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The magnetic isoscalar form factor is Gtted with two poles: the co and the p resonance. The magnetic iso-
vector form factor G~y for spacelike and timelike momentum transfers is Gtted using the conformal-trans-
formation techniques of Levinger, Peierls, and Wang, and these techniques are tested using artificial data.
If we do not assume a contribution from the p resonance, we Gnd a spectral function with a broad peak some
100 MeV below the position of the p, and with a negative dip around 1200 MeV. If we assume that the p
resonance contributes additively at its known position and width, but with an adjustable coeflicient for its
strength, we argue that the p contributes about 90'jj~ of the static moment. The complete spectral function
shows a shoulder around 500 MeV, and again a negative dip around 1200 MeV. If we assume that G~y is a
product of the form factor for the p and an adjustable function, we Gnd that the spectral function has a high
peak near the p resonance, and a marked negative dip at 900 MeV. The p again contributes some 90% of the
static moment. The diGerent phenomenonological fits are in semiquantitative agreement with each other
and with the recent Geld-theoretical calculations of Furuichi et al.

I. INTRODUCTION

XPERIMENTS on electron scattering at several
& diGerent laboratories' ' have recently added to

our knowledge of nucleon form factors, particularly at
high negative (spacelike) momentum transfers. Mean-
while, two experiments"" on lepton pair production
in proton-antiproton annihilation are starting to give
reliable results for form factors for high positive
(timelike) values of momentum transfer.

If we assume that the form factors are analytic
functions of the momentum transfer t, in the complex-
cut t plane, we can try to extrapolate from the measured
form factors to find the spectral function on the cut." "
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This spectral function, in turn, is expected to have
peaks at the positions of vector (1 ) meson resonances
of strangeness zero. The experimental knowledge of
these mesons has improved recently, so that one can
assert with some confidence that only three such
mesons have been found": the isovector p at 765 MeV,
and the isoscalar cv and p at 283 and 1020 MeV, re-
spectively. The isovector resonance has an appreciable
width; but the isoscalar resonances are suKciently
narrow that one can treat them as providing poles in
the spectral function.

It is convenient to extrapolate each of the four
nucleon form factors separately: the isovector V mag-
netic G~y and electric GEy, and the isoscalar Smagnetic
G&1& and electric GEB. These are simply related to the
measured proton p and neutron e magnetic and electric
form factors. Here we face the difhculty' that while
the proton magnetic form factor G~„ is known accu-
rately, and the neutron magnetic form factor G~„and
the proton electron form factor GE~ are known fairly
well, the neutron electric form factor GE„continues to
be peculiarly de.cult to measure. " Indeed, except for
its static value, and its first derivative G~„=dGs„/df
at the static limit, GE„ is only constrained by the
rather broad limits ~G~ ~

(0.15. However, GE (0) is
known with very good accuracy. "Wilson's remark"
still holds that it "is probably the best determined of
all nucleon-form-factor data. "

In view of difhculties in the determination of GE„,
we wish to primarily emphasize fits to the magnetic
isovector form factor G~z, and secondarily fits to the
magnetic isoscalar form factor G~q. The electric iso-
scalar form factor GEB might be calculated, following

'~ A. H. Rosenfeld, A. Barbaro-Galtieri, W. J. Podolsky, L. R.
Price, P. Soding, C. G. Wokl, M. Roos, and W. J. Willis, Rev.
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135 (1964)."J.S. Levinger, in Perspectives in Modern Physics, edited by
R. Marshak (John Wiley R Sons, Inc. , New York, 1966), p. 177.
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Dudelzak, ~o rather than taking it from experiment. We
shall pay no attention to the electric isovector form
factor Gzz. Alternatively, one can concentrate on fits"
only to proton data.

Several different types of fits have been made to the
isovector magnetic form factor." One cannot fit the
data using only a single pole at the observed position
of the p resonance. Shifting" the pole to a lower value
of t to account for the e8ect of the width of the reso-
nance in the dispersion relation helps, but still does
not achieve a satisfactory fit. One can fit "by shifting
the resonance from 765 MeV all the way to 550 MeV;
but this means giving up the program of relating the
spectral function for form factors to experiments on
multipion resonances.

If one-pole fits to G~& prove unsatisfactory, a natural
alternative is to try two-pole fits. '"'~ For instance,
one" can combine an (unshifted) p with an (unobserved)
p' at 875 MeV. Or one can use" a "dipole" expression
by having the p and p' close together, with strengths
s«h that the "monopole" term cancels, leaving a form
factor proportional to (1—t/ r'n) '. Orman" uses
(p-wave-modified) I.orentzian resonances instead of
poles, and fits the G~y data with broad resonances at
800 and 1200 MeV, respectively.

Recently, diferent groups, ""have fitted G~z and
other nucleon form factors with expressions which,
from a mathematical point of view, amount to intro-
ducing another pole into the spectral function, but
which are quite different from a physical point of view.
For instance, Massam and Zichichi" use the form

Gsr v =2.353/(1 t/rn, ') (1——t/A. '), (1)

where A. is a parameter, wh'ich is adjusted to 980 MeV
in fitting the data. But the product of two Clementel-
Villi factors is trivially rewritten as a sum of two
Clementel-Villi factors:

Gjsrr tt/(1 t/rrt ')+——fs/(1 —t/h'). —(2).
Corresponding to the two terms on the right of (2),
we have a spectral function with poles at m, and at A;
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that is, A merely takes the place of the hypothetical p'

resonance discussed above. But Massam and Zichichi
give Eq. (1) quite a different interpretation. They
argue that while the factor (1—t/m, ') is due to a pole
in the spectral function corresponding to a virtual
photon "materializing" into a virtual p, we should
allow for "deviations from pointlike couplings, " in
particular in the coupling of the p to the nucleon, thus
justifying the (1—t/A') ' factor in Eq. (1).

The above is a special case of the relation between
fitting the form factor G~y as a product of two terms
and fitting the same data as the sum of two terms. We
might try a form

G~y= G,Gp, (3)

where r is the ratio, and the subscript p implies that
the second term on the right could be a shape" appro-
priate for the p resonance. Alternative, we might try

A =ReG„ (6)

evaluated at the position of the p, and

ImGq= ReG, ImG„.

From a purely phenomenological point of view, there
are advantages in the use of the product form, Eq. (3).
First, the contribution of the p resonance to the static
magnetic moment is directly determined from Eq. (5),
while with Eq. (4) the constant A must be determined
separately. Second, in Eq. (6) the term ReG, has con-
siderable structure near the p resonance (positive below,
changing rapidly to negative above the resonance),
allowing the possibility of fitting a complicated func-
tion Gd with a relatively simple function G„.

