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At low temperatures, ice has a residual entropy, presumably caused by an indeterminacy in the positions
of the hydrogen atoms. While the oxygen atoms are in a regular lattice, each 0—H—0 bond permits two
possible positions for the hydrogen atom, subject to certain constraints called the "ice condition. " The
statement of the problem in two dimensions is to 6nd the number of ways of drawing arrows on the bonds
of a square planar net so that precisely two arrows point into each vertex. If N is the number of molecules
and (for large N) 8"~ is the number of arrangements, then 5=Nk lnW. Our exact result is 8'= (48)'/'.

wurtzite structure, ' but it is simpler to think. of it as a
distorted tetrahedral diamond structure —for the im-
portant point is that each oxygen atom has four nearest
neighbors. The hydrogen atoms, however, do not appear
to have any regular arrangement discernible by x-lays.

Amplifying earlier ideas of Bernal and Fowler, '
Pauling' made the following hypotheses:

I. INTRODUCTION

ANY simple substances are observed to have a
- ~ residual erttropy, which is to say that at tem-

peratures well below the freezing point there is a coastal]
entropy much larger than that caused by any con-
ceivable lattice vibrations. "For example, the observed
entropy of crystalline hydrogen shows that even at very
low temperature the molecules of orthohydrogen in
the crystal are rotating about as freely as in the gas. "'
Most substances with this property are, like water,
hydrogen-bonded, although there are notable exceptions
such as carbon monoxide and nitrous oxide.

Thirty-four years ago, it was realized that ice also
falls in this category when Giauque and Ashley' calcu-
lated the entropy of gaseous water from its band
spectrum and compared the result with J'C„d lnT from
previous specific-heat data. Three years later, Giauque
and Stout' accurately remeasured the speci6c heat of
water from 15 to 273'K, being very careful to cool the
water slowly to ensure thermal equilibrium. They ob-

tained an entropy of 44.28&0.05 cal/deg mole for

gaseous water at 1 atm and 298.1 K, which was less
than the spectroscopic value by 0.82&0.05 cal/deg
mole. (Tn arriving at this result, the specific heat be-

tween 10 and 15 K was extrapolated from their data and

agreed closely with previous measurements of Simon'
between 9 and 13 K; the entropy at 10'K was calculated
from a Debye model and amounted to only 0.022

cal/deg mole, which is a small fraction of the total
discrepancy. ) They also mention that "MacDougall
and Giauque' investigated ice from 0.2 to 4 K and
found no appreciable heat capacity in this range. "

The structure of ice, as determined from x-ray data,
is one in which the oxygen atoms are regularly arranged
in a crystal lattice. Technically, it is a hexagonal

(a) Ice is hydrogen-bonded with one hydrogen atom
between every pair of nearest-neighbor oxygen atoms.
Since the observed O-O distance is 2.76 A and since
the O-H bond is well known to be only 0.95 A in the
gas, there are two possible positions for each hydrogen
atom, these being approximately 0.95 A from each end
of the O-O line. These states are energetically equivalent
except for

(b) The ice cotzditiotz: "The concentration of (OH)
and (Hzo)+ ions in water is very small and we expect
the situation to be essentially unchanged in ice."'
Consequently, each oxygen atom must be surrounded
by two hydrogen atoms near to it (0.95 A) and two on
the far side (1.81 A).

This ice condition can be pictured geometrically by
constructing a lattice of coordination number four and
by drawing arrows on and parallel to each bond in such
a manner that there are precisely two arrows pointing
into each vertex. The entropy is then

5=Xtt: lnt t/",

where tV is the number of oxygens (vertices), h is
Boltzmann's constant, and Z=—8'~ and is equal to the
number of ways of arranging the arrows (for Z large).
If we ignore the ice condition, then Z—=8'~=2'~
(because there are 2$ bonds) and W=4. This leads to
an entropy that is much too large.

Pauling' made a rough estimate of 8 in the following
way: Suppose that the bonds and the vertex con6gura-
tions are independent (they are not). Then* Work supported by National Science Foundation Grant
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conhgurations. This estimate leads tn an entropy of
0.805 cal/deg mole, which is in excellent agreement with
the observed vahie and which must be counted as one
of the most successful applications of elementary
statistical mechanics to real substances.

Plainly, it is important to improve the calculation
of W because W is a sensitive indicator of the soundness
of the hypothesized structure of ice. The best numerical
estimate of H is due to Nagle, "who found

H/ „,(;.,= 1.50685&0.00015, (1.3)

or S=0.8145&0.0002 cal/deg mole. It is truly remark-
able that the accurate value (1.3) is so close to the
crude estimate (1.2).

It is also possible to consider "square ice," which is
the subject matter of this paper. Square ice is the two-
dimensional version of real ice and is defined by the
sa,me ice condition applied to a square plana, r lattice
(as in the usual Ising model). Nagle gives

S',~„„,;„=1.540&0.001.

It seemed worthwhile to try to 6nd the value of
W,u„„,;„exactly for the following reasons: (a) It will

serve as a check on the accuracy of Nagle's calculations.

