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Vector-Meson Sum Rules from Current Commutators. I*
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Vector-meson sum rules are obtained from a charge commutator and from three mixed charge-current
commutators using the noncovariant approach. In deriving these results, we use the most general form for the
matrix elements of the weak hadron currents and for strong-interaction vertices, consistent with Lorentz
covariance. Qur results are compared with those obtained by dispersion-relation, covariant techniques, and
with available experimental data.

I. INTRODUCTION
' "N this paper we shall consider the following commu-
n - tation relations conjectured by Gell-Mann'.

LQ/&+)(t) Qg&
—)(t)j—21&v) (1)

LQ~&+&(t),A„&-&(x,t))=2V„&»(x,t), (2a)

)Qg&+'(t), V„&s'(x,t)j=—A„&+&(x,t), (2b)

)Q&&+'(t),V„''(x,t)$=2A„&@(x,t). (2c)

In the above, V„&"(x,t) are the components of the uni-

tary spin current (j=1, 2, 8; tv=1, 4), and
A„&t'(x,t), the corresponding set of axial-vector currents
associated with the weak interactions. Also,

Q, &+&(t) = i A—,&+&(x,t)dx,

where A„&+l(x&t)=A &'&(x,t)&iA &"(x 1) I&+ is .the

third component of the isotopic spin.
Since their conjecture by Gell-Mann, the applications

of these, and other, corrunutation relations have been

very numerous. One very exhausted type of application
has been the derivation of sum rules. Two methods have
essentially been used to derive sum rules. The first
method is not covariant and requires the use of states
of infinite momentum. This is the method originally

suggested by Fubini and Furlan, 2 and very successfully

applied by Adler and%eisberger. ' The second approach
is due to Fubini, Furlan and Rossetti, 4 and is manifestly
covariant. %e shall refer to these two approaches as the
noncovariant and covariant methods, respectively. It is

generally thought that both methods give identical re-

sults, but no general proof of this exists. This has been
shown to be so for the case of the Adler-Keisberger sum

rule which has been derived by both methods. ' ' In the
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~ S. Fubini and G. Furlan, Physics 1, 229 (1965).
' S. Adler, Phys. Rev. Letters 14, 1051 (1965);W. I.Weisberger,

ibid 14, 1047 (196.5).
4S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40,
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absence of a general proof, it may be very useful, and
certainly interesting, to compare the predictions of the
two methods in other cases as well. This is just the pur-
pose of the present paper.

In Sec. II we consider the matrix element of relation
(1) between identical p+ states of nonzero momentum

y, and polarization $™(p).s Using the noncovariant
method, and in the limit when

~ y, ~

~ ~, we derive two
independent sum rules for M=1, 2 and M=3. In de-
riving these sum rules, we have assumed the most gen-
eral form for the matrix elements of weak hadron cur-
rents and for strong-interaction vertices, consistent with
Lorentz covariance. This requires, for example, that we
introduce two strong-coupling constants g~„and
g'~„associated with the decay A~ —& px. ' The sum
rules we obtain are the same as those derived by
Gasiorowicz and GeGen using the covariant method,
except for the fact that they assigned a specific value'
to the coupling constant II,'~„„.The sum rules are quad-
ratic in the coupling constants gg„„andg'~„.Assum-
ing the Gell-Mann, Sharp, and Wagner" estimate for
the strong-coupling constant g„„„,our sum rules yield
two possible sets of values for g&„andg'p p Both sets
are not inconsistent with the experimental decay width
of the A~, within the limits of the. 'approximations
introduced.

In Sec. III we consider the matrix element of relation
(2a) between the vacuum state and a p' state of mo-
mentum y, and polarization $™(p).Using the non-
covariant approach, and. in the limit when

~ y„~~ ~,
we obtain three (two nontrivial) independent sum rules.
The corresponding covariant calculation has been per-

'We use a rePresentation of the Polarization vectors P&'~~)(p)
such that the three unit vectors h&'&(p), h&'&(p) and p =p /Ip
form a right-handed orthogonal triad and P(3)(p) =(O,OE,/mp,
ii p. I /m. ).

7 Throughout this paper the notation A1 will refer to the I~= 1
"enhancement" observed at a mass of 1080 MeV (I= isotopic spin;G= G parity). We shall assume this enhancement to correspond to
a vp resonance with Jp=1+ (J=spin; P=parity). See A. H.
Rosenfeld et a/. , Rev. Mod. Phys. 39, 1 (1967).

S. Gasiorowicz and D. A. Geffen, Phys. Letters 22, 344 (1966).
9 The matrix element Gasiorowicz and Geffen used to describe

the decay A1 —+ p21- corresponds to the choice

ge~,~'(k )= (ming m, ')/(maP+m, '+k—') (mzP+rn, ')
This gives ge, '(0) =0.12.

