels in one UIR of O(4, 1).'
The groups 0(4,1) and. 0(5) contain transformations
which take states with one energy into states with
another energy and are not invariance groups of the
Hamiltonian. These have been called the noninvariance
groups. '

Detailed consideration of this system yields the
following two results:

(a) When alt the states of the dynamical system
constitute a single irreducible representation of the
NIG, the generalized enveloping algebra of the NIG
is identical to the algebra of all. dynamical variables.
If only a subspace constitutes an irreducible represen-
tation, the enveloping algebra is the restriction of the
algebra of dynamical variables to this subspace. The
NIG is thus equivalent to the dynamical system. '

(b) Varying the energy eigenvalue of the Hamil-
tonian of the hydrogen atom (which corresponds to
considering the bound or continuum states) and then
restricting the values of the only arbitrary parameter
that occurred in the expression for the noninvariant
generators (which corresponds to considering various
kinds of orbits: elhptical, hyperbolic, etc.), we ob-
tained various kinds of NIG: 0(4,1), 0(3,2), and 0(5).
Even though the NIG was constructed from the
primitive dynamical variables and was artificial in a
sense, we learned the important fact that the dynamics
of the system governed the structure of the NIG.

' E. C. G. Sudarshan and N. Mukunda, L,ectures in Theoretical
Physics {University of Colorado Press, Boulder, Colorado, 1965),
Vol. VHIS.

3 V. Fock, Z. Physik 98, 145 (1935); W. Pauli, ibM. 36, 336
(1926); V. Bargmann, ibid. 99, 576 (1936).

4 J. Dixmier, Bull. Soc. Math. France 89, 9 (1961);S. Strom,
Arkiv Fysik 30, 455 (1965); J. G. Kuriyan, N. Mukunda, and
E. C. G. Sudarshan, Institute for Advanced Study Report (to be
published).

5 In the present case this is not strictly true since the NIG
generalized enveloping algebra does not connect the negative-
energy states with the positive-energy states (bnt q or p connect
bound and unbound states). The NIG generalized enveloping
algebra treats the bound states alone, for example, as the dy-
namical system.

In particle physics, on the other hand, ' we know
very little about the Hamiltonian for a description of
strongly interacting particles. However, it is possible
to introduce some kind of group structure and reason
that the choice of the NIG will decide the dynamics of
the system. That is, we suppose, on the basis of our
analysis of the classical system, that the choice of the
NIG implies a definite, though at present largely un-
known, postulate on the dynamics of strongly inter-
acting particles. In this sense, one could call these NIG
"dynamical groups. "

We can get some guidance in the choice of interac-
tions for the particle spectrum described using a NIG
by considering the treatment of interactions in atomic
physics. The interaction with the radiation held is
given by the gauge-invariant coupling; however, it is
adequate in most cases to consider a dipole approxi-
mation with additional correction terms of quadrupole
type, and so on. In addition to this most important
coupling, there are other interactions like the Zeeman
effect which are introduced by other interaction struc-
tures with corresponding parameters specifying the
strength of the coupling. The selection rules in electric
dipole transitions are quite diferent from those for the
Zeeman effect. The situation for the pion-nucleon inter-
action can be viewed in the same fashion. The actual
pion-nucleon interaction is not exclusively a p-wave
coupling, but it is well approximated in the low-energy
domain by the p-wave coupling. The electromagnetic
and weak interactions are to be suitably specified in
relation to the NIG, but with new characteristic cou-
pling parameters. In contrast with the atomic case,
we have no primary interaction structure which we
are to approximate; hence the simplest choice of inter-
actions should be considered first. The natural choice
is for the coupling matrices to be linear in the generators.

This is the starting point of the application of the
concept of a NIG to a dynamical system involving
strongly interacting particles. The NIG we seek must
have the symmetry group as a subgroup. Secondly, the
noninvariant generators must be specified in some
fashion; note that this is a dynamica/ postutate.

II. ÃONINVARIANCE GROUPS IN
PARTICLE PHYSICS

At first, we consider a kind of "static" model in-
volving nonstrange particles. ~ The invariance group of
the Hamiltonian which describes such a system is

K=SU(2) rSU(2) s,

where l and J stand for isospin and spin, respectively.
Low-lying isobars (baryons and baryon resonances)

6 For further details see Ref. 1.
7 J. G. Kuriyan and E. C. G. Sudarshan, Phys. Letters 21, 106

(1966). N. Mukunda, in Conference on Eoncompact Groups in
Particle Physics, Milwaukee, l966 (W. A. Benjamin, Inc., New
York, 1966).
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described by such a Hamiltonian fall into multiplets
which furnish a UIR of E. Pionic current sources form
a multiplet of this invariance group. In this representa-
tion space the mesonic currents transform as tensor
operators of the group E.

For the case at hand, we are considering a p-wave
isotriplet of pions and so the tensor operator is of rank
1 with respect to the two SU(2) subgroups. It has long
been known that when the pion-nucleon coupling con-
stant tends to infinity, an infinite sequence of bound
states of the Hamiltonian (isobar levels) is generated.
These have I= I= (half an odd integer). That is to
say, the form of the UIR is of the type (I,I) of the
invariance group E, with I=J=-,', —,', . - . Our earlier
analysis of groups enables us to conclude that one such
NIG could be SU(4), which, when reduced with respect
to O(4), yields the above class of representations.

We are still left with the most important aspect of
the problem, to identify the noninvariant generators.
We draw inspiration from a recent paper of Cook,
Gobel, and Sakita (CGS).' They considered the scatter-
ing of mesons and baryons

M +B; +iVp+B;—,

where JI/I and 3Ep are mesons and 8; and 8; are isobar
states. The bar stands for the charge-conjugate meson.

The Chew-Low equation fo~ this process is given by

tp. ~"(w)

A J'A"
= —c'2 -+

a M —M; —w M —M;+w)

t,p'&(w, )*t,."(w,) t, '&(w, )*t,p"(w, )

Mg+w„—M; «Mi, +w,——M, +w

+ two or more meson intermediate states,

where M; is the energy of the ith isobar, gA '& is the
(ij)th matrix element of the source of meson a with
energy m between isobar states, and g is a parameter
that represents the strength of the coupling. In the
strong-coupling limit A is figgite and the masses of the
isobars are degenerate. We now appeal to strong-
coupling theory to guarantee an expansion of the cou-
pling matrices and the isobar masses in inverse powers
of the coupling strength g', i.e.,

M;= M.+y;/g'.

In the expression for the scattering amplitude, we notice
that the first two terms correspond to the driving terms
(pole or renormalized Born terms), while the next two
are the elastic-scattering (or one-meson intermediate-
state) terms. CGS consider the pole terms and expand

8 Y. Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Letters 15,
35 (1965).

them in powers of 1/gg to obtain

tp. "(«)
I ~; (—a'/w)LA p A-]"

+« 'I (LA p, Lv,A-]])"+O(r').
Unitarity restricts the scattering amplitude to be finite
in the physical region. In order that

tp-"(w)
I "i.

be finite in the strong-coupling limit (g —+ Dg), CGS
argued that it is necessary to have

LA,A p]'&'= 0.

