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Using P,#(z)=P_,_1*(2) and the connection of the From Eq. (2), it is seen that for physical s,
Legendre functions with the Gegenbauer polynomials
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becomes coshB:= prpy=— ——— — 0S8,
Hm(l—p+-m) Tio40 () Tigoans () s Thth TR
(2p— 2m-+1) sinw(p+1) 27%21'(2p— m+2) 4 N 1 a € g qr
=\ep—emr L) " coshB,= prpa=— —+— — cosf
p+1 I:F(P+ 2)]2F(m+1) MMy my ms M1 My ’
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X (d/dx)m(x2—1)P+112(d/dy)m(y2—1)#+12,  (B2) so that x=e/m1 and y= es/ms or es/ma.
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We continue our discussion of the scattering of three nonrelativistic, spinless particles interacting via
two-body Yukawa potentials. We study the on-energy-shell amplitudes for the breakup of a two-particle
bound state, for elastic scattering off a bound state, and for rearrangement as a function of the total center-
of-mass energy E for fixed physical values of the angle variables. We show that each of these amplitudes is
given by a “Fredholm series” which is uniformly convergent with respect to E for all values of E on the
physical sheet including the real axis. We also show that each of these amplitudes satisfies a dispersion
relation in E for fixed physical values of the angle variables. Except for simple poles which arise from the
lowest-order diagrams, all of the singularities lie on the real E axis.

I. INTRODUCTION

N two previous papers we have studied the on-
energy-shell scattering amplitude for three free,
nonrelativistic particles interacting via two-body
Yukawa potentials.! We have seen that this amplitude
exists for all values of the center-of-mass energy E on
the physical sheet, including the real axis, provided
the vectors
yi= (2m;E)k;,
yi' = 2m:E)~*k/, (1.1)

are kept in the physical region. Here, m; are the masses
of the particles and k; and k; the initial and final
center-of-mass momenta. In addition we have shown
that the amplitude for the scattering of three free

* Work supported by the U. S. Air Force Office of Research,
Air Research and Development Command; by the National
Science Foundation; and by the Atomic Energy Commission,
Contract No. AT (11-1)-881.

1 M. Rubin, R. Sugar, and G. Tiktopoulos, Phys. Rev. 146,
1130 (1966) (hereafter referred to as I); 159, 1348 (1967)
(hereafter referred to as II),

i=1,2,3

particles satisfies a dispersion relation in E for fixed,
physical values of the vectors y; and y/. All of the
singularities lie on the real E axis.

In the present paper we shall extend our results to
the amplitude for the elastic scattering of a particle off
a two-body bound state and to the amplitudes for
bound-state breakup and rearrangement collisions. In
order to simplify the kinematics we shall present our
proofs for the case of three particles of equal mass .
However, the extension of our results to the case of
arbitrary masses is straightforward.

Asin I and IT we shall parametrize the states of three
free particles in terms of the vectors y; defined in Eq.
(1.1) and the center-of-mass energy E which is measured
from the three-particle threshold. States containing a
free particle and a two-particle bound state of binding
energy B will be expressed in terms of E and the unit
vector

A=[3(E+B) I "ky, (1.2)

where kg is the center-of-mass momentum of the free
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particle. Note that kz*=%(E-+B). We are using units
in which #=2m=1. We note that the vectors y; and 7%
satisfy the relations

3
Z yi:o;

=1

3
Z yi2= 1 ’
i=1

ﬁ2=17 y‘i2$%’ i= 1: 2’ 3.

We shall study the on-energy-shell amplitudes for
elastic scattering, rearrangement and breakup as a
function of E for fixed, physical values of the vectors 7
and y;. Our procedure will be the same as in I and II.
In Sec. II we define the amplitudes and write them
formally as the ratio of two Fredholm series. The
Fredholm denominator is the same as for the scattering
of three free particles, and we have already seen that it
exists and satisfies a dispersion relation in E, the only
singularities being the unitarity cut.! On the other hand,
the numerator series is just a rearrangement of the
perturbation series for the Faddeev equation. (Through-
out this paper we shall refer to the iteration solution of
the Faddeev equation as the perturbation series.) Thus,
in order to find the analyticity properties of a general
term in the numerator series it is sufficient to study a
general term in the perturbation series. In Sec. IIT we
show that all terms of fourth order or higher in the
perturbation series for each of our amplitudes satisfies
a dispersion relation in E. All of the singularities are on
the real E axis. In Sec. IV we show that the same result
holds for the second- and third-order terms in the
perturbation series. The first-order terms have simple
poles in E which can become complex for certain values
of the binding energies and the vectors 7 and y,. These
poles become complex only because of our choice of
variables. What is important for dynamical calculations
based on unitarity and analyticity is that the residue at
the poles and the discontinuities across all of the cuts
except those associated with the potentials can be eval-
uated explicitly in terms of on-energy-shell quantities.

In Sec. V we use the method of dual diagrams to
find the position of all branch points except those
associated with the potentials.

In Sec. VI we show that the numerator series for
each of our amplitudes is uniformly convergent for all
values of E on the physical sheet. Thus all of the
amplitudes exist and satisfy the dispersion relations
previously obtained for the individual terms in the
Iredholm series.

(1.3)

II. DEFINITION OF AMPLITUDES

In this paper we shall consider the problem of three
spinless particles of equal mass interacting via two-
body Yukawa potentials. In order to simplify the
presentation we shall not work with a general super-
position of Yukawa potentials; however, all of our
results would remain valid in that case. We write the
potential in the form

V=V1+Vs+Vs, (2.1)
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where the subscript indicates the particle which is not
interacting. In momentum space we have, for example,

(219:93| V1] 4/'02"qs") = 8*(q1— ")
X & (qo+qs— g2’ —q5") [ (q2—q2')*+p?] .

We are using units in which Z=2m=1, and we shall
consistently omit numerical factors such as coupling
constants and 27’s.

It is customary to write the three-body off-energy-
shell scattering amplitude in the form

T=T+To+Ts, (2.3)

where, for example, T4 is that part of the amplitude in
which particles 2 and 3 interact last. In terms of these
amplitudes the Faddeev equations are

(2.2)

Toa=tet+t.Go(Ts+Ty), B, distinct. (2.4)
G, is the three-particle free Green’s function,
(‘h‘h‘h | Go (E) ] (llqzqa)
= ((I1(12(13 | [E —H o:|“1 l (-I1'Q2'(ls'>
=6%(q1—q1')8(q2—92")8* (93— qs")
X[E—qi?—q2—q#]?. (2.5)

The three-body operator 7; is related to the usual off-
energy-shell two-body scattering amplitude {p|#(E)| p’)
by
(41929] 11 (E) | 91'q2'as) = 8* (@1 — 01)0*(go+ 45— 02’ — q5")
X3 (0:—q5) | 1(E—3q:2) |5 (e’ —q5")). (2.6)

Similar expressions can be obtained for f, and i3 by
cyclic permutation of the indices of Eq. (2.6).

In our case it will be convenient to work with

amplitudes which specify which particles interact first
as well as last. We thus write?

