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The magnetic isoscalar form factor is fitted with two poles: the w and the ¢ resonance. The magnetic iso-
vector form factor Gy for spacelike and timelike momentum transfers is fitted using the conformal-trans-
formation techniques of Levinger, Peierls, and Wang, and these techniques are tested using artificial data.
If we do not assume a contribution from the p resonance, we find a spectral function with a broad peak some
100 MeV below the position of the p, and with a negative dip around 1200 MeV. If we assume that the p
resonance contributes additively at its known position and width, but with an adjustable coefficient for its
strength, we argue that the p contributes about 909, of the static moment. The complete spectral function
shows a shoulder around 500 MeV, and again a negative dip around 1200 MeV. If we assume that Gy is a
product of the form factor for the p and an adjustable function, we find that the spectral function has a high
peak near the p resonance, and a marked negative dip at 900 MeV. The p again contributes some 90%, of the
static moment. The different phenomenonological fits are in semiquantitative agreement with each other
and with the recent field-theoretical calculations of Furuichi ez al.

I. INTRODUCTION

XPERIMENTS on electron scattering at several
different laboratories’™® have recently added to
our knowledge of nucleon form factors, particularly at
high negative (spacelike) momentum transfers. Mean-
while, two experiments'®!! on lepton pair production
in proton-antiproton annihilation are starting to give
reliable results for form factors for high positive
(timelike) values of momentum transfer.

If we assume that the form factors are analytic
functions of the momentum transfer ¢, in the complex-
cut ¢ plane, we can try to extrapolate from the measured
form factors to find the spectral function on the cut.}?-4
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This spectral function, in turn, is expected to have
peaks at the positions of vector (17) meson resonances
of strangeness zero. The experimental knowledge of
these mesons has improved recently, so that one can
assert with some confidence that only three such
mesons have been found!®: the isovector p at 765 MeV,
and the isoscalar w and ¢ at 783 and 1020 MeV, re-
spectively. The isovector resonance has an appreciable
width; but the isoscalar resonances are sufficiently
narrow that one can treat them as providing poles in
the spectral function.

It is convenient to extrapolate each of the four
nucleon form factors separately: the isovector V mag-
netic Gy and electric Gy, and the isoscalar S magnetic
Gus and electric Ggs. These are simply related to the
measured proton p and neutron # magnetic and electric
form factors. Here we face the difficulty’® that while
the proton magnetic form factor G, is known accu-
rately, and the neutron magnetic form factor Gu» and
the proton electron form factor Gg, are known fairly
well, the neutron electric form factor Gg. continues to
be peculiarly difficult to measure.!” Indeed, except for
its static value, and its first derivative Gg.'=dGg./di
at the static limit, Gg. is only constrained by the
rather broad limits |Gg.| <0.15. However, Gg.'(0) is
known with very good accuracy.’® Wilson’s remark®
still holds that it “is probably the best determined of
all nucleon-form-factor data.”

In view of difficulties in the determination of Ggy,
we wish to primarily emphasize fits to the magnetic
isovector form factor Guv, and secondarily fits to the
magnetic isoscalar form factor Gus. The electric iso-
scalar form factor Ggg might be calculated, following
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Dudelzak,” rather than taking it from experiment. We
shall pay no attention to the electric isovector form
factor Ggy. Alternatively, one can concentrate on fits?!
only to proton data.

Several different types of fits have been made to the
isovector magnetic form factor.?? One cannot fit the
data using only a single pole at the observed position
of the p resonance. Shifting? the pole to a lower value
of ¢ to account for the effect of the width of the reso-
nance in the dispersion relation helps, but still does
not achieve a satisfactory fit. One can fit®? by shifting
the resonance from 765 MeV all the way to 550 MeV;
but this means giving up the program of relating the
spectral function for form factors to experiments on
multipion resonances.

If one-pole fits to Garv prove unsatisfactory, a natural
alternative is to try two-pole fits.525 For instance,
one? can combine an (unshifted) p with an (unobserved)
p’ at 875 MeV. Or one can use?® a “dipole” expression
by having the p and p’ close together, with strengths
such that the “monopole’” term cancels, leaving a form
factor proportional to (1—i#/m,?)~2. Orman® uses
(o-wave-modified) Lorentzian resonances instead of
poles, and fits the Gy data with broad resonances at
800 and 1200 MeV, respectively.

Recently, different groups,?®? have fitted Gyv and
other nucleon form factors with expressions which,
from a mathematical point of view, amount to intro-
ducing another pole into the spectral function, but
which are quite different from a physical point of view.
For instance, Massam and Zichichi?® use the form

Guv=2.353/(1—t/m*)(1—1t/A?), 1)

where A is a parameter, which is adjusted to 980 MeV
in fitting the data. But the product of two Clementel-
Villi factors is trivially rewritten as a sum of two
Clementel-Villi factors:

Guv=a/(1—t/m2)+b/(1—1t/A?). 2)

Corresponding to the two terms on the right of (2),
we have a spectral function with poles at m, and at A;
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that is, A merely takes the place of the hypothetical p’
resonance discussed above. But Massam and Zichichi
give Eq. (1) quite a different interpretation. They
argue that while the factor (1—#/m,?) is due to a pole
in the spectral function corresponding to a virtual
photon “materializing” into a virtual p, we should
allow for ‘“‘deviations from pointlike couplings,” in
particular in the coupling of the p to the nucleon, thus
justifying the (1—#/A2)~! factor in Eq. (1).

The above is a special case of the relation between
fitting the form factor Gy v as a product of two terms
and fitting the same data as the sum of two terms. We
might try a form

GMV = Ger ) (3)

where 7 is the ratio, and the subscript p implies that
the second term on the right could be a shape?” appro-
priate for the p resonance. Alternative, we might try

GMV=G,1+AGP, (4)

where the real coefficient 4 represents the strength of
the contribution of the p resonance, and d is the differ-
ence. We relate the spectral functions by equating the
imaginary parts of the right-hand sides of these two
equations:

ImGyv=ReG, ImG,+ImG; ReG,
=ImGe+4 ImG,. (5)

If the function G, has an imaginary part that varies
slowly over the region where the p resonance is ap-
preciable, then

A=ReG, (6)

evaluated at the position of the p, and
ImGs=ReG, ImG,.

From a purely phenomenological point of view, there
are advantages in the use of the product form, Eq. (3).
First, the contribution of the p resonance to the static
magnetic moment is directly determined from Eq. (5),
while with Eq. (4) the constant 4 must be determined
separately. Second, in Eq. (6) the term ReG, has con-
siderable structure near the p resonance (positive below,
changing rapidly to negative above the resonance),
allowing the possibility of fitting a complicated func-
tion G with a relatively simple function G,.

Phenomenological fits of forms (3) or (4) have been
made by Kane and Zdanis® and by Chilton and
Uhrhane,® and in a preliminary form by the present
author.'” Different theoretical fits of the product form
(3) have been proposed by Furuichi ef al.,%2% Signell
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and Durso,** Antoniou and Bowcock,? Cocho et al.,*
and Hoehler et al.%

We shall not attempt here a review of or comparison
among these different fits; we shall concentrate on a
comparison between our phenomenological fit, of prod-
uct form, with the fit very recently achieved by Furuichi
et al.,® which is based on an analysis of structure of the
pNN vertex following the early dispersion-theoretical
treatment of Chew ef al.3® on the scattering of = mesons
by nucleons. Note that Signell’s and Antoniou’s argu-
ments follow the same general lines as Furuichi’s. A
“correlated pion state” is treated as a p resonance,
with point coupling both to the virtual photon and to
the nucleon line. Uncorrelated pion states® are ap-
proximated by letting the (virtual) p disintegrate into
pions each of which joins the baryon line. (However,
Cocho introduces the factor we call G, as due to ‘“damp-
ing at the vertex,” while Hoehler introduces it as due
to the Regge-pole behavior of the p resonance.) Also
note that the phenomenological work of this paper is
complementary to a field-theoretical approach such as
Furuichi’s, since he is limited to not-too-high-mass
intermediate states, while herein the function G, is
fitted over the whole range. In particular, we pay
attention to the upper limits for the cross section for
proton-antiproton annihilation into lepton pairs!®-
which Furuichi neglects. On the other hand, Furuichi’s
fit permits a direct theoretical interpretation, in par-
ticular concerning the values of certain adjustable
parameters.

