
3Rig= mug y—Re(Fi*Fi4)—2m' Re(Fi Fis) mst Re(Fg Fg)
m—N*mN Re(Fg*Fto)+4mtv*'mN Re(Fs*F»)——g'm&' Re(Fs*Fio) —2mtr*mtr Re(Fs Fli)

+mt'* Re(Fs*Fis)+mtr*mtr Re(Fs*Ft4) —4mtv~'mtv Re(Fr*Fg))+2(NN*)LRe(Fi*Fii)
+2mtremN Re(Fg Fis) —2mNe Re(Fs Fg)+ms* Re(Fs*Fts)+mNe Re(Fs Fio)
+2mtremtr Re(Fs*Fit)+2mtreg Re(Fr*Fig))—4(NN*) LRe(Fg Fit)+ Re(Fs*Fts) 7
+4/(NN*) m—Ne mtrg j[2(NN*) Re(Fs*Fii)+m~~ Re(Fs Fi4) 2—mN*mtr Re(F3 Fis)

+mtve Re(Fv Fto)+2mtvemN Re(Fr Fit)+2(NN*) Re(Fr*Fig)j.
Xis Xi4 and Xts are obtained from Xg+Xio Xii and Xtg, respectively, by changing Re to iIm in the latter ex-
pressions. Here Fii, Fig, Fis, and Fis are redefined to be the (Fit+F4/mt), (Fis—F4/mt), (Fts+Fs/mt), and
(Flo Fs/mt), respectively, of Eq. (27).
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The spin--, polarization and projection operators are obtained. The polarization of the outgoing N resp-
nance for the process I &+N -+ N*+l is treated and the explicit value of the density matrix of the N* reso-
nance is obtained in two special cases, using the explicit values of three form factors obtained by Herman and
Veltman and by Albright and Liu.

I. INTRODUCTION

' 'N the preceding paper, ' the interaction Hamiltonian
i . for the process vt+N —+ N*+l has been expressed
in terms of 14 form factors in general and the polariza-
tion of the outgoing lepton was considered. If it is
assumed that the interaction Hanultonian is the current-
current form and p5 symmetry holds for the lepton
current, only eight form factors need to be considered.
Herman and Veltman, ' Albright and Liu, ' 4 and Furlan,
Jengo, and Remiddi' obtained explicit values for these
form factors using diEerent methods.

In this paper the spin-~ polarization and projection
operators are obtained using the spin--,'wave functions
which were recently developed by Joos, ' Weinberg, '
and Weaver, Hammer, and Good. The polarization
effect of N* for the process vt+N ~ Ne+i is treated
by using the explicit values of the form factors derived

t Work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission. Contribution No. 2054.

$ Present address: Department of Applied Physics, College of
Engineering, Seoul National University, Seoul, Korea.
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from N* photoproduction and. SU(6) theory by Herman
and Veltman' and by Albright and Liu, ' respectively.
Also, the explicit value of the density matrix is ob-
tained in these cases. This density Inatrix was given
by Shay, Song, and Good, ' and will be useful in dis-
cussing the angular distribution of the decay of the lY*
resonance into a nucleon and a pion as discussed by
Gottfried and Jackson. "

Finally, some useful matrix properties are given in
the Appendix.

Z-(0.z)-(4 "z )-= (~"/F) ~- ~zz, (2)

where e is +1 or —1 for positive or negative energy
states, and s and K indicate half-integral spin and
polarization state. Here the f's are at same physical
momentum P', and f is defined by fty4. The energy and
polarization projection operators for arbitrary half-

9D. Shay, H. S. Song, and R. H, Good, Jr., Nuovo Cimento
Suppi. 3, 455 (1966).' K. Gottfried and J. D. Jackson, Nuovo Cimento 33, 309
(1964).

II. PROJECTION OPERATORS

In the notation of Refs. 1 and 9, the plane-wave
amplitude of a particle with mass is written in mo-
mentum space as

4'~zp qi'
which is normalized in the sense that
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(A.F ).p=(E/ ")(a. )-(~. )p

(3)

(4)

(s)

Introducing 1 (N*), which is defined in Ref. 9 as

t (N*) =iy„„gN*'„N*'„N*'),/m', (6)

the energy projection operator for the spin-~ particle is

~.=-:[1+f(N*)5. (7)

The polarization projection operator for arbitrary spin s
has been introduced by Michel" as

integral spin s can be expressed in terms of the plane-
wave amplitudes as

= —1 for E=—2, and Ey=E2=E3= —1 for E=
Here P~ P„means the sum over all permutations of
(aPk) and (i4vX). When one sums over the polarizations
of the spin-2 particle, Eq. (12) becomes

Q X p„X„„g——(12K~~~) '+~ N*' „N*'p„N*';)„

Q ~pv) ~nPi (12+ 4)
—1 Q NO~pa N4~cv PN4~CX 4

where Pe means the sum over all permutations of
either (uPic) or (lush). Here the physical energy-rnomen-
tum operator E*'„ is related to the gradient operator
N~„= i'/&x—„by N*'„=(Ii/E)N"„. Since for the re-
action presently considered, v&+N —+ N*+l, only
particles are involved, E*'„and E*„are identical and
they will not be distinguished hereafter.