Phenomenological fits of forms (3) or (4) have been
made by Kane and Zdanis'0 and by Chilton and
Uhrhane, " and in a preliminary form by the present
author. "Different theoretical fits of the product form

(3) have been proposed by Furuichi et al. ,
ss ss Signell

' G. L. Kane and R. A. Zdanis, Phys. Rev. 151, 1239 (1966)."I'. Ch;lton and V. J. Uhrhane, Bul.l. Am. Phys. Soc. 11, 396
(1966); also unpublished reports."S.Furuichi and K. Watanabe, Progr. Theoret. Phys (Kyoto)
35, 174 (1966).

~ S. Furuichi, H. Kanada, and K. Watanabe, Progr. Theoret.
Phys. (Kyoto) 38, No. 3 (1967).

where the real coeKcient A represents the strength of
the contribution of the p resonance, and d is the differ-
ence. We relate the spectral functions by equating the
imaginary parts of the right-hand sides of these two
equations:

ImGsr v ——ReG, ImG, +ImG„ReG,
= ImGa+A ImG, . (5)

If the function G„has an imaginary part that varies
slowly over the region where the p resonance is ap-
preciable, then
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and Durso, "Antoniou and Bowcock, ss Cocho et ul. ,
ss

and Hoehler et aI.3~

We shall not attempt here a review of or comparison
among these diferent fits; we shall concentrate on a
comparison between our phenomenological fit, of prod-
uct form, with the fit very recently achieved by Furuichi
et a/. ,

33 which is based on an analysis of structure of the
pe% vertex following the early dispersion-theoretical
treatment of Chew et al.3' on the scattering of m mesons

by nucleons. Note that Signell's and Antoniou's argu-
ments follow the same general lines as Furuichi's. A
"correlated pion state" is treated as a p resonance,
with point coupling both to the virtual photon and to
the nucleon line. Uncorrelated pion states" are ap-
proximated by letting the (virtual) p disintegrate into
pions each of which joins the baryon line. (However,
Cocho introduces the factor we call G, as due to "damp-
ing at the vertex, " while Hoehler introduces it as due
to the Regge-pole behavior of the p resonance. ) Also
note that the phenomenological work of this paper is
complementary to a field-theoretical approach such as
Furuichis, since he is limited to not-too-high-mass
intermediate states, while herein the function G„ is
fitted over the whole range. In particular, we pay
attention to the upper limits for the cross section for
proton-antiproton annihilation into lepton pairs" "
which Furuichi neglects. On the other hand, Furuichi s
fit permits a direct theoretical interpretation, in par-
ticular concerning the values of certain adjustable
parameters.

It is also possible" to follow Paper I and to fit the
magnetic isovector spectral function without assuming
prior knowledge of the p resonance. Hopefully, the p
resonance and other possible structure would appear
naturally as a result of the extrapolation procedure.
We shall continue to pursue this attempt in the present
paper.

In the next section we shall re-examine our conformal
transformation" " technique of determining spectral
functions. We pay special attention to the sensitivity
of our results to the assumption made concerning the
value of the arbitrary parameter called b that enters in
the particular conformal transformation chosen. In
Sec. III we present the input data used for nucleon
electromagnetic form factors: This is a selective com-
pilation of experimental data as of April, 1966. We
then give statistical tests of Dudelzak's fits'0 to the
isoscalar magnetic form factor. In Sec. IV we determine
the isovector magnetic spectral function without prior
assumptions concerning the p resonance, while in Sec.
V we assume knowledge of the position and width
"P. Signell and J.W. Durso, Phys. Rev. Letters 18, 185 (1967)."N. G. Antoniou and J. K. Bowcock (unpublished)."G. Cocho, G. Fronsdal, Harun Ar-Rashid, and R. White,

Phys. Rev. Letters 17, 275 (1966).
~' G. Hoehler, J. Baacke, and G. Eisenbeiss, Phys. Letters 22,

203 (1966).' G. F. Chew, M. C. Goldberger, F. E. Low, and Y. Narnbi,
Phys. Rev. 106, 1337 (1957);G. F. Chew, R. Karplus, S. Gasioro-
wicz, and F. Zacharaisen, sbsd 110, 265 (1958)..

TABLE L Artificial data for "smooth spectral function. "These
artificial data were used in Ref. 12. The variable q is related to
t!to using b =1.00. See Eqs. (7) and (9).

—0.04—0.08—0.12—0.16—0.20—0.24—0.28—0.32—0.36—0.40—0.44—0.48—0.52—0.56—0.60—0.64—0,68—0.72—0.76—0.80

0.972
0.948
0.922
0.877
0.843
0.805
0.784
0.739
0.685
0.633
0.600
0.535
0.480
0.435
0.379
0.324
0.270
0.222
0.167
0.118

Error

0.0097
0.0095
0.0092
0.0088
0.0084
0,0080
0.0078
0.0074
0.0068
0.0063
0.0060
0.0054
0.0048
0.0044
0.0038
0.0032
0.0027
0.0022
0,0017
0.0012

of the p resonance, and use the sum form (4) to find
the remaining part of the spectral function. We use
the product form (3) in Sec. VI. In the inal section
we compare the results of Sec. IV, Sec. V, and Sec. VI
and compare with Furuichi's recent results. "
II. FURTHER TEST OF OUR EXTRAPOLATION

TECHNIQUE

The conformal transformation technique of extrap-
olation used, for instance, by Levinger and Peierls, "
transforms the cut t plane into the interior of a unit
circle, and expands the form factors as a power series
in a new variable called g. (Here the Mandelstan
variable t is the squared momentum transfer, chosen
negative for spacelike values. ) We test our technique
by the use of artificial data as follows. We assume a
spectral function g(t'), with assumed threshold ts, and
use it in a nonsubtracted dispersion integral to find
the form factor G(t) for different spacelike momentum
transfers. We then add random errors, of an assumed
root-mean-square value and of normal distribution, to
G(t) to give artificial data, which we then feed into
the computer. The computer extrapolates, and prints
a spectral-function output, which we then compare
with the spectral function initially assumed. We found
that our extrapolation technique worked well for an
assumed smooth spectral function: The favorable
result is illustrated in Fig. 12 of Ref. 12 for a "con-
strained quartic" fit. On the other hand, the extrap-
olation technique is much less successful with artificial
data of the Clementel-Villi form, based on a single
pole. Of course we cannot reproduce an arbitrarily
narrow resonance, and we also have the problem of
tending to produce spurious side resonances, as illus-
tra, ted in Fig. 9 of Ref. 12. Finally, the position of
the main resonance in the output spectral function
shifts when we choose diferent values for a parameter
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TasLE II. Smooth spectral function coeflrcients a (b). CoeKcients for quartic Gts to the data of Table I; see Eqs. (7) and (10).The
p value shows the goodness of Gt for 17 degrees of freedom. The coefficient a& is for a quintic Gt, while the last column gives a cubic
Gt for b=2.5.