Ta = Ta1+ Ta2+ Ta3 )
The Faddeev equations then become
Ta8= za6a8+ zaGO(Tﬁﬁ_I_T‘YZS) y @ ﬂ, Y diStiHCt (2'8)

a=1,2, 3. 2.7)

or, in matrix notation,

T=i+KT, (2.9)
where
Ty T Tus hh 00
T=|Tex Te Tas|, i=|0 & 9 s
Ts1 Tse Tss 0 0 £
0 5HGe hGo
K=|5bGy 0 5Gol . (2.10)
23G0 zzGo 0

21t should be noted that we are using a different notation from
that in T and IL. In I and II the potential had a pair of subscripts
which indicated which particles were interacting. Similarly, the T
matrix had a pair of subscripts to indicate which particles inter-
acted last. In the present paper the two subscripts on the T
matrix will always indicate the particles which do #otf interact in
the initial and final states.
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We note that the kernel K is identical to the kernel of
Eq. (2.4) which was studied in I and IIL

All of the on-energy-shell amplitudes which we shall
be interested in can be obtained by taking appropriate
matrix elements of T, The amplitude for the breakup
of a bound state of particles 1 and 2, (y| M (E)|Bs#),
is given by?

<YlM(E) ! B3ﬁ>: él <y‘ Tal(E)+Ta2(E) | B‘;ﬁ>, (211)

where |y) is a plane-wave state for three free particles
with center-of-mass energy £ and momentum vectors
¥1, Y2, and y3; and | Bs#l) is a state with center-of-mass
energy E in which particles 1 and 2 are bound with
binding energy Bs. 7 is a unit vector in the direction of
the center-of-mass momentum of the free particle. In
momentum space we have

(Cl1(12(l3l Y)
=8 (qu—ky1)0*(q2—ky2)8* (qs—kys)

(919203 | Bs#t)
=8 (qs—[3 (B+By) Iy [3 (—q2) ], (2.12)
where k2= E and g, is the usual two-body bound-state
wave function.
Similarly, typical amplitudes for elastic scattering

off a bound state and for rearrangement collisions can
be written in the form

(Bsi' | M (E)| Bytt)
=(By/A | [T11(E)+T12(E)+ T (E)+ Tee(E) ]| Bs#)
(BJ/#' | M (E)| Bs#)
= (leﬁ' l [V2+ Tyu+ T+ T+ Taz] l B:ﬁ)
=(B/#'|[Vs+Tu+Tr+Ta+Ts]| Bsh).
The next step is to obtain a “Fredholm series” for
the on-energy-shell amplitudes. Our starting point is

the off-energy-shell T matrix. Iterating Eq. (2.9) once
we have

(2.13)

T=(1+K)i+KT. (2.14)

We have studied the kernel X2 in I and II in connection
with the on-energy-shell scattering amplitude for three
free particles. We have seen that K% is a square-inte-
grable operator in the upper-half z= EY? plane. As a
result, the resolvent

R=K?>4+K?R=N/D (2.15)
has a Fredholm solution in this region given by*
D= 3% D,, N=3% N, (2.16)
n=0 n=0

3 The amplitude M is related to the S matrix by
([1S |8y =87:—2mi5 (Eg— E:)8 (ps—p){ f| M |1).
For a derivation of Egs. (2.11) and (2.13) see, for example, M. L.
Goldberger and K. M. Watson, Collision Theory (John Wiley &
Sons, Inc., New York, 1964).

4 F. Smithies, Integral Equations (Cambridge University Press,
Cambridge, England, 1958).
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where
Do=1,
0 =»n—1 0 0 0 O
2o 0 n—2 0 0 O
(=2 2 0 -~ 0 00
D,= H
n!
o1l Znes Zpeg o Zs 001
Zn 21 Zae 0 25 29 0
No=K?,
K? n 0 0 0 O
K* n—1 0o 0 O
(=)* K°© 2, 0 ..+ 0 0 0
Ny= ;
n!
K 3,4 Zpae -+ 2o 01
Ktz 3, 2,4 - 23 22 0

and Z;=tr(K?»). We have seen in I that the Z; are
analytic functions of E. Their only singularity is the
unitarity cut which runs along the real E axis from
—Bnto ©. By is the largest two-particle binding energy
in the problem. In IT we saw that the series for D is
uniformly convergent for all values of E on the physical
sheet, so D has the same analyticity properties as the
Zs.
We can write the solution to Eq. (2.14) in the form

T=(1+K)i+R(1+K)i

7

= 3 K+ K*R(K*+K?)i

n=0
7 ]

=3 K®4+D 1Y KN.(KHK%i. (2.17)
n=0 n=0

We now substitute Eq. (2.17) into Egs. (2.11) and
(2.13) to obtain a formal series for each of the on-
energy-shell amplitudes. We have, for example,

@) A= T T OILE Ko

+D1 é (KN W(K*4E9)as]| BaA). (2.18)

We have iterated the right-hand side of Eq. (2.17)
enough times so that none of the external momenta
appear in V.

We shall start by studying the analyticity properties
of the individual terms in Eq. (2.18) and in the corre-
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Fic. 1. A typical Nth-order graph for
the breakup amplitude.

sponding series for the elastic scattering and rearrange-
ment amplitudes. The proof of the convergence of these
series will be given in Sec. VI.

In addition to the “Fredholm series” given in Eq.
(2.18), it is convenient to introduce a “perturbation
series” for each of the on-energy-shell amplitudes. The
perturbation series is obtained by substituting the
expression

T=> K%

=0

(2.19)

into Egs. (2.11) and (2.13). From Eq. (2.16) we see
that (y|[K*N.(K24K3){].s| Bsh) is just a sum of the
first 2n+9 terms in the perturbation series for the
breakup amplitude, each term in the series being
multiplied by an appropriate product of =/s. Since the
analyticity properties of the Z,’s and of D! are known,
in order to obtain the analyticity properties of a general
term in the Freedholm series for the breakup amplitude,
it is sufficient to study a general term in the perturbation
series. Clearly the same result holds for the elastic
scattering and rearrangement amplitudes.

III. PERTURBATION THEORY: N>4

We now turn to the problem of studying a general
term in the perturbation series for each of the on-energy-
shell amplitudes. We shall study the analyticity
properties in the upper-half k= FEY? plane for fixed,
physical values of the vectors y and 7. In this section
we shall treat terms of order N>4.

We start with a typical Nth-order term for the
breakup amplitude

J(&)=(y| (KN="%)s1| Bstt)

= (y[ t3Got1Go' . 'Got1| Bgﬁ}
=/d391 digy- - -dga
F(q1,q2," *  an; k,y,A)¥ 5, (3aw)
, (3.1)
S(qlaqzy R ¢ 0. k:Y:ﬁ)
where
S=[3q— ki I (@1—ks)*+q2+ (qe— 301+ 5ks)*— 2]

X[a2*+qs*+ (q2—qs)?— %] - -
X[av—2+an—2+ (@v—1—an—2)2—F%]
X[av—+3(av—ks)*+ (qv—1—3qn+3ks)*— %],

and

k12=kY12= ki—k, )
ke=A[3(k+By) ],
OS y122S2-

F is a product of two-particle # matrices. Our choice of
variables is shown in Fig. 1. The two-particle ¢ matrices
are represented by circles, the free Green’s functions by
three horizontal lines, and the bound-state wave
function by a wavy line. We have performed the
trivial é-function integrations arising from momentum
conservation.

We first consider the two-particle { matrices which
appear in Eq. (3.1). We recall that for a superposition
of Yukawa potentials the off-energy-shell two-particle
¢ matrix has a Fredholm solution of the form!:

(o1 4(B) | 0)=(p|[V+VGit]| p)
IVl [
X{pln(E)| p"Xp"| V|D")
=(p| V[p)+d(E) é / a’p”

X{p|n:(E)| p""Xp" | V|D').

