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driving forces this cancellation must be handled with
adjustable parameters. The #n-pole approximation
provides a convenient parametrization!s in that the
threshold conditions lead to constraints on the residues
of the poles. It is also known!” that this cancellation has
an important effect on partial-wave calculations and
cannot be ignored as has been the practice in the past.

Perhaps the most interesting application of the n-pole
solution will be in self-consistent S-matrix calculations.
Because the partial-wave driving forces are determined
by the physical amplitudes in the crossed channels, and
these in turn can be found by the /D method for the
crossed-channel partial-wave amplitudes,’® it is ad-

16 J. Dilley, Nuovo Cimento (to be published).

17 R. W. Childers and A. W. Martin (unpublished).

. 18See Ref. 14 for a formulation of the self-consistency problem
in terms of convergent sums over partial-wave amplitudes alone.
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vantageous to have a closed-form solution of the N/D
equations. Self-consistent solutions involving more than
a few partial-wave amplitudes would be extremely
difficult to obtain if the integral equation had to be
solved numerically at each step. But with the n-pole
solution much of the problem reduces to a complicated
but manageable algebraic problem. The #-pole solution,
both for the unsubtracted and the once-subtracted case,
also has the very important property that as the number
of poles is increased the solution converges to the solu-
tion of the integral equation.
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It was shown by Mandelstam that the double spectral function in the elastic strip is determined by double
integrals over crossed-channel absorptive parts. The content of this consequence of elastic unitarity can be
expressed in a number of different ways, some of which significantly simplify the problem of determining the
spectral function for given absorptive parts. Among the results presented are rigorous moment conditions,
“open-ended” integrals, and the Laplace transform of the double spectral function. An approximation pro-
cedure for the determination of the spectral function in terms of simple, one-dimensional integrals over the

absorptive parts is developed.

I. INTRODUCTION

HE Mandelstam representation! for two-body scat-
tering amplitudes has provided a powerful tool
in the description of properties of scattering processes.
As examples one may cite the Froissart bounds? for the
high-energy behavior of the scattering amplitude and
the numerous more recent results? of a similar nature.
It is also evident that the requirements of crossing sym-
metry in the S-matrix approach to the strong inter-
actions are most easily satisfied in a framework such as
the Mandelstam representation.
But the Mandelstam representation has not been a
useful tool in the actual calculation of scattering ampli-
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Research, Office of Aerospace Research, U.S. Air Force, under
AFOSR Contract AF 49(638)-1389.

t Address after September 1, 1967: Department of Physics,
Rutgers, The State University, New Brunswick, New Jersey.

1S, Mandelstam, Phys. Rev. 112, 1344 (1958).

2 M. Froissart, Phys. Rev. 123, 1053 (1961).

3 See, for example, T. Kinoshita, J. J. Loeffel, and A. Martin,
Phys. Rev. 135, B1464 (1964); Y. S. Jin and A. Martin, sbid. 135,
B1375 (1964).

tudes, and the reason is a simple one. It is well known
that the requirements of unitarity are of profound im-
portance in the description of the strong interactions
and the mathematical problem of imposing unitarity
upon the Mandelstam representation is formidable. Not
only is it a problem in two variables but also the com-
plications of inelastic unitarity must be overcome.

In the elastic domain, Mandelstam derived! rigorous
expressions for the double spectral functions in terms of
integrals over combinations of crossed-channel absorp-
tive parts. Insofar as these double spectral functions
determine the imaginary part of the s-channel scattering
amplitude in the elastic region, and hence the partial-
wave phase shifts up to a sign, there is a good deal of
physical information to be obtained from further in-
vestigation of this consequence of elastic unitarity. One
practical difficulty with the expressions deduced by
Mandelstam is the complicated structure of the double
integrals which must be evaluated and their sensitivity
to regions of integration in which the integrand becomes
singular.
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The purpose of this work is to derive further rigorous
consequences of elastic unitarity relating the double
spectral functions to integrals over the absorptive parts.
The primary usefulness of these results will be in deter-
mining the spectral functions in the elastic “strips” in
terms of the gross properties of the absorptive parts.
The more fundamental problem of determining the spec-
tral functions self-consistently by means of unitarity and
crossing symmetry requires the introduction of inelastic
unitarity and is outside the immediate domain of these
considerations. It is possible, however, that the tech-
niques employed here will be of use in the self-consis-
tency problem.