&o

81
G2

03
G4
x'
Qri

1.01

0.997
0.558—0.970—0.055
0.388

17.4—0.135

1.5

0.849
0.870—0.523—0.256
0.243

18.1
0.116

2.0

0.714
0.968—0.224—0.349
0.132

17.9
0.215

0.604
0.987
0.009—0.371
0.026

19.2
0.252

3.0

0.514
0.967
0.202—0.343—0.086

19.3
0.253

4.0

0.380
0.868
0.488—0.139—0.356

16.4
0.163

6.0

0.227
0.607
0.554
0.997—1.18

19.8—0.482

2.5 (cubic)

0.602
0.981
0.026—0.345
0.000

20.8

b in the conformal transformation

r) = Pb (1—t/—to)'~q/(b+ (1—t/to)'I'g. P)
In this section the same artificial data used earlier

for a smooth spectral function are used; we examine
the dependence of the output spectral function on the
choice of b. Our purpose is to learn what criteria should
be used in choosing b, so that we can apply these
criteria in the extrapolation of real data in the following
sections.

Levinger and Peierls" choose a spectral function for
t'&tp,

g(t') =2.315L1—exp(t'/2ts —sr)g' exp( —t'/20ts). (8)

Here tp is the threshold; numerical values were chosen
to give a broad peak at t' of /ts, and the coeKcient
2.315 was chosen to give a form factor G(0) equal to
unity.

We assumed that the form factor G(t) obeys a non-
subtracted dispersion relation

&0

Random errors of Gaussian distribution and of rms

/ %
b 0 I.OI

I
IE

value 1%%u~ of G are folded in, giving the artificial data
presented in Table I.

For seven choices of b, from 1.01 to 6.0, the "data"
E(r)) are fitted for least squares with power series:

E(rt)= P a„rl". (10)

g(t)= P a„sinLn(s(t)j.

We use two constraints on the truncated polynomial:
(i) that we obtain the exact static value of unity for
G(0), and (ii) that the spectral function have zero
slope at threshold. )This second constraint is physically
due to the p-wave behavior of intermediate states in
electron-nucleon scattering. It is also built in to the
assumed spectral function (8).j

For each choice of degree Ã of the polynomial, we

looked at the X' value of the power-series fit. Table II
shows that the value X=4 gives a X' acceptable by
statistical criteria; i.e., close to 17, the number of
degrees of freedom for a quartic Qt with two constraints.
(One should not go to a higher value of E, as discussed

previously, " since the errors increase rapidly when E
is chosen too high. ) Table II also gives the coefficients
a (b) for these seven different quartic fits: Note that a
cubic Qt is also satisfactory for b= 2.5.

The constrained least-squares-fitting program of
Peierls" evaluates the error matrix for the coefhcients

a„, and uses the values a„and their (diagonal and
correlated) errors to evaluate the spectral function g(t)
and its statistical error:

IOOO

FIG. 1.The input spectral function, and three output functions,
for smooth arti6cial data, from Table III. The abscissa is the
energy in MeV.

Here the angle $s depends both on t and on

cos$&(t) = (b'+1 t/t, )/(b' 1+t/t—,). (12—)

These seven spectral functions, and associated standard
errors, are presented both in Table III and in Fig. 1.

We see from this table and figure that the 6ve values
of b in the range 1.5&b&4.0 reproduce the main
features of the input spectral function (8) rather well.

On the other hand, the extreme choice b=1.01 shifts
the peak position from 7tp down to 4tp, while the other
extreme choice b=6.0 shifts the peak up to 11tp. Both
extreme choices also introduce spurious dips around
1.2tp and 80tp, respectively. The three choices b= 2.0,
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TAnLE III. Smooth spectral function g for quartic fits using coeKcients o„(b) from Table II t See Eq. (11)g.
The errors in g are found using the complete error matrix. The input is Eq. (8).

F. (Mev)

289
308
337
373
418
459
509
571
622
683
718
756
800
903

1037
1217
1473
1867
2154
2545
3111
4000
5600

Input

O.oo
0.02
0.08
0.22
0 44
0.66
0.92
1.19
] 34
1.44
1.47
1.47
1.46
1.35
1.16
0.90
0,58
0.25
0.12
0.04
0.01
0.00
0.00

—0.24—0.67—0,54
0.14
0.93
1.37
1.61
1.65
1.58
1.45
1.37
1.28
1.19
0.99
0.79
0.61
0.45
0.31
0.26
0.21
0.16
0.12
0.08

0.03
0.08
0.09
0.05
0.01
0.04
0.06
0.06
0.06
0.04
0.04
0.03
0.03
0.01
0.01
0.01
0.01
0.02
0.02
0.01
0.01
0.01
0.01

b =1.01
g Error

b =1.5

—0.02—0.08—0.07
0.11
0.47
0.81
1 ~ 15
1.41
1.50
1.52
1.49
1.45
139
1.21
0.98
0.73
0,50
0.30
0.22
0.15
0.10
0,06
0.04

Error

0.01
0.03
0.05
0.05
0.04
0.02
0.02
0.04
0.05
0.05
0.05
0,05
0.05
0.04
0.02
0.01
0.01
0.02
0.02
0.02
0.02
0.02
0.01

b =2.0

0.00
0.03
0.11
0.26
0.48
0.70
0.94
1.18
1.31
1.40
1.42
1.42
1.40
1.29
1.11
0.85
0.57
0.31
0.20
0.11
0.05
0.01—0.01

Error

0.00
0.01
0.02
0.04
0.04
0.03
0.02
0.01
0.02
0.04
0.04
0.04
0.05
0.05
0.04
0.02
0.01
0.02
0.02
0.02
0.03
0.02
0.02

z (Mev)