Here, #» and d are given by the infinite series of Eq.
(2.16) if one replaces K2 by the kernel VG, and Z; by o
=1r(VGy)*. o; and &~ have the integral representations’

Ui(E) fw Imo-1(E ) ‘,J

C; * Imd~1(E")
dYE)=14+Y } /
[ E-{—Bi 0 E"—

The B, are the two-particle binding energies and the C;
are constants. We again note that the series for #nV is
just a rearrangement of the perturbation series for /
[see Eq. (2.16)].

We now use the last line of Eq. (3.2) for each of the
¢t matrices in Eq. (3.1). Since the series for »V is
relatively uniformly convergent,* we can interchange
the order of summation and integration if there exists a
region of the & plane in which the resulting integrals are
uniformly convergent. In such a region we can study

8 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).

(3.2)

(3.3)

/
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the analyticity properties of f(k) by studving those of
a general term in which each of the / matrices has been
expanded in a perturbation series, provided, of course,
we take into account the o; and d~.. A typical term is
shown in Fig. 2. The wavy vertical lines represent
two-particle potentials.

We start our discussion of the integral represented
by Fig. 2 by seeking a region of the % plane in which
the integrand has no singularities, i.e., a region in which
the denominators of the Green’s functions, the poten-
tials, the bound-state wave functions, the o; and the
d™! do not vanish. In such a region the integral is an
analytic function of £ and is uniformly convergent, so
f(&) is an analytic function of k.

We first recall that for a superposition of Yukawa
potentials the wave function of a bound state of angular
momentum / and binding energy B has the integral
representation®.?

(3.4)

Yis(p)= PV in(P) /‘” A%, 5(u") .

224-B Ju 2p4u

¥ 1 is the usual spherical harmonic. The factor of p*in
Eq. (3.4) will not create any difficulties about the
convergence of integrals; it merely means that the
dispersion integral will fall off rapidly for large values of
p% In fact the results of II imply that the quantity
(2p*+ By, 5(p) is a square-integrable function of p.
In Eq. (3.1) we have chosen the integration variables
so that the argument of the bound-state wave function
is independent of the external momenta. As a result,
neither of its denominators can vanish.

We next consider the denominators of the potentials.
Those denominators which occur in the middle of the
diagram do not depend on the external momenta, and,
therefore, never vanish. Those potential denominators
which do depend on the external momenta have the
general form

(q—Fka)y+u* 3.9)

(¢ —akp)y+u?,

where a is a fixed vector which depends on the y’s and
ais a constant. The first term in Eq. (3.5) cannot vanish
in the strip

or

|Imk| <u/|al, (3.6)
and the second term cannot vanish in the strip
I Imk | < (v/F)w/e. (3.7

By making use of Eq. (1.3) we see that none of the
potential denominators in Fig. 2 can vanish in the strip

[ Tmk| < (v (3.8)

We now consider the denominator S of Eq. (3.1).
It is the product of the denominators of the Green’s
functions which occur between potentials that act on

8 R. Blankenbecler and L. F. Cook, Phys. Rev. 119, 1745 (1960).
7J. B. Hartle and R. Sugar (to be published).
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F16. 2. A typical Nth-order graph for the breakup amplitude
in which each two-particle { matrix has been expanded in its
perturbation series.

different pairs of particles. We see that these denom-
inators take four distinct forms:

39— 3Ry,
Qi+ (Qi—(Ii+1)2—k2 y
a2+ (@1 —ks)?+ (g2 — 3qa+3ks)*— &2,
av—"+1(av—kg)*+ (qv-1—jav+3ks)*— K.
The first two denominators in Eq. (3.9) cannot vanish
for complex values of % since q; and y;. are real vectors.

To see that the third term in Eq. (3.9) cannot vanish
for complex & we introduce the six-dimensional vectors

Q=<V%((j%l;:)>, K=k<\iya>, (3.10)

and write

>+ 1 (i —ks)? 4 (qa— o1+ 5ks)>— &2
=34 +3 (01— q2)*— (q1—q2) - ks — & (1—3y5?)
=Q—K-Q—k*(1—3y:) = Q*— QkV2ysz

(3.9)

—k(1—-3y), (3.11)
where
—1<2=0-K<1,
0=1QJ.
This denominator can vanish for
Q/k=yu/VI£[1-}y2(1—A)]2.  (3.12)

Equation (3.12) cannot be satisfied for & complex since
2<%, and Q is real. It should be noted that for Imk>0
the limit Imk — 0 is equivalent to the usual e—0
prescription.

To study the last denominator in Eq. (3.9) we
introduce the six-dimensional vectors

qv—qu-— V2#H
Q,=<v (av—aqn 1))’ K’=k3( )’ (3.13)
(V3)aw— 0
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F16. 3. The curves defined in Eqs. (3.21) and (3.29).

so that

av—1*+1(av—kp)*+ (qv-1—3qn+3kp)*—k?
=Q*—Q'-K'—k*+ ks
=Q?—Q'kpV2z—k*+3k5. (3.14)

This denominator vanishes for
Q"= (z/V3)[k*+ Bs]*+[k2—§ (1—2%) (k*+B3) ]2 (3.15)
Since

Im[ k24 B; "?<Imk,

[1-3(1—#)] T
<Tm[E—3(1—2) (4 B9 ],

(3.16)

Eq. (3.15) cannot hold for %2 complex. As a result,
none of the denominators of Eq. (3.9) can vanish if
Imk#0.

We next consider the denominators of the Green’s
functions that occur between potentials which act on
the same pair of particles. From Eq. (2.5) and Fig. 2
we see that these denominators also fall into four
distinct classes:

b1 U Gl

3Q0— 3Ry 1%,
$(ai—ke)*+4aqu— k2,
$av—ks)*+1qn2—k.

(3.17)

By using the techniques employed to study the denom-
inators of Eq. (3.9) we see that none of the denominators
‘of Eq. (3.17) can vanish for Imk0.

Finally, we must examine the denominators of the o;
and the d~%. From Fig. 1 and Eq. (2.6) we see that the
denominators in the dispersion integrals of Eq. (3.3)
are of the same form as the denominators of Eq. (3.17).
As a result, they can not vanish for Imk>0. The
denominators of the bound-state poles of the 4 fall

AND
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into four classes:
Bi+%k23'122 ,
Bi+k?*—3q;, (3.18)

Bi‘!‘kz—%((h—ks)2 ’
Bttt —§(av—ks)*.

The first type of denominator in Eq. (3.18) gives rise
to simple poles in the breakup amplitude. Of course
these poles do not occur in the amplitudes for rearrange-
ment or elastic scattering off a bound state. The second
denominator can only vanish on the real Z axis or on the
imaginary axis for B#2>|Imk|. However, the last
two denominators can vanish for complex values of k.
We note that these denominators occur only in the
first and last closed loops of Fig. 1.

Let us consider the Fredholm denominator d—1[k?
—3%(qi—k3)?] more carefully. When we substitute
the integral representation [Eq. (3.3)] for d4-'[k?
—32(q1—ks)?] into Eq. (3.1) we obtain a sum of terms.
We have seen that the terms containing the dispersion
integral and the constant do not give rise to any
difficulties. However, in general there will be several
additional terms each containing a bound-state pole
with a different binding energy. In each such term we
make use of the Feynman identity to combine the
bound-state pole denominator with the Green’s-function
denominator [¢:2—3k122 L. We have

o= ka1 [ (as—ke)?— (8/3) (#*+ B) T

1

- f daf (qu—sks)'— KAL2-+ 3a—y2(1—x)
’ X (3+2)]— (8/3)sB:T.

We now make the change of variables q; — q;+xks.
Then the Feynmanized denominator of Eq. (3.19) can
only vanish on the real % axis or on the imaginary %
axis for (£B;)Y2>|Imk|. From Egs. (3.5), (3.9), and
(3.17) we see that this change of variables does not
alter our conclusions about the vanishing of the other
denominators.

