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In Fig. 8, we show o. and y as functions of the meson
and baryon mass-splitting parameter b. The plots are
remarkably linear out to 8=0.7. However, on closer
examination we 6nd that third-order effects and higher
are important, even at 8=0.7. This is because a strong
second-order effect in s, cancels the strong third-order
effect in, for example, Es7—rp(I' ).

The importance of the higher-order effects becomes
obvious when we plot 0- and 7 as functions of the coup-
ling symmetry-breaking parameter e= e&= c2. Here, the
second-order terms of s, are of the same sign and mag-
nitude as the third-order effects in, for example,
Esr ro(I'*), and the plot is quite nonlinear, as shown in
Fig. 9.

These results are not very dependent on the value of
s, if s is not near a pole of E(s). The sum rules slowly
become better satisfied as s is increased. For example,
for 8=0.25 and e=0, we have y=0.23 at s= 14 (BeV)',
y=0.10 at s=20 (BeV)', and y=0.04 at s=45 (BeV)'.
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Parent and daughter Regge trajectories are found numerically in the scalar Bethe-Salpeter equation with
trilinear coupling in the ladder approximation. By using the ordinary partial-wave projection of the scatter-
ing amplitude, we obtain the trajectories over a range of energy below threshold; and by projecting the
scattering amplitude into 4-dimensional spherical harmonics, we find the slope and intercept of the tra-
jectories at s=0.

X. I5'TRODUCTlON

ECENTLY& Freedman and Wang' have demon-
strated that in order for unequal-mass scattering

to be consistent with the Mandelstam representation

Regge poles must occur in "families" where a "parent"
trajectory at l=ots(s =0) implies the existence of
"daughter" trajectories with o.&(0)=no(0) —E', %=1,
2, . . .3oth the above paper and Domokos and Suranyi'
have pointed out that daughter trajectories must exist
for Bethe-Salpeter equations which display O(4) sym-
metry. Freedman and Wang' and Domokos' have
speculated about sting experimental resonances to
daughter trajectories. It is therefore important to ex-

amine the slopes and shapes of the trajectories of the
Regge "family" in a relativistic model such as the
Bethe-Salpeter (BS) equation, where the daughter
trajectories were first found. We present the results of
numerical computations of the trajectories of the scalar
SS equation with trilinear coupling in the ladder ap-
proximation.

The calculations were done by two independent

*Work supported in part by the U. S. Atomic Energy Com-
mission.' D. Z. Freedman and J. M. Wang, Phys. Rev. 153, 1396 (196'7).

2 G. Domokos and P. Suranyi, Nucl. Phys. 54, 529 (1964).
' G. Domokos, Phys. Rev. 159, 1387 (1967).

methods. The erst method involves the direct solution
for the poles of the partial-wave amplitude, and there-
fore does not make explicit use of O(4) symmetry. The
parent and 6rst daughter trajectories were computed
over a range of energy below threshold in the Regge-
pole channel, and for different values of the coupling
constant. The effect of renormalizing the propagator,
and thus satisfying a form of three-particle unitarity,
is also shown.

The second method, which gives only the intercepts
and slopes of the trajectories at s=0, but to a higher
degree of accuracy, uses an expansion of T in 4-dimen-
sionaI. spherical harmonics. This method of solution
was used for several coupling constants, exchange
masses, and different external masses.

II. THE BETHE-SALPETER EQUATION

Using the 4-momentum assignment shown in Fig. 1
and a (,+,+,+) Lorentz metric, the BS equation
for 2 (nonidentical) particle scattering is

2'(p P' ~) =&(P P') d'P" E(p,p")~(p"—,s)2'(p",p'p),
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FIG. i. Kinematics.
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The partial-wave scattering amplitude T~ and the
potential V~ can be separated into even and odd parts
under the exchange co -+ —co.