'OM. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1962).This paper will be referred to as GSW.
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formed by Renner" and Geffen, "and results in omty ore
sum rule, which is the same as one of our sum rules,
provided we assume a certain form factor satisfies an
unsubtracted dispersion relation. The reason why Ren-
ner and Germen obtain only one sum rule is due to the
fact that they took the limit q„—+ 0."%e show that if
this limit is not taken, additional sum rules can be
obtained.

Similar results are obtained when we consider the
matrix element of relation (2b) between the vacuum
state and a single A~+ state.

We have also considered the matrix element of com-
mutator (2c) between a single co state and the vacuum.
If a certain form factor is known, independently, to
satisfy an unsubtracted dispersion relation, then our
sum rule reduces to the trivial result 0=—0.The covariant
method gives directly the result 0=—0 simply from
covariance.

Throughout this paper we use natural units (A =c= 1).

II. SUM RULES FROM CHARGE-CHARGE
COMMUTATOR

A. Derivation of Sum Rules

Let I p+)=
I p+; y~, $&~~(p)& be a p+-meson state of

momentum y„and polarization $&~&(p). Consider the
matrix element of Eq. (1) between identical p+ states of
nonzero momentum, i.e.,

&p+I LQ~"' Q~' 'jl p')=2 (4)

Introducing a complete set of states, one can bring Eq.
(4) to the form

&- I &p'IQ~"'l~&l' —2- I &p+IQ~& 'll'&I'=—2. (5)

We now assume that only kmowe, siege-particle and
resonance intermediate states contribute appreciably
to this sum rule, and neglect all other states. Since on
doubly charged mesons are known, this approximation
immediately allows us to drop the second sum in Kq.
(5), and we can write

2- I &p'I Q~'"'
I ~) I

'—=2

where the summation extends over all known single
particle and resonance states. For nonzero y„,the states
that contribute are the x', co, y, A~, and A2 states. "
One can show from the known widths of the y and A2
decays into p7r that their contribution to sum rule (6)
is negligibie. Ke can therefore write that

2 l&p' u. (& '(p)I Q~&+'I ' p.&l'

+E Z l(p', u„k'"'(p)IQ~"'l~;p-, k'"'(~)&l'

XQ~&+&IAt'; y» k'"'(At)) I'—=2 (7)

where p, p„,and p~, are the s., &0, and At momenta,
respectively, and. $&~'(&e) and. P&~'&(At), the polariza-
tion vectors of co and A».

For M =1,2, 3, Eq. (7) gives three sum rules, of which

only two are independent. ' The sum rules obtained for
M= j., and M=2 are identical.

We can write

2~(& ~ )"'&p'p &' '(p)IA. '+'(0)l~'u )=stS ' '"I'~"'E~'~p+ (p p)'j+(6'"'"—p )
x{(p'.—P-).F "'L ' + (p. p-)'3+(p. +—p-).F "'L ' p' (p.—p-)'))1, (8 )

2()(& E )"'&p+ v 8"'(p)IA. '+'(o) l~ u- 3&"'(~))
= I:.- -'"' () '"'( )(( .—-). '"I: + ( .—-)'j ( .+ -)

XF '"I p+. (p —p )'))+...4"'"(p)b' '( )(p,),(p.)
x j(P,—P.)P' '

I
p+; (P, P.)'jx(P,+P.—).F ' 5 p+; (P,—P.)'1&] (gb)

d

2()(~4~,)"'&p+' u 3&"'(p) IA. '+'(o) IAt'i v~, &'"'(At)&
=~t(k' "(p) 5'"'(At))((p.—p~,).F~"'LAt'~ p" (p. p)'3+(p.+p—,).f"~"'LAt'~ p' (p —p~ )'3&

+(~ "'"(.) p.,)~. '(At)F. ' LA.' ";(p,—p. ,)'1+(~ "'( .) p,)~.' "(.)
X~~"'P r' ~ p+, (p,—p~,)'3+(&'"'"(p).p~,)(&'"'(A t) .p.)

X {(p,—p,). ~"'I: t' p+; (p p~ )'3+(p +p~ )—.F~"'EA" p"; (p.—p~,)'jH. (gc)

In the above, 0 is the normalization volume of our wave
functions, and E„E,8, and E~„the p, x, ~, and A~

energies, respectively. "These are the most general ex-

"B.Renner, Phys. Letters 21, 453 (1966)."D.A. Germen, Ann. Phys. (N. Y.) 42, 1 (1967).
~ q„is a 6ctitious 4-vector introduced in covariant calculations.