Those terms which contain bound-state poles of the
form B;+k2—32(qv—ks)? can be treated in a similar
manner. Since we are making use of the integral
representation of Eq. (3.4) for the bound-state wave
function, it is simplest to combine the bound-state
pole denominators. We make use of the Feynman
identity in the form

Cow+ 2B Lgt+ 20 (av—ks)— (8/3) @+ B) T

(3.19)

=2/dxldxgdxga(l——xl—xg——xa)[(qN—xskB)z
—k2(2x3+%x32)—~ (8/3).’/‘0331,
+ By[ 20014305 (1—25) J4- 20002 ]2,

After we make the change of variables qy — qy+wxsksz,
the Feynmanized denominator can only vanish on the

(3.20)



162

real £ axis or on the imaginary % axis for (4B;)?

> |Imk|. We again note that the change of variables
does not alter our conclusions about the vanishing of the
other denominators. However, it does introduce the
external momenta into the spherical harmonics in the
wave functions. [see Eq. (3.4)]. Now the quantity

qyv+x:kp
l qN+x3kBl lem<—————>
| av+xsks|

is merely a polynomial in the components of the vector

g3k, so it can only give rise to kinematic singular-

ities at the points k=1(B3)!2 and k=0.” These singular-

ities can be eliminated in the usual way by writing the

full amplitude in terms of the invariant amplitudes.”

We shall ignore them in the remainder of this paper.
We have now seen that in the strip

W3)u>Imk>0

the denominators in our problem can only vanish along
the imaginary % axis. The first type of denominator in
Eq. (3.18) gives rise to simple poles in the breakup
amplitude, and the other denominators in Eq. (3.18)
give rise to cuts which are restricted to that part of the
imaginary axis for which

(4B m)Y2>Tmk>0.

(3.21)

(3.22)

Except for these singularities f(k) is an analytic func-
tion of % in the strip given by Eq. (3.21). In T and 1T
we assumed that

2Bna<ut. (3.23)

We shall retain this assumption throughout this paper.
As a result, it will always be possible to continue f(k)
from the first to the second quadrant of the % plane
(for N>4).

We note that in its domain of analyticity f(k) is a
real analytic function in the sense that

f&)=f*(—#%).

We can show that f(k) is analytic in the entire first
quadrant of the % plane by making use of the rotation
of contours argument introduced in I and II. We again
consider the integral represented by Fig. 2. We start by
multiplying each of the q variables by e¢? and seeking a
region of the % plane in which the integrand of this new
integral is free of singularities.

The first denominator in Eq. (3.5) becomes (ge®— ka)?
w2 It cannot vanish in the strip

[T]< (ucost)/|a].

We have written ke~®= R-4I. The second denominator
in Eq. (3.5) becomes (q'e®—akg)?+pu2 If we restrict
ourselves to that part of the first quadrant of the %
plane which lies above the curve RI= Bjsind cosf,
then

(3.24)

(3.25)

Im(kpe)<I. (3.26)
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Fi1G. 4. A typical second-order diagram for the breakup amplitude.

Thus neither of the denominators of Eq. (3.5) can
vanish in the region bounded by the curves

I=(\/$)u cost,
Rek=0,
RI=B; cosf sinf.

The first three denominators of Egs. (3.9) and (3.17)
can only vanish along the line 7=0. By the same
reasoning which led to Eq. (3.16) we see that the fourth-
denominator of Egs. (3.9) and (3.17) can not vanish in
the first quadrant of the % plane provided we again
restrict ourselves to the region above the hyperbola
RI= B; sinf cosf.

The denominators of the dispersion integrals for the
a; and the d! are of the form

E'+3q2e0—F2,
E'—3ky?,

E+3 (e~
El=%(qui0__kB)2_k2 .

(327)

(3.28)

None of these denominators can vanish in the first
quadrant of the % plane above the curve RI= B;sinf
Xcosf. In addition, in this region of the % plane the
arguments of d—1(k2—32q.%*®), d[k2—3(que?—k,)?],
and d[k?—3(qne?®—kp)?] remain on the physical
sheet so we never encounter the resonance poles.

Finally we consider the bound-state pole denom-
inators of Eq. (3.18). The second denominator can only
vanish for 2 along the hyperbola RI=B;sinf cosf. In
order to study the last two denominators of Eq. (3.18)
we make use of the Feynman identities of Egs. (3.19)
and (3.20). We see that none of the Feynmanized
denominators can vanish above the hyperbola RI=%B,,
Xsing cosf.

Our net result is that if all of the ¢ variables are
multiplied by a phase ¥, 7/2>6>0, none of the result-
ing denominators will vanish in the region of the %
plane bounded by the curves

I=(v/$)u cost,
Rek=0,
RI=4%B,, cosf sinf,

where ke~*=R--iI. From Fig. 3 we see that there is
always an overlap between this region and the strip
V3u>TImk>0. This means that if we start with the
original integral (§=0) and fix % in the region of overlap,

(3.29)
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R=0 tude shown in Fig. 4. We have
‘ 1=(4By%
1R) f&)= / d®q to 3k1o, 3q; $h127]
1:38,)%
Xto[ 2hs+1q, kn—%q; k22— (q— k)]
X¢(3q+3ks—3ks) 32— k2]t (4.1)
=0 If we now use the last line of Eq. (3.2) for #12 and 3,

Fi1G. 5. The curve I(R) defined in Eq. (4.5).

we can simultaneously rotate all contours of integration
through an angle 6, 7/2>6>0, without crossing a
singularity of the integrand. The integral on the rotated
contour will therefore be the analytic continuation of
the original integral and, by our previous argument, it
will define an analytic function in the region given by
Eq. (3.29). Since this region sweeps out the entire first
quadrant of the % plane as 6 varies from 0 to 7/2, it
follows that f(%) is analytic in the entire first quadrant.
From Eq. (3.24) it follows that f(%) is also an analytic
function in the entire second quadrant. The only
possible singularities of f(k) are cuts lying along the
imaginary axis above the point £=1(y/%)u or below the
point £=1(4B.,,)2 and poles at the points k=14(2B,)"2/
¥12. Therefore, for any term of order N>4 in the
perturbation series for the breakup amplitude, we can
write a dispersion relation in the form

3212 Tmg (k'2)dk'®

k)= f(k)=
g(k?) = f(k) B e

+pole terms. (3.30)

©  TImg(k'?)dk'?
e

—4Bpm/3 k’2_k2
So far we have restricted ourselves to the breakup
amplitude. The only difference between this amplitude
and the ones for elastic scattering and rearrangement is
that the latter will have bound-state wave functions on
both ends of the diagram.® Clearly our proof of analytic-
ity will go through unchanged for these amplitudes,
the only difference being that there will be no pole

terms.

IV. PERTURBATION THEORY: N<3

We now consider the low-order diagrams, which
present a slightly more difficult problem. Let us start
with the second-order diagram for the breakup ampli-

8 We define the Nth-order amplitudes for rearrangement and
elastic scattering to have one less power of the kernel than
the Nth-order breakup amplitude, so that the total number of
Green’s functions plus wave functions will be the same for all
three Nth-order amplitudes.

we obtain a sum of integrals with the same denom-
inators that were studied in Sec. ITL. The only difference
is that the external momenta now appear in the
argument of ¥ ,, so we must find a region of the £ plane
in which the denominators of ¥ g, do not vanish.