They then deduced that in the strong-coupling limit
the noninvariant generators A commuted among them-
selves. Thus the noninvariance group in the strong-
coupling limit was the semidirect product A)&E, of E
by an Abelian group A generated by the meson-
coupling matrices.

For the charge-symmetric pseudoscalar theory, the
group E is given by SU(2)rgSU(2)~. Instead of A
we shall use Q;p as the meson-coupling matrix that
transforms as a vector with respect to both SU(2)r
(isotriplet of pions) and SU(2)~ (p-wave pseudoscalar
mesons). i and P take the values 1, 2, 3. CGS's im-
portant dynamical assumption was to identify the pion-
coupling matrices as the noninvariant generators. The
NIG that they obtained in the strong-coupling limit was

Tg)&(SU(2) SU(2) ),
where T9 stands for the Abelian group generated by

ia.
Various possible UIR of this group 6 provide the

allowed isobar (multiplet) spectrum. The group con-
cerned is a noncompact one (because Tg is Abelian),
and all UIR are infinite-dimensional. This implies that
there exist an infinite number of isobars in every UIR,
a well-known result in strong-coupling theory. One
could argue that this undesirable feature is a conse-
quence of the unnaturally high value of the coupling
constant, which tends to push a large number of poles
of the scattering amplitude onto the physical sheet. A
more realistic limit would, perhaps, result in fewer of
the poles approaching the physical sheet. Hence there
seems to be some justification in the assumption that
the low-lying isobars are the only ones of interest.

The plausible assumption of CGS is that once E is
chosen the strength of the coupling decides the structure
of the group G. This leads them naturally to a con-
jecture concerning the intermediate-coupling models,
where the coupling constant, in the limit, attains a
value lower than in the previous case.

At this point we shall redo with greater care CGS's
analysis. They had concluded that LA,Ap]=0 from
the fact that the scattering amplitude of the form

t p' (w) = —(g'/w) (LA,A p])"
+w-'(LA. ,B,A p]])'+O(1/g')
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had to be bounded in the strong-coupling limit. How-
ever, we can expand the coupling matrices A in
inverse powers of the coupling strength g'. This is a
consequence of the fact that A is finite in the strong-
coupling limit and that with pure Yukawa coupling,
the sign of the coupling can be changed at will by an
obvious canonical transformation. Thus the expansion
is in powers of 1/g' rather than 1/g:

A —=A „+)+—A &'&+—A "&+
g' g' g'

Thus

t &&'~(w) = (g'—/BJ)[A &'),Ap&0)]'~

—(1/w)([A &" A ")]+[A &" A &')])'~'

+ (1/~') [A."),[v,As&"]]"+o(1/g')

The boundedness of the scattering amplitude implies
only the weaker condition

&o) As&0)] —0

We notice that in the terms independent of g in the
above expansion of t t&"(~&&), the coefficient of 1/w is
antisymrnetric in n and P, while the coefficient of 1/w'
is symmetric, consistent with the requirements of cross-
ing symmetry. The CGS assumption of [A,Ap]=0
implies that the scattering amplitude is symmetric in
a and P, which is at variance with experiment.

An explicit dynamical model does not seem to lead
to a group structure very easily. In this connection, we
note that the intermediate-coupling models' are highly
speculative. Thus, it seems as if the derivation of a
symmetry on the basis of a model has very small
chances of success. On the other hand, our way of
looking at the subject is decidedly advantageous. The
contention is merely that the noninvariance groups and
the consequent dynamical implications describe satis-
factorily the state of affairs of strongly interacting
particles. Specific dynamical models like the pole models
or the one-particle-exchange models, while explaining
isolated phenomena, give an inconsistent over-all de-
scription. This may be because the assumptions in-
volved are far too restrictive in nature. We shall
describe how one can obtain quite a few results by
making a few innocent-looking assumptions in order to
obtain a NIG. In the following, we shall keep in mind
the analysis of the hydrogen atom, where the dynamics
control the structure of the NIG. We take the converse
of the above statement that the structure of the NIC
will govern the dynamics, though a satisfactory ex-
planation of the exact interrelationship is not known
at present. We know what isobar states exist, and this
corresponds, in the case of the hydrogen atom, to a

' The relations between NIG models and bootstrap conditions
have been considered in a very elegant paper by D. B. Fairlie,
Phys. Rev. 155, 1694 (1967).

knowledge of the energy spectrum. The dynamical
postulate we made was to identify the meson-coupling
matrices with the noninvariant generators. Kith this
identification of the noninvariant generators, we are
able to obtain the various NIG's.

For the hydrogen atom, on the other hand, we were
aware of the existence of the various energy levels
labeled by sz, each being described by a symmetric
tensor representation oi O(4) of rank (n —1). In order
to make explicit this extra information, we sought and
found a NIG [0(5) or O(4, 1)]which could accommo-
date as many of the levels as we desired in one single
representation. As we emphasized earlier, the NIG was
a secondary construct, and the noninvariant generators
were expressible in terms of the primitive dynamical
variables. If we were to proceed in an analogous fashion
in the case of systems of strongly interacting particles,
we would make an educated guess as to what the NIG
could be from a knowledge of the isobar spectrum.
This w'ould, no doubt, help us in classifying these
states, but very little information can be gleaned until
such time as the noninvariant generators are identified.
Ke do not deal with such things as dynamical variables,
and therefore this identi6cation of the noninvariant
generators is of crucial importance.

We proceed to consider the NIG for the psuedo-
scalar-symmetric theory. The invariance group of the
Hamiltonian is SU(2)ISU(2)~ and the commutation
relations (CR's) are the following'.

P',I ]='i~ ~d),
[J.,Js]=is.p,J„
[I;,J.]=0.

Baryon multiplets, which furnish a UIR of this group,
are distinguished by their quantum numbers (I,I„J,J,).
The meson coupling matrices Q;, whose elements are
the coupling constants of the p-wave pion to the isobar
states, transform as vectors with respect to the isospin
and spin rotation groups. That is,

[e'-,~;]=';;e...
[Q;.,J,]=ze.„e,„.

We express the dynamical postulate which picks out
the appropriate NIG as

I Q'-, Q ]=0(' "~- I +' -,&',J,)
When 0=0, the NIG is T&&X(SU(2)r&g&SU(2)~), the
noncompact strong-coupling group that CGS obtained.
A detailed study of this case has been undertaken by
Singh and by Bose.'0

8=+1 corresponds to the choice of SU(4) as a NIG,
and 8= —1 to SL(4,R) as the NIG. Our investigations
in connection with the method of master analytic

'0 V. Singh, Phys. Rev. 144, 1275 (1966); S. K. Bose, ibid. 145,
1247 (1966).
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representations (MAR)" have established the fact that
these two groups are closely related, so we shall in-
vestigate the case of compact SU(4)—with considerable
hindsight —and make comments relevant to SL(4,R) by
a judicious use of the method of MAR.