It is also possible" to follow Paper I and to fit the
magnetic isovector spectral function without assuming
prior knowledge of the p resonance. Hopefully, the p
resonance and other possible structure would appear
naturally as a result of the extrapolation procedure.
We shall continue to pursue this attempt in the present
paper.

In the next section we shall re-examine our conformal
transformation!>~ technique of determining spectral
functions. We pay special attention to the sensitivity
of our results to the assumption made concerning the
value of the arbitrary parameter called b that enters in
the particular conformal transformation chosen. In
Sec. IIT we present the input data used for nucleon
electromagnetic form factors: This is a selective com-
pilation of experimental data as of April, 1966. We
then give statistical tests of Dudelzak’s fits® to the
isoscalar magnetic form factor. In Sec. IV we determine
the isovector magnetic spectral function without prior
assumptions concerning the p resonance, while in Sec.
V we assume knowledge of the position and width

3¢ P. Signell and J. W. Durso, Phys. Rev. Letters 18, 185 (1967).
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3 G. Cocho, G. Fronsdal, Harun Ar-Rashid, and R. White,
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203 (1966).

38 G. F. Chew, M. C. Goldberger, F. E. Low, and Y. Nambi,
Phys. Rev. 106, 1337 (1957); G. F. Chew, R. Karplus, S. Gasioro-
wicz, and F. Zacharaisen, ¢bzd. 110, 265 (1958).
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Tasre L. Artificial data for “‘smooth spectral function.”” These
artificial data were used in Ref. 12. The variable 7 is related to
t/ty using b=1.00. See Eqgs. (7) and (9).

1 G Error
—0.04 0.972 0.0097
—0.08 0.948 0.0095
—0.12 0.922 0.0092
—0.16 0.877 0.0088
—0.20 0.843 0.0084
—0.24 0.805 0.0080
—0.28 0.784 0.0078
—0.32 0.739 0.0074
—0.36 0.685 0.0068
—0.40 0.633 0.0063
—0.44 0.600 0.0060
—0.48 0.535 0.0054
—0.52 0.480 0.0048
—0.56 0.435 0.0044
—0.60 0.379 0.0038
—0.64 0.324 0.0032
—0.68 0.270 0.0027
—0.72 0.222 0.0022
—0.76 0.167 0.0017
—0.80 0.118 0.0012

of the p resonance, and use the sum form (4) to find
the remaining part of the spectral function. We use
the product form (3) in Sec. VI. In the final section
we compare the results of Sec. IV, Sec. V, and Sec. VI
and compare with Furuichi’s recent results.’

II. FURTHER TEST OF OUR EXTRAPOLATION
TECHNIQUE

The conformal transformation technique of extrap-
olation used, for instance, by Levinger and Peierls,?
transforms the cut ¢ plane into the interior of a unit
circle, and expands the form factors as a power series
in a new variable called 5. (Here the Mandelstan
variable ¢ is the squared momentum transfer, chosen
negative for spacelike values.) We test our technique
by the use of artificial data as follows. We assume a
spectral function g(#), with assumed threshold £, and
use it in a nonsubtracted dispersion integral to find
the form factor G(¥) for different spacelike momentum
transfers. We then add random errors, of an assumed
root-mean-square value and of normal distribution, to
G(t) to give artificial data, which we then feed into
the computer. The computer extrapolates, and prints
a spectral-function output, which we then compare
with the spectral function initially assumed. We found
that our extrapolation technique worked well for an
assumed smooth spectral function: The favorable
result is illustrated in Fig. 12 of Ref. 12 for a “‘con-
strained quartic” fit. On the other hand, the extrap-
olation technique is much less successful with artificial
data of the Clementel-Villi form, based on a single
pole. Of course we cannot reproduce an arbitrarily
narrow resonance, and we also have the problem of
tending to produce spurious side resonances, as illus-
trated in Fig. 9 of Ref. 12. Finally, the position of
the main resonance in the output spectral function
shifts when we choose different values for a parameter
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TasrE II. Smooth spectral function coefficients a. (). Coefficients for quartic fits to the data of Table I; see Eqgs. (7) and (10). The
x? value shows the goodness of fit for 17 degrees of freedom. The coefficient a5 is for a quintic fit, while the last column gives a cubic

fit for 5=2.5.
X

n 1.01 1.5 2.0 2.5 3.0 4.0 6.0 2.5 (cubic)
ao 0.997 0.849 0.714 0.604 0.514 0.380 0.227 0.602
@ 0.558 0.870 0.968 0.987 0.967 0.868 0.607 0.981
as —0.970 —0.523 —0.224 0.009 0.202 0.488 0.554 0.026
as —0.055 —0.256 —0.349 —0.371 —0.343 —0.139 0.997 —0.345
a4 0.388 0.243 0.132 0.026 —0.086 —0.356 —1.18 0.000
x? 17.4 18.1 17.9 19.2 19.3 16.4 19.8 20.8
as —0.135 0.116 0.215 0.252 0.253 0.163 —0.482

b in the conformal transformation

n=[0— (1—t/te)"*]/[b+ (1—t/15)""]. 0]

In this section the same artificial data used earlier
for a smooth spectral function are used; we examine
the dependence of the output spectral function on the
choice of . Our purpose is to learn what criteria should
be used in choosing b, so that we can apply these
criteria in the extrapolation of real data in the following
sections.

Levinger and Peierls!? choose a spectral function for
tIZtU’

g(#)=2.315[1—exp(¢'/2tc—%) ] exp(—1'/20t). (8)

Here ¢ is the threshold ; numerical values were chosen
to give a broad peak at ¢ of 74, and the coefficient
2.315 was chosen to give a form factor G(0) equal to
unity.

We assumed that the form factor G(¥) obeys a non-
subtracted dispersion relation

0

1
K()=G(@)=— / O/ =), )

™

Random errors of Gaussian distribution and of rms

i ' /N ' ' B
b=10l —\y;\ \

! ! M
L ,I \ INPUT \ ]

/I \\\ /i\ \/ b=6.0

]
\

/ 3.0
; / \ \ _
/

A

\

[
|
|
|
10} |
‘!
|
il .

_ /’/ \ 5 _
/':/ \ S ——

J‘II L |\ L T

Fi16. 1. The input spectral function, and three output functions,
for smooth artificial data, from Table III. The abscissa is the
energy in MeV.

value 19, of G are folded in, giving the artificial data
presented in Table I.
For seven choices of &, from 1.01 to 6.0, the “data”
K () are fitted for least squares with power series:
N
K(n= 2 aw". (10)
n=0
We use two constraints on the truncated polynomial:
(i) that we obtain the exact static value of unity for
G(0), and (ii) that the spectral function have zero
slope at threshold. [ This second constraint is physically
due to the p-wave behavior of intermediate states in
electron-nucleon scattering. It is also built in to the
assumed spectral function (8).]

For each choice of degree NV of the polynomial, we
looked at the X2 value of the power-series fit. Table II
shows that the value N=4 gives a X2 acceptable by
statistical criteria; i.e., close to 17, the number of
degrees of freedom for a quartic fit with two constraints.
(One should not go to a higher value of V, as discussed
previously,”? since the errors increase rapidly when N
is chosen too high.) Table II also gives the coefficients
a,(b) for these seven different quartic fits: Note that a
cubic fit is also satisfactory for 6=2.5.

The constrained least-squares-fitting program of
Peierls®? evaluates the error matrix for the coefficients
@., and uses the values @, and their (diagonal and
correlated) errors to evaluate the spectral function g(?)
and its statistical error:

N
g)= Zl ansin[n& (1) ]. (11)
Here the angle £, depends both on ¢ and on
cosgp() = (B*+1—1/t0)/ (B*—1+t/t0).  (12)

These seven spectral functions, and associated standard
errors, are presented both in Table III and in Fig. 1.