The central results to be presented are ‘“moment”
integrals (more accurately, inverse moments) over the
double spectral functions. From these moment condi-
tions additional identities can be deduced. In particular,
some rigorous expressions for finite integrals over the
spectral functions are obtained in which the integrand
singularities of Mandelstam’s basic result are removed.
The moment conditions are derived in two ways. First,
by means of the generating function for Legendre func-
tions of the second kind, and second, by consideration
of the Laplace transform of the double spectral func-
tion. After the derivation of these results it is shown
how the moment conditions can be used to determine
the spectral functions in the elastic strip.

For the sake of simplicity in the mathematical de-
velopment the complications of spin and internal sym-
metry will be suppressed. It will also be assumed, for
simplicity, that the scattering amplitude satisfies an
unsubtracted Mandelstam representation. This is by
no means a crucial assumption as it will be evident how
the development is extended to the #-times subtracted
representation. Finally, to simplify the kinematics the
scattering of identical neutral pseudoscalar mesons will
be considered.

In Sec. II the basic formulas, including Mandelstam’s
expression for the double spectral function in the elastic
strip, are reviewed. Section ITI concerns the derivation
of the moment conditions for the spectral function
by means of the generating function for the Legendre
functions of the second kind. It is shown that the ap-
plication of known sums for Legendre functions leads
to further identities for the spectral functions. A simple
integration procedure is applied in Sec. IV to obtain
“open-ended” expressions for the double spectral func-
tion. These are integral expressions with arbitrary end
points of integration and possess the property, in con-
trast to Mandelstam’s basic expression, that the inte-
grands do not become singular in the range of integration.

The integration procedure is used in Sec. V to derive
the Laplace transform of the double spectral function.
Application of further transforms yields additional
identities including the generalization of the moment
conditions to complex values of the parameter. In
Sec. VI the moment conditions are used to develop a
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simple and accurate approximation scheme for the
determination of the double spectral function in the
elastic strip. Section VII is devoted to conclusions.

II. BASIC FORMULAS

The invariant amplitude for the scattering of neu-
tral pseudoscalar mesons is related to the S-matrix
element by

| 2m)4i84(P;— Py)

o (160’1602603404)1/2

(s,tu)

where w;- - -ws are the energies of the incoming and out-
going mesons and s, ¢, and # are the familiar Mandel-
stam variables satisfying? s+¢+u=1. It is assumed
that there are no bound states in this amplitude and
that a G parity forbids three meson intermediate states.
In this case the elastic region is 1<s<4 (4p2<s<16u2)
and in terms of z=cosf, where 6 is the center-of-mass
scattering angle, the elastic unitarity condition reads

ImA(s,2) =[2(8n)*J'[(s—1)/s]"/2
X/dﬂn A*(S;Zf")A (S,Zm‘) ) (1)

where the additional factor of £ accounts for the iden-
tical nature of the particles.

In this simplest of possible cases crossing symmetry
implies that A(s,t,u) is totally symmetric in the three
Mandelstam variables. The unsubtracted Mandelstam
representation can then be written in terms of one

double spectral function
Alsta)=— / / ds'dt p(s',t)
(s"=)E'—1)
/ ds'du’ p(s',u’) /’ dai'du o(t',u")
/ (s'~s)(u'—u) 1r2[ C=)'—u)’
and the double spectral function is itself symmetric:

p(S,t) = p(t,S) .

Mandelstam’s derivation of the elastic unitarity expres-
sion for p(s,f) utilizes the fixed-s dispersion relation for

the invariant amplitude
1 rede Ay(s,w) 1 o da A,(s5,%)
A(s,tu)=— f 1 / ., @
mTJ1 wJ1 x—u

where the absorptive parts in the crossed channels in
this highly symmetric problem are

x—1

,(S x)= A,,(s,x) ==

/°° dy p(xy) 1 /“” dy p(x,y)
1 ‘ 1 y-f—x—f—s—l )

y—s

4 The units Z=c=2u=1 are used.
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Inserting the fixed-s relation (2) into the elastic
unitarity condition (1) and carrying out the angular
integration leads! to the expression®

© dx p(s,x) 1
/1 a—t  [s(s—1)J216x

« ® r dxdy A& (s,x)A4(s,y)
/1 / K (t,x,y)