It satisles g'=0.

pressions one can write down consistent with the parity
and Lorentz transfoiination properties of the currents
V„&'&(x)and A &'&(x).

"In determining the G parity of the intermediate states we
have assumed that the currents V„(x)and A„(x)are Grst-class
currents, i.e., GV„(x)G '= V„(x)and GA„(x)G '= —A„(x), See
S. Weinberg, Phys. Rev. 112, 1375 (1958).
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We have also deGned

if tt=i 2 3
——$4&sr) if tt —4

where * indicates complex conjugation. With our choice
of representation for the $„&~&,s it is easy to see that
p

&sr)'s —[ &Ar)

Using the Gell-Mann —Levy version" of PCAC (par-
tially conserved axial-vector current) hypothesis, i.e.,

B„A„&+&(x)=m.sa.&t, &+&(x), (10)

where a is the dimensionless x.-meson-decay coupling
constant, and &p &+&(x), the renormalized 2-meson field

(&t
&+~ creates a positively charged pion), one can show

that

F.& &L-'-"; (P,-P-)'=03
+(m, '—m 2)PA&a'Lx'~ p+; (P,—P.)'=Oj

=m.~-g.-L(p..—P-)'=01 (»a)
2FA& iL~~ p+'(P. P )

+(m.' m, '9'A—"'L~~ p+ (P. P-')'= —oj
m &t g l(p p ) =0j (11b)

(mA '—m ')FA'"L~i'~ p+ (P.—PAi)'=03
=m.~-gA„-&"L(p,—PA,)'=oj,

FA"'&~i'~ p+; (p,—pA, )'=03
I. L~"--.+; (P, P.,)'=03-

+(mA '—m ')&A"'L&1'~ p+p (Pp
—PA, )'=Og

=m.o.gAr, .&'&L(p, —pA, )'=Oj. (»d)

The form factors g, , g~, ~, gg»~&'&, and gg»~ '~ are de-
Gned by

vs ——
I

—m '
(p &+&(x)=j,&+&(x).

apl
(13)

Equations (12a), (12b), and (12c) are the most general
expressions one can write down consistent with the par-
ity and Lorentz-transformation properties of j &+'(x).
One can show from time-reversal invariance that g~, „

and gg1p~ are real.
From Eqs. (7), (8), and (11) it is now quite easy to

derive the following two sum rules:

For 35=X or Z:

{sm-~-g-"L(p,—P-)'= 03)'

gA, p p(pt PA, )'=O—j —2. (14a)
(m '—m')

For %=3:

m.&2.(mA, '+m p')

2m, mA, (mA, '—m, ')

x{1—gA p-'L(p p
—PA )'=m)'=—2 (14b)

We have dehned

g».-4') =gA ""'(V');

where the current j &+t(x) is the source of the x.-meson
Geld, i.e.,

(p'; p„&&"'(p)
I
j-"'(o) I~'; p.)=

2Q(E F. )"'
x(e~' (p) p-)gP-L(pn —P-)'j, (»a)

(mA 2 m 2)2 gA &2i(q2)

2(mA, 2+m, s) gA„„&"(qs)
(15)

(p+; p„t' '(p) I
j-'+'(o) l~' &- &'"'(~))

e-s,24& "(p)f2& '(~)
2Q(~ g )its

These sum rules reduce exactly to those derived by
Gasiorowicz and Geffen' using the covariant method,
provided we substitute the specific value which they
assigned for the coupling constant g~„'.'

x(p,)„(p.) g...L(p,—p.)'j, (»b)

(p+; p„&&~'(p)Ij '+'(0) l~i'; 12A 5 (~i))
3. Ayplication

l{k& "(p) 5& '(~i))
2Q(E,EA )'t2

xgA, -"'L(p.—PAi)'5+{5'~"(p) PA )

x{~&"'(&) p, )g",."'L(p,-p.,)'3,

The sum rules (14a) and (14b) can be solved for the
coupling constants g~»~ and g~„',provided all other
quantities appearing in ther@ are known. %e determined
g„, from the GSW" p-dominance mode1. for the decay
co —+3m. The coupling constant" g, was calculated
from the measured width of the decay p —+ 2m. Since

(12c) Eqs. (14a) and (14b) are quadratic in the coupling con-

»~e use a metric with an imaginary fourth component:
x= (x,tt) and p=(p, tE) x'=x' —t'; p'.=p' —E'= —m'. p„p,p„
and pp& are the 4-momenta of the p, ~, eu, and A1, respectively.