(b) It is an interesting graph theoretic problem. (c) It
is the first step toward the solution of much more
interesting models having phase transitions —the Rys
antiferromagnetic Ii model and the Slater KDP model
of a ferroelectric. ' (It is believed that hydrogen-bonded
ferro and antiferroelectrics have the same "rules" as
ice except that the six vertex con6gurations have
different energies according to the total polarization at
each vertex. See the Appendix. )

Here we calculate W,~„„,;„exactly by the method
of the transfer matrix and our result' is

W .= (-')'~'= 1.5396007 (1 5)

'Earlier estimates were made by E. A. DiMarzio and F. H.
Stillinger, J. Chem. Phys. 40, 1577 (1964); H. Takahasi, Proc.
Phys. Math. Soc. (Japan) 23, 1069 (1941).' F. Rys, Helv. Phys. Acta 36, 537 (1963);J. C. Slater, J. Chem.
Phys. 9, 16 (1941); see also J. F. Nagle LJ. Math. Phys. 7, 1492
(1966)g for useful pictures and a bibliography of earlier work. The
solution to the F model is reported in E. H. Lieb, Phys. Rev.
I.etters 18, 1046 (1967) and the KDP model 19, 108 (1967).

' A summary of this work was given in E. H. Lieb, Phys. Rev.
I.etters 18, 692 (1967).

II. THE TRANSFER MATRIX

Let the square lattice consist of EM vertices (E
horizontally and M vertically). The number of bonds
is thus 2lVM, half of which are vertical and half hori-
zontal; these bonds will be called V bonds and B bonds,
respectively. Beginning at the bottom, we have a row

of SV bonds followed by a row of B bonds and so on
alternately. There are 3f bond rows of each type.

Let p denote a possible configuration of a row of V
bonds, i.e., a definite assignment of up or down arrows
on each of the EV bonds. There are obviously 2~ choices
for p. Alternatively, p may be thought of as a state of
a linear chain of E spin-s particles (in the S' repre-
sentation). If y and y' are the configurations of two
successive rows of V bonds, let A(p, &p') be the number
of ways of assigning arrows on the intervening row of
H bonds so that the ice condition is satisfied at each of
the .V vertices lying on the intervening row. Thus
A(p, y') is a non-negative integer. If Z is the total
number of ways of correctly placing arrows on the
lattice, we have

Z=Q Q A(q, p )A((p„q )

= [TrA]~.

A(q sr t, q ~r)»(year—, q t)

(2.1)

In (2.1), Q„,. means a sum on the 2~ states of the jth
row of V bonds. Implicit in (2.1) is the fact that the
Mth row is connected by V bonds to the 6rst row. As
usual (for large M),

Z=Z~I, (2 2)

where A. is the largest eigenvalue of the 2~-square
matrix A. The quantity W is thus given by

lnW= limlV 'lnA (2 3)

Next, we must elucidate the elements of A. If y =
q ',

there are two possible assignments of horizontal arrows,
all running to the left or all running to the right. Thus,

A(y, y) =2. (2 &)

To simplify the subsequent discussion let us also
assume that the lattice is wrapped on a torus instead of
merely on a cylinder, i.e., that the Eth column is
connected by H bonds to the first column. If y&p',
then certain up arrows in y are replaced by down
arrows in p' (a +—exchange) and vice versa (a —+
exchange). In order to satisfy the ice condition, the
intervening horizontal arrows must point outwards on
both sides of a +—vertex and inwards at a —+ vertex.
If there is no change at a vertex, the two horizontal
arrows can be either both to the right or both to the
left. Thus,

A(v, v') =1 (2 5)

A(qo, q')=0. (2 6)

To interpret the above rule in spin language, 3 is

if and only if there is a —+ exchange between every
pair of +—exchanges and vice versa, and if there is
an equal number of both kinds of exchange. Otherwise
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obviously the same as

0', =2+ Q 5, S,++ Q 5, '5)+5)., 5)++
j j. tt;(l

Equation (2.9) is true only in the region R,

A': j.&xl(xg( (x„~.'V, (2.10)

+(Si Sz+ Sg+)

+ g 5,+5,—+ Q S.;+5, 5),+5) +
&(j(I(l

+(Si+5,— . S.v—), (2.7)

where we have assumed that iV is even in the last term.
From (2.7) we see that 5'=pi~ S.' is a constant of

the motion, i.e., if ~z is the number of down arrows in a
state y, then A(p, p')=0 unless zz=zz'. 5*=-',X—zz.

Since A is thus a diagonal block matrix we must decide
in which e subspace the maximum eigenvalue lies.
Intuition dictates that it is the subspace e=~E or
—,'()'—1) (i.e. , 5'=0 or 2) if E is even or odd, respec-
tively. While we can not prove this statement for
finite iV, we can prove a statement that is sufficient for
our purposes, namely, that as lV —+ ~,

X ' lnh. ,„(all zz) =E ' lnA. „„(zz= -', 1V) .
This weaker assertion is proved in a general way in the
Appendix. It will also be proved in a specific way in
Sec. IV when we actually display the largest eigenvalue
as a function of zz/lV in the limit 1V —+ ~.
]~Since A is non-negative, and since any q can be con-
nected to every other cp' in the same n subspace by
applying 3 a, suf5.cient number of times, it follows, by
the Perron-Frobenius theorem, that the largest eigen-
vector in each subspace is nondegenerate and has
strictly positive components. This observation will

prove to be extremely useful because it will enable us
to identify the largest eigenvectors.

It is very fortunate that the largest eigenvalue can be
sought in the N = ~2K subspace, for only in this subspace
can the calculation be carried to completion. In all other
subspaces, the largest eigenvalue must be left as the
solution to a linear, but unsolvable, integral equation
[cf. (4.8')j.