We see from this table and figure that the five values
of b in the range 1.5<8<4.0 reproduce the main
features of the input spectral function (8) rather well.
On the other hand, the extreme choice =1.01 shifts
the peak position from 7{ down to 4f, while the other
extreme choice 5=6.0 shifts the peak up to 11#. Both
extreme choices also introduce spurious dips around
1.2¢, and 80¢,, respectively. The three choices =2.0,



162

EXTRAPOLATION OF NUCLEON FORM FACTORS. II

1593

TasLE ITI. Smooth spectral function g for quartic fits using coefficients a,(b) from Table II [See Eq. (11)].
The errors in g are found using the complete error matrix. The input is Eq. (8).

b=1.01 b=1.5 b=2.0
E (MeV) Input g Error g Error g Error
289 0.00 —0.24 0.03 —0.02 0.01 0.00 0.00
308 0.02 —0.67 0.08 —0.08 0.03 0.03 0.01
337 0.08 —0.54 0.09 —0.07 0.05 0.11 0.02
373 0.22 0.14 0.05 0.11 0.05 0.26 0.04
418 0.44 0.93 0.01 0.47 0.04 0.48 0.04
459 0.66 1.37 0.04 0.81 0.02 0.70 0.03
509 0.92 1.61 0.06 1.15 0.02 0.94 0.02
571 1.19 1.65 0.06 1.41 0.04 1.18 0.01
622 1.34 1.58 0.06 1.50 0.05 1.31 0.02
683 1.44 1.45 0.04 1.52 0.05 1.40 0.04
718 1.47 1.37 0.04 1.49 0.05 1.42 0.04
756 1.47 1.28 0.03 145 0.05 1.42 0.04
800 1.46 1.19 0.03 1.39 0.05 1.40 0.05
903 1.35 0.99 0.01 1.21 0.04 1.29 0.05
1037 1.16 0.79 0.01 0.98 0.02 1.11 0.04
1217 0.90 0.61 0.01 0.73 0.01 0.85 0.02
1473 0.58 0.45 0.01 0.50 0.01 0.57 0.01
1867 0.25 0.31 0.02 0.30 0.02 0.31 0.02
2154 0.12 0.26 0.02 0.22 0.02 0.20 0.02
2545 0.04 0.21 0.01 0.15 0.02 0.11 0.02
3111 0.01 0.16 0.01 0.10 0.02 0.05 0.03
4000 0.00 0.12 0.01 0.06 0.02 0.01 0.02
5600 0.00 0.08 0.01 0.04 0.01 —0.01 0.02
Cubic
b=2.5 b=3.0 b=4.0 b=6. b=2.5
E (MeV) g Error g Error g Error g Error g Error
289 0.01  0.000 0.01  0.001 0.01  0.000 0.004 0.000 0.01  0.000
308 0.05 0.005 0.05  0.003 0.04 0.001 0.02  0.001 0.06 0.001
337 0.16 0.013 0.15 001 0.12  0.004 0.08  0.001 0.17  0.001
373 031  0.022 030  0.02 025 0.01 0.16  0.003 0.33  0.003
418 0.51  0.030 051  0.02 044 0.01 0.30  0.01 0.55 0.004
459 0.70  0.03 0.70  0.03 0.63 0.02 046  0.01 0.74 0.01
509 091 0.03 0.91 0.03 0.86 0.02 0.67 0.01 094 0.01
571 111 0.02 112 0.02 112 0.02 095  0.02 113 0.01
622 1.23 0.0 1.24 0.02 129  0.02 1.18 0.02 1.23  0.01
683 1.32 0.01 1.33 0.01 1.44 0.02 1.44 0.02 1.30  0.01
718 135  0.02 136 0.01 1.50  0.02 1.58  0.02 1.32 0.01
756 1.36 0.03 1.37 0.01 1.54 0.01 1.71 0.02 1.33  0.01
800 135 0.04 137  0.02 1.56 0.01 1.84  0.02 131 0.005
903 129  0.05 129 004 149 0.01 202 0.02 123 0.003
1037 113 0.05 1.13 0.05 1.26 0.03 2.00 0.01 1.08 0.001
1217 0.90 0.04 0.88 0.05 0.87 0.05 1.56 0.02 0.86 0.004
1473 0.62 0.02 0.60  0.04 040 0.06 052  0.06 0.60 0.01
1867 033 0.01 032 001 0.05 0.04 —0.89  0.09 034 0.01
2154 021 0.02 020  0.02 —0.01 0.02 —1.37  0.08 023 0.1
2545 0.11  0.03 011  0.03 0.01 0.02 —138  0.05 0.14 0.01
3111 0.03 0.03 004  0.04 0.08 0.04 —0.71  0.02 0.07 0.01
4000 —0.02 0.03 0.00 0.04 0.17  0.06 051  0.08 0.02 0.01
5600 —0.04 0.03 —0.02 0.04 0.22 0.06 1.66 0.13 —0.01 0.01

2.5, and 3.0 give particularly favorable results: The
output spectral function is in general only about one
of its standard errors away from the input spectral
function, and the three output curves are so close
together that we have drawn only one in the figure.
This check with artificial data shows that, at least
under favorable circumstances, our extrapolation tech-
nique is quite successful. The problem remains how to
recognize, in advance, that the circumstances are indeed
favorable; i.e., how we should choose b in (7). Levinger
and Peierls’? suggest that it is desirable that the
peak in the spectral function lie near £=90°, since a
truncated Fourier series can easily reproduce a peak
near 90°, but has difficulty reproducing a peak close
to 0° or 180°. The peak position is at 74, so Eq. (12)

shows that b=1.5 corresponds to a peak position near
120°, while 5=4.0 corresponds to a peak position near
60°. We can restate our result above to read that a
broad peak will be reproduced rather well if the peak
position is between 60° and 120°.

Another criterion suggested earlier’? is that the
choice of & should be such that Eq. (7) would spread
the data almost symmetrically about the origin in the
n plane. With our artificial data in the spacelike range
from —80¢# to zero, this criterion gives a range for &
similar to that in the paragraph above. This desirable
agreement between two criteria persists in our work
below, since the main structure in electromagnetic
spectral functions is in the region of 7f,, and the real
data lies in the range —80£,<¢<0.
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a,(b) F16. 2. The goodness of fit x? for

quartic fits is drawn as the dotted

curve, with the ordinate on the left.
The coefficient a5 for the quintic fit is
the solid curve and right ordinate.
The abscissa b is the adjustable pa-
rameter used in the conformal trans-
formation.

Two other criteria for choosing & were subsequently
suggested®: that satisfactory values for the annihila-
tion form factor [G(¢) for ¢>4M?*] be obtained, and
that X2(b) have a minimum for fixed N. In this section
we ignore annihilation form factors; they are used for
the real data treated below, by putting the annihilation
form factors directly in the fit, rather than indirectly
by the choice of b. The argument below suggests that
the choice of a minimum for X2(b) is not a reliable
criterion. Consider Fig. 2, in which X2 (b) is plotted
for the seven quartic fits given in Table II; the last
row of that table, namely a5(b) for the quintic fits, is
also plotted. We observe, as could have been predicted,
that the minima of X2(d) fall very nearly at the posi-
tions of the zeros of as(b). That is, when as(b) goes
through a zero, a quartic fit is just as good as a quintic;
since X2 for a quintic can be expected to be small we
should expect a minimum in the X2 value for a quartic
fit.

We can also understand our one success with a
cubic fit, namely at 5=2.5, by the same argument. As
seen from Table II, a4(d) goes through zero very near
2.5. [In fact @4(2.5) is not significantly different from
zero: @:=0.026=:0.024, quoting the diagonal (uncor-
related) error. ] Since the quartic fits have an acceptable
X2, so does the cubic fit in the case of 6=2.5. We con-
clude that the X2 criterion should be used only to decide
if a fit is statistically acceptable. Thus for 17 degrees
of freedom we have a 109, probability of finding a X?
greater than 24, so all the quartic fits presented are
well within the 909, confidence limit. In this context3?

3 In the usual least-squares fit, one has already decided on the
mathematical form used to fit the data, and is using the least-
squares criterion for optimum choice of the parameters to put
into the preordained form. But in our present context we do xof
have a definite mathematical form. We are making phenomeno-
logical fits, which means that we are wandering more or less
arbitrarily among different hyperplanes in Hilbert space. Once
we have decided to stay on a given hyperplane, we should deter-
mine the optimum position by a least-squares Criterion; but we
should not argue in favor of the choice of one hyperplane rather
than another by saying that while both x? values are acceptable,
one is more acceptable than the other.

we should not distinguish between ‘‘statistically ac-
ceptable” and “statistically more acceptable.”

