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Vector-meson sum rules are obtained from a charge commutator and from three mixed charge-current
commutators using the noncovariant approach. In deriving these results, we use the most general form for the
matrix elements of the weak hadron currents and for strong-interaction vertices, consistent with Lorentz
covariance. Our results are compared with those obtained by dispersion-relation, covariant techniques, and

with available experimental data.

1. INTRODUCTION

IN this paper we shall consider the following commu-
tation relations conjectured by Gell-Mann?:

[Q4P(),04D()]=21?, 1)
[0A([),4,9x,1)]1=2V,®(x,0), (2a)
[04PW), V@ (%) ]=—4,P(x,0), (2b)
[QA® (@), VuO (%) ]=24,9(x,0). (20)

In the above, V,@(x,f) are the components of the uni-
tary spin current (j=1, 2, --- 8; u=1, --- 4), and
4,9 (x,t), the corresponding set of axial-vector currents
associated with the weak interactions. Also,

Qa®()=—1i / AP (x,0)dx, 3)

where A,®(x,)=4,0(x,H)£id,P(x,t). I® is the
third component of the isotopic spin.

Since their conjecture by Gell-Mann, the applications
of these, and other, commutation relations have been
very numerous. One very exhausted type of application
has been the derivation of sum rules. Two methods have
essentially been used to derive sum rules. The first
method is not covariant and requires the use of states
of infinite momentum. This is the method originally
suggested by Fubini and Furlan,? and very successfully
applied by Adler and Weisberger.? The second approach
is due to Fubini, Furlan and Rossetti,* and is manifestly
covariant. We shall refer to these two approaches as the
noncovariant and covariant methods, respectively. It is
generally thought that both methods give identical re-
sults, but no general proof of this exists. This has been
shown to be so for the case of the Adler-Weisberger sum
rule which has been derived by both methods.®:* In the
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absence of a general proof, it may be very useful, and
certainly interesting, to compare the predictions of the
two methods in other cases as well. This is just the pur-
pose of the present paper.

In Sec. IT we consider the matrix element of relation
(1) between identical p* states of nonzero momentum
p, and polarization £ (p).% Using the noncovariant
method, and in the limit when |p,| — «, we derive two
independent sum rules for M =1, 2 and M =3. In de-
riving these sum rules, we have assumed the most gen-
eral form for the matrix elements of weak hadron cur-
rents and for strong-interaction vertices, consistent with
Lorentz covariance. This requires, for example, that we
introduce two strong-coupling constants ga,,» and
g 4,0r associated with the decay A;— pm.” The sum
rules we obtain are the same as those derived by
Gasiorowicz and Geffen® using the covariant method,
except for the fact that they assigned a specific value?
to the coupling constant g’ 4,,.. The sum rules are quad-
ratic in the coupling constants g4,,» and g'4,,-. Assum-
ing the Gell-Mann, Sharp, and Wagner!® estimate for
the strong-coupling constant g,,., our sum rules yield
two possible sets of values for g4,,» and g'4,,- .Both sets
are not inconsistent with the experimental decay width
of the A;, within the limits of the”approximations
introduced.

In Sec. ITI we consider the matrix element of relation
(2a) between the vacuum state and a p° state of mo-
mentum p, and polarization £ (p). Using the non-
covariant approach, and in the limit when |p,| — o,
we obtain #ree (two nontrivial) independent sum rules.
The corresponding covariant calculation has been per-

® We use a representation of the polarization vectors £ (p)
such that the three unit vectors £ (p), £®(p), and p,=p,/|p,|
f'([)mi /a, ;ight-handed orthogonal triad and £®(p)=(0,0E,/m,,
2| p,| /my,).

7 Throughout this paper the notation 4, will refer to the I¢=1—
“enhancement” observed at a mass of 1080 MeV (I =isotopic spin;
G=G parity). We shall assume this enhancement to correspond to
a mp resonance with JP=1*% (J=spin; P=parity). See A. H.
Rosenfeld ef al., Rev. Mod. Phys. 39, 1 (1967).

8 S. Gasiorowicz and D. A. Geffen, Phys. Letters 22, 344 (1966).

? The matrix element Gasiorowicz and Geffen used to describe
the decay 41— pr corresponds to the choice

Zarps’ (R = (mar®—m,2) [ (mad+m 2+ k2) (ma-+m,2).
T}iios gives gai, (0)=0.12.

M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1962). This paper will be referred to as GSW.
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formed by Renner!! and Geffen,!? and results in only one
sum rule, which is the same as one of our sum rules,
provided we assume a certain form factor satisfies an
unsubtracted dispersion relation. The reason why Ren-
ner and Geffen obtain only one sum rule is due to the
fact that they took the limit g, — 0.1* We show that if
this limit is not taken, additional sum rules can be
obtained.