The wave-function pole now takes the form [see
Eq. (3.4)]

3(a—ks+kp)*+Bs. (4.2)
Clearly this denominator cannot vanish if
Imk;+Imkp< (2B;3)12. (4.3)
Writing k= R+iI we see that
Imkp=3[[ (R2—I*4- B3)*+-4R*]\2
—(R2—I*+By) ]2 (4.4)

is an increasing function of I. Since y;<+/%, the
denominator of Eq. (4.2) can not vanish in the region
of the % plane bounded by the real axis, the imaginary
axis, and the curve (see Fig. 5)

I+3[[(R— D+ By +4RD ]2 — (R— P4 By) ]2
=(3By)t2. (4.5)

We denote the curve defined by Eq. (4.5) by I(R).
We note that I (R) is a decreasing function of R and that

1(0)=(§By)"*, I(»)=(}Bs)"". (4.6)

The denominator of the dispersion integral for the
wave function [see Eq. (3.4)] can not vanish in the
region defined by Eq. (4.5) since u?>Bs. In fact the
dispersion denominator can never vanish in a region in
which the pole denominator does not vanish, so we can
ignore this denominator in the rest of our work.

The remaining denominators in the integral for f()
were discussed in Sec. IIL. It follows from the results
of that section that f(k) is analytic in the first quadrant
of the k plane in the region bounded by the real axis,
the imaginary axis, and the curve I(R).

In order to show that f(k) is analytic in the entire
first quadrant of the % plane we shall use the rotation
of contours argument employed in Sec. III.

As in Sec. III we shall make use of the integral
representation of Eq. (3.3) for dos'[k2—2(q—ks)].
Let us first consider the terms in f(%) which contain
the constant and the dispersion integral of dss™!. After
rotating the contours of integration through an angle 6,
17r>62>0, the denominator of the wave-function pole
becomes

1(qe?—ks+ks)*+Bs. 4.7
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It can not vanish if
Im (kse~®)+Im(kpe*) < (2B3)'/2 cosf.
Writing ke—%= R--iI we see that

Tmk s =3[[ (R*—I*+ B cos26)*+ (2RI — Bj sin26)2 ]2
— (R*—I2+B; cos20) |2 (4.9)

(4.8)

is an increasing function of I in that part of the first
quadrant of the %k plane lying above the hyperbola
RI=DB;sinfcosf. As a result, the denominator of
Eq. (4.7) can not vanish in the first quadrant in a region
bounded by the imaginary k axis, the hyperbola
RI=B;sind cosf, and the curve I,(R) defined by [see
Fig. 6(a)]
I+ [ (R2—I2+ B; c0s20)?+ (2RI — B; sin26)? /2
— (R?—I*+B; cos26) ]2
= (3B;s)Y2 cosf. (4.10)

We note that I,(R) is a decreasing function of R and
that

I4((3Bs)"? sinf) = (5B3)"/2 cosh,

Iy(0)= (£B3)Y2 cosf. (4.11)

From the results of Sec. IIT we see that none of the
other denominators can vanish in the region bounded
by the imaginary % axis, the curve I3(R), and the
hyperbola RI = B; sind cosf. As we vary 6 from O to 3,
this region sweeps out the entire first quadrant of the
k plane, so it follows that those terms in f(k) which
contain the constant or the dispersion integral of ds5™!
are analytic in the entire first quadrant.

For those terms in f(k) which do contain the bound-
state poles of di;! we make use of the Feynman
identity to combine the pole denominator with the
Green’s-function denominator (g2—k15?), and all of the
Green’s-function denominators of #3. Our choice of
variables is shown in Fig. 7. The combined denominator
is

5= £ wl(a—k)Hfan— (/3)4]
+anl (q—ks)?— (8/3) (k*+B,)]

Fayp[ 2 —kio?].  (4.12)
After making the change of variables
q— q+(1—2xyy)ks, (4.13)
we have
N
S=¢*+4% 2 xigo—ak?—bB;, (4.14)
=1
where
a=(8/3)(1—xny2) —yani2(1—2xyo) Fanioy1e?,
b=(8/3)xn+1. (4.15)

We note that ¢2>0 and b/e<4%. Under this change of
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1=(2B,)% cos 8
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1g(R)

1=(3B4)% cos 8

(©)

F1c. 6. (a) The region bounded by the curves Imk=0, RI
= B3 cosf sind, and Is(R). (b) The region bounded by the curves
RI =%B; cosf sinf and I5(R). (c) The region bounded by the curves
RI=(b/a)B; cosf sind and I3(R) when (b/a)B;:>%Bs.

variables the wave-function pole denominator becomes
$(q—xn4oks-+kp)*+Bs, (4.16)

so it is still true that none of the denominators can
vanish in the region bounded by I(R), the real & axis,
and the imaginary % axis.

If we now rotate the contours of integration through
an angle §, the denominator .S can only vanish on the
hyperbola RI= (b/a)B;sinf cosf. From our previous
discussion it is clear that if (b/a)B;<%B;, none of the
denominators in the problem can vanish in the region
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"""" . \ | -kg Fie. 7. A typical second-
'f[qol’ z(q ka)] '?[%N"lz'( -}53)] order diagram for the breakup
ko — d nd amplitude in which each two-
particle ¢ matrix has been
_______ expanded in its perturbation
series.
ks kg

bounded by 75(R) and the hyperbola RI = £B; sinf cosd.
From Fig. 6(b) we see that this region sweeps out the
entire first quadrant of the % plane as 6 varies from
0 to 7/2.

However, B; can be greater than Bj;, so in general
there will be a range of x;’s such that (b/a)B;>%Bs;.
For such values of the x,’s the region in which none of
the denominators can vanish is bounded by I3(R) and
RI=(b/a)B;sinfd cosf. From Fig. 6(c) we see that the
region between these curves does not sweep out the
entire first quadrant of the % plane. As a result, it is
convenient to divide the x integration into two terms:
one in which (8/e)B;<%B; and one in which (8/a)B;
>4%B;. The first term is clearly analytic in the first
quadrant of the & plane, so we need only study the
second term.

For those values of the x; for which (6/a)B:>%B; we
would like to make a charge of variables which would
prevent the denominator .S from vanishing above the
hyperbola RI=%Bj; sinf cosf. To this end we make use
of the identity?®

7= [ @4/ A0+ BT )

= / d3g/[1+a*TLa—A)*+ g'a*+ B.]
X[@A+a®)—c]. (417)

Here, « is an arbitrary real constant, the A; are fixed
vectors, and B; and C are constants. Before rotating
contours and before allowing % to become complex
we apply this identity to the q integration and to each
of the qo; integrations. In each case we choose

[(b/a)Bi—%— a]w
o= k2+ %Bs .

9 This identity follows trivially from the Feynman identity
J=/ diq Iy dwid (1— 304 x3)
La?—2q- (CiwiAs)+20: :(A2+By) V[ *—c]’
We now make the change of variables ¢ — q-+aqX7/sinf, where
7 is a unit vector in the direction of >_; x;A;, 8 is the angle between

q and 7, and « is an arbitrary real constant. The Jacobian of this
transformation is [14+¢2]7, so

J___f @Pq T daeid (1 =35 x0)
[1+e*I[g?(1+e?) —2q- (i i)
» +22: 2 (A2+B) V[ q? (1 +-a?) —c]
q

=/ (4oL (g— A+ gPe*+ B JLq*(1+e?) —c]

(4.18)

Since we are only considering values of the x; for which
(b/a)Bs>%Bs, o is real.
After making this transformation the denominator

S becomes y
k2 (b/a) B
S=[¢*+4% 2 xqo? [*———'——-:|~ak2—b3i
RERR L Ryrvwyy

k*+(b/a)B;

=[¢*+5 2 wigo*— a(kz—l—%B?*)][
‘ k*+4$Bs

J. (4.19)

If we now rotate contours of integration through an
angle 6, S can only vanish on the hyperbola RI=%B;
Xsind cosf. Clearly the term [k2-+(b/a)B;]/ (k2+%B3)
gives no trouble for k22 complex.