Here an additional criterion for choosing b is pro-
posed ; namely, that the output spectral function gs(z)
have zero variation with respect to b. Figure 3 illustrates
Ag/Ab for values of ¢ near the peak of the spectral
function and at ¢ values giving g(f) some % of the
maximum value. We observe that all three curves have
nodes for & near 2.5, thus confirming our use above of
the criterion that the peak of the spectral function
should occur near £=90°,

III. THE ISOSCALAR FORM FACTOR

Leaving artificial data we return to actual data on
nucleon form factors which were compiled in April,
1966. Table IV gives the two magnetic form factors:
the isoscalar Gys and the isovector Guy. Since the
main source of error is the neutron magnetic form
factor G, We give specific references only for the neu-
tron measurements; we interpolate and average proton
measurements'—3 when necessary. Recent Deutsche Syn-
chrotron and Cambridge Electron Accelerator proton
measurements?? are not included. This omission is not
serious since the limiting factor is our knowledge of
G, which has not changed greatly during the past
14 months.%

In this section we examine three different fits to the
magnetic isoscalar form factor, each fit assuming that
the spectral function contains two poles, one located
at the position of the w isoscalar resonance. In the
first fit we allow the position of the second isoscalar
pole to vary, in an attempt to “discover” the ¢ reso-
nance. In the second fit, we use the ¢ resonance at its
known position of 1020 MeV and adjust the residues

4 The work of R. E. Rand, R. F. Frosch, C. E. Littig, and
M. R. Yearian [Phys. Rev. Letters 18, 469 (1967)] supports the
significance of meson-exchange effects in inelastic electron-
deuteron scattering in cases where both recoil nucleons receive
high momentum. This work calls into question the usual neglect
(Refs. 5-8) of such exchange effects in inelastic scattering in
cases where a single nucleon receives almost all the momentum.
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TasLE IV. Magnetic form factors. The proton data are taken from
Refs. 1-3, and in general contribute only small errors.

Standard
t (BeV/c)? Gus Guy error Reference
—0.0389 2.55 0.35 a
—0.0584 2.04 0.11 a
—0.0972 1.97 0.08 a
—0.179 1.524 0.07 a
—0.292 0.18 1.134 0.05 a
—0.389 0.14 0.980 0.02 b, c
—0.486 0.11 0.842 0.044 a
—0.564 0.11 0.746 0.027 b
—0.583 0.10 0.732 0.041 a
—0.623 0.10 0.696 0.022 c
—0.778 0.09 0.569 0.048 a
—0.857 0.11 0.526 0.018 [
—0.972 0.05 0.478 0.033 a
—1.17 0.05 0.384 0.013 c
—1.75 0.01 0.240 0.013 c
—2.92 0.018 0.118 0.007 c,d
—3.89 0.011 0.080 0.008 c, d
—6.81 0.006 0.032 0.010 c, d

s Hughes et al., Ref. 6.

b Stein et al., Ref. 5.

¢ Dunning ef al., Ref. 8.

d Treating upper limits on absolute value of Gun» as data, assuming
negative values for the neutron’s magnetic form factor.

at the two poles, with the static constraint Gars(0)
=0.44, to give a least-squares fit to the data of Table
IV. This approach has been used by other workers.%2
In the last fit we follow Dudelzak® in first fitting the
electric isoscalar form factor Ggs, and then using
Grs(4M2)=Gys(4M?) to determine Gus(f) with no
further adjustable parameters
In each case,

Gus()=0.44[am.2/ (m2—1)
+A—aymg/(md—1)].  (13)

We first allow my to vary and for each choice of my
determine a by a least-squares fit to the Gus data of
Table IV. The resulting X*(m,4) has a minimum value
of 17.1 at ms=980 MeV. The variation of X? with m,
gives us an error of 60 MeV in determining the ¢ mass.
That is, we have “discovered” an isoscalar resonance
at 9704+70 MeV, i.e., consistent with the ¢ position
of 1020 MeV. Our best X2 of 15 for 13 degrees of freedom
is well within the 909, confidence limit.#

In the second fit, the coefficient ¢ and its standard
error are determined using mg= 1020 MeV. We find

a=2.76:0.09. (14)

The slightly poorer X? value of 16 for 13 degrees of
freedom has a probability of about 209,. This fit is also
statistically acceptable, using the 909, confidence limit.

Dudelzak® first fits Ggs(f) with a form similar to
that of (13), using the additional constraint Ggg'(0)
=1.2340.05 (BeV/c)™2 (See also 1.) This constraint

41 Note that the data of Table IV is good enough to support
two adjustable parameters, ¢ and mg, but not three. See J. S.
Levinger and M. W. Kirson, Eastern Theoretical Physics Confer-
ence (Gordon and Breach Science Publishers, Inc., New York,
1963), p. 175.
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Fi6. 3. Slope Ag/Ab versus b for spectral functions from Table IIL.
The curves are for three values of ¢: 3.3%, 7.3%, and 19%.

on the slope of the isoscalar electric form factor at the
static limit is based on the very accurately determined
electron-neutron scattering length,'® and on Dudelzak’s
determination? of Gg,'(0), or the proportional proton
“mean-square radius.” The error in Ggs’'(0) comes
almost entirely from the proton measurements. Dudel-
zak then uses his expression for Ggs(f), and the con-
straint that the complex Ggs and Gy s must be equal
at 4M? (to give nonsingular Dirac and Pauli form
factors F; and Fy):

Grs(4M?) =Gy s(4M?)=—0.05. (15)

This second constraint on Gus gives the value of a
with no further adjustment. The error in @ comes from
the error in Ggg'(0), which propagates by means of
Grs(4M?). Dudelzak finds

0=2.32+0.18. (16)

We see that the values of ¢ given by Egs. (14) and
(16), respectively, disagree by two standard errors.
This disagreement indicates, but does not establish, a
failure of either (13) or (15). For instance, if we keep
the value of Ggg(4M?) from (15), but use the value of
Gus(4M?) from Egs. (13) and (14), we find that
Grs(4M?) and Gy s(4M?) differ by only 0.02; i.e., Eq.
(13) can be extrapolated into the far timelike region
with quite small inaccuracies. We conclude that both
isoscalar spectral functions can be fitted quite well
using two poles, at the known positions of the two
isoscalar resonances. There is no evidence for other
terms in the isoscalar spectral functions.

Similar conclusions have been reached by Hughes
et al.,’ and by Chan et al?* The former group fits Gus
allowing a “core term” (i.e., a pole at very high #),
and find that the core is zero within its statistical error.
Their value for @ is 2.42, in agreement with (14) and
(16). The latter group makes four different pole fits;
their “fit 4” corresponds to use of Eq. (15), and gives
a=2.42, in agreement with (16). Their “fit 5"’ does not
use the constraint at 4M?, and obtains ¢=2.69, in
good agreement with our result (14).
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F16. 4. Three magnetic isovector spectral functions from Table
VII: quartic with three constraints, dashed curve; quintic with
four constraints, dash-dot curve; and a spetimal with five con-
straints, shaded to show statistical error. The abscissa is the
energy in MeV.

However, Massam and Zichichi?® argue that we are
not free to adjust the coefficient a; instead, the value
of a is given by SU; symmetry as

a~4}, @an
With this choice of ¢ between zero and unity, a two-
pole fit (13) must fail. They conclude that the two-pole
form (13) should be multiplied by the same factor
G.= (1—1¢/A%»" as was done for the magnetic isovector
form factor in Eq. (1).

i At present, we believe it is impossible to be sure if
either Dudelzak’s procedure (followed above) or Zichi-
chi’s argument is correct. Besides its conflict with SUs,
we have no assurance that Dudelzak is correct in
assuming pointlike coupling for w NN and ¢NN; e.g.,
we are willing to make a different assumption in Sec.
VI for the pNVN vertex. On the other hand, we know
that SU; arguments on coupling constants are not
only approximate; they may fail badly as in the case
of lepton pair production from photoproduced ¢
mesons.*

1V. THE MAGNETIC ISOVECTOR FORM FACTOR

In this section, the magnetic isovector form-factor
data of Table IV are fitted using the conformal trans-
formation technique discussed above in Sec. II. As
has been argued in the Introduction and elsewhere,!®
one-pole and two-pole fits are unsuccessful in fitting
isovector form factors and simultaneously the proper-
ties-of meson resonances, so it seems desirable to go to
the other extreme and use a technique which works
well for a smooth spectral function. The present section
is a continuation of Paper 1.}* The data used now
(April, 1966 instead of June, 1964) extends over a
larger range of ¢, and are changed in value and in
quoted errors in the range where they overlap. [For

2 R. C. Chase, P. Rothwell, and R. Weinstein, Phys. Rev.
Letters 18, 710 (1967).
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instance, Guv(1.17) has been changed from 0.340
#+0.020 to read 0.3844-0.013.7] Also, in the present work
use is made of the recent small upper limits on the form
factors®! in the annihilation region {=6.8(BeV/c)2.