To proceed, we must find a more tractable form for A
than (2.7). Denote by &p(x& ...,x„) the state (in a given
zz space) with down arrows (spins) at the sites
1(xl(x2( . (x„(lY. Any eigenvector. 4, of
may be written as

f(x, x„)q (x& ... x„..). (2.8)
~ ~ ~

and the equation A+=A% implies some corresponding

equation for the set of coeKcients f. We shall
JS

write it down a,nd justify it afterwards:

g] Ã2

which is the region in which f is defined. On the right
side of (2.9), therefore, f must be taken to be zero if
any r =3'+i (e.g ri=rz=»)

To verify (2.9) we ask what states &p(xi, ... ,x.) are
generated when 2 acts on a state y(yi, ... y„) according
to the rules stated above. If y; =x; (all j) then A = 2, and
this is in accord with (2.9). [We get one from the upper
limits of the first sum and one from the lower limits of
the second sum in (2.9).$ If Y& X there are two possi-
bilities: (a) the first exchange reading from the left to
the right (i.e. , from 1 to X) is a —+ exchange, the
second is a, +—exchange, and so on; (b) the reverse
of (a). In order to produce a given state q (xi, .. . x ) by
possibility (a), it is clearly necessary and sufficient that
the y; satisfy

xi&yi&xz, xz&yz&xz ... , x„&y„&cV, (2.1])
but not y, =x, (all i) If (2.1. 1) is satisfied, then applica-
tion of A to &p(Y) produces y(X) with coeKcient unity,
(2.5). All these matrix elements are contained the
correct number of times in the second sum of (2.9).
Mgtatis zmzztazzdis, possibility (b) is contained in the
first sum of (2.9).

III. DIAGO5ALIZATIOg OF THE
TRANSFER MATRIX

We now make an ansatz for f and will verify tha, t it
leads to the maximum eigenvalue. Let

n

f(yi y„)=Q...!,a(E) exp i P k&t, )y, . (3.1)
P j=l .

In (3.1) {k}=ki, kz, .. . , k„ is a set of J)t wave numbers
and the sum is on n~ permutations with certain coeK-
cients a(P). The goal is to choose a(E) and {k}so that
(2.9) is satisfied. We will also assume that k, &0 (all i)
and it will turn out that this assumption is justified if ~
is even. [We shall not consider the case of zz odd. For
that case the assumption (3.1) is probably also correct
(we have verified it for zz=3) but the subsequent
analysis has to be somewhat modified. )

When (3.1) is inserted into the right side of (2.9) we
must remember to sum only over configurations
Y= (yi, ... ,y ) that are in R, (2.10). To do this we will
sum (3.1) over all Y and then explicitly subtract those
terms in (2.9) for which one or more y, =y;+i. We shall
ca,ll these subtracted terms diagonal terms. To clarify
this point, suppose e = 2 and suppose, for simplicity,
that f(y&,yz) = exp(ikyi+iqyz), i.e., a single plane wave.
Then, the first sum in (2.9) would give

y1=l y 2=~1 Vn=&n —1

+ & 2 Z f(yi, ",y-). (29)
Ql=&1 S2=&2 Vn=&n

—~(k)a(q) {e ~& ix$~+)) }{&~an t
~e(~a+)) } &i i&+a)n
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n(k) = [1—e'k]—'
(/+1)th positloll, I.c., P{k}= ( p)q' ' ') aIld Q{k}

(3.2) = ( q, p ). Then,

Likewise, the second sum in (2.9) would give

n(k)n(q){eikxl eIk(xk+I)}{eiqxi eig(%PI)} e((k+q)xR

Thus, f'or general II (even), perforniing the first sum
or some single plane wave, expi(kiyi+ +k„y„),gives

g n(k .) {eikl eikl(xi+I) }{eikxxl e(kx(xx+I) }.
2=1

with
~(P) = ~(Q)&(P,q),

1 +e~ (@+q)

~(P,q) =-
1+eI (x+~)—e~ ~

= —exp[ —iO(p, q)],

(3 8)

(3.9)

{e&kxxx ~ —e'kx(xx+ )}—(diagonal terms) (3.3)

while the second sum gives

Q n(k;) {e"~'I —e*k ~ ('~+ I)}{e'kx'x —e"x( x+I) }
j=l

Sill 2 (p —q)t, IO(p q)= — ——.(3.10)
2 cos2 (p+q) —cos~ (P—q)

Wc assume p and q arc real and O~ is continuous with

O~(0,0)=0. The solution to (3.8) is unique, except for
a normalization constant, and is

{e'k"""—e'k"'~+" }—(diagonal terms). (3.4)

If we study (3.3) we see that it contains precisely one
term that is proportional to one of the plane waves in
(3.1) and that plane wave is, in fact, the very one we
started with, namely, the term

(2) Condition on {k}:For each j= 1, , n

exp(ik, X) = —Q B(k, ,k,) . (3.12)

z

(I(P)=(—) exp ——Q O(kp(, ) kp(;)) . (3.11)
2 &&i

n n

exp igk; exp i Pk, x, . (3.5)
1 i 1

(Remember that n is even so that there are an even
number of minus signs. ) All the other terms —the
diagonal terms as well as those coming from the curly
brackets —have the property that one or mol-e of the
x s fail to appear. These other terms are unwanted and
must be made to cancel.