16 M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).

"Ke assume throughout this paper that "physical" coupling
constants such as g, (—m '), gA»~( —m '), etc. do not di8er much
from the "unphysical" ones g, (0), g», (0), etc. , and shall in fact
take them to be approximately equal whenever necessary.
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stants, we obtained the following two solutions':

I
gA„'(0)I

=4.05x10' Mev, gA„"(0)=2.04; (16I)

I gA„.»(0) I=4.osx los Mev,

gA, e '"(0)=—0.04. (16II)

The width of the A& is given by

ly. l

F(Ate~ all p2r) = {gAgp~( —m '))
12K mg

state:

(p' y. &&"'0»II:QA&+' A.' '(0)Jlo&
=2(p', y„$' '(p) I v„&»(0)lo), (20a,)

(Ar+', yAof' '(At) I
LQA'+', V„'"(0))lo)

=-(A";pA„~'"'(A.) IA. '+'(0) Io). (2ob)

Introducing a complete set of states in the usual
fashion gives

X 2+
mp

2mA, (mA, '+m, ')

(mA 2 m 2)2

&-.(p' y. &&"'(p) IQA"' IN.)(~.IA.& '(o)
I o)

—2-. ( ' p.,5&"'(p)
I A.' '(o) I ~-'&(~'

I
QA"'

I o&

=2(P', p.,k' '(P) I v.'"(0) Io& (2»)

X IpPI gAIDe ( me )

Substituting the values (16I) and (16II) into relation

(17), we 6nd that

~ (' ) 2-. (A+; y „p'"'(A) IQA+ l~.&(~, l v„(o)lo)
—E., (At+; pA„&' '(At)

I
Vv"'(0) I222')

x(. 'IQ. &'& Io&

=-(A.+; pA„~'"'(A.) IA. +'(0) lo). (»b)
I"(At'-+ all P2r)—223+60 MeV, (18I)

F (Ar -+ all p2r) —285+75 MeV. (18II)

These values are to be compared with the experimental
width"

I', „(Ate~ all p2r) = (130&40) MeV. (19)

The quoted theoretical error in Eq. (18) is that intro-
duced by the PCAC assumption, Eq. (10). It is well

known that in the nucleon case, the PCAC assumption

gives a Goldberger-Treiman relation which is accurate
roughly to within 13%.'2 Use of this Goldberger-
Treiman relation in deriving the Adler-Weisberger sum

rule, for example, is therefore expected to introduce an
error of some 26/~ in the sum rule. If we now further as-

sume that an additional error of, say, some 15~/& is in-

troduced by the truncation of the sum over intermediate
states, then both F' and F" are further reduced, and
F' can be brought within the experimental limits as
well. We would therefore tend to conclude that both
results (16I) and (16II) are not inconsistent with the
experimental A ~ width, within the limits of the approxi-
mations introduced. To the same accuracy, this justi6es
the commutation relation (1).

III. SUM RULES FROM CHARGE-CURRENT
COMMUTATORS

A. Derivation of Sum Rules

We now consider the matrix element of commutator
(2a) between a p' state and the vacuum state, and of
commutator (2b) between an A 2+ state and the vacuum

"All of our input data are taken from the compilation by A.
H. Rosenfeld et al. (see Ref. 7). The p+ width we used was 132
MeV, which represents the weighted average of published results.
The 7i--decay constant as determined from the observed m-decay
rate is a =0.95.

"A. H. Rosenfeld et ai. (see Ref. 7).

In Table I we have summarized the properties of the
intermediate states that contribute to these sum rules,
and indicated the possible, kmomm, single-particle and
resonance candidates. "" Some formal manipulations
similar to those of the previous section reduce Kqs.
(21a) and (21b) to the following form

A "4&"'+(p)=-~"(p ) +C .»4

A&)p & ) (A ) g&)(p ) +C& &g

(22a)

(22b)

where A"', 8&'', and C&'& (j=&2 or b) are given in the
Appendix. One can easily show that relations (22a) and
(22b) imply that

A "l=o, 8&'l—0; C&'=0 (j=&2 or b). (23)

In the limit when ly, l
~ ao and

I pAil ~ eo, the con-

Ter.z I. Properties of intermediate states contributing to sum
rules (21a) and (21b). The last column lists the possible known
single-particle and resonance candidates. Q, S, and J3 refer to the
charge (in units of proton charge), strangeness, and baryon
number.

Q S 8 p Io JP

Known single-
particle

candidates

n,): —1 0 0I'): +1 0 0
Ns): 0 0 0
ny'): I 0 0

p, 1- 0-,1+ ~,A, (10go)
0 1- 0-
p~i &+ P
0 C- 0-

20 Possible contributions of disconnected graphs are also ne-
glected. They do not change the discussions of sum rules in Sec.
III B if all the form factors that appear in sum rules satisfy un-
subtracted dispersion relations, which we eventually assume in the
discussions. If certain form factors are known to satisfy subtracted
dispersion relations, the disconnected graphs should be included
in evaluating sum rules. We thank Professor B. W. Lee and Pro-
fessor D. A. Germen for clarifying this point.
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ditions (23) give the following sum rules: TAsLE II. Properties of intermediate states
contributing to sun) rule (26).