The cross section for proton-antiproton annihilation
into lepton pairs is a linear combination of the squared
moduli of the complex form factors |Gg,|? and | Garp |2
Zichichi’s measurement of an upper limit for the cross
section gives

|Grp|241.92| Gar,p|2<0.05. (18)

If we use Gg~Gy we have an upper limit of 0.15 for
the modulus of Garp. (Drell22 quotes |Garp| <0.1.)

We need the value G (6.8) to obtain an upper limit
on Gy to use in our fit. Equations (13) and (14) give
the real part Gug(6.8)=0.02 with an imaginary part
of zero. These numbers are small enough that we can
use the upper limits measured for |Gar,| directly as
upper limits for the real and imaginary parts of
Guv(6.8). As a matter of convenience, we use the
annihilation data as constraints on the complex form
factor; namely, Gav(6.8)=0.0.

Computer runs have been made for different com-
binations of the following: (i) values of 6=2, 3, or 4
[see Eq. (7)]; (ii) use of constraints or no constraints
at t=6.8(BeV/c)?; (iii) the value of the quantity
guv(6.8) chosen for the constraint on the imaginary
part of Gyrv. We have selected only part of the results,
emphasizing the choice of 5= 3. This choice of b satisfies
the three criteria verified in Sec. II: (i) The data runs
from —0.52<9<0.42, so it is nearly symmetrical about
the origin; (ii) the peak in the spectral function around
620 MeV corresponds to an angle &=65° which is
within the favorable 60° to 120° range found above;
(i) comparisons of spectral functions found for =3
with those for 4=4 show small variation with the
choice of b.

In all our runs at least three constraints were im-
posed on the coefficients in the power-series fit: the
two constraints for the static value and the zero slope
of the spectral function at its threshold #;, used in Sec.
II; and a third constraint that the form factor G(— «)
=0. Occasionally use was made of a fourth constraint

TasLE V. Coefficients for fits to magnetic isovector data of
Table IV. See Eq. (11), Eq. (20), and discussion above it. All
fits use b=3. See Table VI for error matrix for septimal fit.

3 constraints 4 constraints 5 constraints

Quartic Quintic Sextic Septimal
ag 0.70 0.69 0.70 0.70
[ 2.50 241 242 2.64
as 2.30 2.26 2.33 2.81
as —0.73 —0.26 —0.25 —1.08
a4 —1.23 —1.13 —1.50 —3.66
s —0.32 —0.38 —1.14
a6 0.26 1.48
ar 0.92
x* 14.0 21.3 22.8 8.3
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TasLE VI. Error matrix for septimal fit. H™ of Appendix, Ref. 12, used with septimal coefficients
of Table V to give errors in septimal spectral function, Table VII.
AN
7\ 0 1 2 3 4 5 6 7
0 0.00006 0.00022 ~—0.00009 —0.00088 —0.00087 0.00013 0.00061 0.00026
1 0.00022 0.00400 0.00680 —0.0150 —0.0341 —0.0105 0.0197 0.0140
2 —0.00009 0.00680 0.0170 —0.0251 —0.0712 —0.0268 0.0398 0.0307
3 —0.00088 —0.0150 —0.0251 0.0562 0.127 0.0389 —0.0736 —0.0523
4 —0.00087 —0.0341 —0.0712 0.127 0.324 0.112 —0.184 —0.137
5 0.00013 —0.0105 —0.0268 0.0389 0.112 0.0425 —0.0622 —0.0483
6 0.00061 0.0197 0.0398 —0.0736 —0.184 —0.0622 0.105 0.0772
7 0.00026 0.0140 0.0307 —0.0523 —0.137 —0.0483 0.0772 0.0580

designed to keep factors small in the annihilation
region; namely, that the slope of the spectral function
also be zero at infinite negative values of ¢, i.e.,

X a(=1)"na,=0. (19)

Finally, a run with five constraints was made by re-
moving the fourth constraint (19) and using two addi-
tional constraints, namely, that both the real and
imaginary parts of the complex form factor be zero at
6.8(BeV/c)2.

> aysinng,=0,

> @y cosn,=0.

Here the angle £, is given by Eq. (12), using =3 and
t/t,=287. (Of course, ¢, is equal to 4m?, where m is the
pion mass.)

(20)

In each case the data of Table IV could be fitted
with two adjustable parameters. (Good X2 values were
obtained with a quartic fit for three constraints, and
within the 909, confidence limit for a quintic with
four constraints and for a sextic with five constraints.)
However, in the case of the latter two fits, the X?
values decreased markedly when an extra adjustable
parameter was added. Table V gives the coefficients
@,, and the X2 values for four different polynomial fits:
a quartic with three constraints, a quintic with four
constraints, and sextic and septimal with five con-
straints. Table VI gives the error matrix for the
septimal fit. The spectral functions, and their statistical
errors (found using the complete error matrix) are
given for these four fits in Table VII, and are also
illustrated in Fig. 4.

TasrLE VII. Magnetic isovector spectral functions using coefficients of Table V,
Eq. (11), and complete error matrix; e. g., Table VI.

3 constraints

4 constraints

5 constraints

Quartic Quintic Sextic Septimal
E (MeV) g Ag 4 Ag 4 Ag 4 Ag
289 0.06 0.001 0.07 0.003 0.05 0.01 —0.18 0.06
308 0.32 0.005 0.41 0.02 0.32 0.04 —0.80 0.30
337 0.93 0.01 1.15 0.04 0.93 0.09 —1.50 0.64
373 1.80 0.03 2.16 0.07 1.87 0.14 —1.28 0.84
418 2.90 0.04 3.36 0.10 3.11 0.16 0.68 0.66
459 3.80 0.05 4.26 0.11 4.17 0.14 3.49 0.23
509 4.67 0.06 4.99 0.10 5.16 0.09 7.03 0.50
571 5.29 0.06 5.33 0.06 5.80 0.03 10.1 1.12
622 5.44 0.05 5.21 0.03 5.82 0.09 10.8 1.32
682 5.26 0.04 475 0.03 5.37 0.16 9.93 1.21
718 5.02 0.03 4.38 0.06 4.94 0.18 8.76 1.02
757 4.68 0.02 3.92 0.08 4.36 0.19 7.16 0.76
800 4.23 0.01 3.38 0.10 3.67 0.20 5.22 0.45
903 3.01 0.03 2.15 0.14 2.02 0.16 1.03 0.30
1037 1.54 0.06 0.91 0.13 0.40 0.08 —2.08 0.66
1217 0.11 0.07 —0.06 0.10 —0.69 0.02 -2.81 0.56
1474 —0.87 0.07 —0.56 0.04 —0.89 0.04 —1.57 0.18
1647 —1.09 0.06 —0.62 0.02 —0.71 0.04 —0.81 0.04
1867 —1.12 0.05 —0.58 0.02 —0.45 0.03 —0.26 0.05
2154 —0.98 0.03 —0.47 0.03 —0.19 0.01 —0.02 0.05
2545 —0.72 0.02 —0.34 0.03 —0.01 0.001 0.00 0.01
3111 —0.42 0.01 —0.20 0.03 0.05 0.003 —0.06 0.03
4000 —0.16 0.01 —0.10 0.02 0.02 0.001 —0.08 0.02
5600 0.01 0.01 —0.04 0.01 —0.04 0.004 —0.03 0.004
Re G ARe G Re G ARe G Re G ARe G Re G ARe G
1867 —0.69 0.04 —0.47 0.06 —0.04 0.01 0.42 0.12
2154 —0.21 0.04 —0.22 0.04 0.05 0.003 0.19 0.04
2545 0.13 0.04 —0.06 0.02 0.01 0.001 0.01 0.000
|G(2.6)| 0.7 0.02 0.34 0.03 0.00 0.00 0.00 0.00
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Tasre VIIL Coefficients, x? and 3", a.? for quintic and sextic fits to Ga(f) using Eq. (22) and data of Table IV.
All fits use b=3 and have five constraints, given below Eq. (24).