289
308
337
373
418
459
509
571
622

718
756
800
903

1037
1217
1473
1867
2154
2545
3111
4000
5600

b =2.5
g Error

0.01 0.000
0.05 0.005
0.16 0.013
0.31 0.022
0.51 0.030
0.70 0.03
0.91 0.03
1.11 0.02
1.23 0.01
1.32 0.01
1.35 0.02
1.36 0.03
3.35 0.04
1.29 0.05
1.13 0.05
0.90 0.04
0.62 0.02
0.33 0.01
0.21 0.02
0.11 0.03
0.03 0.03—0.02 0.03—0.04 0.03

b =3.0
g Error

0.01 0.001
0.05 0.003
0.15 0.01
0.30 0.02
0.51 0.02
0.70 0.03
0.91 0.03
1.12 0.02
1.24 0.02
1.33 0.01.
1.36 0.0].
1.37 0.01
1.37 0.02
1.29 0.04
1.13 0.05
0.88 0.05
0.60 0.04
0.32 O.oi
0.20 0.02
0.11 0.03
0.04 0.04
0.00 0.04—0.02 0.04

b =4.0
g Error

0.01 0.000
0.04 0.001
0.12 0.004
0.25 0.01
0.44 0.01
0.63 0.02
0.86 0.02
1.12 0.02
1.29 0.02
1.44 0.02
1.50 0.02
1.54 0.01
1.56 0.01
1.49 0.01
1.26 0.03
0.87 0.05
0.40 0.06
0.05 0.04—0.01 0.02
0.01 0.02
0.08 0.04
0.17 0.06
0.22 0.06

g Error

0.004 0.000
0.02 0.001
0.08 0.001
0.16 0.003
0.30 0.01
0.46 0.01
0,67 0.01
0.95 0.02
1.18 0.02
1.44 0.02
1.58 0.02
1.71 0.02
1.84 0.02
2.02 0.02
2.00 0.01
1.56 0.02
0.52 0.06

—0.89 0.09—1.37 0.08—1.38 0.05—0.71 0.02
0.51 0.08
1..66 0.13

Cubic
b =2.5

g El 101

0.01 0.000
0.06 0.001
0.17 0.001
0.33 0.003
0.55 0.004
0.74 0.01
0.94 0.01
1.13 0.01
1.23 0.01
1.30 0.01
1.32 0,01
1.33 0.01
l.31 0.005
1.23 0.003
1.08 0.001
0.86 0.004
0.60 0.01
0.34 0.01
0.23 0.01
0.14 0.01
0.07 O.oi
0.02 0.01—0.01 0.01

2.5, and 3.0 give particularly favorable results: The
output spectral function is in general only about one
of its standard errors away from the input spectral
function, and the three output curves are so close
together that we have drawn only one in the figure.

This check with artificial data shows that, at least
under favorable circumstances, our extrapolation tech-
nique is quite successful. The problem remains how to
recognize, in advance, that the circumstances are indeed
favorable; i.e., how we should choose b in (7). Levinger
and Peierls" suggest that it is desirable that the
peak in the spectral function lie near Ps 90', since a-—
truncated Fourier series can easily reproduce a peak
near 90', but has difhculty reproducing a peak close
to 0' or 180'. The peak position is at 7ts, so Eq. (12)

shows that 5=1.5 corresponds to a peak position near
120', while b=4.0 corresponds to a peak position near
60'. We can restate our result above to read that a
broad peak will be reproduced rather well if the peak
position is between 60' and 120 .

Another criterion suggested earlier" is that the
choice of b should be such that Eq. (7) would spread
the data almost symmetrically about the origin in the
g plane. With our arti6cial data in the spacelike range
from —80tp to zero, this criterion gives a range for 5

similar to that in the paragraph above. This desirable
agreement between two criteria persists in our work
below, since the main structure in electromagnetic
spectral functions is in the region of 7tp and the real
data lies in the range —80tp&t&0.
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FIG. 2. The goodness of fit y' for
quartic Qts is drawn as the dotted
curve, with the ordinate on the left.
The coef5cient u5 for the quintic fit is
the solid curve and right ordinate.
The abscissa b is the adjustable pa-
rameter used in the conformal trans-
formation.

Two other criteria for choosing b were subsequently
suggested": that satisfactory values for the annihila-
tion form factor LG(t) for t)43Pg be obtained, and
that X'(b) have a minimum for fixed 1V. In this section
we ignore annihilation form factors; they are used for
the real data treated below, by putting the annihilation
form factors directly in the 6t, rather than indirectly
by the choice of b. The argument below suggests that
the choice of a minimum for xs(b) is riot a reliable
criterion. Consider Fig. 2, in which X (b) is plotted
for the seven quartic 6ts given in Table II; the last
row of that table, namely as(b) for the quintic fits, is
also plotted. We observe, as could have been predicted,
that the minima of X'(b) fall very nearly at the posi-
tions of the zeros of as(b). That is, when as(b) goes
through a zero, a quartic Gt is just as good as a quintic;
since X' for a quintic can be expected to be small we
should expect a minimum in the I' value for a quartic
Gt.

We can also understand our one success with a
cubic fit, namely at b=2.5, by the same argument. As
seen from Table II, u4(b) goes through zero very near
2.5. (In fact a4(2.5) is not significantly different from
zero: a~ ——0.026+0.024, quoting the diagonal (uncor-
related) error. ]Since the quartic fits have an acceptable
X', so does the cubic fit in the case of b=2.5. We con-
clude that the X' criterion should be used owly to decide
if a 6t is statistically acceptable. Thus for 17 degrees
of freedom we have a 10% probability of finding a x'
greater than 24, so all the quartic Gts presented are
well within the 90%%uq confidence limit. In this context"

"En the usual least-squares 6t, one has already decided on the
mathematical form used to Gt the data, and is using the least-
squares criterion for optimum choice of the parameters to put
into the preordained form. Rut in our present context we do not
have a de6nite mathematical form. We are making phenomeno-
logical Gts, which means that we are wandering more or less
arbitrarily among different hyperplanes in Hilbert space. Once
we have decided to stay on a given hyperplane, we should deter-
mine the optimum position by a least-squares criterion; but we
should not argue in favor of the choice of one hyperplane rather
than another by saying that while both p' values are acceptable,
one is more acceptable than the other.

we shouM rot distinguish between "statistically ac-
ceptable" and "statistically more acceptable. "

Here an additional criterion for choosing b is pro-
posed; namely, that the output spectral function g&(t)
have zero variation with respect to b. Figure 3 illustrates
hg/db for values of t near the peak of the spectral
function and at t values giving g(t) some s of the
maximum value. We observe that all three curves have
nodes for b near 2.5, thus confirming our use above of
the criterion that the peak of the spectral function
should occur near (=90'.