Similar results are obtained when we consider the
matrix element of relation (2b) between the vacuum
state and a single At state.

We have also considered the matrix element of com-
mutator (2c) between a single w state and the vacuum.
If a certain form factor is known, independently, to
satisfy an unsubtracted dispersion relation, then our
sum rule reduces to the trivial result 0=0. The covariant
method gives directly the result 0=0 simply from
covariance.

Throughout this paper we use natural units (A=c=1).

II. SUM RULES FROM CHARGE-CHARGE
COMMUTATOR

A. Derivation of Sum Rules

Let |pt)=|p"; p,, £ (p)) be a pt-meson state of
momentum p, and polarization £@(p). Consider the
matrix element of Eq. (1) between identical pt states of
nonzero momentum, 1.e.,

(p*1[04P,04 ]| p¥)=2. @
Introducing a complete set of states, one can bring Eq.
(4) to the form

> [ F1QaP )| 2= [{o+|Qa O ) 2=2.  (5)

2Q(E,E-)V5*; ppt 30 (p)| A,9(0) | 105 pr) =46, 00¥F 4O — pt; (p,—
3 (Pp—f’fr)zj‘{" (Pp""PW)nFA(K)[WO i P+§ (Pn_

' X{(p,, D) FA(2)[7I'0-——)
OUE, ) k00| 4,690 |5 9O
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We now assume that only known, single-particle and
resonance intermediate states contribute appreciably
to this sum rule, and neglect all other states. Since on
doubly charged mesons are known, this approximation
immediately allows us to drop the second sum in Eq.
(5), and we can write

Za [(0*0aP )| 2=2, (6)

where the summation extends over all known sing]e-
particle and resonance states. For nonzero p,, the states
that contribute are the 7%, w, ¢, 41°% and A, states.
One can show from the known widths of the ¢ and 4,
decays into pr that their contribution to sum rule (6)
is negligibie. We can therefore write that

2 [o%;5 00 () | Q4P 7% pa) |2
Pr

+2 > [46%; PrE@0(0) [ Q4P| w; Puy ¥ (w)) |2

Po M'=1

+2 T ot 00|

P4y M'=1
XQaD|[A4:%; pa, M (A1) 2222, (7)

where pr, po, and p4, are the 7, w, and 4; momenta,
respectively, and £ (w) and £M"(4,), the polariza-
tion vectors of w and A;.

For M =1, 2, 3, Eq. (7) gives three sum rules, of which
only two are independent.® The sum rules obtained for
M =1, and M=2 are identical.

We can write

P (EAD% py).

=231, (8a)

“‘iteuaﬁvé‘a(M”(P)EB(M,)(‘*’M(Pp po)yF a®Lw— p*; (po— po)? 1+ (Pn"l’Pw)v

XFA(Z)[CO —p

and

2Q(E,E4,)" ™65 0o, (p) | 44(0) | A1%; pa, £ (A1) :
=3[0 (p) - EM (AN (Po— pa)uF 4 VLA — 075 (o= pa)* I+ (Pt pa)ul aPLAL° — p*

5 (Pp Pw)2]}+€a676$a(M)¥(P)Eﬂ M')(w)(lpp)v(?w%
X{(po— pa)uF 4®[w— p7; (pp— pa)*IX (Pt pu) b 4P L — o5 (p— pa)*]}]  (8D)

5 (Pp'_‘PAl)z:l}

(EI0X(0) - pa )b (ADFAPLAS = 65 (py— P H (EH(AD) - pYECOHp)
XEAOLAL = %3 (0= ) T (E90%(0) pa) (€ (4)-£2)

X{(po—pa)uFa®LAL = 575 (pp— 1 4) I (Pptp4)bF 4 ©OLA° — 075 (po— pa)* ]

In the above, @ is the normalization volume of our wave
functions, and E,, E,, E,, and Ey4,, the p, 7, », and 4
energies, respectively.!® These are the most general ex-
11 B. Renner, Phys. Letters 21, 453 (1966).
12D, A. Geffen, Ann. Phys. (N Y.) 42, 1 (1967).

Bg,isa fictitious 4-vector introduced in covariant calculations.
It satisfies ¢2=0.

(8¢c)

pressions one can write down consistent with the parity
and Lorentz transformation properties of the currents
V.9 (x) and 4,9(x).