A=0.6 A=0.87 A4=10 4=11 A4=20
N=5 N=6 N=5 N=6 N=5 N=6 N=6 =6
ao —0.07 —0.06 —0.387 —0.396 —0.541 —0.559 —0.685 —1.81
a 0.97 1.01 0.383 0.349 0.10 0.03 —0.218 —2.35
az 2.09 2.05 1.86 1.90 1.75 1.83 1.77 1.35
as 0.66 0.50 0.88 1.01 0.99 1.26 1.45 2.74
as —1.01 —1.09 —0.87 —0.81 —0.80 —0.67 —0.56 0.03
as —0.62 —0.53 —0.66 —0.72 —0.67 —0.81 —0.88 —1.23
as 0.07 —0.06 —0.12 —0.17 —0.42
X 18.1 15.3 18.5 16.6 26.2 17.8 17.0 12.6
2nan 7.14 6.96 5.72 6.08 5.42 6.37 6.88 19.82

We see from the last row in Table VII that we need
to make use of the annihilation data; e.g., the quartic
fit with three constraints gives |G(6.8)|=0.7, with a
small statistical error, which is some five times the
measured upper limit. Use of four constraints gets us
closer to the measured upper limit, but it is desirable
to use the annihilation data explicitly. (Of course, it
need not be used as a constraint, but could, in future
work, be used as additional data points, with associated
standard errors.) However, we also see from Table VII
and Fig. 4 that the main features of the spectral func-
tion are unchanged when we compare the first three
fits, each with two adjustable parameters. The spectral
function has a peak of height about 5.5 at about 620
MeV, and also dips down to about —1 at about 1600
MeV. The full width at half-maximum T' of the main
peak decreases slowly from 500 to 450 MeV as we
increase the degree of the polynomial.

The last fit, a septimal (five constraints) with three
adjustable parameters, shows the main peak at the
same position of 620 MeV (with much larger errors
in determining the peak position). The peak is higher
and narrower (I'=300 MeV) than those for fits with
polynomials of lower order, but remains much broader
than the observed p resonance (I'=120 MeV). How-

-5 1 i 1

Fi1c. 5. Three magnetic isovector spectral functions for different
choices of the parameter b, and of the spectral function g(6.8) at
6.8(BeV/c)? timelike: solid curve, the septimal from Table VII
and Fig. 4, b=3, and g(6.8)=0.0; dash-dot curve b=4 and
£(6.8)=0.1; dashed curve, b=4 and g(6.8) =—0.1, both sextics.

ever, the half-width in angle of 32° is almost as small
as could be expected for a truncated Fourier series'?
with seven terms. The septimal fit has a dip at 1200
MeV.

I regard this septimal fit, with five constraints, as
the most satisfactory fit yet achieved using these con-
formal transformation techniques. The X? value is
excellent, so that we can certainly use this fit as a
convenient means to interpolate in the spacelike region.
The accuracy of the extrapolation to the near timelike
region is not certain, but at least the statistical errors
claimed are not small, so that our spectral function
may be about as accurate as it claims to be.

In Fig. 5 a comparison is made between the spectral
function of Table VII (septimal for 5=3.0) with sextic
fits using =4.0, and different values (0.1 and —0.1)
for the spectral function at {=6.8(BeV/c)2. [The re-
sults for 5=4 and g(6.8) =0.00 fall between the dashed
and dash-dot curves for g(6.8)=+0.1.]

V. MAGNETIC ISOVECTOR : SUM FORMULATION

In the preceding section we found that the data of
Table IV, combined with knowledge of the threshold,
threshold behavior, and other properties of the iso-
vector spectral function, determined a spectral function
similar, but not identical, to the experimentally deter-
mined position and shape of the p resonance. In par-
ticular, Table VII and Figs. 4 and 5 show spectral
functions with the main peak about 100 MeV below
the p resonance, and also with a dip around 1.2 BeV.
This partial agreement suggests a different approach,
discussed in the Introduction: Assume that the iso-
vector spectral function is dominated by the p resonance
with a determined position and shape, and fit the data
to find the (hopefully small) remaining spectral func-
tion. In this section we try the ‘“sum formulation”
Guyv=Gqs+AG,; in the next section the product
formulation Guv=G,G,.

I shall assume that the shape of the p resonance is
given by a Lorentzian modified, in the numerator, by
the p-wave behavior of the two-pion system, for '>1,:

8,(1)=0.358(¢—to)**/[(t,—¢')+1*].  (21)

This shape (for two isovector resonances with adjusta-
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TasLE IX. Magnetic isovector spectral functions (sum formulation). The residual spectral function gs is found using the coefficients
for the quintic fits, 4 =0.87 from Table VIII. The function g is given in Eq. (21), and the isovector spectral function is found from
Eq. (23). The four columns on the right give garv for four other choices of 4: 0.6, 1.0, 1.1, and 2.0.

E (MeV) g4 Error 0.87g, guv (0.87) guv (0.6) guv (1.0) ey (1.1) guv (2.0)
289 0.07 0.001 0.00 0.07 0.08 0.09 0.10 0.12
308 0.40 0.004 0.00 0.40 0.43 0.48 0.51 0.61
337 1.07 0.01 0.01 1.08 1.18 1.28 1.35 1.55
373 1.94 0.02 0.03 1.97 2.16 2.30 2.34 2.53
418 2.83 0.02 0.06 2.89 3.22 3.18 3.24 3.14
459 3.34 0.03 0.11 3.45 3.92 3.64 3.63 3.04
509 3.52 0.03 0.23 3.75 4.36 3.70 3.58 2.27
571 3.16 0.02 0.57 3.73 4.37 3.37 3.12 1.08
622 2.53 0.02 1.28 3.81 4.32 3.29 3.00 0.98
682 1.58 0.01 3.85 5.43 5.21 5.09 6.13 5.06
718 1.02 0.01 7.89 891 7.44 9.10 9.44 13.5
757 0.42 0.01 12.7 13.1 10.2 14.0 14.9 23.8
800 —0.20 0.01 9.83 9.63 7.53 10.1 10.6 16.7
903 —1.30 0.02 2.86 1.56 1.50 1.13 0.97 0.27

1037 —2.00 0.02 1.17 —0.83 —0.55 —1.19 —1.37 —2.87
1217 —2.04 0.02 0.62 —1.42 —1.22 —1.52 —1.60 —2.54
1474 —1.49 0.01 0.37 —1.12 —1.08 —1.02 —1.01 —1.32
1647 —1.10 0.01 0.29 —0.81 —0.82 —0.70 —0.66 —0.77
1867 —0.72 0.01 0.23 —0.49 —0.54 —0.40 —0.35 —-0.37
2154 —0.42 0.001 0.18 —0.24 —0.29 -0.19 —0.14 —0.12
2545 —0.22 0.001 0.15 —0.07 —0.12 —0.04 —0.02 —0.01
3111 —0.12 0.001 0.11 —0.01 —0.02 —0.01 0.00 0.00
4000 —0.10 0.001 0.09 —0.01 0.00 —0.01 —0.02 —0.01
5600 —0.09 0.002 0.06 —0.03 —0.01 0.00 —0.04 —0.02
ReGy Error 0.87 ReG  ReGuv (0.87) ReGyv (0.6) ReGuy (1.0) ReGuy (1.1)
1867 0.40 0.004 —0.38 0.02 0.01 0.04 0.05 0.23
2154 0.34 0.002 —0.28 0.06 0.09 0.04 0.03 0.13
2545 0.22 0.001 —0.19 0.03 0.08 0.00 —0.02 0.03

ble parameters) was used by Orman.?” In principle, the
width T in the denominator should be allowed to vary
with #; but since we are using this form only as a first
approximation it does not seem necessary to take
account of this effect, which is rather small. The form
factor G,(f) is determined®” using (21) in an unsub-
tracted dispersion relation, giving

— (0.078—1)*24-2.17—3.64¢

G,(1)=0.35%
(0.57—1£)24-0.0085

Here ¢ is in (BeV/c)? and we have used the position
0.57 and the width I'=0.0922 for the p corresponding'®
to an energy of 765 MeV and a width of 140 MeV. The
coefficient 4 determines what fraction of the static
isovector magnetic moment of 2.353 magnetons is
contributed by G,; i.e.,, 4=1.0 means that the p
resonance accounts completely for the static moment.