( 1)4-K ~

p ()= II (T .-E'),
(s—E)!(s+E)!rr'= .rr ~x

(8) III. PRODUCTION CROSS SECTION AND
DENSITY MATRIX

where T„ is the polarization operator and g'„ is a four-
vector used in Ref. 1. For spin ~3 this becomes

e[T.~ .—.5[T,~ .+.5[T,~ .+-,5,
F;"'= k[T.~'.—$5[T.~'—.+25[T.n'.+a5,

F "=:LT-. !5-[T.~'.—l5[T.~'.+—,'5, -
e[T.~'.—25[T.n—'. :5[T.~—'.+—25

These can be written as

Fx'"=[(—1)~ /(8 —E)!(2+E)!5
&&[(T.~'.)'+~(T,~'.)'+f(T.~',)+p5, (10)

where a= (-,',-'„——,',——,'), fi= (—1/4, —9/4, —9/4, —1/4),
and c= (—3/8, —9/8, 9/8, 3/8) «r E= (~»-'„——',,—-,'),
respectively. For spin —,

' one also gets

T„=—(3/32~)t. (N*).„„,.~.p„~.„N*'.,
T„q'„=—(3/2m')ipse„„gN*'„N*'„g'g,

(T„q'„)2=i (3/2m)g(N*)y„„),N '„q'„q'),+4

(T„g'„)'= ——,'ipse„„&,g'„4i'„g'x—(21/8'iN')

X

The first equation in Eq. (11) was given in Ref. 9 and
the other relations can be obtained using the properties
of the matrix 5 given in the Appendix. From Eqs. (1),
(S), (7), and (10) it follows for the positive-energy state
that

x.p;x„„g=(384m~*IE I)-'p, g,. [N*'+E,mg'5.
X[N*'+E,~&'5p, [N*'+E,~&'5„„

p"""ip'p"'=(3848~ IEI) 'Q„Q~. [N*'—Egnz41'5&'

X [N*' E2mg'5"—P[N*' Eying'5'—" (12)

where q'& is the spinor corresponding to the four-
vector q'„daEn~ E~ Ea +1 for E=2, —E—~=—E—~——
=+1, and E3

—1 for E=~, E4'——+1, and E~ E3—— ——

"L.Michel, Nuovo Cimento Suppl. 14, 95 (1N9).

In Ref. 1 the interaction Hamiltonian for the process
vi+N -+ N*+/ has been expressed in terms of 14 form
factors in general. H it is assumed that the interaction
Hamiltonian is the current-current form and y5 sym-
metry holds for the lepton current, only eight form
factors need to be considered. Several authors' ' ob-
tained explicit values for these form factors by using
diGerent methods. Here only those derived from E*
photoproduction and SU(6) theory, which were con-
sidered by Herman and Beltman' and by Albright and
Liu, ' will be discussed. Then the interaction Hamil-
tonian given in Ref. 1 is

(flHli)=(G/'ili4*V)[F & p
N* "'pi„qiipq„

+FM~ p,N* "N'pxii'v 4'q'. "+Fed'""N*; &iv'v 4'v"'

+F14&p' "'N*jivN'icipii4 ip' ipld5 1 (14)

where the subscripts X, v, E*,and t denote the nucleon,
neutrino, E* resonance, and lepton, respectively. The
explicit results given in Ref. 3 are

IF,~(0)
I

= —o.87, IF, v(o) I
= —IF,v(0) I

=s.6, (1s)

when E* photoproduction and conserved vector cur-
rent (CVC) are considered and

IF,"(o)
I
= —0.83, IF, '(o) I

= —IF2 (0)1=3.75, (16)

when SU(6) theory and CVC are considered. The rela-
tion between the form factors in Eq. (14) and those of
Albright and Liu, I'; ~ and Ii;", are given in Ref. 1 as