14In determining the G parity of the intermediate states we
have assumed that the currents V,(x) and A,(x) are first-class

currents, i.e., GV,(x)G1=V,(x) and GA,.(x)G 1= —4,(x). See
S. Wemberg, Phys Rev. 112, 1375 (1958).
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We have also defined
£ D% = £ (D) if u=1,2,3,
=—£0D* if u=4, )

where * indicates complex conjugation. With our choice
of representation for the £,40,8 it is easy to see that
E“(M)’F: £,00,

Using the Gell-Mann-Lévy version!® of PCAC (par-
tially conserved axial-vector current) hypothesis, i.e.,

a#An(+) (x) =Mar Pz ) (x) ) (10)

where @, is the dimensionless w-meson-decay coupling
constant, and ¢, (x), the renormalized 7-meson field
(@, creates a positively charged pion), one can show
that

F o[ — pt; (po—p2)?=0]
+(mp2_mﬂ'2)FA<3)E7"o — ot (p,-—P,r)2=0]

=MrGefors (Po— P=)2=0], (11a)
2F 4P[w— pt; (po—pu)?=0]
+ (Mot —m)F 4 @[ — p*; (pp— pu)?= 0]
=mwa«gwpr[(ﬁp—f’w)2=0]; (llb)
(mai—mAFa@LA0 > o5 (p,— pa)?=0]
=mrang1ﬂr(l)[(1’p—P41)2=O]; (11¢)
F4a®[A:°— p*; (p—pa)?=0]
—F4®[A,°— p*; (po—pa,)?*=0]
+ (ma2—m,)F 4 ©LA:° — p*; (p,—pa,)?=0]
= mrargAlpr (2)[<Pp_ PA1)2= 0] . (1 ld)

The form factors gorry Guprs a1ox Y, and ga,,»@ are de-
fined by

{ot; me(M)(P) |.71r 4(0) [7"0; Px)=

—1
2Q(E,E )12
X(E(MH(P) : ﬁt)gp"[(pn*ﬁf)zj ’
(o5 Por () | = P(0) |@; Puyt 17 ()

(12a)

€apystaP¥(p) £ 1) (w)

X (06)2(Po)s8ups (Bo—pu)?],
(0F; Pt ()| - P(0) [ 410 P4y, (41))

20(E,E)?
(12b)

=ml{é"")*(p) £ (44)}
pteAy

Xgamr (I)E(Pp—PAl)zj"*_ { E(M)¥(P) : PAl}

XLEM (A1) P garer PL(Po—pa)]], (120)

15 We use a metric with an imaginary fourth component:
w=(x,il) and p=(p,iE). & =x'—1% p=p*~E'=—m’. by, pr, pa
and pa are the 4-momenta of the p, 7, w, and 4, respectively.

16 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960).
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where the current 7, (x) is the source of the r-meson
field, i.e.,

62
[(Vzﬂ)—mﬁ}wxmjw<+><x>- (13)

Equations (12a), (12b), and (12c) are the most general
expressions one can write down consistent with the par-
ity and Lorentz-transformation properties of 7, (x).
One can show from time-reversal invariance that g,
and ga,,~® are real.

From Egs. (7), (8), and (11) it is now quite easy to
derive the following two sum rules:

For M=1or2:
{%mﬂ'argwpw[(Pp—Pw)2=0]}2

gAlM[(pp"pAJz:O]} 2. (14a)

s
(ma,—m,?)

For M=3:

{%—"-’Ia,g.,,,[<pp—p«>2=01}2

Mp

{ Mrr (M4, 2m,%)

Caror (Po—par)*= 0]}

2m,m 4, (m 4y —m %)

X{1—ga1pr’ [(pp—p4,)?=0]}=22. (14b)
We have defined
gAlM’(qz):gAlPﬂ'(l)(qz);
(ma®—=my%)? ga1pe (%)
gAxmr,(qz) = - ’ ’ (15)

2(ma,®+m,?) gAunr(l)(qz) '

These sum rules reduce exactly to those derived by
Gasiorowicz and Geffen® using the covariant method,
provided we substitute the specific value which they
assigned for the coupling constant ga,,".°

B. Application

The sum rules (14a) and (14b) can be solved for the
coupling constants g4,,» and ga,,»’, provided all other
quantities appearing in them are known. We determined
gupr from the GSW! p-dominance model for the decay
w— 3w. The coupling constant!” g,., was calculated
from the measured width of the decay p— 2. Since
Eqgs. (14a) and (14b) are quadratic in the coupling con-

17 We assume throughout this paper that “physical” coupling
constants such as gyrr(—m12), ga1,m(—m42), etc. do not differ much
from the “unphysical” ones g,=+(0), g41,+(0), etc., and shall in fact
take them to be approximately equal whenever necessary.
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stants, we obtained the following two solutions!®:
| g4,022(0)|=24.05X10* MeV,  ga,pr 1(0)=22.04; (161)

| g4,0-"7(0) | =24.05X 10° MeV,
gAlprIII(O)g'—O.O‘l'.