T~"'(lyl ~ ly'l, ~' ~) =sLT~(lyl, ~ ly'l, ~")
+T~(lyl, —~; I

y'l, ~'; ~)j,
V~"(lyl, ~; ly'l, ~'; ~) = sCV~Iyl, ~' Iy'l, ~")

+vi(l yl, —~; I
y'l, ~', ~)j,

Let

III. METHOD I: SOLUTZON OF THE
PARTIAL-WAVE EQUATION

T(p,p', )=Z v (~,v)T(lyl, ; Iy'I, ', )v *(~',~'),
L,m

2)(alld

&(p,p') =2 v "(~,v) v (lyl, ; ly'I, ')1' "'(t}',~'),
l m

where the
I yl is the magnitude of 3 momentum and re

is the 4th component. Then the BS equation for the
lth partial-wave amplitude is

T,(lyl, ~; Iy'l, ~'; s)

= v (lyl, ~; ly'l, ~')+ d~ ly" I'dly"
I

—00 0

x vi(lyf, ~; ly" l,~")G(ly" l,~")
xTi(ly" l,~"; ly'i, ~';.), (3)

where

G(lyl, ~) =I Iyl'+(~+szv'&)'+~'3 '

x L I y I
'+ (re——',zv's)+zzz'g —'

(lyl'+ ly'I'+z '+(~—~')
V~=—— —,Q~l—

~ pp'
4 11. W. Lee and R. F. Sawyer, Phys. Rev. 127, 2266 (1962};G.

C. AVick, ~Md. 96, 1j.24 (j.952).

where

G(p )=I:(p+l&)'+~'—' j 'L(p —l&)'+ '— j-',
(i/~')}

E(p,p') =
(p p')'+—z

' ze-
for the ladder approximation,

and ~ is the coupling strength. In the center-of-mass
system k = (gs, 0,0,0). After making the Wick rotation, 4

and redefining K and T to absorb some ~'s, the SS
equation becomes

T(p,p' ~) = E(p p')+— d'p" &(p,p")

XG(p",s) T(p",p', s), (1)
where the p space is now Euclidean, k= (0,0,0 zgs—),
and

(X/zr')
&(p,p') =

(p p')'+z '—

with the plus signs for e and the minus for 0.
Then Tt, ' and T~' separately satisfy Eq. (3) with

potentials V&' and V&', respectively. In operator form,
we have

Te Ve+VeGTe
0 V(0+ V)OGT)0

Solving Eqs. (4) and (5) gives us

Ti= Ti'+T(' ——(1—Vi'G) 'V)'+(1 —V('G) 'Vi'

(4)

(3)

Regge poles are obtained after continuing Eq. (6)
to noninteger t. In practice, integrations are done by the
method of Gaussian quadratures. The kernels are then
approxin1ated by matrices, and the poles of the scat-
tering amplitude found by searching for the value of t
for which one of the Iredholm determinants equals
zero, i.e., either

detI 1—V('Gj= 0,

detl 1—V("Gg=0.

(7)

' See Ref. 1, Ecl. (21).

We note the following two points. For the scattering
of identical particles, Eqs. (7) and (8) would correspond
to the condition for locating the even- and odd-signature
trajectories, respectively, if exchange of a particle of
mass p in the I channel were included in the potential.

Secondly, for equal-mass scattering the odd potential
V~' vanishes when the Gnal-state particles are put on the
mass shell. Thus the odd trajectory given by Eq. (8)
does not contribute a pole to the scattering amplitude
in Eq. (6). Nevertheless, the trajectory computed by
Eq. (8) has relevance in our model, since a small split-
ting in the external masses would perturb Eq. (8) only
continuously, while allowing a nonzero residue.

In relation to this last point, note that at s=o in
unequal-mass scattering the momenta on the mass shell
are unphysical. ' Nevertheless, our determination of the
location of the trajectory is still relevant since the
Fredholm determinant does not depend on these mo-
menta. This dependence would, however, be reflected
in the residue of the pole.

Since we are calculating the Fredholm determinant
of a two-dimensional integral equation, accuracy is a
problem. (The size of the mesh is severely limited by the
speed and the memory of the computer, CDC 3600.)
The accuracy was checked by changing the number and
distribution of mesh points.
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where
CI+(Ipl'+»')~(II I')3 ',

A(lyl') =x

IV. METHOD II: EXPLOITATIO5 OF
O(4) SYMMETRY

Starting from Eq. (1) and letting

T'(p, p', s) = G(p, s) T(p,p', s),
we get'

G '(p, ~)T'(p, p', ~)

K(p,p')+— d'P" K(P P")T'(P P' ~)

(In what follows, we drop the primes on T.)
In the 4-dimensional Euclidean space

p4 ——P cosN,

ps=P sin+ cos8,

pt Psin+ sin8——cosy,

ps Psin%' sin8 ——sing,

In order to judge the usefulness of the ladder approxi-
mation, a "higher-order" solution was computed by re-
norlnalizing the propagators, following Levine et ul. '
The free-particle propagators in G are replaced by the
propagators obtained by summing all numbers of self-
energy bubbles as shown in Fig. 2. This is done by re-
placing the factors (Ipf'+tm') ' in G by (lpf'+m') '