% ln[f(tyx,y) +K(t)xsy)]
f(t:xﬂ’)—K(t:x;y) ’

where

fxy)=2+y+2xy/(s—1)—1, &)
and K(t,x,y), the Mandelstam kernel, is given by
K (t,2,y)

=[x y2—2tn— 2ty— 2wy —4dixy/(s— 1) ]2, (5)

The expression (3) is valid only for 1< s<4 since that
is the range of validity of the elastic unitarity condition
(1). The next step in Mandelstam’s procedure is to
identify the discontinuity for positive ¢ of the right-
hand side of (3). This involves tracing the singularity
structure of the logarithm and leads to the basic result

,» (6)

0~ dxdy A*(s,x)A4(s,y)0(K?)
X/1 / K (t,%,y)

where 0 at the upper limits of integration indicates that
the range of integration is finite, for finite 7, and is
determined by the step function in the integrand.

One well-known consequence of (6) is that the double
spectral function has a curved boundary, coming from
the step function, outside of which the spectral func-
tion vanishes. This boundary is not symmetric in s and ¢
indicating that purely elastic unitarity and crossing
symmetry are not compatible. When crossing symmetry
is taken into account it is seen that the spectral func-
tion can be written

p(S,t) = B(St_ 45— t)pl(s’t)+ B(St—- §— 4t)01(t,5) ) (7)

where pi(s,) has no particular symmetry properties in
its two variables. The first term on the right-hand side
of (7) can be called the “first wing” of the spectral
function and the second term, the “second wing.” The
second wing vanishes for s in the elastic region and (6)

5 In the general case in which the three double-spectral functions
are not identical, the elastic unitarity condition leads to expressions
of the form of Eq. (3) for both p;:(s,f) and psu(s,%). Furthermore, as
is well known, the combination of absorptive parts on the right-
hand side of (3) is replaced by A.*(s,x)A:(s,y) — 3[A:*(5%)
f><At(s,y)—}—A «*(s,%)A 4(s,y)] for p,¢ and by a similar replacement

Or psy.
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applies only to pi(s,f). The subscript will be dropped for
simplicity in what follows but it should be borne in
mind that all results hold only for py(s,f) in the elastic
strip.

Equation (6) determines the double spectral func-
tion in terms of the absorptive parts in the crossed
channels. Tt is not an easy integral to evaluate, however,
even for approximate forms for the absorptive parts. It
is readily seen that the integral is quite sensitive to the
values of the integrand in the vicinity of the upper limit
since the Mandelstam kernel vanishes there. The equa-
tions derived in the following sections are implicitly
contained in (6). Their usefulness stems from the fact
that they express the content of (6) in different ways,
some of which promise to make the determination of
the double spectral function a simpler problem, if not
a more direct one.

III. GENERATING FUNCTION APPROACH

With the expression for the Legendre function of the
second kind Qo(z) in terms of a logarithm it is possible
to write (3) in the form

* dux p(s,x)
/1 x—1
1 ® r dady A&#(s,2)A(s,)
—[S(S— 1)]”2871'2./; / K(t:x}y)
fx,y)
XQO[K (t,x,y)]

and to recognize that the integrand involves a generat-
ing function for the Legendre functions®

5 104 ()

n=0

= (1= 2k + 12~ Qu[ (s— B)(1— 2hz+1D)~4/2]. (9)

The sum in (9) converges for |k|<|z+ (32—1)/2]
[>1 for z not in the interval (—1,1)7]. With the choice

h=tx—y)", z=[x+y+2xy(s—1)"J(x—y)"! (10)

the right-hand side of (9) reduces to the function in the
integrand of (8), and the domain of convergence of the
infinite sum in (9) is readily seen to coincide with the
onset of the singularity of the integral.

It follows that for || <4s/(s—1) the left-hand side
of (8) can be expanded binomially:

®dx p(s,x) = ® dx p(s,x)
[z i)
1 x—ti n=0 1 xmtl

°Hiéher Transcendental Functions, edited by A. Erdelyi
(Mcs(irawfﬁill Book Company, Inc., New York, 1953), Vol. I,
p. 154. :
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while the right-hand side can be expanded by means of
the generating function with the choice (10). Coefficients
of the two power series in ¢ can be equated with the
result

® dx p(s,x)
/; xn+1
1 ® dx(iy A g* (s,x)A t(s,y)
= [s(s—1)]28x2 /1 / (x—y) ™+

XQ[M} 11

(x—y)

This is the moment condition referred to in the Intro-
duction. It holds for s in the elastic domain and for
n=0, 1, 2, --- (with the assumption that the unsub-
tracted Mandelstam representation holds). It will be
shown later that (11) holds for complex n. This later
derivation will also indicate that in case the Mandelstam
representation requires M subtractions then (11) holds
forn>M.