The width of the 4, is given by

(1611)

lppl

1
T(4,°— all pr)=—
127 'mAl2

{ga1px(—m42)}?

1 ZmAl(mAlz—I-mpz)
X 2{ . Ep'_'

(ma,®—m,?)?
X |pPI 2gA1p1r,(_7ﬂ1|-2)} ] . (17)

Substituting the values (16I) and (16II) into relation
(17), we find that
TI(4,°— all pm)=22231+60 MeV,

TTI(4,0 — all pr)=2285+75 MeV.

(181)
(1811)

These values are to be compared with the experimental
width!®
Texpt(A41° — all pr)=(130+:40) MeV. (19)

The quoted theoretical error in Eq. (18) is that intro-
duced by the PCAC assumption, Eq. (10). It is well
known that in the nucleon case, the PCAC assumption
gives a Goldberger-Treiman relation which is accurate
roughly to within 13%.!" Use of this Goldberger-
Treiman relation in deriving the Adler-Weisberger sum
rule, for example, is therefore expected to introduce an
error of some 26%, in the sum rule. If we now further as-
sume that an additional error of, say, some 15% is in-
troduced by the truncation of the sum over intermediate
states, then both I'l and I''! are further reduced, and
T'I can be brought within the experimental limits as
well. We would therefore tend to conclude that both
results (16I) and (16II) are not inconsistent with the
experimental A; width, within the limits of the approxi-
mations introduced. To the same accuracy, this justifies
the commutation relation (1).

III. SUM RULES FROM CHARGE-CURRENT
COMMUTATORS

A. Derivation of Sum Rules

We now consider the matrix element of commutator
(2a) between a p° state and the vacuum state, and of
commutator (2b) between an 4+ state and the vacuum

18 All of our input data are taken from the compilation by A.
H. Rosenfeld et al. (see Ref. 7). The p* width we used was 132
MeV, which represents the weighted average of published results.
The w-decay constant as determined from the observed =-decay
rate is a»=0.95.

19 A, H. Rosenfeld ef al. (see Ref. 7).
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state:
(0% Pt ™ (p) [ [QaP,4,(0)]]0)
=2(0" Pt (p) | Vu®(0)[0), (202)
(Ai*; pant 0 (41)|[Q4P,V,(0)]]0)
=—(A1*; P4, (41)|4,(0)[0). (20b)

Introducing a complete set of states in the usual
fashion gives

212 (0% PP (0) | Q4P | na)na| 4,(0) | 0)
—2na (0% Pyt P (0)| 4,9(0) [0 )a' | Q2] 0)
=2(0% Pt (p) |V ®(0)[0) (21a)
and

2o (A1 PanEOP (A1) [ Q4P [ ma)(ns| V., (0) | 0)
=2y (Ar; panEM0 (A1) | V@ (0) | ny)
X{ny'[Qa[0)

= —(A1*; pa,, £ (41)| 4,49(0)[0). (21b)

In Table I we have summarized the properties of the
intermediate states that contribute to these sum rules,
and indicated the possible, known, single-particle and
resonance candidates.!*?® Some formal manipulations
similar to those of the previous section reduce Egs.
(21a) and (21b) to the following form

A (“)E,.(M)*(p)EB (a) (Pp)“+c(a)54“ , (223_)
A®EOD¥ANB® (py)),+C P8y,  (22b)

where AP B@ and C? (j=a or b) are given in the
Appendix. One can easily show that relations (22a) and
(22b) imply that

AD=0, BW=0; COW=0 (j=aord). (23)

In the limit when |p,| — « and |p4,| — o, the con-

TasLE 1. Properties of intermediate states contributing to sum
rules (21a) and (21b). The last column lists the possible known
single-particle and resonance candidates. Q, S, and B refer to the
char]gje (in units of proton charge), strangeness, and baryon
number.

Known single-

particle
Q S B P I¢ JP candidates
Na): -1 0 0 ) 1~ 0-,1*  ,A4,(1080
nh: +1 0 0 0 1~ 0~ 12 )
”b>: 0 0 0 PA1 1+ 1- P
ny'): 1 0 0 0 1- (O T

20 Possible contributions of disconnected graphs are also ne-
glected. They do not change the discussions of sum rules in Sec.
IIT B if all the form factors that appear in sum rules satisfy un-
subtracted dispersion relations, which we eventually assume in the
discussions. If certain form factors are known to satisfy subtracted
dispersion relations, the disconnected graphs should be included
in evaluating sum rules. We thank Professor B. W. Lee and Pro-
fessor D. A. Geffen for clarifying this point.
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ditions (23) give the following sum rules:

Vo,
gAlP"’(O)

(ma,2—m,?)