2v,+m. (z g~» (0)
(my, '—m, ')

—rP (»[qr+~ p() kq= qo] —0, (24a,) i zz):
I'):

S 8 y

0 0 p„.
0 0 0

Known single-
particle

Jp candidates

1+ 1
0

(m.4,'+m, ')
2 j2—gg, p, (0) 1+- gazp~ (0)

m 2 (mg, '—m„')

+2m.(z„g,...(0)—k'(F~") [ zr+ ~ z)", «'= ~ ]
+p ( &[ +

& « =;:])=0, (24 ')

where we have used relation (A7) together with

&-;. ~-(-)le..I.—;.„~'»»
(&r)+ o)

(2QEq) 'iq(2QE„)'"
7qjp (z)[ p pt). «z—

p„(q)[~+~z)() kq= ~])——0, (24a.") and
Xb' '(p)(P )vP~[z ~~.' (P.—P-)'] (2g)

P—v2(z~, +m. (z —g~„.(o)

r p u&[ + ~g,+ kq= ~ ] =0, (24b)

Ql 7S
2 --g~„.(0) 1— g~„'(0)
m, ' (mg, '—m, ')

(44)4' o)
(2Qr~' ) 'z'(2QE~) ' I'

&&pvl ~'~~ (P» —P')']. (2&)

In the limit when
I I&„I~ ~, the sum rule (27) reduces

to
+ kq(P (q)[zr+~ g + kq= oo ]

+.Fv(q)[zr+ ~g„+.kq= ao])-0, (24b')

1 v)~+ —+ (d; (p. p, )'= ~]—=0.

B. Discussioo

(3o)

k q {p (q) [~+~ g t+ k q = co ]
p (»[~+~,1,+ kq=- ~])=0, (24b")

If we assume that the form factors F~("[qr+ -+ p,' k']
and Fv("[zr+-+ At+; k'] satisfy unsubtracted disper-
sion relations, i.e.,

where k2 —+ ~. The constants ~, and. ag„aswell as the
forn1 factors appearing in the above, are dehned in the
Appendix. Discussion of sum rules (24) is postponed to
the end of the paper.

Consider now the matrix element of relation (2c) be-
tween an co particle state of momentum y„,polarization
$(4r)(o)), and the vacuum state:

&~;1„,~(~)(~) II e, '+), v„(-)(o)]lo&
=2&~; p-, ~(~)(~) Ia„(')(0)Io)=o. (25)

and

~2&+~~x ~Ag

g~ "(o)
Wgj gg

52~8~8p —g~ "(o)
1ÃgI

Pg( )[tzr+ ~ po' kq- —oo ]—()

Pvlt)[zr+ g + «2= qo]=0

relations (24a) and (24b) reduce to

(31)

(32a,)

(32b)

Introducing a complete set of states gives These sum rules are identical to those obtained by
Z. &-le. I &( II'. '-'(0)lo& Renner" and Geffen" using the covariant method.

y()(())
I )( I

e+
I
Q)Q(26)These authors assumed. unsubtracteddispersionrela-

tions for the form factors Gt(z')(v) (j=(z or b) given by
In Table II we have sunUnarized the properties of the
intermediate states Iqz) and. Izz'& contributing to sum
rule (26). Assuming our sum rule to be saturated by the
known single-particle and resonance states listed in the
last column of the table, "we 6nd that

P (~)(z))Gt(q)(p )y. . . — d4g e(q zg(z)

X&&'ly-~-"'(x),A„(&(0)]lo), (33a)

V2Vp

»[z) ~ o)i (Pq P~) ]I p- zz
2Ep

~ (P-—P-)']le.=q, (27)

g (~)(A t)Gt(')(vz )+ = de e"'e(z)

&& « &+
I
[~-~-'+'(~), I"."'(0)]

I 0&, (33b)
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where v, =p, (J, v~, = p~, q, and q„isa 6ctitious 4-vector
satisfying the condition q'= 0. At the end of the calcula-
tion Renner and Geffen set q„=0.

From Eqs. (32a) and (32b) one can show that

'vo/ayq —&1, (34a)

(Lm.a./(rig, '—t)s, ')fg~„.(0)}'=2 (34b)

Using Eq. (17), relation (34b) implies that I'(A& ~ all

p7r))445 MeV. This is more than two and a half times
larger than the upper experimental limit t see Eq. (19)).
Furthermore, comparing Eqs. (14a) and (34b), we see
that they imply g, =0, in contradiction to the GS%
estimate. "Since we tend to accept the validity of sum
rules (14a) and (14b),"these discrepancies could be ac-
counted for by one or more of the following possibilities:

(a) Either one or both form factors Fz(r)fm+ —) p+;
k'] and Fv(') $s+ ~ A&+ )o'$ satisfy subtracted disper-
sion relations.