F9= —4~2(Fi +F4 '), Fxo= —(~V2/~)F2',

Fga —— 4%2(Fg" Fg v), —Fg4 (4v—2/A)F2v, ——

where 6 is nsii~+m~.
Consider the absolute square of the matrix element

of the interaction Hamiltonian. Averaging it over the
polarizations of the initial particles and summing over
the polarizations of the outgoing lepton give, in the
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Ss~'= 3$~S~'—$~~ ~

s,,s= (9/10)(5s;s, ss o,,s—s h;s—s; 08;—s,)

rest system of the X* resonance, where the s;; and s@~ are defined as

—;I(pl@Is)l =(G mN /96IKIENE, E„)
X {[3+K1K2+K1K3+K2K3]A
X [5(K1+Ks+Ks)+3K1K2K3]B;s;
+[K1K2+K1K3+K2K3]CigSip'

+K1K2KsD,;8s;;8), (18) and the A, B;, C;;, and Di, s are as follows:

A= IF"I'(EN+mN)[3EiE —(1'v)]+2~ 'IF"Fvl(EN mN„)[F (N. l)

+ IF'I'{(E — )[3EE.—(1')]-»-'(E -m )[E,(N 1)+E,(N.,)]
+26-'[(N v)(N 1)—N'(v 1)+2¹E„E,]—2&-2N2[E„(Nl)+E, (Np)ymN(lp)])

I (EN+mN)[@v E'l']+8 IF F
I {~ (EN+mN)[2(v 1)N,—3(N v)l;—3(N 1)v;]

+2[(N v)l+(N 1)vi+(1 v)N' —5E.E N1]i+36 '[Ei(N v)+E„(N 1)]Ã—b,—'Ns[E„l;+Eip,])
+ IF'I'{(EN—mN)(E. li—@p')—& '(EN —mN)[(N v)l; —(N 1)v;]—2A 2(EN+mN)

X[(E„(N 1)—Ei(N v))N; —2N2(E„1,—@p,)]—si2,—2N2[(N. v)l,. (N. 1)p,]
+ 8~ '[9N'(E, l;—Eiv;) —7(E„(N 1)—Ei(N v))N~]), (20)

I (EN+mN)l;v, —~ IF F l{(EN+3mN+2mN*)(E„l; Eiv,)N, +—[(N 1)v; (N v)l—~]N, )
+ I

F
I {—(EN mN)l, v/+1 (EN mN)(E„l—;+Etp )Ni+Q ['E (Nl)+Ei(Np)+mN(lv)]N;Nq

+& '[(N 1)v,N,+(N v)l;N, 2N'l;v, —2E„E1N—,N,]},
:D'~8=~—'IF"F"I L2(EN+2mN+mN*)l p Ns ('E'l+—Eiv )N, N8]+Q 2IF vI 2

X{(EN+2mN+mN")(Eiv; E,li)N;N—s+[(N v)l, (N 1)p;]—N/Ns),

where F" is F1" and Fv is F1v= Fsp. Note—that K=4(3+K1K2+K2K3+K3K1). Therefore one has for the
unpolarized cross section,

(3do3+ do) do; 3d—o;)/g—» do»= 5B;s,/A

(do 8 do', +do; dog)—/P» do» —C,,s;.;/2A. ——

(d 3d +3d —; d;)/g =d— =5D;;;; /6A.

(23)

Experimentally 8;, C;;, and D,;k can be obtained by
considering the angular distribution of the decay
particles of the E~ resonance. In order to get the
density matrix of the N* resonance in its rest system
before it decays into a nucleon and a pion, one re-
places the K;s s by the (o;) js's for any K, and the 1's
by the (1) 0's in Eq. (18) so that each term of the equa-
tion can be expressed in terms of three pairs of sub-

(
do) V2ENEiE„mN*

l(fl &ls) I'-
(9/ ~~p 21I (S mN )

6'm~+

62r(S—mN') '

where s= —(N+v)' and l =—(l—v)' One also has from
Eqs. (18) and (21)

do K 1/'do 5(K1+K2+K'3)+3K1K2Ks
1+ 8;s;

d& 4&d& „., 4IKIA

K1K2+K2K3+K8K1 K1K2K8
Cits;;+ D;;ss;;8, (22)

4IKIA 4IKIA
ol

scripts. One also multiplies it by gv g„.from the left
in order to symmetrize the subscripts and by the matrix
7 from the right and left where the matrix 2' is defined
in the Appendix. Then using the properties of the matrix
S given in the Appendix, one get the density matrix

p= ,'[1+2(BiS;/A—)+C;;Sir/2A)
+(D;;8S;;2/6A)], (24)

where the S; are the usual spin-2 matrices and the
S;;, S 18 are defined in Ref. 9 as

S,;=S,S,y S;S,——,'s,;
S;;8——S;S;Ss+S;S2S;+S,S2S;+S,S;Ss+S8S;S;