We seek the UIR of SU(4) with SU (2)» and SU(2) ~

diagonal. For a special class of representations of
SU(4), those with I=J=X, the various independent
reduced matrix elements of Q, the noninvariant gen-
erators, are the following:

&li+1IIQIIX&= [(23+1)/(2k+3)j' 'I r' —16(X+1)'1'",
&~IIQII»='

The value of r will determine the isospin-spin multiplets
that occur in each SU(4) representation. If r= 10, the
only states that occur are I=J=-,'. If r=14, I=J= ~

and -', are included, and so on.
The method of MAR yielded the expression for Q,

the noninvariant generators of SL(4,R),

&x+1IIQI[x&= I (2k+1)/(2k+3)g'"LR'+16(x+1)')'",
&xlfQflx&=z.

In this group, we have an arbitrary parameter R which
enters into the expressions for the reduced matrix
elements.

To obtain the Euclidean-type group TsX(SU(2)
SU(2) ~, we consider the transformation

Q Q'=Q/ (o Q/&),

and formally let r ~ eo (or E~ eo) in the expressions
for the reduced matrix elements. XVe thus obtain

&l +1IIQ'll» = L(»+1)/(»+3) 3'"

& IIQ'll»=&.

The Q'a have been identified with meson coupling
matrices, and the matrix elements of Q between baryon
states give the baryon-baryon-meson coupling constants.

In SU(4) we 6nd that

I@*+I~'Ip&l'

Xo 2 r2

where the particle symbols have been utilized to label
the isobar states (with J,=re) and the noninvariant

' The method of MAR is a prescription for obtaining the
unitary (and other linear) representations of certain noncompact
groups by considering a "related" compact group. It consists of
two steps: {a) Multiply the operators of the compact group by
suitable factors of i (dictated by Weyl's unitary trick) to obtain
the algebra of the related noncompact group. Now perform this
operation on the matrix elements of the generators of the compact
group and identify the resulting expressions with the matrix
elements of the generators of the related noncompact group.
(b) Analytically continue these matrix elements (following Dirac)
into the region in which the corresponding generators are Hermit-
ian. This process may include possible analytic continuation of
the parameters of the representation. For a detailed version of
MAR with many many applications, see J. G. Kuriyan, N.
Mukunda, and E. C. G. Sudarshan, Institute for Advanced
Study Report (to be published).

generators. From the above ratio, it is possible to
deduce the width of Ã*+ as a function"of the param-
eter r.

If r=i0, only J=I=—,', 2 states occur, and the
above ratio becomes 1/28, which corresponds to a Ee
width of 80 MeV. For r=14, only I=J=-'„-,', and 2

states are included, and the width is 103 MeV, while
in the strong-coupling limit the ratio becomes 2 and
the width is 125 MeV.

For the NIG SL(4,R), we have the relation

I@*+I~'Ip&l'

I&pl~sf p&l & zs

and thus the 1V~ width is always greater than 125
MeV. R is here an arbitrary real parameter and is
determined by Axing the above ratio. However, this
would reduce the predictive power of the theory, from
small to almost nothing. So the group SL(4E) is not
what we want. To obtain the strong-coupling group,
we may just set R~ ~ in the above relation.

Another relation that we obtain, this time in all
three NIG's, is

Thus, (E*+S*+7ro) coupling seems to be the feeblest
coupling of the three, and there is some justihcation for
ignoring such terms in calculations such as reciprocal
bootstrap.

The method of MAR depends crucially on the fact
that the same analytic function serves as matrix ele-

ments for all the NIG. This uniqueness of the analytic
function trivially explains the similarity in results for
the diagonal matrix elements in all the three NIG's.

A. Magnetic Moments

If we assume that the isovector part of the magnetic-
moment operator transforms as a m' current and the
isoscalar part as J, we will be able to express the
magnetic moments of the isobars in terms of two pa-
rameters, which we choose to be the magnetic moments
of p and N.

For the J3=j components, we obtain the relations

u (&*+)= (9/3) p (p)+ (6/5) p(~),.V *)= «/3). (p)+(9/3). (-).
The best we can do at present is to compare the above
with the predictions of static SU(6)" theory after
setting

~(p)/~(~) = —l,
(which is equivalent to assuming the correct D//F

'~For a summary of SU(6) results see the excellent review
article by A. Pais, Rev. Mod. Phys. 38, 215 (1966).
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ratio), and then we have

both of which, not surprisingly, agree with the usual
SU(6) results.

Some comments on the difference between the con-
ventional SU(4) theory and the SU(4) NIG theory are
in order. Firstly, as the name suggests, we do not have
SU(4) as an invariance group, but have a smaller
invariance group SU(2)rQxSU(2)~. In the conven-
tional SU(4) theory, one cannot write a BBM vertex
(with p-wave pions) that is SU(4)-invariant. That is,
in the strict SU(4)-invariant limit, processes such as
%*~Ex are forbidden. In our theory, on the other
hand, we get around this diKculty because of a smaller
invariance group. Also, only isobar states are classified
into UIR's of SU(4), and not mesons, so there are
only nine mesons, corresponding to the nine nonin-
variant generators, and not 15 as in the conventional
theory. As yet we have made no comment on the
classification of meson-baryon states.

B. Meson-Baryon Scattering

The scattering amplitude at energy m for a process
such as

M; +B—+M;p+B',

written as a matrix with respect to B and B', is given
by

T;., ;p(22),

where we have used two indices to describe a meson
state, one for isospin and the other for spin. " The
amplitude matrix for M;p+B —+M; +B' is given by

T 's-(~),
Both of these amplitude matrices transform in the
same way with respect to the invariance group E. The
matrix

which is antisymmetric in the meson indices, is as-
sumed to be an energy-dependent multiple of the
commutator of the matrices Q; and Q;p. That is,

I:T'-. ~(~)—T~p. '-(~)]=f(~)I Q'-, Q tj.
This is a matrix equation, where the baryon indices
have been suppressed. Our earlier consideration of the
symmetry of the driving term in the Chew-Low equa-
tion would have led us to this relation, and CGS's
assumption of T,&&(SU(2) QXSU(2) ) would have led
them to conclude that

"J.G. Kuriyan and E. C. G. Sudarshan, Phys. Rev. Letters
16, 825 (1966).

We emphasize that this postulate, even though moti-
vated by the study of the driving term, is not meant
to imply that the symmetry of the driving term is the
symmetry of the scattering amplitude. The assumption
we make has to be elevated to the level of another
postulate in the theory.