For a given choice of 4, the data of Table IV are
fitted for Gyv by first defining

Ga()=Guv()—A4G,(1). (23)

We then fit G4(f) by our conformal transformation
technique, and determine its spectral function ga(#’) for
> ty=4m?. Finally, we determine the spectral function
guv(?) using (21) and (23):

guv (V) =ga(t)+Ag,(¥). (24

Again, we face the question of how to use the upper
limits on the annihilation cross sections; let us answer
this as in the preceding section by placing two addi-

tional constraints on the fit to G4(f). That is, we use
five constraints: () Ga(0)=2.353 (1—4); (ii) g4’ (t)=0;
(i) Ga(—»)=0; (iv) ga(6.8)=—0.2; (v) ReG4(6.8)
=0.2. The last two constraints use the assumed shape
of G, and the value of 4 to keep the real and imaginary
parts of Gav(6.8) close to zero.

We propose the tentative criterion that the spectral
function g¢(#’) be small. That is, we assume that the
resonance does in fact dominate the magnetic isovector
spectral function, and choose 4 so that the non-p part
is as small as possible. We interpret ‘‘as small as
possible” to mean a minimization of 3, a,2, where we
sum the squared coefficients from O to the order N of
the polynomial that fits Ga. (This criterion corresponds
to minimizing the area under the squared spectral
function.)

Table VIII presents the coefficients a, found for
different choices of the parameter 4. In each case b=3
has been chosen and use has been made of the X2
criterion to determine the degree N of the polynomial
that fits satisfactorily. We find good fits with a quintic
(with five constraints) for 4=0.6 and 4=0.87; but
we must go to a sextic for 4=1.0, 1.1, and 2.0. [Note
that a,(A4) goes through zero for 4=0.8.] The value
of 3~ a@,? does not vary rapidly with V; but neverthe-
less it seems inconsistent to minimize this quantity
using different values of N. If we choose sextic fits
throughout, the minimum in }_, @, occurs at 4 =0.87,
as illustrated in Fig. 6. (The value ¥, a,2=28.5 for
A=0.0 has been taken from the coefficients for the
sextic fit with five constraints, Table V.) However,
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F16. 6. Sum of squared coefficients for polynomial fit to residual
G; [Eq. (23)] versus parameter 4. The coefficients are for sextic
fits, Tables VIII and V (for 4 =0). An A4 of zero means no con-
tribution of the p resonance; 4 =1 means that the p resonance
gives the static isovector magnetic moment.

with this value of 4 a quintic fit with five constraints
is chosen, since it gives an acceptable X% and a slightly
smaller >, a¢,%. The spectral function g, and 0.87g,
and gyy are given in Table IX and illustrated in Fig.
7. Note that |Guv(6.8)| =0.08 is within the limit set
by annihilation experiments. If errors in g, and in 4
were to introduce no additional errors, the small error
Agga of Table IX would give us an equally small error
in determining the magnetic isovector spectral function
Emv.

Of course, our results for the spectral function gary
do depend on our choice of 4; this dependence is
illustrated in Fig. 8, in the four columns on the right
of Table IX, and in the results without the p resonance
(4=0)"of Sec. IV. We see that there is qualitative
agreement among all six fits: All show a sizeable posi-

TaBLE X. Coefficients and x? values for fits to G.(f), Eq.
(25), using data of Table IV. All fits have three constraints,
given below Eq. (25).

b=3 b=3

b=2 Cubic Quartic Error
ao 0.755 0.549 0.556 0.006
a 0.920 0.963 0.987 0.018
as —0471 0.056 —0.015 0.050
as —0.360 —0.358 —0.391 0.024
as 0.275 0.054 0.038
x? 7.94 10.8 8.8
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tive spectral function around 500 MeV, a high peak
at or near the p resonance (620 to 760 MeV), and an
appreciable dip at about 1200 MeV. The height of the
peak at the p of course increases as we increase the
value of 4. Also as we increase 4 we “split off” the
low-energy peak from the p peak. For 4=0, we see a
single broad shifted peak; for 0.6<A4A<1.1 we see a
shoulder near 500 MeV; for 4 =2 we see a distinct dip
between the peaks at 450 and 750 MeV.

VI. MAGNETIC ISOVECTOR: PRODUCT
FORMULATION

Again we shall assume that the p resonance, with
spectral function g, and form factor G, given by Egs.
(21) and (22), dominate the magnetic isovector form
factor Gury(£). We replace Eq. (23) by

G:()=Guv(t)/G,(?). (25)

We then fit G,(f) for t<0 by our conformal trans-
formation technique. We use three constraints: (i)
G.(0)=1.0;. (ii) dG./di=0 at t=ty; (iii) G,(—«=)=0.
The first two constraints for the static value and the
p-wave behavior at threshold are the same as used
throughout this paper. The third constraint, that G,
obeys an unsubtracted dispersion relation, is adopted
to fit the low upper limits!>! on the annihilation form
factors, and is consistent with the 1/¢2 behavior of the
form factors for large spacelike momentum transfers.

The computer then gives us ReG,(¢') and ImG,(¢') for
' >ty which we use together with the real and imaginary
parts of G, from Eq. (22) to find the desired spectral
function ImGyv, Eq. (5).

For =3, a cubic with three constraints gives an
excellent X2 value of 10.8 for 17 degrees of freedom.
Table X gives the coefficients for this cubic fit, which
has only one adjustable parameter. Table XI and Fig.
9 give the corresponding spectral function garv.

Note that at 2545 MeV, | Gay| =0.10 is in agreement

F1c. 7. Magnetic isovector spectral function versus energy in
MeV, from Table IX. The dashed curve p is the p resonance,
chosen with a coefficient 0.87, to contribute 879, of the static
moment. The dash-dot curve g is a quintic fit to the residual
spectral function. The solid curve gyv is the sum, the magnetic
spectral function.



162

EXTRAPOLATION OF NUCLEON FORM

FACTORS. 11 1601

Fic. 8. Dependence of magnetic
isovector spectral function versus
energy in MeV on the choice of the
parameter A4, the assumed con-
tribution of the resonance; data
taken from Table IX. The dashed
curve is 4=0.6; the solid curve L
A=0.87; the dash-dot curve 4
=1.1;and thedotted curve 4 =2.0.

with Zichichi’s upper limit. At 2154 MeV, |Gy | =0.19
(see Tollestrup ef al.).

Fits were also made with =2.0 and 5=2.5; these
two runs demanded use of a quartic, and gave some-
what different spectral functions. The results for b=2
are included in the tables. Table X shows that a4(b)
goes through zero for & near 3; hence the good fit for
a cubic for this choice of 4. This cubic fit has a very
small statistical error (not given in the table since it
is deceptive), but the true error is much larger since
b could easily be 2 or 4, instead of 3. The values of
guv () for 2 and 3 are more or less consistent within
the appreciable errors of the former.

Table XI and Fig. 9 also give the very recent results
of Furuichi ef al.,*® which they have determined by
adjusting subtraction constants to fit magnetic iso-
vector data for small spacelike momentum transfers
[—1(BeV/c)2<t<0]. They also use electric isovector
data (since they make their analysis in terms of Dirac
and Pauli form factors Fy and Fs); this reintroduces
the perennial problem of what to choose for the electric
form factor of the neutron.

The two curves shown in Fig. 9 are in qualitative
agreement only. Both show a peak near the 760-MeV
position of the p resonance, but shifted slightly towards
lower energy. They both show a low-energy tail, with-
out structure, and a dip in the region of 1 BeV. The
Furuichi dip is much shallower, while we find a much
deeper dip than his or than in others of our fits. Com-
pensating for the deep dip, our fit has a very high peak
at the position of the p resonance—much higher than
Furuichi’s or than any others of our fits except for the
sum-formulation fit with 4=2.0.

We note that ReG,, evaluated at the p resonance, is
0.85 for a cubic fit with b=3. From Eq. (6), the corre-

sponding value of 4 in the sum formulation would also
be 0.85, in remarkably good agreement with the choice
A4=0.87 for the sum formulation argued for in the
previous section.