With the present choice of variables the denominator
of the wave-function pole becomes

(b/a)Bi—$Bs
T B,

(4.20)
“+4Bs

L (q—xy okt ki) 1q2

In the Appendix we show that this denominator and
the potential denominators which depend on q or qo;
can not vanish in the region bounded by I(R), the real
k axis, and the imaginary & axis. After rotating contours
of integration these denominators can not vanish in the
region bounded by Iy(R) and RI=%Bs; sinf cosf.

As a result, the second-order term for the breakup
amplitude is analytic in the first quadrant of the %
plane. It is also analytic in the second quadrant since
we define it there by

J) = f*(—k¥). (4.21)

The third-order term for the breakup amplitude can
be treated in exactly the same way and we find that it
is also analytic in both the first and second quadrants.

Except for terms of the form (By'7| V.| Bsf), the
second- and third-order terms for the bound-state
scattering and rearrangement amplitudes can be
treated in the same way as the corresponding terms in
the breakup amplitude.® They are also analytic in both
the first and second quadrant of the £ plane.

We next consider a typical first-order diagram for the
breakup amplitude which is shown in Fig. 8(a).

The only new singularities arise from the wave
function. The denominator of the wave-function pole is

2(ki+3kp)*+Bs. (4.22)
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It vanishes at

k= —%BSE(%+23'12-}’1222)+23’1(2 - 4y12+y1222)“2]
XLG+2y22—(8/3)ys* ], (4.23)

This pole can become complex for 3 <y.2<%. However,
what is important for dynamical calculations based on
analyticity and unitarity is that the residue of this pole
is just the product of the on-energy-shell two-body ¢
matrix and the coupling constant g; defined by

go=_lim (2" BoWs,(p). (4.24)
2p2— —Bs3

The diagram shown in Fig. 8(a) also has a cut arising
from the dispersion integral for the wave function.
Making use of our requirement that u>>2B,, it is easy
to see that this cut always lies on the imaginary % axis.

Finally we turn to the terms in the rearrangement
amplitude of the form (By'#’| V,| Bsft). A typical term
is shown in Fig. 8(b). There is a simple pole at

k= —[(20+82) (Bs+By')+42[ 4 (22— 1)
X (Bs— B4/ Y29B;By T/ ][ 25— 162

The position of the pole becomes complex if B3>4B,'
or By>4Bj;, but the residue of the pole is given by the
product of two coupling constants.

We have thus seen that except for the simple poles
given by Eq. (4.23) and (4.25) all terms in the perturba-
tion series for each of our amplitudes are analytic in
the entire first quadrant of the % plane. Since they are
defined in the second quadrant by Eq. (4.21) they are
analytic there also.

(4.25)

V. POSITION OF SINGULARITIES

We now turn to the problem of locating the various
branch points of our amplitudes.

The vanishing of the free Green’s-function denom-
inators gives rise to the three-particle unitarity cut
whose branch point is at 2=0. The vanishing of the
bound-state pole denominators of the two-particle ¢
matrices gives rise to the unitarity cuts for the scattering
of a particle off the various bound states. The branch
points are located at k=¢B;!2

All of the other branch points arise from the simul-
taneous vanishing of several denominators. We can
obtain the position of these singularities by making use
of the Landau-Bjorken (LB) method.’® We know that
all of these singularities lie on the imaginary % axis and
that we can continue to this axis by rotating the
contours of integration of all of the q variables through
an angle of 4. It is important to notice that we do not
need to deform the integration path of any of the Feyn-
man parameters. This means that we need only consider
real positive values of the Feynman parameters in the
LB equations. As a result, after writing k=1K, q;=1p;,
where K and p; are real, we can realize the LB conditions

10 See, for example, J. D. Bjorken and G. D. Drell, Relativistic
Quantum Fields (McGraw-Hill Book Company, Inc., New York,
1965).
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T16. 8. (a) A first-order diagram for the breakup amplitude. (b) A
first-order diagram for the rearrangement amplitude.

in terms of dual diagrams in real Euclidean p space. By
studying these dual diagrams it is possible to obtain
the position of all of the branch points that lie on the
imaginary k axis. For the present we shall confine
ourselves to the study of those singularities which arise
from pinches among free Green’s functions, bound-state
poles, and wave-function poles.

Let us start with the Nth-order breakup diagram of
Fig. 1. After writing k=K, q;=ip:;, we apply the
Feynman identity to the Green’s functions, the bound-
state poles, and the wave-function pole. The combined
denominator is

S=wx1[p2+ K+ (p1— Ks)?— K> J+x2 p+p2?
+(p1—p2)*— K2 ]+ - - +an[py—+ps?
+ (PN—-I"‘PN)Z"‘Kz:I‘*‘an[(pN—%KB)Z"—233]
+an o[ P12 —3 (K2~ Bu)]
+xA'+3[D122“§(K2~Bm):|+' o
+aneu[ pul—3(K2—Bin)], (5.1)
where
N>M;
K3= y;;K,
Kp=7[2(K?— By)]'2.

We are using the same variables as in Fig. 1 except
that we have let 1 (p;— K3) — p1 and 3 (py— K3z) — pn
in order to simplify the geometry of the dual diagrams.
The dual diagram corresponding to the denominator
of Eq. (5.1) is shown in Fig. 9. The LB equations require
that all vectors lie in a plane. The positivity of the
Feynman parameters requires that the polygonal line
CA14545- -+ AxD is convex and lies inside the triangle
OCD. The LB equations further require that

|4:Cl = | p—35Ks| =3Ky1,
[0A4:*+ | 4idia|*+[04 i1 |?
=p+ (pi—pir1)*+put=K?,
i=1,2,--- N—1 (5.2)
|AxD| = |py—3Ks|2=V3B;.

In>loy> - >1>1,
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F1c. 9. The dual diagram corresponding to Fig. 1.

For each bound-state pole denominator in the problem
we have the added condition

|04 =pi2=%(K*—Bu). (5.3)

Reduced diagrams corresponding to, for example,
x;=0 may also be possible. In such a case the polygonal
line breaks in two. The points 44, 4., * -+ +, 4; must now
lie on the line OC and the points 4.1, -+, Ay must lie
on the line OD.

Given all these geometric constraints it is easy to
see that only four types of dual diagrams are possible.
They are shown in Fig. 10.

For terms of order N>3 the only possible dual
diagrams are Figs. 10(a) and 10(b). Figure 10(a) corre-
sponds to a “pinch” between the bound-state pole and
the free Green’s function in the first closed loop. The
pinching condition is

[04;|+]4:C|=]0C], (5.4)
which tells us that the branch point is at
Bu
K?=An= y322%- (55)

1—3(ys—y1)?

This type of branch point was discussed in I, where we
referred to it as an anomalous threshold of type B. It is
not on the physical sheet for ys?<3. At y#=13 it enters
the physical sheet through the normal threshold at
K?=By;. As y3? is increased, the branch point moves up
the imaginary k& axis, reaching the point K?=%Bj,
when y?=3%.