Likewise, the second sum, (3.4), gives a single wanted
term

Q=
I
I (2), P(3), , P()i), P(I)j,

a(P) = [expik p(I)E]a(Q) . (3.13)

An alternative, equivalent statement of (3.12), using

(3.8), is this: For every pair of cyclically related
permutations,

P= [P(1),P(2), , P(~)j

g n(k;) exp i P k;x,
j'=1

the remaining terms being unwanted.
In both (3.5) and (3.6) the coeKcient of the wanted

term is invariant with respect to any permutation of
the set {k}.Therefore, assuining that we can choose the
coeflicients a(P) and the set {k}so as to eliminate the
unwanted terms, (2.9) will be satisfied with an eigen-
value

n-1
~"(yi, .-,y.) =II [I—~(y+I —y )3

j=l
(3.14)

into the sums in (2.9). Here, 5 is the Kroenecker delta
p(x)=1 if x=0; ()(x)=0, otherwisef. However, since

x,+I~ x, (all j), we can make the following repla, cement
in the first sum, Sy.n N

A= g n(k, ) 1+exp i P k;
j=1 1

(3 7)
5'I: &(y,+I—y, )= &(yj+I—xI) ~(y~—xI) ~

We now give an inductive proof that (3.8) and (3.13)
(3 6) guarantee that the ansatz (3.1) satisfies (2.9) with

eigenvalue (3.7). A simple artifice to insure that we
sum only over R is to introduce the factor

It is indeed possible to eliminate the unwanted terms.
Ke shall state the requirements and then verify by
induction that they su%ce:

(1) Condition on a(P): Let P and Q be two permuta-
tions of {k}that are identical except for the jth and

I.ikewise, in the second sum, S~..

Sg. B(y;+I—y;) = b(y;+I x,+I)b(y, —x;+I) . (3—.15b)

Now, multiply (3.1) by w" (yi, ... ,y ), insert the
pl o(iuct lilt o 'tllc fll st sUII1 111 (2.9), and pclfol. Ill tile
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indica, ted sums on y„,y„~, . , y t+~ Owly. The partial
sum thus obtained is clearly of the form

n —t

Si' ——io" '(y, , ...,y„ t) Q ! (t(P) exp 1 Q kp(, )y,

XGp'(x.-t x.—t+, , ...,x. y. ,) . (3.16)

The second term of (3.17) gives

gp'(~n t+1".,,*n) eXP[tk p(n t+1)ten t]
X {&(kp(n —t t-i)) [&(kp(n —t))
X I exP[ik p(„,)x„—,1]—exP[ik p(„ t)) (x„—1+1)]I
—tI(y» t—i—&n—t i) «p[ikp(n —t)&n—t—i]1

e—xp[ik p( )tx„—]t} . (3.22)

[It is important to recall that t)(y t
—x t)

Our inductive premise for Gp' is the following (for
1&«ti —1): %hen we multiply out the exponential factors in

(3.22) we observe that there are some terms in which
sn —t occurs twice~ namely

II {--(k., ) "p[«. , (-';+1)]}
j=n—1+1

+[ epX( ki(pn t &)1Xn—t)-—{Q(kp(n—1+I)) t&(yn 1+—n —t)}

Xgp'(~'. t+i, .",.1.)], (3 17)

L1—tI(y- —-):.-1)t&(y.-i—~--1)]«p[ik p(-)y-]
g n=~ n-1

=n(kp( )){exp[ikp( )r 1]—exp[ikp( )(x„+1)]}
—t&(y„ 1—x„-,) exp[ik p(„)z„-1]. (3.18)

Clearly, (3.18) is of the form (3.16) and (3.17), with

gp'(x. ) =1. (3 19)

To carry through the induction, we must suin (3.16)
on yn t. Again, suppressing irrelevant factors, we must
do the sum

n-t
[1 t'&(yn t an t 1)t'&(yn t 1+—n———t—1) —j—

gn —t=.~n —t—1

Xexp[ikp( t)y t]G—p (x„—-t:):,y. , .,.). ,. .(3.20)

The first term on the right side of (3.17), when inserted
into (3.20), gives

II {—(k. , ) -pL'k. , (::,+1)]}
j=n—t

where gp' does tzot depettd upon P(1), P(2),
P(n —t+1).

To prove (3.17) for t=1, we must do the sum on y.„.
Suppressing irrelevant factors, this means that for
ea,ch P we must do the sum

{D(k (P. » t+1)—)&(kp(n —t))

Xexp[ikp(„ t)]+1}gp'(x„ t+, ... x„)
XexP[i(kp( t)+kp(„ t+1))x„—] (3. .23)

AVe would like to make (3.23) vanish. That it does
so is a consequence of (3.8), for observe that (a) gp' is
independent of P(tt —t+1) and P(u —t); (b) for each
permutation P= . .P(rt —t), P(N —t+1), in (3.16)
that gives rise to a term (3.23) there is a permutation
Q= P(t't —t+1), P(e—t) that gives rise to a term
with the same exponential dependence on x„ t, but with
a dif ferent coeKcient. Each such pair of terms w ill
vanish if

) (k -- ) p[k .— ]+1}
+tt(Q) {&(kP(»,—t))&(k P(n—t+1))

Xexp[ik p(„,+1&]+1}=0. (3.24)

Using (3.2), condition (3.24) is seen to be identical to
(3.8). Consequently, (3.23) can be omitted from (3.22).

Combining the remainder of (3.22) with (3.21), we
verify (3.17) for t+1 with

t+l f
gI& $ iA:n —t ~ » ~

n

II {—(1(kp(j)) expLik (,)(x,+1)]}
j=n—i+1

+gl' () n +1,"t., n)—X(nk p(t(n t+1))—
Xexp[ikp(, t+1)xn t]. (3.25)

Equation (3.25) also verifies that gp'+' is independent
of P(N t)—

The induction proceeds up to a,nd including t= +-
The 6nal summation on y~ is slightly different because
there is neither a yo nor an xp, but the same reasoning
as above gives

n

+ II [ ot(k p(, )) exp[ik—p(j)(xj+1)]]
j=n—t+1

Xexp[ik p(„,)x„— ]t
X {&(kp( —t)) —t&(y"—t-i—~ -t—1)}. (3 21)