It should be noted that the right-hand side of (11)
is well behaved at the points x=7y because of the
asymptotic behavior of the Legendre functions for
large argument. It is similarly clear that the integrand
is symmetric in x and y (apart from the absorptive
parts) as is necessary if the double spectral function is
to be real valued. Finally, note that

® dx p(s,x)
/ e (s—1)»t12 a5 s—1,
1

xn—l—l

which is the necessary condition such that the imaginary
parts of the partial-wave amplitudes possess the correct
threshold behavior. This is not a surprising result. The
Mandelstam representation leads to the correct thresh-
old behavior of the real parts of the partial-wave ampli-
tudes and so the threshold behavior of the imaginary
parts will follow from the elastic unitarity condition
which is satisfied by (11).

With the rigorous moment conditions it is possible
to find other identities for the double spectral function
by employing various sums over Legendre functions of
the second kind. For example, the sum

© (n+k)!
= h"Qn(2)
nlk!

= (1= 2z~ %0120, [ (5— ) (1 — 2hs-+12)~112]
leads to the generalization of (8) and (11)
® dx p(s,x)

1 (x__ tn+1)

1 © r dady A*(s,2)A(s,y)
B [s(s—1)]/28x2 /1 / K™ (t,x,y)

f(t7x’y)
XQ"[Ko,x,yJ’ a2

n=0
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where f(t,x,y) and K({,»,y) are given by (4) and (5),
respectively. This result holds, by analytic continuation,
for all £. Tt is worth while to note that (12) can be derived
by successive differentiation of (8), and this pro-
cedure forms an alternative derivation of the moment
conditions.

The sum which follows from integrating the generat-
ing function,

% i (0 1) (2) = In[5— I (1— 2z 12]
XIn[z—h— (1 —2hz+1)"V2]—In(z4+1) In(z—1),

leads to the identity

/ dx p(s,x) In(1—t/x)=[s(s— 1) J/2(1672)~1

‘ e

XA #s,x)Ad(s,y) (14 (s— 1) (e+y— 14 K)/ (22y) ]

/“’ dx A4(s,x) In[14-(s—1)/x]

><ln[1+(s—1)(x+y—t~K)/(2xy)]}- 13)

The identities presented here are based on a few of the
sums derivable from the generating function. As a
consequence they are also derivable from the basic form
[Eq. (8)]. One useful feature of the moment conditions
is that they suggest identities, through the use of known
sums over Legendre functions, that are not suggested
by the basic form. :

It seems likely that consideration of other sums, such
as generalizations of Heine’s formula, will lead to
rigorous identities for the double spectral function that
will help in the determination of unitary and crossing
symmetric scattering amplitudes. One such approach,
based upon the moment conditions themselves, will be
developed in Sec. VI.

IV. OPEN-ENDED IDENTITIES

The purpose of this section is to develop some
rigorous identities involving integrals over the spectral
function with a finite range of integration. These
identities can be obtained with the techniques of the
preceding section but there is a simpler way. Consider
Mandelstam’s expression [ Eq. (6)] for the spectral func-
tion. It can be written in the form

Ost—ds—Dp(s)=————
(st—4s—1)p(s,2) [s(s—1)]28x?

X/”/ dxdy A*(s,2)A(5,y)0(— 1)
1 (=t )2 (= )12

, (14)
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where
ty={[x(y+s—1) ]2 y(x+s—1)]2)2/(s—1), (15)

and the step function on the left in (14) serves as a
reminder of the boundary of the spectral function while
the step function on the right cuts off the integral for
sufficiently large x or y.

E In the following development ¢ will be a positive
number satisfying the inequality

t>ty=4s/(s—1).