III. THE ISOSCALAR FORM FACTOR

Leaving artificial data we return to actual data on
nucleon form factors which were compiled in April,
1966. Table IV gives the two magnetic form factors:
the isoscalar G~B and the isovector G~~. Since the
main source of error is the neutron magnetic form
factor G~„, we give specific references only for the neu-
tron measurements; we interpolate and average proton
measurements' ' when necessary. Recent Deutsche Syn-
chrotron and Cambridge Electron Accelerator proton
measurements" are not included. This omission is not
serious since the limiting factor is our knowledge of
Q~„, which has not changed greatly during the past
14 months. ~

In this section we examine three diferent hts to the
magnetic isoscalar form factor, each 6t assuming that
the spectral function contains two poles, one located
at the position of the co isoscalar resonance. In the
first 6t we allow the position of the second isoscalar
pole to vary, in an attempt to "discover" the p reso-
nance. In the second fit, we use the p resonance at its
known position of 1020 MeV and adjust the residues

40The work of R. E. Rand, R. F. Frosch, C. K. Littig, and
M. R. Yearian (Phys. Rev. Letters 18, 469 (1967)] supports the
significance of meson-exchange effects in inelastic electron-
deuteron scattering in cases where both recoil nucleons receive
high momentum. This work calls into question the usual neglect
{Refs. 5—8) of such exchange effects in inelastic scattering in
cases where a single nucleon receives almost all the momentum.
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TABLE IV. Magnetic form factors. The proton data are taken from
Refs. 1-3, and in general contribute only small errors.

t (BeV/c)'

—0.0389—0.0584—0.0972—0.179—0.292—0.389—0.486—0.564—0.583—0.623—0.778—0.857—0.972—1.17—1.75—2.92—3.89—6.81

0,18
0.14
0.11
0.11
0.10
0.10
0.09
0.11
0.05
0.05
0.01
0.018
0.011
0.006

2.55
2.04
1.97
1.524
1.134
0.980
0.842
0.746
0.732
0.696
0.569
0.526
0.478
0.384
0.240
0.118
0.080
0.032

Standard
error

0.35
0.11
0.08
0.07
0.05
0.02
0.044
0.027
0.041
0.022
0.048
0.018
0.033
0.013
0.013
0.007
0.008
0.010

Reference

a
a

a
b, c

b

c
a
C

c
c

c, d
C7 d
C7 d

a Hughes et al. , Ref. 6.
b Stein et al. , Ref. 5.' Dunning et al. , Ref. 8.
d Treating upper limits on absolute value of GMa as data, assuming

negative values for the neutron's magnetic form factor.

a= 2.76&0.09. (14)

The slightly poorer X' value of 16 for 13 degrees of
freedom has a probability of about 20%. This fit is also
statistically acceptable, using the 90% confidence limit.

Dudelzak's first fits Gss(t) with a form similar to
that of (13), using the additional constraint Gtrs'(0)
=1.23+0.05 (Bev/c) '. (See also I.) This constraint

"Note that the data of Table IV is good enough to support
two adjustable parameters, u and m~, but not three. See J. S.
I,evinger and M. W. Kirson, Eastern Theoretical Physics Confer
ence (Gordon and Breach Science Publishers, Inc., New York,
1963), p. 175.

at the two poles, with the static constraint Gsrs(0)
=0.44, to give a least-squares fit to the data of Table
IV. This approach has been used by other workers. ' "
In the last Qt we follow Dudelzak'0 in first fitting the
electric isoscalar form factor GEg, and then using
Gss(4M')=Gsrs(4M') to determine Gsrs(t) with no
further adjustable parameters

In each case,

Gses (t) =0.44/am '/(m '—t)

+(1-a) '/( '-t)j (»)
We first allow vs~ to vary and for each choice of m&

determine c by a least-squares fit to the G~z data of
Table IV. The resulting X'(me) has a minimum value
of 17.1 at m&=980 MeV. The variation of &' with m~
gives us an error of 60 MeV in determining the P mass.
That is, we have "discovered" an isoscalar resonance
at 970&70 MeV, i.e., consistent with the P position
of 1020 MeV. Our best I' of 15 for 13 degrees of freedom
is well within the 90% confidence limit. 4'

In the second fit, the coefficient a and its standard
error are determined using m~= 1020 MeV. We find

hg/hb
'9'o0 7.3~t

5
ODES b

Fio. 3. Slope tie/tsb versus b for spectral functions from Table III.
The curves are for three values of t: 3.3to, 7.3tp, and 19tp.

on the slope of the isoscalar electric form factor at the
static limit is based on the very accurately determined
electron-neutron scattering length, ' and on Dudelzak's
determination' of Gtto'(0), or the proportional proton
"mean-square radius. " The error in Gss'(0) comes
almost entirely from the proton measurements. Dudel-
zak then uses his expression for Gss(t), and the con-
straint that the complex G&8 and G~z must be equal
at 4M' (to give nonsingular Dirac and Pauli form
factors Pi and Fs):

G»(4Ms) =G~s(4Ms) = O.O5. — (15)

This second constraint on G~8 gives the value of u
with no further adjustment. The error in a comes from
the error in Gss'(0), which propagates by means of
Gss (4M'). Dudelzak finds

u= 2.32+0.18. (16)

We see that the values of a given by Eqs. (14) and
(16), respectively, disagree by two standard errors.
This disagreement indicates, but does not establish, a
failure of either (13) or (15). For instance, if we keep
the value of Gtrs(4M') from (15), but use the value of
GMs(4M') from Eqs. (13) and (14), we find that
Gss(4M') and Gsrs(4M') differ by only 0.02; i.e., Kq.
(13) can be extrapolated into the far timelike region
with quite small inaccuracies. We conclude that both
isosca1ar spectral functions can be fitted quite well
using two poles, at the known positions of the two
isoscalar resonances. There is no evidence for other
terms in the isoscalar spectral functions.

Similar conclusions have been reached by Hughes
et cl., and by Chan et al."The former group fits G~g
allowing a "core term" (i.e., a pole at very high t),
and Qnd that the core is zero within its statistical error.
Their value for a is 2.42, in agreement with (14) and
(16). The latter group makes four different pole fits;
their "fit 4" corresponds to use of Kq. (15), and gives
a=2.42, in agreement with (16).Their "fit 5" does not
use the constraint at 4M', and obtains a=2.69, in
good agreement with our result (14).
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Tmx,E VI. Error matrix for septimal Gt. H ' of Appendix, Ref. 12, used with septimal coeKcients
of Table V to give errors in septimal spectral function, Table VII.