Gl "(xi,... x ) =II {—n(k p(;)) exp[ik p(;)(x;+1)]}
j=1

+exp[ikp(1)]tt(kp(1) jgp" (xl .",+ ) (3.26)

with gp" being given correctly by (3.25) with t=n 1. .—
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The obvious signilcance of GP" is that

Si=g !a(P)Gp"(x, , ... x„).
P

relation (3.25), it is easy to deduce that gp' consists of t
terms which, for t&1, are given by3.27

II Ln(kp(t))] Z (—1)gp (xa-i+1,",xn)
j~n—t+2

Xexp i Q k p(;)3E, (3.34)
j~n—t+2

M =x; i, for n —t+2& j&n —t+s
=x;+1, for n —t+s+1&j&n, (3.35)

Ss ——w"—
'(y(+i ...y„)

while for s= I,

We turn now to the second sum S2, of (3.29). This
we will do in reverse order, namely, y», y2, ...,yt. The
partial sum will be denoted S2t. The procedure is
exactly the same, mltatis mgtandis, as for S», and it
suKces merely to quote the Gnal result, i.e., the analogs
of (3.16), (3.17), (3.19), (3.25), (3.26), and (3.27). The where, for 1&s&t,
analogs of G and g wiH be denoted by H and h,
respectively.

XP! a(P) exp i Q kp(;)ys
P j~t+»

and for s=t,
M,'= x,+1, (3.36)

XIIp'(x, ...,x(+i, ye+i) . (3.28)

H p'(xi ..., x~i,. ye+i) =II{n(kp(;)) exp[ik p(;)x;]}

XE.tLVj xj» ~ (3.37)

hp'(», -.*)= II Cn(kp(t))] E (—1)"

Conversely, using the recursion relation (3.31) and
the initial relation (3.30) for h~' we find, for t& 1,

jets» e~»

hp'(xi) =1. (3.30)

+(—I)'(expLik p(o(x~i)]

X {n(kp(o) expt3k p(o]

+b(y~i —x~i) }
Xhp'(xi, ..., xg)]. (3.29)

Xexp i g kp(;)N, (338)

where, for 1&s&t,

X'=x for j.&j&t—s

=x,+i+1, for t—s+1&j& t—1, (339)
t

hp'+'(xl, ",x(+1)=II {—n(kp(;)) expLikp(s)xt]}

+h p'(xi, ..., xg) n(k p(i))

while for s= i

and for s= t,

E»=x,

N =x;pi+1.

(3.40)

(3.41)

Xexp)ik p(i) (x~+i+1)]. (3.31)

IIp"(», -,x-) =II {n(kp(s)) expLikp(t)xt]}
j~»

When t=n, comparison of (3.38) and (3.34) shows
that gP" and hP" are very similar. The relationship is
simply this: Let P and Q be two cyclically related
permutations, i.e., P= LP(1), P(2), , P(n)] and

Q = y(2), P(3), , P(n), P(1)].Theil
+expLik p&.)(N+1)]n(»&.)) —hq" (xi, ...,x.)=gp" (xi,...,x.). (3.42)

Xhp"(xi ... x„), (3.32)

with hp" being given by (3.31) with t= n 1. Again, —
Consider now the unwanted terms in Si+Sm, i.e., the

second terms on the right-hand sides of (3.32) and
(3.26). These are

Ss=Q !a(P)H p"(xi, ...,x„).
P

(3.33)
Q !a(P) {expLikp(„)(N+1)]n(kp(„))hp"(xi, ... x„)

When we compute Si and Ss with (3.27) and (3.33)
we note that the first terms in (3.26) and (3.32) give us
exactly what we want, namely, Af(x),...,x„).The second
terms in (3.27) and (3.33) must be made to cancel, and
to do this we must investigate gP" and hP" more closely.

From the initial statement (3.19) and the recursion a(P) =a(Q) exp/ik p(i)N] (3.44)

+expLikp(i)]n(kp(i))gp (*i.- .x&) } (3'43)

Since the sum in (3.43) is over all permutations we see,
using (3.42), that (3.43) vanishes identically if
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for every pair of cyclically related permutations as
above. But (3.44) is the same as our second condition,
(3.13).

To summarize the results of this section, for every set
of numbers (k} satisfying (3.13) and such that no
kj=0, we have a solution to the eigenvalue problem
with an eigenvalue given by (3.7). The existence and
determination of such a solution and the proof that it
is, in fact, the largest eigenvalue is the subject of Sec. IV.

N
H'= 2P S;*S,+—i*+SoS,+,~+~S,'S;+i', (4.1)

with S~+i——Si. To find. the eigenvectors of (4.1), in a
given S* (or e) subspace one makes exactly the same
ansatz (3.1) as we have done (known as the Bethe
hypothesis). In the particular case 6=~i, the resulting
equations are exactly the same as our (3.8)—(3.13).Yet,
while the eigenvectors of (4.1) and (3.7) are the same,
the eigenvalues are quite different. For H' the eigen-
value is

8= —(6/2)iV+2 P (6—cosk, ) .
j=l

(4 2)

The fact that the eigenvalues (4.2) and (3.7) are
diGerent is immaterial to the discussion of the existence
and value of the set (k).

The most recent and complete discussion of (4.1) is
due to Yang and Yang. ' In their 6rst paper, YY prove
that the ansatz (3.1) in fact gives the ground state of
(4.1) in all N subspaces with e&cV/2(S'&0). The set
fk} which gives this ground state Land thereby satisfies
(3.13)j is real and has the property (YY I.9)

IV. DETERMINATION OF THE
LARGEST EIGENVALUE

We are indeed very fortunate that Eqs. (3.13) and
(3.8) have appeared previously in the literature in
another context and have been discussed extensively.
Consider the linear chain anisotropic Heisenberg
ferromagnet with the Hamiltonian

k,4k, (for iW j)
and the k's may be ordered so that

k;= —k

(46)

(4.7)

Hence, for 5 even, k;WO (all j) and our previous analysis
in Sec. III is justice. ed.

