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The remaining form factors are defined by Eqs. (8a) and (8c), together with the isotopic-spin transformation
properties of A~(".
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We review and discuss the dispersion-theory version of the PCAC hypothesis in the case of nucleon
leptonic weak decays. The discussion is extended to the case of meson weak decays, and the feasibility of a
direct test of the Goldberger-Treiman relation for the meson case is considered.

I. I5TRODUCTIOH

l "BERK have recently been many applications of
the PCAC (partially conserved axial-vector cur-

rent) hypothesis, particularly in conjunction with the
derivation of sum rules from current algebra. The
PCAC hypothesis is essential in these applications, as
it relates weak-interaction form factors (which are in
most cases difficult, if not im.possible, to measure at
present) appearing in the sum rules, to strong-coupling
constants which can be determined from decay widths
or scattering experiments. In general, to test the PCAC
hypothesis directly, one would have to measure inde-
pendently both the weak form factors and strong-
coupling constants. The best and only known case that
has been tested directly to date is that involving nucleon
rt ~ p weak form factor (the famous Goldberger-
Treiman relation). '

In this paper we would like to review the possibility
of directly testing the PCAC hypothesis in the case of
meson decays. As we shall see, no direct test (as in the
nucleon case) is feasible. We shall only discuss the

* Work supported in part by the National Science Foundation.
t Present address: Physics Department, State University of

New York at Buffalo, Buffalo, New York.
'Even for the nucleon case, the PCAC hypothesis has been

tested at only two momentum transfers, corresponding to those
occurring in p decay (g'=0) and muon capture (g'=m„').

dispersion-theory (pole-dominance) version' of the
PCAC hypothesis. The more commonly used version
due to Gell-Mann and Levy' which relates the diver-
gence of the axial-vector current to the pion field will

not be considered.
In Sec. It, we review the application of PCAC to

nucleon leptonic weak interactions. In Sec. III, the
results of Sec. II are extended to the case of meson
leptonic weak interactions. Throughout this paper we
use natural units (A=c= 1).

D. AjPPLICATIOjf OjF PCAC TO 5'UCLEOB
LEPTOjVIC WEAK INTERACTIONS

Let us erst review the application of PCAC to
nucleon leptonic weak interactions. Consider the matrix
element (OIA„t+'(0)

I p, rt; in), where
I p, rt; in) repre-

sents an antiproton and neutron "in" state with anti-
proton and neutron 4-mornenta gr = (p,iEo) and
st=(n, iE„), respectively. A„'+'(x), with tt= 1, . . . 4, is
the strangeness-conserving axial-vector weak hadron
current operative in p decay and Inuon capture. This
matrix element is easily related to the matrix element

(pI A„t+'(0) In) involved in P decay and muon capture,

'Y. Namhu, Phys. Rev. Letters 4, 380 (1960); J. Bernstein,
S. Fubini, M. Gell-Mann, and W. Thirring, Nuovo Cimento 17,
757 (1960).

e M. Gell-Mann and M. Levy, Nuovo Cimento 16, '105 (1960).
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through crossing symmetry. From parity and Lorentz
invariance, we can write4

1
(OIA„'+'(0) lp, ss in)= —(M'/E+ )"%(—y)

0
2M

X ~.F.(q)+ q.F.(q') 7 (), (1)

where e(—y) and. N(n) are the antiproton and neutron
spinors, respectively, and q= —(p+ss). We neglect
electromagnetic mass splittings and denote the nucleon
and pion masses by M and ns, respectively. In writing
relation (1), we have assumed that the weak hadron
currents are first-class currents. ' F~ and Ii p are axial-
vector and induced, pseudoscalar ss —+ p weak form
factors. From Eq. (1) it is easy to show that

(0( c)„A„t+'(0)
I p,ss; in)

= II '(M'/E F. )"'2M6(—y)ysu(n) C (q'), (2)
where

i): —1

i):

S
0
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0
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Known
candidates

From Eqs. (5) and (6) and Table I, one can show that

q' a.m.'f.„„(—m. ')
C'(q')=F~(q')+ F~(q')==

m.' q'+my'

&orna'f~-o( ma')—
(8)

q +ms
where u and f „o are defined by

TABLE I. Properties of intermediate states contributing to
Eqs. (6) and (17). The last column lists the possible known
single-particle and resonance (both real and eifective) candidates.
Q, S, and 8 refer to the charge (in units of proton charge), strange-
ness, and baryon number. Jp = (intrinsic spin)&""&. Io= (isotopic
spin) 9 parity

C'(q') =F~(q')+(q'/m ')Fp(q')

If we now assume that

lim (OIB„A„t+il q&=0,
q~CO

(3)
(oI~."'(0)I,P-&= (P-).