—3F 4O — 0 2= w]]go, (242)

2v,+m,a,,[

au (ma>+m,?)
2\/?*ng1,,,,-(0) ’ I+

M A,

gAUnr/(O) }

(may>—m,*

20150 8 prn(0) — k2 F 4Pt — p°; k2= o ]

FFA®[rt— p% k2= o= [}=20, (24a/)
R FA®[rt > p% k2= o0 ]
—F @[t — p0 k2= oo }=20, (24a”)
v
_\/ZvaAl'"f—mwar{'—p_-'gA;pw(O)
(ma,2—m,?)
—3Fy WLt — At k= oo ]}go, (24b)
? (ma2+m,% 7T
2 ._p—gAIPW(O) { 1_'——1—'LgA1p1r/(O) }
m,* Ma2—m,t
R Fy @[t — Ayt k2= o]
+Fy®[rt — AH; k2= J}=0, (24b")
FYFy@[n+— A+ k=]
—Fy®[rt — Art; k2= o [}=0, (24b")

where k2 — co. The constants v, and a4,, as well as the
form factors appearing in the above, are defined in the
Appendix. Discussion of sum rules (24) is postponed to
the end of the paper. :

Consider now the matrix element of relation (2c) be-
tween an o particle state of momentum p,, polarization
£ (), and the vacuum state:

(@5 Po,E0() |[[Q4P, V,(0)]]0)

=2(; P, () | 4,2(0)]0)=0.  (25)
Introducing a complete set of states gives
S (6049 2 V.0 (0)]0)
=2 (Va0 |2)(n'|Qa4]0)=0.  (26)

In Table II we have summarized the properties of the
intermediate states |#) and |#’) contributing to sum
rule (26). Assuming our sum rule to be saturated by the
known single-particle and resonance states listed in the
last column of the table,? we find that

V2,
Pl = &3 (=1 5,ms.

D Sme Byt — @5 (e p2)*]| ooy (27)

KIM AND M.
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TasLE II. Properties of intermediate states
contributing to sum rule (26).

Known single-

particle
Q S B P I¢ JP candidates
ny: -1 0 0 Pe 1+ 1~ P
n'): +1 0 0 0 1~ 0~ T

where we have used relation (A7) together with

(@5 Pert "0(@) Q4P 575 2, £ (p))

—1%0p,,p,

N (2QE,)V2(2QFE,,)1/2
X &Y (0) (pu)yF alp™ — w; (Po—pu)*1 (28)

€1aprEa <M)¥(°~’)

and
(@; Py 0 (@) |V D(0) [7+; par)
1
T QQE) 9B
XPy[rt— w; (po—pr)?].

In the limit when |p.,| — %, the sum rule (27) reduces
to

fpaﬁ'yga (MH‘("") (pw)ﬁ(PW) v

(29)

Fy[rt — w; (po—pa)?= o ]=0. (30)

B. Discussion

If we assume that the form factors F4 @7+ — p%; k2]
and Fy®[x+— Ag+; k] satisfy unsubtracted disper-
sion relations, i.e.,

F4®Lrt— g1 k= ]=0,

FyW[at— Ayt k=0 =0, 3D
relations (24a) and (24b) reduce to
V20 50z a,
2y, — €415:(0) (32a)
(1m.4,2— mp2)
and
MaGs?,
JgaAlg gAlpvr(O) . (32b)
(msz“‘mPZ)

These sum rules are identical to those obtained by
Renner™ and Geffen!? using the covariant method.
These authors assumed unsubtracted dispersion rela-
tions for the form factors Gi®(») (j=a or b) given by

EM(M)(P)GI(G)(V/:)_{" e :/d4x eiq'ze(t)
X{p°|[8ada P (2),4,(0)]]0), (33a)
and

EF(M)(A1>GI(I’)(VA1)+ e =/d4x eiq~19(t)

XA |[0242P(x),V,(0)]]0), (33b)
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wherev,=p,q, v4,= pa,"q, and g, is a fictitious 4-vector
satisfying the condition ¢?=0. At the end of the calcula-
tion Renner and Geffen set ¢,=0.

From Egs. (32a) and (32b) one can show that

0,/04, =21,

{Emra‘r/(mfhz— mp2)]gA1p1r(0)} =2. (34b)

Using Eq. (17), relation (34b) implies that I'(4; — all
pr)>445 MeV. This is more than two and a half times
larger than the upper experimental limit [see Eq. (19)].
Furthermore, comparing Eqgs. (14a) and (34b), we see
that they imply g.,»=0, in contradiction to the GSW
estimate.!® Since we tend to accept the validity of sum
rules (14a) and (14b),?! these discrepancies could be ac-
counted for by one or more of the following possibilities:

(34a)
and

(a) Either one or both form factors F,®[rt— p*;
k*] and FyO[r+ — Ay *+; k*] satisfy subtracted disper-
sion relations.