0
1
2
3

5
6
7

0.00006
0.00022—0.00009—0.00088—0.00087
0.00013
0.00061
0.00026

0.00022
0.00400
0.00680—0.0150—0.0341—0.0105
0.0197
0.'0140

—0.00009
0.00680
0.0170—0.0251—0.0712—0.0268
0.0398
0.0307

—0.00088—0.0150
—0.0251

0.0562
0.127
0.0389—0.0736—0.0523

—0.00087—0.0341—0.0712
0.3 27
0.324
0.112—0.184—0.137

0.00013—0.0105
—0.0268

0.0389
0.112
0.0425—0.0622—0.0483

0.00061
0.0197
0.0398—0.0736—0.184—0.0622
0.105
0.0772

0.00026
0.0140
0.0307—0.0523—0.137—0.0483
0.0772
0.0580

designed to keep factors small in the annihilation
region; namely, that the slope of the spectral function
also be zero at infinite negative values of t, i.e.,

P„(—1)"ma„=0. (19)

P u„sine), =0,
Q a costs), =0 (20)

Here the angle $ is given by Eq. (12), using b=3 and
f/fp=87. (Of course, rp is equal to 4m', where m is the
pion mass. )

Finally, a run with five constraints was made by re-
moving the fourth constraint (19) and using two addi-
tional constraints, namely, that both the real and
imaginary parts of the complex form factor be zero at
6.8(3eV/c)'.

In each case the data of Table IV could be fitted
with two adjustable parameters. (Good X' values were
obtained with a quartic fit for three constraints, and
within the 90'Po confidence limit for a quintic with
four constraints and for a sextic with five constraints. )
However, in the case of the latter two fits, the &'

values decreased markedly when an extra adjustable
parameter was added. Table V gives the coefficients
a„, and the X' values for four different polynomial fits:
a quartic with three constraints, a quintic with four
constraints, and sextic and septimal with five con-
straints. Table VI gives the error matrix for the
septimal fit. The spectral functions, and their statistical
errors (found using the complete error matrix) are
given for these four fits in Table VII, and are also
illustrated in Fig. 4.

TmLE VII. Magnetic isovector spectral functions using coefficients of Table V,
Eq. (11),and complete error matrix; e. g., Table VI.

8 (MeV)

289
308
337
373
418
459
509
571
622
682
718
757
800
903

1037
1217
1474
1647
1867
2154
2545
3111
4000
5600

1867
2154
2545

IGP'6) I

0.06
0.32
0.93
1.80
2.90
3.80
4.67
5.29

5.26
5.02
4.68
4.23
3.01
1.54
0.11—0.87—1.09—1.12—0.98—0.72—0.42—0.16
0.01

Re G
—0.69—0.21

0.13
0.7

0.001
0.005
0.01
0.03
0.04
0.05
0.06
0.06
0.05
0.04
0.03
0.02
0.01
0.03
0.06
0.07
0.07
0.06
0.05
0.03
0.02
0.01
0.01
0.01

ARe G
0.04
0.04
0.04
0.02

3 constraints
Quartic

0.07
0.41
1.15
2.16
3.36
4.26
4.99
5.33
5.21
4.75
4.38
3.92
3.38
2.15
0.91—0.06—0,56—0.62—0.58—0.47—0.34—0.20—0.10—0.04

R,e G
—0.47—0.22—0.06

0.34

0.003
0.02
0.04
0.07
0.10
0.11
0.10
0.06
0.03
0.03
0.06
0.08
0.10
0.14
0.13
0.10
0.04
0.02
0.02
0.03
0.03
0.03
0.02
0.01

ARe G
0.06
0.04
0.02
0.03

4 constraints
Quintic Sextic

0,05
0.32
0.93
1.87
3.11
4.17
5.16
5.80
5.82
5.37
4.94
4,36
3.67
2.02
0.40—0.69—0,89—0.71—0.45—0.19—0.01
0.05
0.02—0.04

Re G
—0.04

0.05
0.01
0.00

5 constraints
Septimal

0.06
0.30
0.64
0.84
0.66
0.23
0.50
1.12
1.32
1.21
1.02
0.76
0 45
0.30
0.66
0.56
0.18
0.04
0.05
0.05
0.01
0.03
0.02
0.004

ARe G
0.12
0.04
0.000
0.00

0.01
0.04
0.09
0.14
0.16
0.14
0.09
0.03
0.09
0.16
0.18
0.19
0.20
0.16
0.08
0.02
0.04
0.04
0.03
0.01
0.001
0.003
0.001
0.004

ARe G

0.01
0.003
0.001
0.00

—0.18—0.80
1.50—1.28
0.68
3.49
7.03

10.1
10.8
9.93
8.76
7.16
5.22
1.03—2.08—2.81—1.57—0.81—0.26—0.02
0.00—0.06—0.08—0.03

Re G
0.42
0.19
0.01
0.00
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ao
aI
ap
as
a4
a6
a6
x',

s

—0.07
0.97
2.09
0.66—1.01—0.62

18.1
7.14

—0.06
1.01
2.05
0.50—1.09—0.53
0.07

15.3
6.96

X =0.6
X=6

18.5
5.72

g =0.87¹6
0 387 —0.396
0.383 0349

1.90
0 88 1.01
0 87 —0.81—0.66 —0.06

16.6
6.08

—0.541
0.10
1.75
Q 99—0.80—0.67

26.2
5 42

—Q.559
0.03
1.83
1.26—0.67—0.81—0.12

17.8
6,37

g =1.0
X=6 X=6

—0.685—Q.218
1.77
1.45—0.56—0.88—0.17

17.0
6.88

g =2.0
X=6
—1.81—2.35

1.35
2.74
0.03—1.23—0.42

12.6
19.82
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& 2 sol'd e the ept'mal fro T ble VII g t =

~ o

=0.0 dash-dot curve b=4 and
g . = . . = d {68)=—0.1 both sextics. This s ape or wg{6.8) =0.1; dashed curve, b=4 and gq6.
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TABLE IX. Magnetic isovector spectral functions (sum formulation). The residual spectral function gs is found using the coeificients
for the quintic fits, A =0.87 from Table VIII. The function go is given in Eq. (21), and the isovector spectral function is found from
Eq. (23). The four columns on the right give gMv for four other choices of A: 0.6, 1.0, 1.1, and 2.0.