(b) One or both of the commutators (2a) and (2b) are
not valid.

(c) Limiting the intermediate states in (21a) and

(21b) to known single-particle and resonance states is

a bad approximation.

V)le now turn our attention to sum rules (24a'), (24a"),
(24b'), and (24b") which were obtained together with
sum rules (24a) and (24b). These sum rules were not ob-
tained by Renner" and Geffen" when they used the
covariant approach. Ke wish to point out that the
reason for this stems from the fact that these authors
considered directly the limit q„—+ 0 (Ref. 13) (one of
the advantages in taking such a limit is that ambiguities
due to possible Schwinger terms are removed). This is

easily observed if we remember that the sum rules de-

rived by them were obtained from equations of the form

It is therefore clear that both covariant and noncovari-
ant methods give exactly the same number of sum
rules.

%e will now attempt to discuss the implications of
the new sum rules Eqs. (24a'), (24a"), (24b'), and
(24b"). Using the PCAC hypothesis, one can show that' s

»m &s~„(o)L-„+~ps.psj ()
k2 ~00

Substituting Eq. (38) into Eq. (24a") gives

l;m )r„sJ „(s)Ps-+ + po. Pq
P& ~oo

In Ref. 23, it was shown that

(38)

p (s)L~+ ~ po

This implies'~

V2ag, (——s'g~, (»(—ter s) }
(4o)

r)s~, +k'

CgI
/2 gz, o (0)+m a g...(0)=0.

m+1
(42)

It is interesting to note that Eq. (42) follows directly
from the PCAC hypothesis alone, "when, as implied by
Eq. (41), gg» "(0)=0 Lag, cannot vanish since other-
wise Eq. (42) would imply that g, =0, in violent con-
tradiction with experiment j.

Combining Eqs. (32a) and'(42), it is easy to show that

m~
Spgp7r~ —2pEp ~7rgp~n ——2~ p X2 ~

P

(43)

F~"'9'+~ p'i &'=oh= — a~,g~ '"(0)=0 (41)
2m~, ~

Furthermore, substituting Eqs. (38), (39), and (41)
into Eq. (24a'), gives the following relation:

(3', ("(0)=0; (j=a or f)).

These are identical to sum rules (32a) and (32b) If we

do not set Il„=Q, it is easy to show that Eqs. (35a) and.

(35b) imply
(37a)Ct(&)(v) =0,

((3(i)(v)=0, (j=a or b)

(o(i)(p) =().
(37b)

(37c)

"/his is based on the fact that (a) sum rules (14a) and (&4b)
are not inconsistent with experiment, within the limits of the
approximations introduced, and (b) they were derived from the

)Compare these with Eqs. (23a) and (23b).j If we now

simply set q„=0, we obtain just two sum rules:

This result is not in agreement with the relation

pgp~~= 2mp (44)

derived by Sakurai'4 on the basis of p dominance and
the CVC (conserved vector current) hypothesis. s' This
discrepancy may serve perhaps as further evidence for
conclusions (a), (b), and (c) given following Eq. (34b).
Consider now Eqs. (24b') and (24b"). The CVC

commutator (1) wluch is at the basis of the Adler-Weisberger sum
rule.

"We are now investigating sum rules (37b) and (37c) and corn
Paring them with Eqs. (24a'), (24") (24b'), and (24b"). The re-
sults of this investigation will. be the subject of another paper.» C. ~. Kim and Michael Ram, following paper, Phys. Rev.
162, 1584 (1967).In this paper, the authors use the so-called pole
dominance version of PCAC and assume all form factors of interest
to satisfy unsubtracted dispersion relations. The same results are
equally obtainable from the Gell-Mann-Levy version of PCAC,
Eq. (10), provided one also assumes all form factors are unsub-
tracted and that limsm „g,(k')/k'=0.

'4 J. J. Sakurai, Ann. Phys. (N. Y.) ll, 1 (1960).»R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958).
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hypothesis
B„P'„(o=0,(z=1, 2, 3)

Using Eqs. (24b'), (47), (48), and (50) one can now

(45) easily derive the relation

together with the assumption v,gg„.(0)=0. (51)

and

»m F„(»[~+~A,+; kz]=o
l1;&~oo

lim Fp(')Czr+-+A + k']=0
gp ~co

(46)

(a) v, =0,
(b) gg, 9.=gg, 9~'=0.