(2QE )'"

where

1 " ImC (—q's)
C (q') = —— dq",

„q's+q'+is
(5)

2M(8( —y)ysu(n) }(2i) ImC (q')

/QE„) '»
I ~(—y)(2~)'Z;&"'(p+I —

p~)EM)

where
I p& is an arbitrary state and q= —p„, one can

write the following unsubtracted'dispersion relation
for C(q') (Ref. 6):

xf...L(p +~)'-)v. (~) (10)

The definitions of a~ and fp„o are completely analogous.
The constant u is determined from the observed pion
decay rate.

Let us now assume that
I aofs„ I« I

a f.„~I, so that
4 (q') is dominated. by the one-pion pole for

I q'I &m '.
Kith this assumption, we can write

C (q') = Fp (q')+ (q'/m. ')F&(q')

x(ol a„~„t+&I'&(il&„(0)l~&,

(vo~.+M)4n(&) =n.(*) (7)

a.m.sf.„,(—m.')

q'+my'
I q'I &m.'. (ll)

P„(x) is the proton field. Assumption (4) is one of the
versions of the PCAC hypothesis. ' In this form it is
sometimes also referred to as the ACAC (asymptotically
conserved axial-vector current) hypothesis. r In Table I
we have summarized the properties of the intermediate
states Ii& contributing to Eq. (6). The state p represents
the eAective 3x, 5~, .J =0 contribution which we
approximate by a pole of mass mp. ' '

4 The Dirac y matrices (y„and y6) are chosen to be Hermitian.
Furthermore, we use periodic boundary conditions and normalize
wave functions in a box of volume Q. Also, s= oty4, where t denotes
Hermitian conjugation. Ke use a metric with imaginary fourth
component. .' S. steinberg, Phys. Rev. 112, 1375 (1958).' M. Goldberger and S. Treiman, Phys. Rev. 111,354 (1958).

7EI. Primakoff, in Proceedings of the International School of
Physics "Enrico Peysae" Course XXXII (Academic Press Inc. ,
New York, 1964).

P. Dennery and H. Pri~@1jo6', Phys. Rev. Letters 8, 350
(1962),

Equation (11) reduces to the famous Goldberger-
Treiman relation

F,(0)=a.f.„„( m. '), — (12)

when we set q'=0. F~(0) has been determined from
nuclear P-decay rates, and the observed vahie, 1.18,
agrees with the one determined from relation (12), 1.35,
to within 13%.' Had we not neglected the p-state
contribution, we vrouM have found that '

Fx(0) = csy fyno+rsp farrl (13)

Ke therefore see that in this version of the PCAC hy-
pothesis we can attribute the 13% discrepancy in rela-
tion (12) as due to neglect of the term asfs„o In.
contrast, in the Gell-Mann —Levy version of PCAC, the

- See, for example, C. Ws Kim gnat H, PrimgkoG, Phys. Rqv,
Q9, Bi~/ O96$),
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lim F~(qs) =0 and lim Fp(q') =0q~ q~ (14)

one can write down the following unsubtracted disper-
sion relations:

where

Fg(q') = ——

1
Fp(q') = ——

" ImFg( —q")
dg

q +q +ze
" ImFp( —q")

dg
I&p+q +ss

(15)

&t (—P)v.v»(n)) ImF~(q')

2N
+i {e(—f)q.VsN(n)) I~p(q')

m~'

13% discrepancy is attributed to the approximation

f ~(0)=f „p(—m ') that has to be made in order to
derive Eq. (12) in that version.