We can now study the consequences of such a
postulate. The meson-baryon scattering amplitude in
terms of the elastic (non-spin-flip) and spin-flip ampli-
tudes is given by

T=f+g(n ~)

In the forward direction n=0 and T=f.
We deine the quantity

X(B1M1B2M2) f(B1M1~B2M2)
—f(B1M2 —+ B2'M1) .

For example,

X(p2r+, Pm+)= f(p2r+~P~+) f(p2r ~—p2r ),
and we obtain a nontrivial relation

X(P2r+,P2r+) =+ @22 X(P —2r-,m') .

For the spin-Qip amplitude we define

I (B1M1~ B2M2) g(B1M1~ B2M2)

+g(B1M2~ B2M1) .
We observe that Y(B1M1~ B2M2) is proportional to
the matrix element of the commutator of two non-
invariant generators between baryon states. Our WIG
postulate ensures us that this commutator is a linear
combination of the invariance generators

I Q'- Q~~j= (2" ~-~12+2~-s.~"~~)

Since we are considering only the spin-Rip part, the
relevant contribution can only come from the matrix
elements of J~. However, J~ is an isospin singlet;
therefore, only if Bi=82 does J~ have nonzero matrix
elements. That is,

7'(B1M1~ B2M2) =0 only if B1/B2.

One example of such a relation is

Y(P2r, 222r') =0,
which yields a trivial identity. We notice that I' is
deined as the sum of amplitudes, and the reason for
that is as follows: The matrix T p in spin-isospin space
is expressed as

T p=M(+&6 I2+M1 &I r, rpj/2,

where M &+1=A '+'+B&+1(e n). Since we consider linear
combinations of amplitudes which are antisymmetric
in meson indices, for the non-spin-Rip part we can
safely identify f with A( &. For the spin-flip part,
greater care must be exercised. If the antisymmetriza-
tion involved only the isospin of the meson, then B& &

would contribute. However, the differences of the am-
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plitudes (T s—Ts ) imply the exchange of both isospiri
and spin labels. Thus the spin-fhp part (of the differ-
ences) of the amplitudes g must be identified with 8&+l.

For spin-i2(isospin-~) objects, the only symmetric
term we can construct is 5 s (8,q), and the only anti-
symmetric term is e p~o~ (e,ztr&) So.we obtain nothing
more than the consequences of spin (isospin) invariance.

In a forthcoming paper, Deshpande" has made the
assumption that

This is more restrictive than our assumption on the
differences of amplitudes, and he is able to obtain
scattering-length relations which are in good agreement
with experiment. It is interesting to note that Balachan-
dran et cl.'5 are able to compute each scattering length
using current algebra and they obtain a theoretical
prediction of a33=0.08, as opposed to the Woolcock
value a33=0.215+0.005. Thus, for p waves Balachan-
dran et a/. predict the sum rule a33—z3i= +is—+ii.

C. Meson+Baryon —+ Meson+Baryon Resonance

For the case of baryon-resonance production, we
observe that the initial state is a (-', -,') object describing
a nucleon, while the final state is a (a2~a) object de-
scribing a baryon resonance [we use the symbols (IJ)
to describe an isobar]. We are considering differences
in scattering amplitudes,

T;.,~p( )t—tT;p, ; (w),

and by our postulate this is proportional to the matrix
element of the commutators of the of the two invariant
generators that describe the meson current sources
taken between a (-', —,') and a (-', —,') state. Our assumption
of the NIG implies that the commutator yields a linear
combination of the invariance generators I and J. But
neither I nor J, being invariance generators, can
connect states belonging to distinct UIR of the in-
variance group. So we have

T(B+M ~B~+Mp)=T(B+Mp~ B~+M ),
in particular

T(vr+p —+ m.+Ã*+)= T(7r p —+ ~ Ã~+),
T(~+p +7r'1V*++)= T(7r'—p ~ ~—iV*++) .

Let us consider the first of these relations in terms of
the isospin--', channel A& and the isospin- —,

' channel A3.
Ke obtain the equation

A i——(10)'I'A 3.

This prediction was Grst made in connection with

'4 N. G. Deahpande (to be published). We would like to thank
Deshpande for correcting some errors in our work and for sending
us his paper prior to publication.

5A. P. Balachandran, M. Gundzik, and F. Nicodemi, in
Lectures il Theoretical Physics (University of Colorado Press,
lioulder, Colorado, 1965); Nuovo Cimento 44, 1257 (1966).

the SU(6) s group and was compared with experiment
by Olsson. "Olsson's analysis (using the Olsson-Yodh
technique) of the data led him to predict that

A y=3.3423,

which is extremely close to our result.
Secondly, from the data of Daronian et al. '~ on the

above process in the form of scattering cross sections
(at 1.6 BeV/c);

o (a+p -+ ~+Ã"+)=0.9 mb,

~(~-p ~ ~-Ã*+)=1.0 mb.

We point out that both the B+3II~B+M and the
B+~~B*+M results depend only on the commuta-
tion relation (CR) of the NIG and they are therefore
true for every choice of representation of the NIG
(i.e., they are independent of y). By the principle of
MAR, it follows that these relations hold for SU(4),
SL(4,R), and T(9)X[SU(2)QXSU(2)]. The relations
test the basic NIG identi6cations of the currents, and
their agreement with experiments verifies the choice
made for the meson sources.

III. UNITARY-SYMMETRIC PSEUDOSCALAR
THEORY

In order to include strange particles in our discus-
sions, we consider SU(3)QxSU(2)~ as our symmetry
group E of the Hamiltonian. The low-lying isobar
states which the Hamiltonian describes fall into
multiplets which furnish UIR of the symmetry group
E. Since the internal symmetry group is SU(3), the
meson currents transform as octets with respect to
this group and vectors with respect to the SU(2)~
group. We have thus a p-wave octet of pseudoscalar
mes ons.

In analogy to the charge-symmetric pseudoscalar
theory that we have considered, we will generate new
NIG, since the dynamical postulate involving the
identification of the noninvariant generator and the
invariance group has been made. The NIG in this
case are the noncompact

T4&({(SU(3) xQSU(2) )

and the compact SU(6).
Let F; be the generators of SU(3), J that of SU(2) ~,

and Q; the noninvariant generators. We can express
the fact that the invariance group Eis SU(3)QxSU(2)'
by the following set of CR's:

' M. G. Olsson, Phys. Rev. Letters 15, 710 (1965); 15, 768(E)
(1965)."G. Yodh (private communication).
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In addition, Q; are the components of a P-wave octet
operator:

LQ;.,F;(=if;;sQ...
[Q;.,Jp)=is.p,Q;„

The dynamical postulate involving the commutator of
two noninvariant generators is that

PQ;,Q;pf=e(i8, ;s p„J,+if;;sb pFs+id;;ss p,Q s).

Here 0=0 corresponds to the choice of the noncompact
group

Ts4&& fSU(3)QXSU(2) },
as our NIG, and 0=1 corresponds to the choice of the
compact SU(6).