(52)

Equations (50) and (51) have the following two solu-
tions:

implies
lim kzF) (z)[ir+-+ A 1+; k']=0.
+~co

(47)

Substituting Eq. (47) into Eq. (24b"), we 6nd

lim kzFv(9)[zr+-+A)+; k']=0.
PI ~()o

(48)

In analogy to Eq. (40), one can show that

v2v, {——,'gg„,(')(—m ') }
F) (9)Cir+-+ A 1+; k']= . (49)

m, '+k'

Both solutions are in disagreement with experiment as
(a) rules out the decay of the p meson into lepton pairs,
which has been observed, "while (b) forbids the decay
A)~ p+zr (this is the dominant decay mode of the

19)

Let us now return to sum rule (30). If the form factor
F) Cir+~99; k'] is known to satisfy an unsubtracted
dispersion relation, the sum rule reduces to the trivial
identity 0=—0. The covariant method gives directly the
result 0—=0 (simply from covariance) without the neces-
sity of imposing any restrictions on the form factors.
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APPEIIX

A (~)= 2v, —V2a»
(F. F»)—

F~")CA1-~p', (p,—p»)']
2EA,

(&,+&»)
+ — F~"'CA) ~p' (P. P~ )'] ——9&.m-F~"'C~+~ p' (P P)']1..=9, —(A1)

2EA, pAz~pp

zan(z» (Z» —Z,)P( ) $4(M) f(p) {(P P& )F&(1)CA 1 ~ p0 (P P+ )9]
2EAg — ~Ay

+(+9++»)FA CA1 ~ p i (pp p») ]}+ (@» FP)F& CA1 ~ p i(PP P») ]
nSA, '

mA&

(p~ p.). (p». p,)—1+ F~"'CA) ~p'; (p.—PAi)']+ 1+ (F» Fn)—
ISA'

x{(s,—s,)F (')CA — p'; (p, p,)']+(F-,+F-—,)F "'LA p" (p.—p )']}
2SS~Cg

pal ~p

x& " (.){F 'C — '(p —p.)']+(~,—~-){(~,—~.) ."'C — '(P —P-)']

+(~, +~.) .F"' =C-" (P -P-)']}lI,.-,.+l'm-"-~' "(.)
X {F'~"'C~+~p' (P p)']+F~"'C~+ ~—p" (P.—P.) ]l 1

99.-9 (A2)

"S.S. Hertzbach et al. , Phys. Rev. 155, 1461 (1967).
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c(~)—
Hag,

$ (~&+(p)
2EA1

(E~ —E )5
{(E—E~ )F~"'[Ai ~p') (p~ —p~,)')+(E +E»)F~"'

mAl

X[Ai-~ p', (p,—p»)')}+ (E„F.—.)F~"'[A~ ~ p' (P. P»—)')+
mA1 5$Ay

(p». P.)
)&(E» EI)F—~&4&[A& ~ p (p —pg ) )— (Eg —E ) {(E Eg—z)F~& &[Ar ~ po; (p,—p»)')

mAl

+(E.+E»)F~ "&[A~ ~ I&" (p.—p»)')} (E. E.)—4™~(p)
pA1 —p p 2E~

[FA(1&[~—~ po (p p )2)+.(E E ){(E E )F+(2&[&—~ p0 ~

(p p )2)

+(E.+E-)F "'[ p' (p.—p-)')}~I.,-.-+l -' -«' '"(»)

X[F &'&[ + (I&', (p,—P.)')—F "&[ + p l (P P ) )jl o (~3)

(E»—Ep)
A = —V2a» —0 — FA [(t& ~A '

(PA p ) )
2E

1 P

p

(E»+E.)+ — F~"&[p'~ Ai+& (p» —p )')
2E p~PAl

—z~m g Fv&'&[++ —+ A i+; (p» —p ) ) ~ v~ 0, (&4)

iv, (E,—E»)
8&»= g &~&~(Ag) {(Eg—E )F~("Q'~Ar+' (P~ —P )')

2E~ m, '

Ep
+(E~ +E )F~"'pi'~ A&+ (p~ —p )')}+ (E, EA1)-F~"—'[I&'~ Ar+ (P~ —Po)'')

SSp

(p» p,)l+ F.&'&L" A"; (p.,—p,)')+ l+ (E,-E.,)
mp Sl'p

X{(E., E,)F. ["--A ', (p.,-p ) )+(E.,+E,)F. S -A"; (P.,-p,) )}
Pp~PAl

+-'i&N 'a 54' '«( A)({Fv"'[~+~ A+&; (p» —p )')+F 'v[~ ~+Ai (+P~ —P )')}lu. -o (~~)