+ o oae ~ aas
i Ir

Fxo. 2. Sum of self-energy bubbles that
renormalize the propagator.

sional sphere, i.e., over

sin'4'd+ sin%0

and obey (for integers n, I, and m) the fol]owing vector
addition theorem:

Z„s"(y,0,0) = g Z„) (e,,e,,q, )
v2(m+1) i=s ~—i

where
XZ~& (+s,&s, ys),

= Q Z p'(p)K (PP')Z ~™*(p)
n Ztn

gf s+(s2 1)t/2j —n—I

K„(P,P') =
gm'(m+ 1)PP'

P2+Pis+p2

2I'I"

cosy =cos4 cos%s+sin%t sin%s

XLcosot cosilr+slnet s&n8s cos(pt (ps) j.
Now let

(n+1)v2
K(P,P') =Q K„(P,P') Z„s'(P P',0,0)

2'

G '(p, s) = (P'——,'s+M') (P'—~ts+m')
+P's cos%'+iP(M' —m')(Qs) cos4

—=I' 5's 8'scos'4' iPA s cos%.

T(P,P'p) = P Z„i-(P)T..'(P,P',s)Z. ,-*(P'). (12)

o(, )+ + (Q)
From Eqs. (2), (11),and (12) we see that the relation

Q~e now expand T and K in 4-dimensional spherical of 4-dimensional projected T and the ordinary 3-dimen-
harmonics: sional projected T is

(n+1) I'(n —3+1)—
Z„&"(+,8, p) =2'+'~ 'I'(1+1)

vr I'(v+ I+2)

X(sin+)' „C~' +( cps')I'~'"(8 q)

=p-'(+) iI((l, v),

which are nonzero for e=o, 1, -, /=0, j., 2 ~ . n
m = —I, (+1, , /. C (x) is a Gegenbauer polynomial. '
The Z's are orthogonal over the surface of a 4-dimen-

' M. J.Levine, J.Wright, and J. A. Tjon, Phys. Rev. 157, 1416
(1967).

7Except for the trivial generalization to unequal-mass scat-
tering the following derivation follows Domokos and Suranyi.
/See Ref. (2)g. Note that our I equals their s —1.

8 BatemarI, Manuscript Project, edited by A. Erdelyi (McGraw-
Hill Book Company, Inc. , New York, 1953), Vol. l, Sec. 3.15.1.

Tc(fpl, ~; lp'f, ~'; s)

p-'(+) T-'(»P' ~)p-'(+') (13)
n=l, n'~l

where II I
=P sine and ~=P cosa.

Using the orthonormality of the Z's, the BS equation
becomes

I
with the argument (P,P') suppressed]

&oTmn'+P'~(fnm'Tnm'

+fn, n+s Tnps, n' +fn, n sTe s,n' )--
+iP&(+s)(g... t'T. t,.'+g. ..+t'T.+&, )

= —8„„K„+ P"'dP" K„(P,P")T '(P",P'),
(14)
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where

f '= dQ Zs("—(Q) cos'@Z ~~a(Q)

n'=n+2

=(:1 ')'+(&n r')' n'=n

and

=A„g'3„,',
=0

s =s—2

otherwise

g '= dQZ t (Q) cos+Z„.~ *(Q)=A„', n'= n+1

e'= n —1

FzG. 3. Regge tragectories for Bethe-Salpeter euqation computed
by Method I. Note integer spacing at s=0, m=p=M=1.

Equations (13) and (14) are now continued to non-
integer nand /, keeping K—= (n —l) an integer. ' ' The
parent trajectory has K=O; the Eth daughter has
E=X. At s= 0 the BS equation and hence T '(P,P')
are independent of /. Therefore by Eq. (13) a pole in
T„„' at mo will produce poles in T~ at 1=co, eo—1,
go 2 s ~ ~

Since the inhomogeneous term is only in Eq. (14)
for T„„',it is evident that for s near zero l„,~ '~ s
Thus to 6nd T„„'to order s it is only necessary to solve
the equations with n'=n, n+1 (only n'=n for equal
external masses) in which one sets T, ~ =0 for zn=2,
3, - . But to find the Regge poles it is not necessary to
find T, so that instead of solving the three (one for
equal external masses) simultaneous integral equations
we only searched for what e and / wouM make the
Fredholm determinant zero. This was done at s=0 and
small values of s to determine both the intercept and
slope of the trajectories.