We shall restrict ourselves to the study of the
compact noninvariance group SU(6), since this seems
to be the most promising one. Unlike the previous
case of SU(4), to obtain the most general expression
for the various matrix elements of these groups is an
arduous task, and perhaps an unfruitful one. So we
content ourselves with a particular choice, the represen-
tation of SU(6) with a -', + octet and s+ decuplet of
baryons. This is the familiar 56-dimensional representa-
tion of baryons.

The mesonic currents cause transitions between the
octet and the decuplet, and it is possible to relate the
various independent reduced matrix elements to one
another.

The independent reduced matrix elements which
occur are the following:

with

(IOs IIQlllos& =~,
(8-:IIQII»l&=p,

{(gsllQIIgs&) t=~
((glIIQllgl&) =6,

(Io-:IIQllg-:&=p'

related to P through the Hermiticity relation.
I
The

magnetic quantum numbers are necessarily absent, and
in the state IEj &, E is the dimension of SU(3) repre-
sentation and j is the spin. 8 and y are the antisym-
metric and synunetric coupling of 8Qxg, respectively. )

We use the canonical method of evaluating these
reduced matrix elements to obtain

rs=&2y= —P,
sy+5, -

p'= (v'-'. )p.

The consistent set of solutions relating rs, p, p', y,
and 8 implies that there exists a representation of the

'sB. W. Lee, Phys. Rev. Letters 14, 676 (1965); 14, 850 (R)
(1965};K. C. G. Sudarshan, ibid. , 14, 1083 (1965); S. Okubo,
Phys. Letters 1?, 172 (1965l.

algebra with only the 8 —,
' and 10 ssstates. In this

connection we point out the equivalence of this ap-
proach to that used by I.ee" in a derivation of SU(6)
results with the help of current algebra. He defined
currents which obey the algebra of SU(6) but with
other Lorentz transformations also specified. He then
found that by using an intermediate set of states of
8 tsand 10 ss, he could obtain a consistent set of solu-
tions, and concluded, incorrectly, that this method is
quite distinct from the group-theoretical formulation.
The equivalence was first pointed out by Sudarshan
and Okubo. " The relation between P, n, and P' is
already inherent in our SU(4) calculation, while the
y-to-5 ra, tio, which is related to the D/F ratio, is the
only new information contained in the above reduced
matrix elements.

We find that

I(P iel&*+&I'/I(P l~sIP& I'= I »
which is identical to the SU(4) result. This is no
surprise, since the above ratio involves only nonstrange
particles, and so we are restricting ourselves to the
SU(4) subgroup of SU(6)—and the SU(6) representa-
tion is chosen so that the SU(4) subrepresentation
involving nucleon isobars is identical to the one we
considered earlier.

By identifying the strangeness-conserving Fermi
component of the weak. interactions with the corre-
sponding component of the isotopic-spin generator, and
identifying the Gamow-Teller component with the cor-
responding component of the pion coupling (apart
from the change in coupling constant), we can im-
mediately write sum rules for the weak interactions.
For the strangeness-changing weak interactions we use,
correspondingly, couplings proportional to the strange-
ness-violating "conserved" generator and the kaon
coupling, respectively. We shall not undergo the
tedium of displaying the predictions.

A. Magnetic Moments

To derive the electromagnetic properties of baryons,
we assume that the magnetic-moment operator trans-
forms as (v3s'+g), where the particle symbols have
been utilized to specify the quantum numbers. These
are p-wave pseudoscalar mesons. They carry a spin
J= 1 and are the J,=O components. We can thus use
the Wigner-Eckart theorem and obtain the following
set of relations:

(& )= —(&')= (~)=l ( )= (=)=l (="')
= —k~(P) = —s~(&+)= —sar(&' ~ ~)

p(P) = ll P*+')= IP'*')= p(&* )-=~(I'*+)-
= —~(I' )= —u(="* )=—u(fl )

We can use the same operator to compute radiative
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I'IG. 1. Feynman diagram for EM mass differences.

decays of baryon resonances. We get

M(1V*+~p+y)
M(F—*+~2++y) =3II (N*' —+ I+y)
2M (I'*o~ go+7) = —M ( eo ~ o+y)

=2M(Y*o~ A+y)/v3,
M (I'* -+ Z +y) =0=M ( * —+ +y),

M(Na+ ~p+y) = ss&2tr(p) .
These agree with the usual SU(3) and SU(6) results
except for phases. We follow the definition of particle
states and the Clebsch-Gordan (CG) coefficients of
SU(3) as given in the tables of Chilton and McNamee. "
The (F*+—+ Z+)/(Y*o ~ Z ) and the (N*+ ~ P)/
(N*o-+e) are consequences of charge independence
alone. "

One of the most remarkable predictions of this
theory is that

tr(&)/&(p) = —-'

which is in very good agreement with the experimental
ratio of —0.68. Data on other relations are quite
sketchy.

B. Electromagnetic Mass Differences

In a perturbation-theoretic calculation of electro-
magnetic (EM) mass diff erences, one considers a
Feynman diagram of the kind given in Fig. 1. The
mass difference Am due to this electromagnetic eRect
is, by the usual Feynman rules, proportional to

(p I (i,i,)+ I p)

Thus to obtain the EM mass difference, we must use
a second-order operator.

We first obtain the contribution to EM mass diRer-
ences from the charge part of the interaction. We
ideehfy the charge operator with the invariant generator
of SU(3) in the combination (I,+-,F). This identifica-
tion enables us to make the following set of predictions:

M (N*+) M(N*')—
=M (F'r*+)—M (I'i*o)=M (P)—M (m)

=M(Z+) —M (Zo), (I.1)
M(g* )—M(Z*)

=ALII(N* )—M(N*') =M(Yr* )—M(I'r*o)
=M( )—M( ')=BI(Z )—M(Z'), (I.2)

' P. McNamee and F. Chilton, Rev. Mod. Phys. 36, 1005
(&964).

'0 R. E. Marshak, S. Okubo, and E. C. G. SI&darshan, Phys.
gev, J.06, $99 (1957),

and

Thus we obtain

AN =M (p) M(e)—
AX=M(Zo) —M(Z ).

M (Z+) —M (Zo) =—', (SA1V+35K), (LII.1)

M(Z+) —M(Z )= (11/10) (AN+AX), (III.2)

M("-')—M(=-) =-'(3AN+sAz), (nI.3)

M (N*+) M(1V*')—
=M (Y'*+)—M(F*')=-', (3AN —2hZ), (III.4)

M(N*') —M(N* )=M(I'*') —M(Y* )=M( *')
—M(=-*-)= (6~zyAN)/s. (nI.s)

21 Strictly speaking, we can only take something which trans-
forms in this fashion, and then we are forced to take all possible
intermediate states. Thus the results we obtain are dependent on
our assumption."S. Weinberg and S, B. 'Prehnan, Phys, Rev. 116,46$ (1959).