(b) One or both of the commutators (2a) and (2b) are
not valid.

(c) Limiting the intermediate states in (21a) and
(21b) to known single-particle and resonance states is
a bad approximation.

We now turn our attention to sum rules (242”), (24a”),
(24b"), and (24b"") which were obtained together with
sum rules (24a) and (24b). These sum rules were not ob-
tained by Renner!! and Geffen'? when they used the
covariant approach. We wish to point out that the
reason for this stems from the fact that these authors
considered directly the limit ¢,— 0 (Ref. 13) (one of
the advantages in taking such a limit is that ambiguities
due to possible Schwinger terms are removed). This is
easily observed if we remember that the sum rules de-
rived by them were obtained from equations of the form

Q@ ()£, (p) = B (v,) {7 (p) - ¢} (),

+e Dy, ){£(p)-q}qu, (35a)
and
A® (4,0 (41)=BP(a){EM (A1) g} (Par)u
+C®(a,){EP0(41) q}qu. (35b)

[Compare these with Egs. (23a) and (23b).] If we now
simply set ¢,=0, we obtain just two sum rules:

a9 (0)=0; (36)

These are identical to sum rules (32a) and (32b). If we
do not set g,=0, it is easy to show that Egs. (35a) and
(35b) imply

(j=aorb).

a9 ()=0, (37a)
®P()=0, (j=aorb) (37b)
eW(y)=0. (37¢)

21 This is based on the fact that (a) sum rules (14a) and (14b)
are not inconsistent with experiment, within the limits of the
approximations introduced, and (b) they were derived from the
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It is therefore clear that both covariant and noncovari-
ant methods give exactly the same number of sum
rules.??

We will now attempt to discuss the implications of
the new sum rules Egs. (24a’), (24a’’), (24b’), and
(24b""). Using the PCAC hypothesis, one can show that?3

Tim B2, @[+ — % £2]=0. (38)
Substituting Eq. (38) into Eq. (24a”) gives
lim k24 @[+ — p0; £2]=0. (39)
In Ref. 23, it was shown that
Fa®[rt > o5 ) VBosl R B C-me)) (40)

ma*+k?
This implies? '

Fa®[rt— p0 k2=0]= —

01,8410 @(0)=0. (41)
mAﬁ

Furthermore, substituting Egs. (38), (39), and (41)
into Eq. (24a’), gives the following relation:

_a4 :
/2 2gA1Pﬂ'(O)+m1rd7rgp7r1r(0)%0.
MA,

(42)

It is interesting to note that Eq. (42) follows directly
from the PCAC hypothesis alone,? when, as implied by
Eq. (41), 24,,-®(0)=0 [a4, cannot vanish since other-
wise Eq. (42) would imply that g,,,=0, in violent con-
tradiction with experiment].

Combining Egs. (32a) and(42), it is easy to show that

Ma 2
vpgprrgzmp2[v_7”;—pa1rgp7rrrj| %2%,,2)( 2. (43)

This result is not in agreement with the relation

Vopmr=21m,*

(44)

derived by Sakurai?* on the basis of p dominance and
the CVC (conserved vector current) hypothesis.? This
discrepancy may serve perhaps as further evidence for
conclusions (a), (b), and (c) given following Eq. (34b).
Consider now Egs. (24b’) and (24b”). The CVC

c‘(;lmmutator (1) which is at the basis of the Adler-Weisberger sum
rule.

22 We are now investigating sum rules (37b) and (37¢) and com-
paring them with Egs. (242"), (24”), (24b’), and (g4b')’). The re-
sults of this investigation will be the subject of another paper.

2 C, W. Kim and Michael Ram, following paper, Phys. Rev.
162, 1584 (1967). In this paper, the authors use the so-called pole
dominance version of PCAC and assume all form factors of interest
to satisfy unsubtracted dispersion relations. The same results are
equally obtainable from the Gell-Mann-Lévy version of PCAC
Eq. (10), provided one also assumes all form factors are unsub.
tracted and that limg?.,,, gorr(k2)/k2=0.