E (MeV)

289
308
337
373
418
459
509
571
622
682
718
757
800
903

1037
1217
1474
1647
1867
2154
2545
3111
4000
5600

1867
2154
2545

ga

0.07
0.40
1.07
1.94
2.83
3.34
3.52
3.16
2.53
1.58
1.02
0.42—0.20—1.30—2.00—2.04—1.49—1.10—0.72—0.42—0.22—0.12—0.10—0.09

ReGg
0.40
0.34
0.22

Error

0.001
0,004
0.01
0.02
0.02
0.03
0.03
0.02
0.02
0.01
0.01
0.01
0.01
0.02
0.02
0.02
0.01
0.01
0.01
0.001
0.001
0.001
0.001
0.002
Error
0.004
0.002
0.001

0.87g p

0.00
0.00
0.01
0.03
0.06
0.11
0.23
0.57
1.28
3.85
7.89

12.7
9.83
2.86
1.17
0.62
0.37
0.29
0.23
0.18
0.15
0.11
0.09
0.06

0.87 ReG
—0.38—0.28-0.19

0.07
0.40
1.08
1.97
2.89
3.45
3.75
3.73
3.81
5.43
8.91

13.1
9.63
1.56—0.83-1.42—1.12—0.81—0.49—0.24—0.07—0.01—0.01—0.03

ReGsrv (0.87)
0.02
0.06
0.03

0.08
0.43
1.18
2.16
3.22
3.92
4.36
4.37
4.32
5.21
7.44

10.2
7.53
1.50—0.55
1022—1.08—0.82—0.54—0.29—0.12—0.02
0.00—0.01

ReGsrv (0.6)
0.01
0.09
0.08

gMv (0.87) gsrv (0.6) grrv (1 0)

0.09
0.48
1.28
2,30
3.18
3.64
3.70
3.37
3.29
5.09
9.10

14.0
10.1
1.13—1.19—1.52—1.02—0.70—0.40—0.19—0.04—0.01—0.01
0.00

ReGMv (1.0)
0.04
0.04
0.00

gsrv (1.1)

0.10
0.51
1.35
234
3.24
3.63
3.58
3.12
3.00
6.13
9.44

14.9
10.6
0.97—1.37—1.60—1.01—0.66—0.35—0.14—0.02
0.00—0.02—0.04

ReGsiv (1.1)
0.05
0.03—0.02

gsrv (2.0)

0.12
0.61
1.55
2.53
3.14
3.04
2.27
1.08
0.98
5.06

13.5
23.8
16.7
0.27—2.87—2.54
1032—0.77—0.37—0.12—0.01
0.00—0.01—0.02

0.23
0.13
0.03

ble parameters) was used by Orinan. "In principle, the
width F in the denominator should be allowed to vary
with 3'; but since we are using this form only as a first
approximation it does not seem necessary to take
account of this eHect, which is rather small. The form
factor G, (f) is determined'r using (21) in an unsub-
tracted dispersion relation, giving

—(0.078—t)'"+2.17—3.64t
G, (t) = 0.358 . (22)

(0.57—f)s+ 0.0085

Here f is in (BeV/c)' and we have used the position
0.57 and the width I"=0.0922 for the p corresponding'~
to an energy of 765 MeV and a width of 140 MeV. The
coeflicient A determines what fraction of the static
isovector magnetic moment of 2.353 magnetons is
contributed by 6„ i.e., A=1.0 means that the p
resonance accounts completely for the static moment.

For a given choice of A, the data of Table IV are
6tted for G~z by Q.rst de6ning

Gg(f) = Gjr v(t) AG, (f) . —(23)

We then fit Gz(t) by our conformal transformation
technique, and determine its spectral function gz(t') for
t'& to=4m'. Finally, we determine the spectral function
gsrv(f') using (21) and (23):

gsrv(t') =gs(t')+Ag p(t') . (24)

Again, we face the question of how to use the upper
limits on the annihilation cross sections; let us answer
this as in the preceding section by placing two addi-

tional constraints on the fit to Gq(t). That is, we use
five constraints: (i) Gq(0) = 2.353 (1—A); (ii) gq'(ts) =0;
(iii) G~(—~)=0; (iv) g~(6.8)= —0.2; (v) ReGg(6.8)
=0.2. The last two constraints use the assumed shape
of 6, and the value of A to keep the real and imaginary
parts of Gsrv(6. 8) close to zero.

We propose the tentative criterion that the spectral
function gq(t') be small. That is, we assume that the
resonance does in fact dominate the magnetic isovector
spectral function, and choose A so that the non-p part
is as small as possible. We interpret "as small as
possible" to mean a minimization of P„a„',where we
sum the squared coe%cients from 0 to the order X of
the polynomial that fits Gd. (This criterion corresponds
to minimizing the area under the squared spectral
function. )

Table VIII presents the coeKcients u„ found for
diGerent choices of the parameter A. In each case 5=3
has been chosen and use has been made of the X'
criterion to determine the degree E of the polynomial
that its satisfactorily. We find good fits with a quintic
(with five constraints) for A=0.6 and A=0.87; but
we must go to a sextic for A =1.0, 1.1, and 2.0. LNote
that as(A) goes through zero for A=0.8.$ The value
of Q„u„' does not vary rapidly with iV; but neverthe-
less it seems inconsistent to minimize this quantity
using diferent values of E. If we choose sextic 6ts
throughout, the minimum in p„a„soccurs at A =0.87,
as illustrated in Fig. 6. (The value p„a„s=28.5 for
A=O.O has been taken from the coeKcients for the
sextic fit with f'ive constraints, Table V.) However,
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FIG. 9. The magnetic isovector
spectral function versus energy in
MeV fron- Table XI, for b=3,
shown as a solid curve. The dashed
curve shows the theoretical fit of
Furuichi et al. , Ref. 33.

2000

dip with the B. On the other hand, our extrapolation
by itself is not good enough to assert whether the ip
represents a narrow resonance, or a broader continuum.
Given the present uncertainty about the quantum
numbers of the 8 resonance, we cannot make any firm
identi6cation of the dip.

This qualitative agreement makes us believe that

TABLE XI. Spectral functions for product formulation.