Muon-capture experiments also seem to indicate that
relation (11) is reasonably well satisfied for q'=m„s,
where m„ is the muon mass. "

Assuming that It is interesting to note that the induced pseudoscalar
form factor Fp(q') also gets a contribution from the
J = 1+ intermediate state. In fact, such a contribution
is implied by Eqs. (11)and (18) and is necessary if one
is to obtain the "modified" Goldberger-Treiman rela'
tion (13) from Eqs. (2), (3), (4), (18), and (19). This
can easily be seen as follows: Eqs. (2), (3), (4), and
(18) imply

(22)lim q'Fp(q') =0.q~
Substituting Eq. (19) into (22) we find that

~~o-f:.= o-f=.+o&f~" (23)

This, together with Eq. (18), leads to the "modified"
Goldberger-Treiman relation, Eq. (13). Had we
neglected the J = 1+ contribution. to Fp(q') we would
have obtained

and
lf M

&~-; p.,g&~&( ) l~„(o) l~&=-I
Q(2E E„/

Xim 'f .„&„&~&*(&t)y„ysg(n). (21)

=-l(»./~)'&"(-r) (2 )'2; 6"&(P+~-P~) f,„,+ef& „,=0, (24)

Fg(q')=v2a m 'f „p/(q'-+m '), (18)

~s ~~jnnp ~n ~PJ Pnp ~~~a. ~aJany2

F.(q')=—— — +, (»)
qs+m 2 qs+&&t s qs+~ 2

where" a and f „„are defmed by

x(oIA. '+'(o)
I j&(jlv.(o) I&& (17)

In Table I we have summarized the properties of the
intermediate states

I j& contributing to Eq. (17). The
state n represents the effective 3x, 5x, . J"=1+con-
tribution which we approximate by a pole of mass
m . ' It is interesting to note that the Ai(1080) en-
hancement" that has been observed in high-energy
experiments seems to have exactly the same quantum
numbers as the 0. state. It may therefore be possible to
identify most of the o contributions as coming from the
A& enhancement, particularly if the latter turns out to
be a bonaide resonance. "

Equations (15), (16), and (17) together with Table I
give

I ~-f-.l» I ~sf'-. l,
and not Eq. (24).'4

(25)

III. APPLICATION OF PCAC TO MESON
LEPTOÃIC WEAK IN'TERACTIONS

In this section, we wish to consider the application of
the PCAC hypothesis to the matrix element

&OIA„&+&(0) l&r', k; p p && &(p); in),

where I&rs, k; p,p, $&~&(p); in) is a 7rs and p "in" state
with pion and p-meson 4-momenta k = (k, io&) and
p= (p,iE), respectively. (&~&(p) is the p-meson polariza-
tion vector. The reason we have chosen to discuss this
specific matrix element will be clarified later. Applying
parity and Lorentz invariance, we can write

which, with Eq. (13) implies F&(0)=0, in contradiction
with the experimental value of 1.18. Furthermore, as
we have already indicated, the fact that the Gold-
berger-Treiman relations is in agreement with experi-
ment to within 13% seems to indicate that

" '+'I P. t&~&( )&= ~""& '( ) ("
&0IA„&+&(O&l su — g&~&() in&

"See, for example, C. W. Kim and H. PrimakoQ', Phys, Rev.
140, 8566 (1965).

"A. H. Rosenfeld et a/. , Rev. Mod. Ph s. 39, 1 (1967)."A recent calculation by S. Weinberg Phys. Rev. Letters 18,
507 (1967)g based on the algebra of currents seems to indicate
that m /mp=V2, in agreement with the experimental value
of m~, /m, .

'
'' p = (1&,iE ) is the n-state 4-momentum and f&~&(a)

(jf = I,2,3) its polarization. $„&~&+=f„&~&+, if &«=1,2,3 (s denotes
complex conjugation), and f4&~&*= -f4&sr&li.