The dual diagram of Fig. 10(b) corresponds to a
pinch between the bound-state pole and the wave-
function pole in the last closed loop. The branch point
is at

K?= A" =4[Bs+Biv— (B:Bwv)"?], Bww>4Bs. (5.6)

We shall call this type of branch point an anomalous
threshold of type B’. It is not on the physical sheet for
Bin<4B;. If we imagine varying the binding energy Bs,
the branch point enters the physical sheet through the

AND TIKTOPOULOS
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normal threshold at K?=B;y when B;y=4B;. As Bs
decreases, the branch point moves up the imaginary %
axis approaching the point K?=4B;y as Biy/B;— .

If we consider the amplitudes for rearrangement or
elastic scattering we find that each term of order N>3
can have two anomalous thresholds of type B’, since
there can be a pinch between a wave-function pole and
a bound-state pole at each end of the diagram.

The second-order term in the breakup amplitude will
have one anomalous threshold of type B and one of
type B’. It will also have singularities corresponding to
the dual diagrams of Figs. 10(c) and 10(d). Figure 10(c)
corresponds to a pinch between the free Green’s function
and the wave-function pole. The position of the branch
point is given by

(233)1’2+K12= [K32+K32—22K3KB]”2 y (5-7)

where z is the cosine of the angle between K; and Kpg.
Let us denote the solution of Eq. (5.7) by K=C(z).
For 2=—1 we find

Via—[(16/4)— 227V
K=C(—1)= Byl a—[(16/4)— 3] ’

2
yszzils‘

a’—

oy

(5.8)

where a=7v3;—v12. This branch point is not on the
physical sheet for y2<%. It enters the physical sheet
at K= and travels down the imaginary % axis as ys?
increases, reaching the point K2=%B; when yg=%.
It is easy to see that for C(z) on the physical sheet

CE=C(-1), 1>z>-—1. (5.9

Clearly the branch point at K=C(z) gives rise to a
cut which runs from K=C(z) to K=. From Egs.
(5.5), (5.6), and (5.8) we see that unless Bs is the largest
binding energy in the problem, there will always be a
range of values of y; such that this cut overlaps the
unitarity cut. As a result, it will not always be possible
to continue the second-order terms from the first to the
second quadrant of the & plane. This will not prevent
us from making N/D-type calculations. The second-

a) Y BR——|
0 A, C

Fic. 10. The four
possible dual dia-

c A D grams satisfying the
Landau-Bjorken
¢ conditions.
ks 34
[¢ > D
15
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order terms are defined in the second quadrant of the &
plane by Eq. (4.21). The discontinuity across the cuts
associated with the anomalous thresholds and the cut
associated with C(z) can be calculated explicitly in
terms of on-energy-shell two-particle quantities. The
details of obtaining these discontinuities are given in I.

We recall from Sec. III that all terms of order N >4
do have a gap between the “left- and right-hand cuts,”
so we can continue them from the first to the second
quadrant. Presumably the same result holds for the
third-order terms since they have no singularities of
the type C(2).

We next consider the dual diagram of Fig. 10(d).
It corresponds to a pinch between the free Green’s
function, the wave-function pole, and a bound-state
pole. The algebraic expression for the position of the
branch point can be read off from the dual diagram,
and we will not write it out here. We merely note that
if we denote the position of the branch point by
K=D(z), then

C(®)2D(zx)>2 4", A2, (5.10)

where 4,2 and 4,""/? are the positions of the anomalous
thresholds of type B and B’. We see from Fig. 10(d)
that as we vary y; or the binding energies D(z) can
leave the physical sheet through either of the anomalous
thresholds or through the branch point at C(z).

Finally we must consider the second-order terms in
the amplitudes for rearrangement or elastic scattering.
The dual diagram of Fig. 10(c) now corresponds to a
pinch between two wave-function poles. If the initial
state contains a bound state with binding energy Bs,
and the final state one with binding energy Bj/, then
the condition for the pinch is

(233)1/2+ (233')1/2= [K32+KB'2—22KBKB']1/2 5 (511)

where z is the cosine of the angle between Kz and K5'.
If we denote the position of the branch point by
K=C'(2) we find

C'(2)>C'(—1)=4[Bs+ B+ (B:By)V2]. (5.12)

Again there will be cases in which the left- and right-
hand cuts overlap, but the discontinuities across all
of the cuts can still be obtained in terms of on-energy-
shell two-body quantities.

The dual diagram of Fig. 10(d) now corresponds to
a pinch between two wave-function poles and a bound-
state pole. The branch point again lies between C’(z)
and the anomalous thresholds, and it can leave the
physical sheet through any of these branch points.

VI. CONVERGENCE OF THE FREDHOLM SERIES

We have seen that all terms in the perturbation
series for our amplitudes are analytic in the upper-half-
k plane. The lowest-order terms can have complex
poles, but all other singularities lie on the imaginary %
axis. It follows from our discussion in Sec. II that the
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F16. 11. The diagram corresponding to the function
2(q1,qs) of Eq. (4.1).

individual terms in the Fredholm series have the same
analyticity properties. We shall now show that the
Fredholm series are uniformly convergent with respect
to & in the upper-half plane. As a result, the full ampli-
tudes can only have the singularities of the individual
terms in the perturbation series and poles at the zeroes
of D.

In II we gave a detailed proof of the convergence of
the Fredholm series for the amplitude for the scattering
of three free particles. The proof for the amplitudes
which we have been studying is identical, so we will
only outline it briefly. The reader is referred to II for
the technical details.

Our starting point is the Faddeev equation for the
off-energy-shell three-particle 7 matrix, Eq. (2.14).
In IT we showed that the kernel K2 is square-integrable
(I in the entire upper-half % plane. As a result, the
resolvent exists and is given by a relatively, uniformly
convergent series.* The on-energy-shell amplitude for
the scattering of three free particles is obtained by
taking the matrix element of the resolvent between the
vectors (K2+K?%)t|y) and K*+|y’). In II we showed
that these vectors are L?, so the series obtained by
taking the matrix element of the resolvent between them
is uniformly convergent with respect to k.

From Egs. (2.11), (2.13), and (2.18) we see that the
Fredholm series for the amplitudes for breakup, rear-
rangement, and elastic scattering are obtained by taking
the matrix elements of the resolvent between vectors
of the form K+|y), (K*+K??| Bsfi), and K+4|Byi).
In order to complete our proof of the convergence of
the Fredholm series, it is only necessary to show that
the last two vectors are L2,

It will suffice to consider a typical term

£(a1,45) =(q10203| £:GotsGot1 | Bsf). (6.1)

Our choice of variables is shown in Fig. 11. We wish to
show that g is an L? function of q; and qs. In IT we saw
that the off-energy-shell two-particle # matrices are 12
functions of either of their momenta, the norm being
bounded by a constant. Since g depends on q; only
through the first # we can do the q; integration at once
by making use of the Schwartz inequality. If we exclude
values of & on the real axis, the Green’s functions which
depend on q; can be bounded by a constant. Then the
only q; dependence will be in # so we can do the q
integration. The norm of # can be bounded by a
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constant for 6u>Imék (see II). At this point the g5’
dependence is in the remaining Green’s function and
the remaining #. Both are L? functions of qs'for complex
values of &, so the q;'integration can be done by making
use of the Schwartz inequality. The norm of # is
bounded by a constant for (3)V2%u>Imk. We are now
left with the bound

2
/ d*q1 d%q3| g(q1,95) | 2SC[ / d‘*qxl/m(%q)] . (6.2)
We can write the wave function in the form
fGa)
1¢4+B;s

The results of IT imply that f is an L? function of g,
so a final application of the Schwartz inequality gives

(6.3)

’J/Bs (% q) =

/ d*q:1d®qs| g (a1, qs) |2 <C7 (6.4)

for
Rek>e>0, (WE)u—e>Imk>e>0. (6.5)

We have ignored the possibility of the last ¢ matrix
having bound-state poles. If it does, we make use of
the Feynman identity to combine each of them with
the wave-function pole. The proof then goes through
unchanged.