E (MeV)

289
308
337
373
418
459
509
571
622
682
718
757
800
903

1037
1217
1474
1647
1867
2154
2545
3111
4000
5600

1867
2)54
2545

5=2
g~y Error

—0.03—0.14—0.25—0.13
0.45
1.4
3.2
6.4

10.4
18.6
25.1
18.8
1.3—5 4
303—1.74—0.78—0.50—0.30—0.17—0.09—0.04—0.02—0.01

Re G~y
0.10
0.08
0.05

0.06
0.16

0.3

0.2

0.9

0.2

0.04

0.02

0.01

0.003

b=3
tv
0.02
0.10
0.32
0.70
1.35
2.13
3.37
5.63
8.67

15.1
20.6
16.7
2.6—4.0—2.70—1.54—0.76—0.50—0.31—0.19—0,10—0.04—0.02—0.01

Re G~y
0.05
0.04
0.03

Furuichi
et al.'

0.1
0.3
0.5
0.8
1.4
2.0
2.9
4.9
8.0

11.3
12.7
9.5
5.4
0.4—0.7—0.8

' n for b =2 uses a quartic and that forSee Ref. 33. The spectral funct1ons or = r
b =3 uses a cubic. Both have three constraints; see a e
and (22).

there is indeed significance in these qualitative features
of our phenomenological fits, and also of the more
theoretical fits."" It must be made clear that these
successful fits do not in themselves deny the possible
signi6cance of various two-pole fits. ~ -p

~ ~ ~ '4 "4' The two- ole
fits are rejected on the physical grounds that (i) the
nucleon form factors, we believe are dominated by
mesonic intermediate states; and (ii) only one isovector
1 meson is established at present. If either of these
two assumptions proves to be invalid, then the two-pole
fits would have as much (or more) physical significance
as the work presented here.

We group the quantitative disagreements among the
results shown in Figs. 4, 5, 8, and 9 under three main
headings. (i) What is the quantitative value of the
contribution of the p resonanceP (ii) In the region
below the main peak, is the spectral function mono-
tonic, or oes id t have a shoulder, or even structureP
(iii) What is the magnitude and shape of the dip above
the main peak)

Let us note, concerning the first of these questions,
that for a broad resonance it is hard to find an unam-
b dure to separate the resonance contribu-Diguous proce u
tion from the remainder of the continuum. For brevity,
we shall consider the value of the coeS.cient A of Sec.
V. (Other workerss44s~ treat the value of the pe%
coupling. ) The septimal Gt of Sec. IV gives a value
A = 1.3 (when we integrate from 3te to 9te to find the
contribution to the static magnetic moment). If we
have confidence in the criterion used in Sec. V, name y,
minimizing e sumth summed squares of the coeQicients to
G~, we choose an 2 of about 0.9; but we note that muc
1 lier values of A give good X' values. The

=A =0.85product formulation of Sec. VI gives Rec,=
43 K. J. Bsrnes, Phys. Rev. 150, 1331 (1966).
44 J.J. Sakurai, Phys. Rev. Letters 17, 1021 (1966).
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(for the choice b=3). Furuichi's spectral function~
integrated from 3to to 9to gives A=1.0. %'e feel that
A is in the region from 0.8 to 1.3; but it is hard to
obtain a firm value, or to estimate the error of the
determination of A, since subjective factors enter so
strongly. Consequently, we find it hard to have con-
fidence in the values quoted4'4' for the pXN coupling
constant, found from analysis of form factors.

The bulk of the present evidence favors a monotonic
rise or perhaps a shoulder in the region below the main
peak. The only case treated giving pronounced struc-
ture is the sum formulation, with the "high" value of
3=2. Also, there is evidence from measurements of
the Inass spectrum for the leptonic decay of photo-
produced vector mesons4' in favor of a substantial
contribution below the main peak at the p, but there
is no compelling evidence at present in favor of struc-
ture in this region.

My phenomenological fits give a dip going down to
only —1.5 (for the sum formulation with A =0.87) or
as far as down to —4.0 (for the product formulation).
While Furuichi" finds an even less pronounced dip,
we are now considering high-mass states around 1 BeV,
where his approximations become less reliable.

How can one decide which phenomenological fit is
preferable? Also, what are the relative merits of the
present fits compared to, say, Furuichi's spectral func-
tion? The former question may be answered in favor
of the product formulation of Sec. VI. If we do not
introduce the p resonance into our fit (as in the treat-
ment of Sec. IV) we cannot find a spectral function
anything near as narrow as the p'. Hence it seems
desirable to introduce the p before fitting, rather than
to expect it (and other contributions) to come directly
from the form-factor data with no additional assump-
tions. The product formulation of Sec. VI is preferred
over the sum formulation of Sec. V since the sum
formulation has the additional diKculty of the deter-
mination of the constant A.

As stated above, there are complementary advan-
tages to our fit, and to Furuichi's. In both, use is
made of about two adjustable parameters; e.g., we use
two in our quartic fit with three constraints in Sec. VI.
(As pointed out in that section, the fit with a single

4' A. Wehmann, E. Engels, Jr., L. N. Hand, C. M. Housman,
P. G. Innocenti, R. Wilson, W. A. Blanpied, and D. G. Stairs,
Phys. Rev. Letters 17& 1113 (1966).

adjustable parameter for the constrained cubic is an
accident. ) Furuichi's two parameters are subtraction
constants in his fits to the helicity amplitudes for mNN

coupling. (In considering the fit to G~v alone, it might
be possible to combine these two constants into a
single adjustable constant. ) The present work has the
advantage that it can determine the spectral function
for high-mass intermediate states (such as those that
dominate the annihilation experimentsm") while Furui-
chi's approximations become dubious at these high
energies. On the other hand, Furuichi's work has the
marked advantage of having a theoretical interpreta-
tion in terms of definite dispersion-theory diagrams.
This should permit testing Furuichi s analysis by con-
sideration of other experiments, such as those on
vector-meson decays into lepton pairs, 45 or on measure-
ments" on the form factor of the meson.

The discussion above was limited to the isovector
magnetic form factor. Recent proton data" is more
extensive and more accurate than that for the neutron
data, and has not been used in this paper. Further, it
is stated" that "the best present theoretical predictions
are not adequate" to provide a satisfactory fit to G~„.
That statement was made in the context of fits with
poles. It is clear that a fit using conformal transforma-
tions can at this time determine a proton spectral
function giving a satisfactory X' value, just as it did
several years ago"" for data then current. This treat-
ment would be analogous to that in Sec. IV. Alterna-
tively, one could introduce the p resonance, using, the
product formulation, and use a palatable parametriza-
tion of the magnetic isoscalar form factor (perhaps
that of Sec. III). A paper on the proton form factor is
in preparation.
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