There was no difficulty obtaining any desired ac-
curacy with this method, since the integral equations
are only one dimensional.

V. DISCUSSION AND RESULTS

The results of calculation by Method I with M=ns
=p = 1.0 for three different coupling strengths are shown
in Figs. 3—S. Figures 4 and 5 also show trajectories with
and without the renormalized propagators. Here the
coupling strengths were chosen to make the trajectories
coincide at s=0. The intercepts and slopes at s= 0 cal-
culated by Method II (with unrenormalized propaga-
tors) are given in Table I. In two cases, two families
were found for the same constants. Note that where
the two methods were applied to the same problem, the
same results were obtained. Also our results agree with
Schwartz's bound states' when l is an integer.

where

1.0—

0.8-

0.6-

=0,

(n —k+1)(n+ k+ 2)

4(n+1) (n+2)

otherwise
0.6,

0.4—

0.2—

- 0.6—

-08—

i [ s
l

\
l

y

l

—Unrenormolized

--- Renormolized

0.4

-0.2

—Unrenorrnolized

k, = 9.5
— --- Renormolized

kp 4.5

0 l 2

Fro. 4. EGect of propagator
renorInalization on the Regge
trajectories computed by
Method I. m=p=M= j.. XI(P.)
is the coupling constant using
unrenormalized (renormalized)
propagator.

—l.o—

l ~ ~l i l

0 l 2

FlG. 5. KGect of propagator renormaliz ation on the Regge
trajectories computed by Method L m=p=M=1. X& (4) is
the coupling constant using unrenormalized (renormalized)
propagator.

9 C. Schwartz, Phys. Rev. 137, 717 (1965').
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ALE I. Intercepts and slopes at s=0 of Regge trajectories from the Bethe-Salpeter equation in the ladder approximation. These
results were obtained by Method II in the text. The mass of one external particle, 3f, is 1.00, m is the mass of the other external particle,
p, is the exchange mass, and X the coupling strength.

1.0

1.0
1.0

1.0
1.0
0.150

1.0

1.0
1.0

0.150
0.146
0.820

3.417
7.320

2.191
5.661
1.463

~(p pent)

1.000—0.027
0.000
0.430—0.629
0.028
0.823
1.001

Parent

0.0861
0.0921
0.0688
0.0787
0.0792
0.128
0.206
0.040

0.251-0.29

0.246
0.039

Slopes
First daughter Second daughter Third daughter

0.0401 0.0397 0.0840
0.0422
0.0219
0.0309 0.091
0.0287 —0.096
0.0616
0.127 0.141
0.0209 0.0204

According to Domokos' the slopes of the trajectories
at s=o of different members of a family are given by

Lslopej= a+Pl(l+1),

where rr and P are the same for all members of a family
and/is the s=0 intercept of the trajectory. In particular,
this says that if a family intercepts s=0 at integer or
half-integer / then the slope of the trajectory at 3 equals
the slope of the one at —l—1. Our results agree with
this except where v=0(l&„,.„&&

——0), where Domokos's
Eq. (6.4) should be modified slightly to explicitly ex-
hibit the poles in the slope formula. ~ '

n(m+ 1)—l(l+1)
Lslopej =a+

e(n+2)

Note that the perturbation formula, Eq. (14), cannot
be applied at this point because some of the f„' and
g»' are singular.

In Figs. 4 and 5 we see that "renormalization" does

"V. Chung and J. Wright, this issue, Phys. Rev. 162, 1716
(1967).

not aGect the slopes of all the trajectories equally; it
reduces the slope of the daughter trajectory by a greater
factor than the parent, but this effect is less marked for
smaller coupling constants. Although we did not obtain
any second daughter trajectories with the renormalized
propagators, their slopes would presumably have agreed
with Domokos's relation since his derivation can be
easily extended to that case.

The following observations are probably mode1-
dependent, but it is interesting to note that the slope
of the Grst daughter is always less than that of the
parent (by a factor of about 0.3 to 0.5) and that a linea, r
approximation to a trajectory is sometimes not good.
Thus, our results do not support either of the conjec-
tures that daughter trajectories are straight or approxi-
mately parallel to the parent. However, an improved
model could presumably change these results.
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