M(N ''.)-M—(1V~)=3LM(N*+) M—(N*')j, (I.3)

which are consistent with the static SU(6) predictions.
We then compute the contribution to the KM diRer-

ences due to the mugrretic moment operator, already
identi6ed as the noninvariant generator in the com-
bination (43m'+ ri)."

Thus we have the product of two magnetic moment
operators, and in the intermediate set of states we are

justified in restricting ourselves to the —,+ octet and
~3+ decuplet baryon states. This is only because we have

identified the operator as a component of the non-
invariant generator. %'e obtain the following:

V (N*') —M (1V*+)

=M(F*)—3/I(F*+) = orl M(N) —M(p) j, (II.1)

M(N* ) M(Nao—)
=3II(F* )—M(I'*o) =M(.~)—M(.*')

= (7/5)LM(~) —M(p) j (II 2)
&3Mz (Zo —+ A)

=I M(Zo) —M(Z+) —M(n)+M(p)), (II.3)
M(Z+) —M(Z —

)
=M(=-') —M(=--)+M(p) —3II(e), (II.4)

M(Z )—3II(Z+) = (16/11)LM( )—M(=') j, (II.5)

M (Z
—

)—M (Z') = (5/11)LM (
—

)—M (-')i (II.6)

M(Zo) —M (Z+) = (11/5)LM(N) —M(p) j, (n.7)

as well as the relation that follows from charge inde-
pendence alone, "

M (N*++)—M (1V*—)=3M (N*+)—3M (N*') .

If we consider the contribution to the EM mass
difference due to the charge and magnetic-moment
operator to several orders, we 6nd that there are two
parameters in the problem and we can thus express all
the KM mass differences in terms of the KM mass
diRerences of the nucleons and the Z and Z, i.e.,
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M(g+) —M(go) = —2.7 MeV,

st[8hjV+3AZ]= —4.95 MeV.

Similarly, we find

(III.1')

and

M(Z+) —M(Z-) = —7.81 MeV.

(11/10)[6jV+AZ] = —6.75 MeV, (III.2')

M( ')—M( )= —6.5 MeV,

—s,[3d jV+8j))Z]= —8.53 MeV. (III3')
We should, however, take these predictions as merely

an indication of the fact that one can make such
calculations of static quantities in this theory. We
would not like to consider these static results as the
most compelling reasons for considering this theory a
success. The static results should be judged in the light
of the original assumptions regarding the identification
of the magnetic moment operators.

"A. J. Macfarlane and E. C. G. Sudarshan, Nuovo Cimento
31, 1176 (1964).

'4 R. H. Dalitz and F. von Hippel, Phys. Letters 10, 155 (1964)."S. Coleman and S. Glashow, Phys. Rev. Letters 6, 423 (1961).

The comparison of set I with experiment is already
in the literature; the excellent review of SU(6) by
Pais" provides all the necessary information. We do
not have sufhcient experimental data to check Eqs.
(II.1) and (II.2) of set II.

Equation (II.3) is the Macfarlane-Sudarshan Z —h.
transition's mass relation obtained from SU(3) and
analyzed in detail by Dalitz and Von Hippel, " who
estimated Mr(Zo —3.) and found it to be in good agree-
ment with the above prediction.

Equation (II.4) is the well-known Coleman-Glashow"
relation, which agrees well with experiment.

Comparing Eq. (II.5) with experiment, we obtain

M(Z )—M(Z+)=7.8 MeV,

(16/11)[M( )—3II( ')]=9.5 MeV.

The error in the determination of the mass of the is
large enough to make the above prediction quite a
reasonable one.

As for Eq. (II.6),

M(Z —
)—M(Zo) =5.1 MeV,

(5/11)[M( )—M( ')]=-3 MeV.

We find it to be in poor agreement with experiment.
In addition, one can use this equation in conjunction
with Eqs. (II.4) and (II.5) to obtain equally poor
predictions. So this is an unacceptable prediction.

In Eq. II.7
3II(Zo) M(Z+) =2.86 MeV,

(11/5)[M(N) —M(p)] = 2.86 MeV.

The agreement is remarkably good.
Comparing Eq. (III.1) with experiment, we find

C. Meson-Baryon Scattering

We use the same notation as that employed in the
discussion of SU(4) as a NIG. We expressed the scatter-
ing amplitude as T= f+g(n e), and defined

X(BtMt,BsMs) = f(BtMt &B—sMs) j(Bt—Ms ~ Bs'Mt),
F (B1Mt)B2M2) g(B1M1~ B2M2)+g(B1M2 BsM1) )

where f corresponds to the non-spin-fiip part and g to
the spin-Qip part of the amplitudes.

We recall that when the invariance group was SU(4)
we postulated that t;,jp(w) —1jp,; (w) was proportional
to [Q;,Q,p], considered as matrices in the baryon
space. The proportionality factor was an energy-
dependent quantity. The algebra of SU(4) assured us
that the corrunutator yielded an invariance generator
according to

[Qia)Qjp] =&e)jk~apIk+&sapy~ijIY ~

For the case at hand, which is an SU(6) NIG, if we
made a similar postulate for the diGerences between
scattering amplitudes, we would notice the important
fact that the corrunutator yields invariant generators,
as well as noninvariant generators, according to

[Qia)Qjp] =&fijk~))pFk+&eapy~ij Jy+seapydijkQk

We consider X(BtMt, BsMs), defined earlier, which
is the matrix element between baryon states 8& and 82
of the non-spin-Qip part of the above CR. Since PI„
the unitary spin generator, is the only spin singlet
which occurs on the right-hand side of the commutator
of the two Q's, we need to consider only the matrix
elements of FI, between baryon states which have
definite SU(3) [and some SU(2)] quantum numbers.
Thus the non-spin-Rip part of all processes will be
expressible in terms of one parameter.

The results are the following:

X(NK+,nK+)
=X(p~+,X+K+)=v2X(js~+,Z'K+) =X(p~+,p~+)

2X(pm= ZoKo) = X(nor+—,jss+)
= —-', 42X (p7r—,m')

=X(pK,nK )= 'X(pk+, pk+) =—( Q ;)X(p7r ,Ak —), -—
X(pZo R'K+) =X(p )Z K+)=X(nZo Z k+) =0.

The set of relations

,'X(pK+, pK+) =X(nK+-,jsK+)

=X(p~+,p~+)

are the Johnson-Treiman (JT)" relations derived from
SU(6) theory as relationships involving total cross
sections. We have, however, rederived and extended
their validity to the entire non-spin-Qip amplitude. In
the forward direction the spin-Qip term vanishes
identically, and hence, of course, the forward scattering
amplitude is entirely a non-spin-Rip amplitude.