These observations together with the YY proof
mentioned above establish that there is a solution (k}
to our Eqs. (3.8) and (3.13) and that this solution leads
to an eigenfunction which is simultaneously the ground
state of (4.1) and the maximum eigenvector of our
transfer matrix.

In their second paper, YY evaluate the set fk} as
X—+ ~. One assumes that as e, E—+ ~ with ii/E
=fixed const. , the k's fill some interval —Q(k&Q
(with Q & ir —ii) and that the k's fill this interval without
any gaps with a density function p(k). That is, the
number of k's between k and k+dk approaches Ep(k)dk.
While all previous workers have made this assumption,
it has to be admitted that a rigorous proof is lacking.
YY promise a rigorous proof in a later paper, however
(YY II.2 et seq. ).

Given the assumption of a density function, (3.12)
leads to the following integral equation (YY II.6a):

o 88(k,q)
1=2irp(k) — p(q) dq,

q Bk
(4.8)

while the equation that determines Q is (YY II.6b)

(4 9)

(4.1), when written in the S, representation (2.8), has
the property that the f coeKcients are strictly positive
(for the same reason that they are positive in our
problem). In both cases, these positive eigenfunctions
are unique in the sense that there can be only one
eigenfunction with this positivity property for each
problem.

Another property of (k) (YY I.35 and theorem 1)
is this:

—(ir—p) (k, (m —p, , (all j)
with (YY I.10)

cosy= —A.

In our case 6= ~, so that

P= 3Ã.—2

(43)

(4 4)

(4.5)

YY II prove that (4.8) and (4.9) have a unique solution
which is positive (as it should be) and that Q is a
differentiable, increasing function of ii/E with Q= m.—ii
for e/1V= 2.

To solve (4.8) it is convenient to make a change of
variables (YY I.21g and 21h) from k to a:

'We also note that the ground-state eigenfunction of
pi@ (gsP sa) (giP+a 1)—1 (4.10)

' C. N. Yang and C. P. Yang, Phys. Rev. 15Q, 321 {1966);
15Q, 327 {1966).References to equations in these two papers will
be denoted (YYI.21) and (YYII.21), respectively. The reader is
also referred to these papers for a bibliography of previous work.
See also J. des Cloizeaux and M. Gaudin, J. Math. Phys. 7, 1384
(1966).

If we de6ne a density R for n, so that R(n) dn = 2irp(k)dk,
then (4.8) and (4.9) become (YY II.7a, 7b and Table II)

R(n) = f(n) —(2m) ' E(n P)R(P) dP, (4.8—')
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APPE5'D IX: DEPENDENCE OF THE
LARGEST EIVEN VALUE ON n

While we are mainly interested in proving that the
largest eigenvalue lies essentially in the n = —,'S subspace,
we will prove here a much broader theorem relating to
more general lattices because it will be useful in sub-
sequent work on the solution of Rys's antiferroelectric
It model. We want not only to sum over all allowed
configurations, but to do so with a weight that is a
product of single vertex weights.

Of the 16 a priori vertex configurations, the ice
condition permits 6. These are shown in Fig. 1. With
these we associate energies e&,...,e6, respectively, and
Boitzmann factors b; = exp( —Pe,). For the ice problem,
b; = 1 (all j).The partition function is

I
g b.wag.

allured conf igurationa j j,
(A1)

where m; is the number of vertices of type j in a
configuration.

Again, we can define a transfer matrix A(p, p'), but
the elements will be diGerent from before. However,
(2.6) will still be true, i.e., A(y, &p')=0 unless the state-
ment preceding (2.6) is satisfied; in particular A still
conserves the value of n. %e would also like to retain
the "up/down" symmetry of the original problem: If P
is obtained from p by reversing all spins (V bonds) and
if tp' is likewise related to y', then A(tp, tp') =A (p, p').
To obtain this symmetry, it is necessary to reverse all
the arrows on the intervening B bonds. Therefore, to

the colors cyclically (i.e., 8 follows A, C follows 8, and
A follows C). Consider one of the four vertices surround-
ing the given A color. This vertex will have two arrows
in and two out. The four squares surrounding this vertex
are colored uniquely by proceeding clockwise and using
the rule that an outward arrow on a bond separating
two squares means that the color of the later square
follows that of the previous square in the cyclic order
given above. Conversely for an inward arrow. After
these four squares (one of which is the original A square)
have been colored, one proceeds to the next vertex and
so on.

A CENO WLED GMEN TS

I should like to thank Professor S. Sherman and
Dr. J. Nagle, who, in separate conversations, brought
this problem to my attention.

retain this symmetry we require

by= b2

and
b3 —b4

b&
——bs for up/down symmetry. (A2)

The ice problem also has a "left/right" symmetry: If P
is obtained from y by reading backwards (i.e., 5; is
replaced by 5„;+i) and if tp' is likewise related to qr'

then A(f, tP')=A(p, y'). To retain this symmetry we
require

b3= b6

ft4 bs ——for left/right symmetry. (A3)

For the Rys antiferroelectric F model, the assign-
ments are'

by= b2= 1,
0&b3 ——b4 ——b5 ——b6& 1

(A4)

while for the Slater ferroelectric KDP model the assign-
ments are'

0&by= b2= b5= b6& 1

b3= b4= i . (A5)

b3 b4 b5 =b6& b~= b2 ferroelectric,
(A6)

b3 =b4= b5 = b6 &b~ = b2 antiferroelectric.