&M&F&1& (qs)+ (g&&&r& .q)
(20) (&eE)'"

X &q„F&"(q')+Q„F&'& (q') &j, (26)
where

q= —(&+p), Q= —(&—p)

"In Ref. 7, the 7~=1+ contribution to Fg(g') was in fact
neglected, and as a result, Eq. (24) followed,
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From Eq. (26), one readily obtains

(0~ B„A„&+)(0)~2r', k; p,P,&&~)(p); in)

If we assume

lim F&'&(q')=0, 3=1, 2, 3,
gM00

(36)

1
{t(3r) (p) .q}@(q2) (28) then, in analogy to Eqs. (18) and (19),one can show that

20(o)E)'12
where

P(1) (q2) =
Q(q2) —P (1)(q2)+ q2P (2) (q2)+ (m 2 m 2)P (3) (q2) (29)

v2a g p, &')(—m ')

g'+m ' (37)

a m, 3gp„(—m, ') apmp'g, p. ( mp—')

q'+m '

where g„ is defined by

(=;~i~. (0)l.—;p,~" (.»

q'+mp'
(3o)

m, is the p-meson mass. As in the nucleon case, appli-
cation of the PCAC hypothesis, Eq. (4), gives

111(g2)—P(1) (g2)+g2P(2) (g2)+ (m 2 m 2)P(3) (q2)

P(2) (q2)—
a m.gp, ( m—') apmpg, p ( m—p')

q'+m ' q'+mp2

Na.m.f.p. ( m.')—
q'+m '

v2a. g
——',g

(2) (—m, ')j
P(3) (q2) =

q'+m. '

where g „&'&, g, &'&, and f, are defined by

(38)

(39)

( —;p., t' '()lj."'(0)lp-; p, k™())
20 ((uE)'~2

and. an analogous expression for g,p L(k—p)'j. In
Eq. (31)

(L~( '*( ) &( '(.)j
2Q(EE )"'

g2 )
~

V2—
~

m. &-.&)(*)=J.&o)(*),
DPI

(32)
xg...&')L(p.—p)'j+L~&")(p) p.]

XL~& &*( ) pjg-, .&')L(p--p) j), (40)

where (p
&"(2:) is the 7r' field. Assuming here that

)m, a g„(—m ') ))»~mpapg, p, ( mp') [,—(33)

i.e., that 4'(q2) is dominated by the pion pole for

(
q'

(
~m ', one can write

0'(q2) =F'"(q')+q'F"&(q"-)+(m '—m ')F"&(q')
V2a~m~f~p~( m~ ) —a~m~gp—~g( m~ ) . —(42)

f-"(—m-') = 9-.-")(™.')
tS+3

+-', (m.'—m, ')g...&'&(—m.')j. (41)

Substituting Eqs. (37) and (39) into Eq. (35), we find.

that

a m. 'g...(—m.')
Jq2/ &m,2.

g +m~

Setting q'=0 in the above, we obtain

(34) All quantities on the right-hand side of Eq. (42) are
well known. If, as mentioned in Sec. II, we identify
most of the n contribution as coming from the A1(1080)
"enhancement, ""we can write

F&') (0)+(m, '—m. ')F&"(0)=a.m.gp,.(—m. ') . (35)

This is the analog of the Goldberger-Treiman relation,
Eq. (12), in the meson case. To check relation (35)
directly, one would have to make independent measure-
ments of F&"(0) F&'&(0), and g, (—m '). The last
constant, g, (—m '), is ea,sily determined from the
observed decay width of the reaction p —+ 2x. On the
other hand, to determine F&')(0) and F"&(0) directly,
one would have to observe, e.g. , the weak decay process
p —+ 2r+l+v (l=—lepton). This is practically impossible
owing to the fact that the p decays considerably faster
into two pions via the strong interaction. A direct
comparison of rela, tion (35) with experiment does not
therefore seem feasible. One is forced to search for less
direct ways of testing Eq. (35).

%2 g,adam, f~, (p—m ')—a m gp, (—m '). (43)

In principle, one can determine f~» ( m') from—
measurements on the strong decay A1-+ p+2r. This is
the reason why we chose to consider the specific matrix
element (O~A„&+)(0) ~2r', p ), as the A1 decays pre-
dominantly into px. On the other hand, measurement
of a~, is not feasible as it is related to the rate of the
weak decay A1 —) l+v which is many orders of magni-
tude smaller than the rate of the dominant strong-decay
mode A1 ~ p+)r. There is, therefore, really no hope of
testing relation (43) directly. The most one can hope to
obtain from relation (43) is a determination of the
constant a~, . As we will now indicate, such an estimate
of a~, can be useful when correlated with other theo-
retical calculations,
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From Eqs. (41) and (43) we find that