VII. DISCUSSION

It has been found that using a conformal transforma-
tion, it is possible to extrapolate measurements of iso-
vector magnetic form factors in order to determine the
spectral function. (The isoscalar fit was discussed in
Sec. III and is ignored here.) Significantly different
spectral functions are obtained by making different
assumptions concerning the contribution of the p reso-
nance (neglect, sum formulation, or product formula-
tion) and by neglecting or including the annihilation
data, as shown in Figs. 4, 5, 8, and 9. For instance, if
we neglect the annihilation measurements, as in the
quartic fit (three constraints) of Fig. 4, our extrapolated
spectral function is much too large in absolute value in
the annihilation region. Also Fig. 8 shows that as
stronger p resonance contributions are assumed, we ob-

tain higher and higher peaks in the vicinity of the p reso-

nance. However, three main qualitative features persist
in all our fits as well as in Furuichi’s fit® shown in Fig. 9.
First, the spectral function is large in the 400-600-MeV
region; i.e., it is much larger than would be expected
from the low-energy tail of a p resonance of Lorentzian
shape. Second, the p resonance, or something similar,
either appears without prior assumptions in the spectral
function, as in Figs. 4 and 5, or can be assumed and
still give a good fit to the data, as in Figs. 7-9. Third,
all our spectral functions show appreciable dips in the
region near 1 BeV. If the B resonance were known'® to
have spin 1 and negative parity, we would identify this
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Imv

F16. 9. The magnetic isovector
spectral function versus energy in
MeV fromr Table XI, for 6=3,
shown as a solid curve. The dashed
curve shows the theoretical fit of
Furuichi et al., Ref. 33.

dip with the B. On the other hand, our extrapolation
by itself is not good enough to assert whether the dip
represents a narrow resonance, or a broader continuum.
Given the present uncertainty about the quantum
numbers of the B resonance, we cannot make any firm
identification of the dip.

This qualitative agreement makes us believe that

TaBLE XI. Spectral functions for product formulation.

b=2 b=3 Furuichi
E (MeV) v Error My et al.s
289 —0.03 0.02 0.1
308 —0.14 0.06 0.10 0.3
337 —0.25 0.16 0.32 0.5
373 —0.13 0.70 0.8
418 0.45 1.35 1.4
459 14 0.3 2.13 2.0
509 3.2 3.37 29
571 6.4 5.63 4.9
622 10.4 0.2 8.67 8.0
682 18.6 15.1 11.3
718 25.1 1.5 20.6 12.7
757 18.8 16.7 9.5
800 1.3 0.9 2.6 54
903 —54 —4.0 0.4
1037 -3.3 0.2 —2.70 -0.7
1217 —1.74 —1.54 —0.8
1474 —0.78 0.04 —0.76
1647 —0.50 —0.50
1867 —0.30 0.02 —0.31
2154 —0.17 —0.19
2545 —0.09 0.01 —0.10
3111 —0.04 —0.04
4000 —0.02 0.003 —0.02
5600 —0.01 —0.01
Re Guv Re Guv
1867 0.10 0.05
2154 0.08 0.04
2545 0.05 0.03

» See Ref. 33. The spectral functions for b =2 uses a quartic and that for
b =3(uses a cubic. Both have three constraints; see Table X and Egs. (5)
and (22).

there is indeed significance in these qualitative features
of our phenomenological fits, and also of the more
theoretical fits.®¥%% It must be made clear that these
successful fits do not in themselves deny the possible
significance of various two-pole fits.?*25:4 The two-pole
fits are rejected on the physical grounds that (i) the
nucleon form factors, we believe are dominated by
mesonic intermediate states; and (ii) only one isovector
1~ meson is established at present. If either of these
two assumptions proves to be invalid, then the two-pole
fits would have as much (or more) physical significance
as the work presented here.

We group the quantitative disagreements among the
results shown in Figs. 4, 5, 8, and 9 under three main
headings. (i) What is the quantitative value of the
contribution of the p resonance? (i) In the region
below the main peak, is the spectral function mono-
tonic, or does it have a shoulder, or even structure?
(iii) What is the magnitude and shape of the dip above
the main peak?

Let us note, concerning the first of these questions,
that for a broad resonance it is hard to find an unam-
biguous procedure to separate the resonance contribu-
tion from the remainder of the continuum. For brevity,
we shall consider the value of the coefficient 4 of Sec.
V. (Other workers®*4# treat the value of the pNNV
coupling.) The septimal fit of Sec. IV gives a value
A=1.3 (when we integrate from 3f, to 9%, to find the
contribution to the static magnetic moment). If we
have confidence in the criterion used in Sec. V, namely,
minimizing the summed squares of the coefficients to
Ga, we choose an 4 of about 0.9; but we note that much
larger or smaller values of 4 give good X* values. The
product formulation of Sec. VI gives ReG,=4=0.85

4 K. J. Barnes, Phys. Rev. 150, 1331 (1966).
447, J. Sakurai, Phys. Rev. Letters 17, 1021 (1966).
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(for the choice b=23). Furuichi’s spectral function®
integrated from 3f, to 9, gives 4=1.0. We feel that
4 is in the region from 0.8 to 1.3; but it is hard to
obtain a firm value, or to estimate the error of the
determination of A, since subjective factors enter so
strongly. Consequently, we find it hard to have con-
fidence in the values quoted®# for the pVN coupling
constant, found from analysis of form factors.

The bulk of the present evidence favors a monotonic
rise or perhaps a shoulder in the region below the main
peak. The only case treated giving pronounced struc-
ture is the sum formulation, with the “high” value of
A=2. Also, there is evidence from measurements of
the mass spectrum for the leptonic decay of photo-
produced vector mesons*> in favor of a substantial
contribution below the main peak at the p; but there
is no compelling evidence at present in favor of struc-
ture in this region.

My phenomenological fits give a dip going down to
only —1.5 (for the sum formulation with 4=0.87) or
as far as down to —4.0 (for the product formulation).
While Furuichi® finds an even less pronounced dip,
we are now considering high-mass states around 1 BeV,
where his approximations become less reliable.

How can one decide which phenomenological fit is
preferable? Also, what are the relative merits of the
present fits compared to, say, Furuichi’s spectral func-
tion? The former question may be answered in favor
of the product formulation of Sec. VI. If we do not
introduce the p resonance into our fit (as in the treat-
ment of Sec. IV) we cannot find a spectral function
anything near as narrow as the p: Hence it seems
desirable to introduce the p before fitting, rather than
to expect it (and other contributions) to come directly
from the form-factor data with no additional assump-
tions. The product formulation of Sec. VI is preferred
over the sum formulation of Sec. V since the sum
formulation has the additional difficulty of the deter-
mination of the constant 4.

As stated above, there are complementary advan-
tages to our fit, and to Furuichi’s. In both, use is
made of about two adjustable parameters; e.g., we use
two in our quartic fit with three constraints in Sec. VL
(As pointed out in that section, the fit with a single

4 A. Wehmann, E. Engels, Jr., L. N. Hand, C. M. Hoffman,

P. G. Innocenti, R. Wilson, W. A. Blanpied, and D. G. Stairs,
Phys. Rev. Letters 17, 1113 (1966).
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adjustable parameter for the constrained cubic is an
accident.) Furuichi’s two parameters are subtraction
constants in his fits to the helicity amplitudes for xtVN
coupling. (In considering the fit to G alone, it might
be possible to combine these two constants into a
single adjustable constant.) The present work has the
advantage that it can determine the spectral function
for high-mass intermediate states (such as those that
dominate the annihilation experiments!®-!*) while Furui-
chi’s approximations become dubious at these high
energies. On the other hand, Furuichi’s work has the
marked advantage of having a theoretical interpreta-
tion in terms of definite dispersion-theory diagrams.
This should permit testing Furuichi’s analysis by con-
sideration of other experiments, such as those on
vector-meson decays into lepton pairs,*® or on measure-
ments?® on the form factor of the meson.

The discussion above was limited to the isovector
magnetic form factor. Recent proton data®? is more
extensive and more accurate than that for the neutron
data, and has not been used in this paper. Further, it
is stated? that “the best present theoretical predictions
are not adequate” to provide a satisfactory fit to Gayp.
That statement was made in the context of fits with
poles. It is clear that a fit using conformal transforma-
tions can at this time determine a proton spectral
function giving a satisfactory X2 value, just as it did
several years ago'>® for data then current. This treat-
ment would be analogous to that in Sec. IV. Alterna-
tively, one could introduce the p resonance, using, the
product formulation, and use a palatable parametriza-
tion of the magnetic isoscalar form factor (perhaps
that of Sec. IIT). A paper on the proton form factor is
in preparation.
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