24 J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960).

(1;55 é% P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
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hypothesis Using Egs. (24b’), (47), (48), and (50) one can now
8,V,9=0, (i=1,2,3) (45) easily derive the relation

together with the assumption 0p84157(0)=0. G
lim Fy®[at— A+ £]=0 I*;qua.txons (50) and (51) have the following two solu-
fryesy tions:

and (a) V= 0 ’ , (5 2)
lim Fy®[rt— As+; £2]=0, (46) (b)  gaspr=Ea1px’'=0.
k2>

Both solutions are in disagreement with experiment as
@7 (a) rules out the decay of the p meson into lepton pairs,
which has been observed,? while (b) forbids the decay
A1— p+= (this is the dominant decay mode of the
Substituting Eq. (47) into Eq. (24b”), we find A1Y9).
Let us now return to sum rule (30). If the form factor

implies
klzim kFy@[rt— Ar+; k*]=0.

klzl_ff}o FFy®[rt — Ait; £2]=0. 48 F vt — w; k2] is known to satisfy an unsubtracted
dispersion relation, the sum rule reduces to the trivial
In analogy to Eq. (40), one can show that identity 0= O: The covariant n‘lethod g'ives directly the
result 0=0 (simply from covariance) without the neces-
V20,{ — 584105 P(—m:?)} sity of imposing any restrictions on the form factors.
Py @[ At F]a o{—2 : 10 : ) y posing any
mp*+k ACKNOWLEDGMENTS
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’ T 2m,? sions.

APPENDIX
(Ep_EAl)
A@=20,—V2aa | —————FaW[Ai"— 0% (p,—pa)’]
Ay
(Ept+Ea) 1 o) 0 2
+——F4 (2)[A —p% (Pp"‘?Al)z] —3axmF 4 [7"+ —p7 (?p"?fr) :” pr=0; (A1)
ZEAX PA1I=p,
V2ag4 (Ea,—E,)
B@= ‘B(M)‘\‘(p) [__':L{ (E,—E4)Fa®[A1 — 0% (pp—pa)?]
Ay M4,

Eu
+ (Ep+EA1)FA (2)[‘4 1 PO; (Pp_pA1)2]}+—A‘I(EA1'—Ep)FA (3)[A B Po;(Pn—pr)zj

mMA;

(PAI 4 p)

2

(?Ax 4 p)

mAy

-1t |raorar—p (br=pa {1+ | BaE)

™ A4y

IMrlr

X { (EP_EAx)FA (E)EA 1 — Po; (ﬁp_PAx)z:H‘ (EP+EA1)FA (e)EA 1 — PO; (PP—PAI)2]}]

PA1I=Dp 2Er
X EOD*(0)[F 4D~ — p% (pp— ) T+ (E,— ED{(E,— ED)Fa®[7~ — 0% (p,— px)*]
F(EAE)Fa®[r — 0% (po—p0)?1}] [ prmpot-5ims20,£4P0%(p)

XI[FaP[rt— p% (pp—pz) T+ Fa®Lat — p% (p,— 02)2 01| pr=mo, (A2)

26 S. S. Hertzbach et al., Phys. Rev. 155, 1461 (1967).
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'\/2041

(EAI"‘ Ep)z
—————{(E,— E4,)FaV[A1 = p% (pa—pa)* ]+ (E,+Es)Fa®

Clo= 54(M>4(p)[_

Al mA12

(PAl : Pp)

2

EAx(EAl_ Ep)

X[Al_—’ % (?p—PAl)zj}‘i‘ { 1— } (EAx_Ep)FA(s)[Al—_’ 0’ (PP_PA1)2:H_

M Ay Mm Ay

(PAx . Pﬂ)

ma,

X (EAx_Ep)FA“)[A 1 —p% (pp'_PAx)Z:]—

(EAx_'Ep)z{ (Ep—EAl)FA(E)[A 1 — PO; (PF~PA1>2:|

Mxlx

(Ex—E,) % (p)

(B Ea) P4 AL — o0 (p,,—mz]}]

PA1=p,p ""
X[Fa®[r=— p°% (po—p=)* 1+ (E,—E){(E,—E.)F 4 O[r=— p0% (?r_?p)zj
+(Ep+Er)FA (3)[71“— - pO; (pﬂ—Pr)z:]}] I Po=pr %mr3a1"£‘(M)¥(p)
XIEa®Lr* — % (5= p) T~ Fa®Lr* =% (55 Tl pumo, (A3

(EAl_Ep)
A (5) — ——‘\/ZaAl—vp[TFA(l)[po —_ A1+; (PAI—PF)zj
(EA1+E;7)
A TV (PA;“‘Pp)zj} —imeas Py Ot — A5 (o)l pemo;  (A4)
P p=PAL
’l:'Up (Ep—EAl)
B(b)=EE4(M (A1) [——T—{ (Eas—E)F4®[p®— Ar*; (pas—p,)%]
3 My

E,
T ELTEF P[0 — As*; (pa— ) TH—(B,— Ex)Fa@L0" — A1+ (pa—1,)"]
my

(PAx : Pp)

my?

(PAI : Pp)

mp?