~6K. Johnson and S. B. Treiman, Phys. Rev. Letters 14, 189
(1965).
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It is important to notice that we have utilized only
the SU(3) property of the baryons, as we have con-
sidered matrix elements of the generators of SU(3)
between baryon states. The SU(6) properties such as
the D/Ii ratio have not been used and, consequently,
No rrtatter rabat represerttatt'ort of SU(6) the —,

'+ octet
states are assigned (56, 70, 700, ), the above eqgatiorts,

imcludieg the JX' relatiorIs, are YJaHd.

To be more explicit, if we had assigned the ~~+ octet
baryons to the 70- (rather than the 56-) dimensional
representation of SU(6), then we would have had,
instead of cr, P, p, and b, many more independent
reduced matrix elements of the noninvariant genera-
tors, corresponding to the transitions between the
various SU(3) representations in the 70-piet. The sole

difference between the assignment of the baryon to
the 56-piet and the 70-piet would manifest itself in
the change in the values of the reduced matrix elements
of the noninvariant generator. However, in the above
scattering relations, we consider only the invariant
generators, which are the generators of SU(3), and the
only nonvanishing matrix elements are the diagonal
ones. Thus we have a representation-independent state-
ment of the JT relation for the non-spin-fhp part of
the amplitude.

On comparing with experimental data, we And that
&(pK+,pK+) 2X(rtK+, rtK—+), but the second equality
is in disagreement. '7 The reason for this is not too
difficult to find, because the processes involving sr+P

and K+p are so different that the comparison must
be made with due account taken of kinematic correc-
tions, i.e., we remember that the proportionality factors
involved energy-dependent multiples.

One can combine the two relations and write

cr(K+P) o(E P) = o (K+—rt) o—(K rt)+o (m+—P) o(n P), . —

a relation derived by Volkov and Ruegg and by Ruhl. "
This agrees remarkably well with experiment.

Many people have derived the JT relations, but this
is the ffrst derivation where a represewtatsort srtdepertd-elt

relation is obtained for the entire non-spin-Qip ampli-

tude (and not only for the forward scattering amplitude).
For the spin-Rip amplitude, we define

Y(B,M,B,Mp)=g(3I B, +MpB;)+g(MpB—,~M B;).
The contributions to Y(B;M,B;Mp) must again come

from the matrix element of the commutator of two of
the Q's between baryon states. The commutator under

consideration was given earlier.
Ils, the generator of SU(3), is a scalar in spin space

and cannot possibly contribute to the spin-Qip ampli-

tude. YVe choose our mesons judiciously so that the

d,,~ coupling is zero. An example of this is the process,
involving a m meson and nucleons, considered in the

~7 W. Galbraith et al. , Phys. Rev. 138, 913 (1965).
's Volkov and Ruetgg (unpublished); W. Ruhl, in Proceedings of

the Seminar on IIigh-Energy Physics and Elementary Particles,
Treeste, Dd5 (International Atomic Agency, Vienna, 1965).

SU(4) theory. This means that we can effectively
ignore the noninvariant generator (Q) term. J» is a
scalar in unitary-spin space and will have nonvanishing
matrix elements only when the initial and final states
have the same unitary-spin quantum numbers.

The predictions are

Y(p~ ,rt~'-) = Y(p~ ,Z-K-+) = Y(pKo,=-'E+) =0.

D. Baryon Resonance Production

The initial baryon state belongs to a —,'+ octet and
the final to a ~+ decuplet. Following the reasoning in
the previous section, we note that neither FI, nor J~,
being invariance generators, can contribute to such
processes. In order to avoid bringing in the Qs~, we

consider only such processes involving mesons which

have zero d;;I, coupling. For this we make the prediction

T (BM + BMp) = T(BMp ~ B*3II )

One such is the relation we obtained from the SU(4)
theory,

T (n+p +sr+1V*+)—= Trr (p —+ sr+1P+)

and the consequent isospin amplitude relation A&

= (+10)As. We discussed the experimental agreement
of the above earlier.

For Kaons,

T(K p +K'=*')— —T(K p~K—~"')=0,
which also gives an isospin amplitude relation Ao ——3A~.

However, the isospin triangle relation for ™*pro-
duction gives the following result:

T(Kop ~ E+.~o)+T(K p~ Ko.eo)-
= T (K p ~K+.* ) .

Thus our prediction implies that

T(K p-+K~* )=2T(K p~Ko"*o)
01

R=o(K p —+K+ * )/trK p~K' ')=4
Experimentally one obtains

at I'rr 2.24 BeV/c, -R——0.4 (London);

at pic-=3 BeV/c, R=0.25 (Badier et al.).
This prediction is the same as that obtained from the

SU(6) rr theory. "
Iv. CONCLUSION

Ke can now indulge in some speculative reasoning,
as follows: Consider incident pions of very low energy
in the Chew-Low expression for the harp scattering
amplitude. The Born term would be of the form

(ApA )'&'—g' (A A p)'&'

T-p"(~) = Z +
rv s Ms M; wMs M;+—tv— —

"J.Carter et ol., Phys, Rev. Letters H, 373 it965),
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since the pions are of low energy, Mk —M;~0, and

&-p"(w) = (—g'/w)LA- A pj".
We thus see that A(s.+p~z+p)= —A(z p~s P) in
this approximation.

Consequently, we obtain the isospin amplitude rela-
tion 2A a+At ——0, which is extremely well satisfied by s-
wave pion scattering lengths and has been recently de-
rived by Tomozawa, by Balachandran, et al. , by Raman
and Sudarshan, by Weinberg, and by Hamprecht. "

It is of interest to note that the group-theoretic
framework discussed above can be related to dynamical
assumptions about the high-energy behavior of the
meson-baryon scattering amplitude. We know that the
Born approximation with a single intermediate state
behaves like 1/w. If we require that the complete
amplitude fall off suKciently for large zv, we can
deduce that the integral of the imaginary part of the
scattering amplitude should obey some sum rules. " If
we approximate the intermediate states by resonant
baryons in the direct and crossed channels, we have

(A jsA sr) A jsA ki

tp "(w)= —g'Q +
Ms M; w—Ms —M,+w—

If t(w) goes down faster than w ' for large values of w,
we can deduce the relation

jkg ki g jkg ki

which is the same as"

LA, A p]"=0.
More generally, if we knew that the leading term in
the amplitude in the asymptotic region was a "Regge-
pole" contribution of the type

(1/w)fp ",
then we couM obtain

g'fA-, A —pl= fp-

It is now up to us to make definite the nature of the
coupling fp If we ch.oose it so as to assure ourselves
that the Lie algebra of the invariance group K and
the extra generators A close under commutation, we
can obtain one or another form of the NIG. We have

'eY. Tomozawa (unpublished); A. P. Balachandran et at. ,
(Ref. 15); B. Hamprecht (unpublished); K. Raman and E. C. G.
Sudarshan, Phys. Letters 21, 450 (1966);S. Weinberg, Phys. Rev.
Letters 17, 616 (1966).