+S S;S,—(41/10)(5;,Ss+8;2S;+8;S;). (25)

These matrices are traceless and symmetric with re-
spect to the interchange of any two indices, and they
give zero when any two indices are contracted. More-
over, they are orthogonal in the sense that product of
any two of 1, S;, S;;, and S,,8 is traceless. Equation (23)
can also be written as

( d /s+ossd2l 2o/2 do—1/2 2d&— 2)8//p de» Si Tr(pSi)

(do 3/2 do 1/2+ «—1/2 do 3 )//2p «KK = -', Si; »(pSii)
(dos/2 3d01/2+3d/r —

1/2 do 8/2)/QK —do»
= (10/81)s;, Tr(pS;; ). (23')

Gottfried and Jackson" gave the angular distribu-
tion of the decay particle in terms of the density matrix
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of the particle with arbitrary spin before its decay.
Therefore, the measurement of the angular distribu-
tion of the decay particle will give some information
concerning the density matrix, i.ec) the production
process. Parity is not conserved in this case of the
E*production.

Several authors' 5 expressed the form factors in
terms of those of zero momentum transfer as

F*'"(~)=F*'"(0)/9—(~/&) j", (26)

where n is an integer and b a cutoff parameter. H
Eq. (26) is used, the density matrix of Eq. (24) can be
expressed in terms of the F;(0), i.e., only the form fac-
tors of zero momentum transfer need to be considered
in the density matrix. The measurement of the angular
distribution of the decay particle might also determine
which of the several sets of form factors is the suitable
one in the present cases and when more form factors
are used.

Then the product of two Smatrices is

(5«vbS)cr) (igb) (4 j b )
= (—'t/36) T (ijb) (abc)

XLQ„P, (~„)..(~,)bb (~b),.1
XLP„P," (

XT(,i.bi. cii)(c,gb. ). (A3)

The traces of Eqs. (A2) and (A3) are

T (5„,)=(—'/36)Lg, g„.( „)..( „)
X (0 b) cc' ja=a', b=b', c c' (A4)

T (5„„5„„)=(—i/36)'~g„g„. ( „)..( „)
X L&p Zn (~~)".(~.) b b(~b)".j (A5)

From Eq. (A2) one gets 5444 ———1 and S44, =-', iS; and

LS(vS«vbg+ =48b 45«vi+ ZBv 45«ib+ 48«45(vb 48biS«v4

i i)„,—5«4b i8«—;54„b (A.6)

From this equation one can get Eq. (15) of Ref. 9. Also

Eq. (15) of Ref. 9 can be expressed as
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APPENDIX

/444 )

Si 245444 v

S j=35,j4+8;;5444,

S;;b= (9i/10)L55;j +t),;5, +5j 5„;+()„;S„jf.
(A7)

The matrices S„„),for spin —,
' can be expressed by prod-

ucts of the 0- matrices. This is very convenient for
calculations. Every expression given here can be ex-

tended inunediately to the arbitrary spin.
Let the matrix component of 5«„b be (5„„),) where

n and o.
' run from 1 to 4. n and n' can be expressed by

(ijk) and (i'j'k'), i.e., n=1, 2, 3, and 4 correspond to
(111), (112), (122), and (222), respectively. Introduc-

ing a diagonal matrix

S„„)can be expressed as

0 0 0
O&3 O O

o o H o
'.0 0 0 1.

(A1)

(5«vb) (ijb) (i'j'b') = ( &/36) T(ijb) ( bc)a
XLP„P„(~„)..(0,)bb (ab)..gT(. b. )(;; b ), (A2)

where g p g p means the sum over all permutations of
((bt)c) and ( b'(bc') and sununation convention is used.

These are used to get the density matrix from the square
of the interaction Hamiltonian. These matrices are
traceless and symmetric with respect to the interchange
of any two indices, and they give zero when any two
indices are contracted. Also the product of any two of
the matrices in Eq. (A7) is traceless and for the product
of the same matrices, one gets

Tr(S;S,)=5&;j,

Tr(S;,Sbi) = 12(();)5jb+5;b()ji)—88,j()b),

Tr(S;;,S„„)= (27/5) g„(5&;,Sj,Sb„
—8jb8;«5„—bb, 8j«b4,),

where P«means the sum of permutations of either

(ijk) or (pqr). These relations were used to get Eq. (23').
Equation (11) can be obtained by using Eqs. (5),

(A2), and (A3). Other useful formulas are

y«„bX*«S*,S*by,(„N*(Ã*,= ()jm)ice*)7)„(ran, p, (A9)

V«vD«& v&*bVpcv&'.=
()j)b)i*'&*b&*vVbvaV «ca (A1o)