~{1+ ]FA‘4’[p°—+A1+; <1>Al—p,.>ﬂ+{1+ }(E,,—EAI)

X{(Eas—E,)F4®[p° — Ar*; (pay—90) 14+ (Eay+E,)F 4 ®[p° — A1t; (?Al—PP)zj}:l

Pp=PAl
+%’L'm,2a"£4(M)¥(A 1){FV(2)[7|'+ — 4 1+; (?Al"—Pr) 2]+FV(3)[:7|'+ — 4 1+; (PAl—Pr) 2]} l Pr=0, (AS)
(Ep_EA1)2

v
CO=—"£,00%(4,) l:—“‘*——{ (Ea—E))F4®[o°— A1t; (par—15)*]
2E, mp?

E
+(BaFE)F 4 @[ — Art; (par—pn) N+ Eo—Ear) 1——12(Ep—Em)}FA(3)[p°——)A1+§ (par—20)*]
Mp
( . ( 1’ p)
+ P Pp)(Ep—EAl)FA(4)[p0—)A1+; (par—pp)*1— Pu? (Ep)—Eu)*
M2 !

X (Ea—E)Fa@[0— Ar; (par— b - Eat EJFAOLo0 — A (PAx—Pp)”]}]

Pp=pA1L
Fimalar b PO A){Fy Pt — Art; (pa—po) J—Fv@Lat — Ar¥; (pa—p2)* 1} pemo.  (A6)

In the above we have defined v,, ¢4, and the form factor Fy® [t — Art; (pa,— px)2], i=1, 2, 3, through the
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relations
1
(°| V. ®(0) |0>=mvp$uw (o), (A7)
7
(A1+]4,9(0) IO>=W\/§M1&‘M *(44), (A8)
and
(A5 B A VOO |5 p) = B OO AP O i ()]
“Ay T
H{EDX (A1) pH(Pay— po)WF v P[at — Art; (par— pu) 21+ (part pa) v @[t — At (par—p)2 ]3], (A9)

The remaining form factors are defined by Egs. (8a) and (8c), together with the isotopic-spin transformation

properties of 4,®.
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We review and discuss the dispersion-theory version of the PCAC hypothesis in the case of nucleon
leptonic weak decays. The discussion is extended to the case of meson weak decays, and the feasibility of a
direct test of the Goldberger-Treiman relation for the meson case is considered.

I. INTRODUCTION

HERE have recently been many applications of
the PCAC (partially conserved axial-vector cur-
rent) hypothesis, particularly in conjunction with the
derivation of sum rules from current algebra. The
PCAC hypothesis is essential in these applications, as
it relates weak-interaction form factors (which are in
most cases difficult, if not impossible, to measure at
present) appearing in the sum rules, to strong-coupling
constants - which can be determined from decay widths
or scattering experiments. In general, to test the PCAC
hypothesis directly, one would have to measure inde-
pendently both the weak form factors and strong-
coupling constants. The best and only known case that
has been tested directly to date is that involving nucleon
n— p weak form factor (the famous Goldberger-
Treiman relation).!

In this paper we would like to review the possibility
of directly testing the PCAC hypothesis in the case of
meson decays. As we shall see, no direct test (as in the
nucleon case) is feasible. We shall only discuss the

* Work supported in part by the National Science Foundation.

T Present address: Physics Department, State University of
New York at Buffalo, Buffalo, New York.

1Even for the nucleon case, the PCAC hypothesis has been
tested at only two momentum transfers, corresponding to those
occurring in 8 decay (¢>~0) and muon capture (g2=~m,?).

dispersion-theory (pole-dominance) version? of the
PCAC hypothesis. The more commonly used version
due to Gell-Mann and Lévy® which relates the diver-
gence of the axial-vector current to the pion field will
not be considered.

In Sec. II, we review the application of PCAC to
nucleon leptonic weak interactions. In Sec. III, the
results of Sec. II are extended to the case of meson
leptonic weak interactions. Throughout this paper we
use natural units (A=c=1).

II. APPLICATION OF PCAC TO NUCLEON
LEPTONIC WEAK INTERACTIONS

Let us first review the application of PCAC to
nucleon leptonic weak interactions. Consider the matrix
element (0|4,%(0)|p,m; in), where |p,m;in) repre-
sents an antiproton and neutron “in” state with anti-
proton and neutron 4-momenta p=(p,iE;) and
n=(n,iE,), respectively. 4, (x), with p=1, -+ 4, is
the strangeness-conserving axial-vector weak hadron
current operative in 3 decay and muon capture. This
matrix element is easily related to the matrix element
(p| 4,(0)|#) involved in B decay and muon capture,

2Y. Nambu, Phys. Rev. Letters 4, 380 (1960); J. Bernstein,
S. Fubini, M. Gell-Mann, and W. Thirring, Nuovo Cimento 17,
757 (1960).

8 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960).