(44)

where

gAI p7r
=

gAZp7i
(j)

(m~ '—r&z ')' gd
and ggIp7r =

2(mg, s+m, ') gg, p
&'&

Knowledge of the decay rate I'(At —+ p+w) is not
sufficient to determine g~, , (—m„') and g~„'( rN, ')—
uniquely, but just gives a relation between these two
constants. To determine both parameters uniquely, a
knowledge of the angular distribution or polarization of
the decay products is also required. In the absence of
such detailed information on the decay A i~ p+s., we
shall rely upon a recent" theoretical estimate of
g~», (—t&s ') and g~,', ( rr& ')—based on charge charge-
conunutators and PCAC. This estimate gives the
following two possible solutions":

~gg„o&(—m ')
~

—4.05X10' MeV,

gd» '&'&(—m '):—2.04, (46I)
and

ig»„&"&(—m ') i=4.05X10' MeV,

gd„.'&"&(—m.s)=—0.04. (4611)

Substituting (46I) and (46II) into Eq. (44), together
with the values

we find that

a =0.95, g,.„(—r&s„') =11.4,

u~, "'——(r&s~, '/&2) X0.081

(47)

(48I)

'vPgP7r7r = 282P (49)

'5 C. W. Kim and Michael Ram, preceding paper, Phys. Rev.
162, 1576 (1967).

"Since in Ref. 15 we used the Gell-Mann —Levy version of
PCAC, the constants determined there were actually gd» (0)
and gpyp (0) We are therefore making the assumption that
g~» (—I ')=gd» (0) and g~» '(—m„')=gg» '(0), which, as men-
tioned in Sec. II, is an assumption commonly adopted when using
the Gell-Mann —I evy version of PCAC. As shown in Ref. 15, both
solutions (46I) and (46II) are not inconsistent with the observed
decay width I'(Ai -+ p7r), within the limits of the approximations
used.

r' J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960);M. Gell-Mann
and F.Zachariasen, Phys. Rev. 124, 953 (1961).

a„gi& (ega. s/v2) X0.336. (48II)

As shown by Sakurai, "p dominance together with
the CVC (conserved vector current) hypothesis implies

where vp is defined by

(p', p, ~™(.) I
I'.t &10)= e,4t-&*(.) (50).

(2')r&s

The state
~
p', P,(™(p))is a ps vector-meson state of

4-momentum p=(p, iE) and polarization $'~&(p), and
V„&'&(x) (i=1,2,3; p=1 4) is the isotopic-spin cur-
rent. Combining relations (47), (48I), (48II), and (49),
we find that

(s,/ira, )i——(t&t, '/t&sg, ')3.08=1.52,

(e,/ag, )rz ——(m, s/md, ')0.74=0.36.

(51I)

(51II)

Neither of these values is in good agreement with
recent" theoretical estimates based on cfzarge-clrreet
commutators and PCAC which seem to indicate

(t&„/ag, ) = 1. (52)

D. A. GeGen, Ann. Phys. (N. Y.) 42, 1 (1967)i C % Kirn
and Michael Ram (Ref. 15).

19D. A. GeAen, Ref. 18.' Gz and Gp are, respectively, the renormalized axial-vector
and vector weak-coupling constants in neutron p decay.

It has been pointed out" that result (52) implies
that the vector meson is coupled to the vacuum by the
vector current V„&" with the same constant as the
axial-vector meson is coupled to the vacuum by the
axial-vector current A„(". Though such a conclusion
may be valid for bare coupling constants )just like
(G~/G v)b„„——1),"it need not hold for the renormalized
constants appearing in our equations [just like
(GA/G v') renorma 1ized

In conclusion, we have shown that: (1) the induced
pseudoscalar form factors Fp(q') and F&s&(q') get
contributions from the J~= 1+ intermediate state, and
that such a contribution is essential if one is to obtain
the correct Goldberger-Treiman relation; (2) a direct
test of the PCAC hypothesis in the case of meson
matrix elements is not feasible (at least not in the near
future).