The proof for the other vectors goes through in a
similar fashion. It then follows that the Fredholm
series are uniformly convergent with respect to £ in
the strip defined by Eq. (6.5). In order to show that they
converge in the entire upper-half £ plane we use the
rotation of contours argument introduced in II. There
is no added difficulty in showing that g is L? on the
rotated contours.

Our final result is that the Fredholm series for all
of the on-energy-shell amplitudes are uniformly con-
vergent with respect to % in the entire upper half-plane
including the real and imaginary axis. The only possible
except is the imaginary axis above the point 2=4(\/3)u,
where our proof breaks down. This is the location of the
“left-hand cut.”

VII. SUMMARY OF RESULTS

We have completed our study of the scattering of
three nonrelativistic particles interacting via two-body
Yukawa potentials. We now summarize our results.

(1) We have proven the existence of the on-energy-
shell amplitudes describing the scattering of three free
particles, the scattering of one particle off a bound
state of two particles, the breakup of a bound state, and
rearrangement collisions among three particles.

(2) Each of these amplitudes can be written as the
ratio of two Fredholm series which are uniformly
convergent with respect to the total center-of-mass
energy E for all values of E on the physical sheet.
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(3) Each of the amplitudes satisfies of dispersion
relation in £ for fixed physical values of the vectors y;
and 7. Except for the simple poles discussed in Sec. IV
all of the singularities lie on the real energy axis.

(4) The amplitudes have been defined so that they
are real analytic functions of E, i.e., T(E)=T*(E*).

(5) The analytic properties proved for the amplitudes
with the vectors y; and 7 fixed also hold for the partial-
wave amplitude. As mentioned in I, in order to project
out a partial-wave amplitude one merely multiplies
the amplitude by a polynomial in the components of
the vectors y; and # and integrates over a compact
domain. Such a procedure can introduce no new
singularities in .

(6) We have encountered three types of singularities
in our discussion:

(i) Unitarity cuts. These are associated with the
various types of intermediate assymptotic states. There
will be one cut running from E=0 to + % corresponding
to intermediate states of three free particles. There
will also be a cut from E= —B;;j to -+« for each bound
state of the (7,7) pair with binding energy Bi;.

(i) Anomalous singularities. The various types of
anomalous singularities are enumerated in Sec. VI of I
and in Sec. V of this paper. The important feature of
these singularities is that the discontinuities across the
cuts and the residues of the poles can be evaluated in
terms of on-energy-shell two-body scattering amplitudes
(suitably continued to unphysical energies). It is
necessary to take these singularities into account in any
realistic calculation of the three-body amplitudes since
they are the “nearest singularities” to the physical
region.

(iii) “Left-hand cuts.” In the language of purturba-
tion theory these singularities arise from pinches among
the denominators of the potentials and(or) the bound-
state wave functions. In a fully relativistic theory one
might hope to obtain the discontinuities across these
cuts from the unitarity relations in the crossed channels.
However, in a practical calculation the discontinuity
across the left-hand cuts would have to be taken as
input information just as it is in the two-body problem.

(7) It is possible to carry out a calculation of all
of the three-body amplitudes solely in terms of on-
energy-shell quantities. N/D equations were written
down in I. The necessary input information is the
discontinuity across the left-hand cut and the on-
energy-shell two-body scattering amplitude.

It should be noted that no matter how simple an
approximation one makes for the left-hand cut, an N/D
calculation of the three-body amplitudes will be quite
difficult. Even after the N/D equations have been
solved one will be faced with the problem of inverting
D, which is an operator in the space of the y variables.

Finally we should mention that the simple techniques
employed in this series of papers can be readily extended
to the general case of N-particle scattering. It should
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be simple to show that the /V-particle amplitudes exist
and satisfy dispersion relations in the total energy.
More challenging questions are whether the same
methods can be used to study analyticity in the
complex angular momentum plane for the nonrelativ-
istic three-body problem, or to study the amplitudes
for the scattering of three relativistic particles.

APPENDIX

In this Appendix we shall study the wave-function
denominator of Eq. (4.20) and the corresponding
potential denominators.

We start with the wave-function denominator. After
rotating contours of integration through an angle 9,
we have

Se??= (qe?— xnyoks+kp)?

(b/a)B,— £B
+ qzezio<______f__3>+ 2B;. (A1)
k*+5Bs
We now write
ke=®= R+l ,
A=k3—xN+2k3= Ag+iAr,
C=R*—I*4%B;3 cos26,
D=2RI—%B;sin26,
N=¢[(b/a)B:—%Bs)(C*+D*)™,
p=q+Ax.
Since we are only considering values of the x;’s such
that (b/a)B;>%Bs, N is a positive quantity which can
take on any value from zero to infinity.

With the present notation, the real and imaginary
parts of S become

ImS=2A;pz— (NC+2B3)sin20—ND cos26, (A3)
ReS=p2— AP+ (NC+2B3)cos20—ND sin26. (A4)

z is the cosine of the angle between p and A;. Setting
ImS=0 and substituting into Eq. (A4) gives

(A2)

1
ReS> 4—2;[ (NC+2B3;)sin260+ N D cos26J?
Ar

— AP+ (NC+2Bs)cos26— ND sin20.  (AS)
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The right-hand side of Eq. (A5) vanishes for

AP=3[ (NC+2Bs)*+N2D2]u2
+3(NC+2B3)cos20—3ND sin28. (A6)

Since the right-hand side of Eq. (AS) is a decreasing
function of Af?, S can not vanish if Az? is less than the
right-hand side of Eq. (A6).

We want to show that S can not vanish between the
curves Ip(R) and RI=4%B; sinf cosf. The region above
the curve RI=%B;sind cosf is filled by hyperbolas of
the form RI=#%Bsx sinf cosfl, where x>1. Since the
curve I3(R) lies below the line I = (4B3)!'2 cosf, we need
only consider that part of the hyperbola for which
I> (4B3)"2 cosf or R< (4B;)2x sind. From these con-
siderations we see that both C and D are positive
between the curves Ip(R) and RI=4%B;sinf cosf. In
addition, after a little algebra we find that in this region

[ (NC+2B3)2+ N2D2 241 (NC+2B3)cos26
—3ND sin26>2B; cos?d (A7)
for all values of V.

The maximum value of Az is [ (v/%)I+Im(kze=) ]2
The curve Ip(R) was defined by setting this quantity
equal to 2B3 cos? [ see Egs. (4.8) and (4.10)]. Since the
maximum value of A2 is an increasing function of I
above the hyperbola RI = B; sinf cos0,

A12S 2Bj3 cos?d (AS)

between the curves Iy(R) and RI=4%B; sinf cosf. As a
result, the denominator of Eq. (A1) can not vanish
between these curves.

The transformation defined by Eqs. (4.17) and (4.18)
also introduces terms of the form

(6/a)B;—%Bs (b/a)B,—%B;
k4B, ¥4,

into each of the potentials of f#; and into the first
potential of #;. These potential denominators can be
studied in exactly the same way as the wave-function
denominator. The only difference is that in Egs.
(A6), (A7), and (A8), Bs is replaced everywhere by
p?. Since we have assumed that 2B,,<p?, it follows that
none of the potential denominators vanish between the
curves Ip(R) and RI=4%Bs; sinf cosd.