3'A partial list of early papers using the superconvergence
relations includes M. L. Goldberger, H. Miyazawa, and R.
Oehme, Phys. Rev. 99, 986 (1955); A. P. Balachandran, P. G. O.
Freund, and C. R. Schumacher, Phys. Rev. Letters 12, 209
(1964); A. P. Balachandran, Ann. Phys. (N. Y.) 30, 476 (1964);
Phys. Rev. 137, B177 (1965); Nuovo Cimento 42, 804 (1966);
V. de Alfaro, S. Fubini, G. Rosetti, and G. Furlan, Phys. Letters,
21, 576 (1966);L. D. Soloviev, JINR—Joint Institute for Nuclear
Research (Dubna), JINR Report (unpublished).' See, L. K. Pande, International Center for Theoretical
Physics, ICTP Report (unpublished), where the isobar mass
spectrum which is a consequence of the above group structure, is
obtained by explicit calculation.

thus "deduced" the NIG from the asymptotic proper-
ties of the meson-baryon scattering amplitude.

In conclusion, we would like to touch upon a few
things which have not been discussed yet. We notice
that there was no necessity to introduce vector mesons
in this theory. We could either take the point of view
that they are not basic entities, and therefore deserve
to be ignored, or consider the scalar coupling coeS.-
cients that occur on the right-hand side when we con-
sider the matrix elements of the commutator of two
noninvariant generators as representing the conserved
coupling of vector mesons. Also, we could deviate from
our static-model assumptions and dehne our particle
states to have baryon-number-zero objects as well;
then we could assign the mesons to a 35-dimensional
representation rl la static SU(6) theory. The important
difference here is that the roles of the vector and
pseudoscalar mesons will be interchanged, because
pseudoscalar mesons are p-wave entities. So the singlet
that occurs in this representation is the X' and not the
P. This seems to be the conclusion of the bootstrap
approach to SU(6) theory. "

The second point to ponder is the fact that only
p-wave pseudoscalar mesons have been considered, and
it seems as if we cannot do anything for s-wave pseudo-
scalar mesons.

The third point concerns the relationship of this
theory to static models. We considered an intermediate-
coupling model to obtain the compact NIG: Is it
possible to obtain the latter in some dynamical model?
At every point, it seems in retrospect, we were moti-
vated by the static-model results, and yet our assump-
tions have not yet been justified in any serious fashion.
The only justification (though perhaps of the most
significant kind) comes from the agreement of our
predictions with experimental results. '4 On the positive
side, we have succeeded in obtaining many of the
static results of the conventional SU(6) theory without
having the serious defect of the usual SU (6) approach—
that an SU(6) invariant BBM vertex for p-wave
pseudoscalar mesons does not exist. Previously, one
was forced either to consider groups such as SU(6)
80(3)ss or to turn a deaf ear to these objections.

In the scattering predictions, we seem to be able to
obtain some good results: The j'T relationship, first
derived for the forward amplitude from SU(6) theory,
is now a representation-independent statement for the
entire non-spin-Rip amplitude. The Ã production rela-
tion in z.p scattering, which was first derived in SU(6) w,
is now true for p-wave pions and agrees with experi-

'~ R. H. Capps, Phys. Rev. Letters 14, 31 (1965);J. G. Belin-
fante and R. E. Cutkosky, ibid. 14, 33 (1965)."D. B. Fairlie t Phys. Rev. 155, 1694 (1967)g has considered
the derivation of the intermediate coupling model from a boot-
strap hypothesis. N. Mukunda, E. C. G. Sudarshan, and A.
Bohm /Phys. Letters 24, B301 (1967)g have shown how to con-
struct a relativistic NIG which give the spin isospin sequence
I=J= 2, $, ~, by considering a 14-parameter Lie algebra.

35K. T. Mahanthappa and E. C. G. Sudarshan, Phys. Rev.
Letters 14, 163 (1965).
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ment. This relation is an angle- and energy-independent
statement. In the case of ™*production we obtained
a result, not in agreement with experiment, such as
that derived from SU(6)sr. There are many more
results which we have not been able to analyze because
of a lack of experimental information.

If group theory is to compete in any serious way
with dispersion or Geld theories then one must be able
to make comments on the momentum dependence of
form factors (or in our language, matrix elements).
In our approach, this is equivalent to the statement
that the invariance group must include the Poincare
group, and the noninvariant generators (belonging to
a suitable NIG) must mix states of the different repre-
sentations of the invariance group (hence, different
momenta). If we identify the noninvariant generators

as, say, the isovector current, then the analytic ex-
pressions of the matrix elements of this operator will

be our isovector form factors, and their momentum
dependence will be known. Even though the problem
can be formulated so easily, the task of solving it is a
diKcult one.
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Current commutation relations and Fubini sum rules are saturated in a model that is a relativistic version
of the three-dimensional harmonic oscillator. The model is essentially determined by the requirement that a
local nonderivative relativistic coupling of the oscillator to an external electromagnetic Geld give rise to
form factors that reduce to the usual result in the nonrelativistic limit. The relativistic form factors decrease
as a power of the invariant momentum transfer, although they fall o8 exponentially in the limit c -+ ~.
Vertex functions and scattering amplitudes are investigated, and it is found that (i) the Compton scattering
amplitudes for current-particle interactions satisfy Fubini sum rules. (ii) All strong-interaction amplitudes
are superconvergent in the Born approximation, in which an infinite/equal-mass multiplet is either ex-
changed or forms a set of intermediary states. (iii) Scattering amplitudes can be arranged in a hierarchy of
increasing convergence (e.g., no spin flip, single spin flip, double spin flip), as suggested by de Alfaro et al
Finally, the problem of introducing the mass spectrum in the one-particle propagator is discussed.

X. I5'TRODUCTION

ECENT work on current algebras and super-
convergence relations has been directed towards

the construction of more or less realistic models, in
which the attempt is made to saturate these relations
with a number of idealized states. ' In a nonrelativistic
framework this is certainly possible; the success of the
bootstrap in the static model may be cited as an example
of saturation of a superconvergence relation with a
small number of single-particle states. On the other

*Supported in part by the National Science Foundation and by
the Comision Nacional de Knergia Nuclear de Mexico.

t Present address: International Centre for Theoretical Physics,
Trieste, Italy.' V. de Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Institute
di Fisica Dell Universita, Torino Report, December, 1966
(unpublished).

hand, it has been discovered that saturation of super-
convergence relations in a relativistic theory requires an
ininite number of states. ' As has been emphasized
repeatedly, the technical complications that arise from
an infinite number of single-particle states are com-
pensated by unexpected dividends. In fact, it has been
shown that what is originally introduced as a discrete
set of one-particle states sometimes turn out to repre-
sent a continuum of two-particle states, in addition to
a number (finite or infinite) of physical one-particle
states. 2

The three-dimensional harmonic oscillator seems to
provide a suitable starting point for a relativistic model
because the energy spectrum is not unlike that which
might be expected for elementary particles. The absence

' C. Fronsdal, Phys. Rev. 156, 1665 (1967).