Vp
C(b& g(~—&e(A ~)

2E,

(E,—E»)'{(»—
p) ~"'[n' x+, (p» —p )')

8$p 2

jV

+(E„+E,)F &'&[jo' A,+; (p,—p,)')}+(E,—E,) l—— (E,—E,) F "'pP' A + (p —p )')'
mp

(p~ p.) (p~ p.)
(E, E„)F&'&[p A—+;(P~,—P,)*)— (E, E»)'—

8$p mp 2

y {(E„,—E,)F~& &[po ~A&+, (p&,—p )')+(E»+E,)F~"'Q' ~A~' (P~ P)')}—
Pp~PA1

y~~ (&a «&»(&~(A,){Fv&»[~+~A,+; (p» —p.)')—Fv"&[~+~Ai+; (P»—P.)')}I ..-(&

fn the above we have defined (&» az, and the form factor Fv ' p~+ ~ Ai+i (p„—p )') i =1, 2, 3, throuSh the
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relations

(p I
v„t&(0) Io)=-

(2QE,)'t'

z
(AI+IA„&+i(0)IO)= v2g~ $ &~&'s(AI)

(2QEA, ) 't'

(~";p „~''(&.) I &.'"(0)
I

f4'"'"(~I)J"~"'L~+~~I+' (P~ P-)—'j
(2QEA, ) '"(2QE ) '"

+{I'"'"(~I)p.J((p~,—p.)„pv"'L~+~ A+; (pA, —p )')+(p~ +p ) Ev"'L~+ ~~I"; (p~I—p )'jJ J (A9)

The remaining form factors are defined by Eqs. (8a) and (8c), together with the isotopic-spin transformation
properties of A~(".
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Remarks on the Pole Dominance Version of the Hypothesis
of Partially Conserved Axial-Vector Current*
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We review and discuss the dispersion-theory version of the PCAC hypothesis in the case of nucleon
leptonic weak decays. The discussion is extended to the case of meson weak decays, and the feasibility of a
direct test of the Goldberger-Treiman relation for the meson case is considered.

I. I5TRODUCTIOH

l "BERK have recently been many applications of
the PCAC (partially conserved axial-vector cur-

rent) hypothesis, particularly in conjunction with the
derivation of sum rules from current algebra. The
PCAC hypothesis is essential in these applications, as
it relates weak-interaction form factors (which are in
most cases difficult, if not im.possible, to measure at
present) appearing in the sum rules, to strong-coupling
constants which can be determined from decay widths
or scattering experiments. In general, to test the PCAC
hypothesis directly, one would have to measure inde-
pendently both the weak form factors and strong-
coupling constants. The best and only known case that
has been tested directly to date is that involving nucleon
rt ~ p weak form factor (the famous Goldberger-
Treiman relation). '

In this paper we would like to review the possibility
of directly testing the PCAC hypothesis in the case of
meson decays. As we shall see, no direct test (as in the
nucleon case) is feasible. We shall only discuss the

* Work supported in part by the National Science Foundation.
t Present address: Physics Department, State University of

New York at Buffalo, Buffalo, New York.
'Even for the nucleon case, the PCAC hypothesis has been

tested at only two momentum transfers, corresponding to those
occurring in p decay (g'=0) and muon capture (g'=m„').

dispersion-theory (pole-dominance) version' of the
PCAC hypothesis. The more commonly used version
due to Gell-Mann and Levy' which relates the diver-
gence of the axial-vector current to the pion field will

not be considered.
In Sec. It, we review the application of PCAC to

nucleon leptonic weak interactions. In Sec. III, the
results of Sec. II are extended to the case of meson
leptonic weak interactions. Throughout this paper we
use natural units (A=c= 1).

D. AjPPLICATIOjf OjF PCAC TO 5'UCLEOB
LEPTOjVIC WEAK INTERACTIONS

Let us erst review the application of PCAC to
nucleon leptonic weak interactions. Consider the matrix
element (OIA„t+'(0)

I p, rt; in), where
I p, rt; in) repre-

sents an antiproton and neutron "in" state with anti-
proton and neutron 4-mornenta gr = (p,iEo) and
st=(n,iE„),respectively. A„'+'(x),with tt= 1, . . . 4, is
the strangeness-conserving axial-vector weak hadron
current operative in p decay and Inuon capture. This
matrix element is easily related to the matrix element

(pI A„t+'(0)In) involved in P decay and muon capture,

'Y. Namhu, Phys. Rev. Letters 4, 380 (1960); J. Bernstein,
S. Fubini, M. Gell-Mann, and W. Thirring, Nuovo Cimento 17,
757 (1960).

e M. Gell-Mann and M. Levy, Nuovo Cimento 16, '105 (1960).