In analogy with (2.2), we define f(N, Ã) by

s" &"'" =A(N E) (A7)

Thus, both models have up/down synunetry but only
the F model has left/right symmetry.

While it appears to be possible to prove the following
theorems under the assumption of up/down symmetry
alone, we shall, in the present discussion, retain both
symmetries. The reason we do so is that left/right sym-
metry adds a useful simplilcation, namely, that the
transfer matrix A is then real and symmetric:
A (f,iP') =A (f',tP). (This is proved by reversing all

intervening H bonds. ) A virtue of the Hermiticity of A

is that the largest eigenvalue can be defined by a
variational principle. Without this principle, the proofs
below become rather involved and the added complica-
tion seems unwarranted at this time.

While we exclude the KDP model, we are prepared
to distinguish between ferro- and antif erroelectrics
according to the criterion

(&) (&) (3) (&) (5) (6)

where A(e,S) is the maximum eigenvalue of A. in a
given ts subspace with X columns in the lattice (we
retain the original "torus" lattice). By up/down
symmetry '

F&G. 1. The six vertex con6gurations allowed by the "ice
condition. "The vertex represents an oxygen atom and the arrows
indicate on which side of an O-O bond the hydrogen atom lies. We will pro ve

f(m, X)=f(E—e,lV) . (AS)
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(A9)p= lim n(N)/N =z ln(b, b,)+ ~

—',—p [ln(b3/b, ), (A17)

but this is a corned function. LNote: in (A17) we used
only up/down synunetry. j (b) Write

A(v bv') =An&(v b~') +A~(v bv') +A~(v»~') b

exists. Then: (a) the limit f(N(N), N) exists, is a function
only of p, and is continuous, i.e.,

(A10)F(p) = lim f(N(N), Nb);
where A~ is the oG-diagonal part that produces ex-
changes —+, +—,etc., when reading from left to
right; Ag is the opposite. Henceforth, assume n&~X.
An antiferroelectric upper bound for Az, +Aib is ob-
tained by noticing that there can be at most 2n vertices
of type (1) or (2). Hence Ar+Ag&(bi)'"(b~)~ '". A

Nl(A12) ferroelectric upper bound is (b8)~. Since there are
Q j

states in the subspace we have the upper bound

(A13) &Nl
h. (NbN) &AD+ (bi)'"(bbb) '"

~ ~, antiferroelectric,
(Ni '

(A18a)

(b) F(p) is concave, i.e., for 0&pi, p2&1,

F(2(pi+ p2)) & HALF(pi)+F(p2)1.

Corollary 1. By (AS)

F(p) =F(1-.).
Corollary 2.

max F(p) =F(~).

Corollary 3. Let rb(N) be a maximal sequence, i.e.,
for each X && n+ (ha'b" („ l, ferroelectric.

g(N) =f(rb(N), —N) & f(rb, N), (all 0(n &N) . (A14)

Then g has a limit and

(A18b)

A lower bound for A can be obtained by the variational
function (here we use left/right symmetry in order
that A be Hermitian)

lim g(N) =F(2) . (A15)

p= 2 '~'(bpi+ bp2). For antiferroelectrics:Proof: Since rb(N) is maximal, we have by (A10)
and (A13) that limibj inf g(N) &F(i~). Suppose
lim~ „sup g(N)&F(i~). Then we can find an infinite
subsequence, (N iN g, ...) such that for some e&0
g(N;)&F(-,')+e(all j) Define p;.=N(N;)/—N; There.
must be at least one point of accumulation, call it p.
Then we can find an infinite subsequence (Ntbi, Ntb2, )...
of the 6rst subsequence such that

2n . . N-2n
q i= (+— +—++++ +)

2e N—2n

q =(—+ .—+ ++++. +)
Thus,

A(~ N) &-'(b,)'"(b,)
—'" (antiferroelectric). (A19a)

Theorem I:Let N(N) &N be any sequence of integers (for bbb&bn),

such that the limit lim N—' 1nAn Frb——(p)
N~m

llQl ppj= p.
j~cc For ferroelectrics:

By (A13),
lim g(Ne;) &F(-', ),

and

N -n -. -. n-i.(i=(-++ ++ -- . -)
n

which is a contradiction. Hence

F(2) = lim sup g& lim inf g&F(i~). Q.E.D.
N-+oo

Thus,

q 2=(+++ + ——— —)

A(n, N)&i~bgbP ' (ferroelectric). (A19b)
Obviously, Corollary 3 is what we needed for our ice

calculation.
Proof of Theorem I. (a) As before, when bp= y' there

are two choices for the intervening H bonds, whereas
when q& q' there is at most one choice. The diagonal
part Az depends only on e and E:

An=A(bp, p) = (b,)~(b,)&—~+(b,)~(b,)N-~

(b,)n(ba) x n+ (ba) n(b—5)ebb'-n. (A16)

As E~ ~, AD has a limit, as in the theorem, i.e.,

F(0)=Fib(0) = lnb8. (A20)

If p& 0, we see that the lower bound (A19) (which came
from A r,+Aib) approaches a limit that is greater than
or equal to FD(p). Hence, we shall drop An and consider
only A'=Az, +A~.

Note that in both cases the lower bound was obtained
from Ai, +Aib without Ao.

(c) If p=0, then as N —b 00, (A17) and (A19) agree
and we have proved the theorem with
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(d) For p) 0, we need consider only h. '(ip, N) =largest
eigenvalue of Az+Azi. A useful characterization of h. '

is the following: Define

Az(ri, N) =ma—x~(+,A z0)/(+P), (A21a)

For ferroelectrics

g(p, N) &p ln[(1—p)/p j+1n[bp/(1 —p)$,
g(p, N) )lnbp. (A26b)

where + is restricted to the e subspace and is real. Since
the Euler-Lagrange equation for h. z, is —,'(Az+Azt)%
=h.z%, and since Az ——Azi (here we use left/right
symmetry), it is a trivial conclusion that

h.z(e,N) =-,'h. '(e,N) . (A2lb)

Define fz(m, N) in analogy with (A7) using h.z. Since
the factor pi in (A21b) is irrelevant as N ~ ~, we have

F(p) = I"z(p), (A22)

assuming that we can prove that fz satisfies theorem I.
(e) To prove Theorem I for fz, we shall utilize a

method that is by now almost classic. "Let 4(n, N) be
the function that maximizes h.z(e,N). Divide the chain
(row) into two pieces with Ni vertices in the first part,
Np in the second, and Ni+Np ——N. In an obvious
notation, consider the following trial function for the
full chain @(ip,N) =4'(Ni, Ni)+(np, Np), with ei+ep=N.
The reason for considering Al. alone now becomes
apparent, for

(+,Az+)/(4, 4') =Az(ni, ¹)Az(ep,Np) . (A23)

The proof of (A23) follows from the observation that
the only part of Az, which contributes to (O',Az+) is
that part which conserves both e& and m& separately.
Also, when we go from the broken chain to the full
chain we must add the II bond connecting Ni to Ni+1
and X to 1. But we must also delete the II bonds
connecting Ni to 1 and N to Ni+1. The crux of the
matter is that for those terms in (O',Az4') that do not
vanish, the arrows along the two added H bonds are
exactly the same as they would be along the two deleted
Ii bonds of the broken chain. If we now define g(p, N)
= fz(ri, N) with p= I/N, we have from (A23)

g(p, N) &cvig(pi, Ni)+pppg(pp, Np), (A24)

with cu;= N, /N and p= p~ipi+zp2pp. We can define g for
nonintegral values of m by linear interpolation: If
p= (ri+g)/N with 0&g&1, then

g(p, N) =—(1—g)g(N/N, N)+rig((v+1)/N, Ã). (A25)

With this definition, it is possible to show that (A24)
is a fortiori true for arbitrary pi and pp (cf. Ref. 11,
footnote 25).

(f) From (A18) and (A19), we have the following
large N bounds on g (valid for p&0, i.e., e/0): For
antiferroelectrics

(g) Pick some Np)0 and consider the sequence
N;=2zNp with p fixed. Define g;=—g(p, N;). Then (A24)
states that g; forms an increasing sequence. Since it has
an upper bound (A26), it must have a limit. Call this
limit G(p, Np). Now set Ni=Np Np2—&—and 'N=2Np2&'

in (A24) and take the limit j—& ~.We thereby establish
the concavity of G(p, Np). This function is, moreover,
continuous, since a concave function bounded from
below is necessarily continuous.

(h) We now wish to show that G(p, Np) is the common
limit for an arbitrary sequence p(N) =ri(N)/1V satis-
fying the conditions of the theorem. This wi11 be done

by showing that limzz„„ inf g(p(N), N)&G(P, Np) and
»m~ sup g(p(N), N) &G(p, N p)

Lover bogld: Obviously, the inequality (A24) can be
iterated any number of times. In particular, let j be
fixed and let L=N02&'. Break the chain up into C sub-
chains of length I. plus a remainder of length N
(CL&N and M=N CL). The—n

g( (N),N) &(CL/N)g(. ,L)

+ (1 CL/N) g(p—', N CI.), (A—27)

with p'= [Np(N) —PCL][1V CL] '. We w—ish to insure

that 0(p'&-,', which means that CL/N&[-,'—p(N)g
X[—,

' —p] ' and CI/N(p(N)/p. If C is always chosen

to be the maximum integer satisfying these require-
ments then, as N —& pp, 1 CL/N~0 —But g(p', N . CL)—
is bounded by (A18). Thus, letting N-+ pp in (A27) yields

limni „inf g(p(N), N)&g(p, L). This is true for all j.
Now let j—+ ~, whence lim& „infg(p(N), N) &G(p, Np).

Upper bolrid: L is defined as above. For each N let k

be the smallest integer such that V=%02~&2E. Con-

sider a chain of length U broken up into a piece of

length S, C pieces of length I.and a remainder of length
3f= U N CL. Then —(A24—) states that

g(P U)&(N/U)g(P(N) N)+(CL/U)g(P, L)

+(bf/U) g(p', M),

where p'= [pU pCL Np(N) —j[U —CL] '. In ord—er to
have 0(p'&pi we require CL/U&1 Np(N)/Up. If C—
is the maximum possible integer for each 1V then, as
N-+~, U '(N+CL)~1. Therefore, (M/U)g(p', 3II)~0.
Hence

lim sup g(p(N), N) & lim g(p, U)+ (—1+U/N) g(p, U)

g(p)N)&pin[bi'(1 p)/bp'pl+in[bp/(1 p)3~

g(P,N) & 2p»[bi/b, j+lnb, . (A26a)
—(CL/N)g(p, L)&G(p,Np)+3IG(P, Np) g(p L) I .

"See, for example, M. E. Fisher, Arch. Rat. Mech. Analysis 17,
377 (1964). lt is to this paper that we are most indebted.

(We have used the fact that U/N&4. ) Now 1«j~ pp,

so that the last quantityi I I ~ goes to zero. Q.E.D.