Consider (14) with ¢ replaced by ¢ and the operation of
integrating this expression with /o'd# f(#'). The result
is easily seen to be

/ a2 p(s,2) 1)
to

s . dxdy A*(s,2)A:(s,y)0
[s(s——l)]llzg,,.z// wdy A7 (5,0)A(s,9)0(t—14)

‘ dat’ f(t)
o (=t )2( —1 )2

Choosing f(#)=1 leads to the “open-ended” identity
[P S — ] PR
dx p(s,x)= / / y A (s,x
I [s(s—1)Jv24a2 J, ’
)1/2
|- an
1)1
This equation, which can also be deduced from (13) by
consideration of the singularity structure, gives the
integral of the double-spectral function over any finite
(or infinite) range in terms of integrals over the absorp-
tive parts in which the integrand is not singular. In
fact, whereas Mandelstam’s equation for the spectral
function [Eq. (6)] involves a kernel that becomes large
near the upper limits of integration, the integrand in
(17) vanishes there. This is nothing more than the ob-
servation that the integrable square root singularity
has been integrated out.

A more general open-ended identity follows from the
choice f(#)=(#—N\)"! in which case (16) becomes

(16)

XAt(s,y)0(i—t+)Q0|:

7t dz p(s,x)
/to (x_)‘)

1 © r drdy A (s,0)A(s,9)0(—14)
_[s<s—1>]w4w2f1/ [t — N (=N

(=)=
. (18
XQO[(:——mW(t_— A)llﬁ] (18)

This expression holds for ¢2 ¢, and for all values of \. It
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is a simple matter to verify that in the limit {—o (18)
reduces to (8). Both (17) and (18) are also easily checked
by differentiation with respect to ¢ Finally, note that
successive differentiation of (18) with respect to X leads
to open-ended moment conditions for the double-
spectral function which generalize (11) and (12).
The use of (18) and similar open-ended identities
should simplify the Mandelstam iteration program.!
In the following section it will be shown that this in-
tegration procedure [Eq. (16)] also leads to further
identities by means of Laplace transform techniques.

V. LAPLACE TRANSFORM APPROACH

Because the theory and application of Laplace trans-
forms has been developed to a high degree, it will be
useful to express the restrictions of elastic unitarity on
the double-spectral function in terms of such transforms.
This is readily accomplished with the techniques of the
previous section. Choose f(#')=exp(—\) and t= o
in which case (16) becomes, after a trivial change of
integration variable,

00 1 00
dx p(s,x)e Vo= —n / / dxdy A*(s,x)
/:0 ’ [s(s—1)J8x2 /, ‘

b dz ez
o [alati—t)]02

Bateman’” evaluates the last transform with the result
that the Laplace transform of the double spectral func-
tion in the elastic strip is

XA:(S,)’)‘/’*“J“

~00

1 00
dxp(s,x)e‘“=——[ fdxd A&F(s,x)
]to [sG—1)Tn ), ) &7
XA (s,9)e M DK IN—1)], (19)

where K, is the modified Bessel function of the third
kind.

It follows from (19) that any Laplace transforms in-
volving the modified Bessel function will yield further
identities for the spectral function. In particular, operat-
ing on (19) with /" ¢® d\ \#eM leads® to the generalized
moment condition

* dx p(s,x)
6o (x—B)*
dxdy A¢*(s,x)A(s,y)
=[s(s—‘1)]”287r2./; /[(t+—3)(t—”ﬁ>]("+l)/2

Lt1—28
) ] o
2(If+—6)1/2(t.— )112
7 Tables of Integral Transforms, edited by A. Erdelyi (McGraw-

Hill Book Company, Inc., New York, 1954), Vol. I, p. 138.
8 Reference 7, Vol. I, pp 137 and 198.
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which holds for complex g with Rep>—1. This result
is the generalization to complex # of the moment condi-
tions (11) and (12). Furthermore, because (20) was
derived from Mandelstam’s expression for the double
spectral function [Eq. (14)] rather than from an
integrated form such as (8), it is clear that the moment
conditions hold for the N-times subtracted Mandelstam
representation. In this case the necessary number of
subtractions for fixed s in the elastic domain is deter-
mined by the minimum value of (real) u for which the
right-hand side of (20) converges.

Application of other Laplace transforms leads to the
result

/ s p(5,2)Q[ 1422/ (s— 1) ]=[s(s—1) J7/2(8x*)~*

to

X

/wdx As,x)0[1422/(s—1)]} , (21)

which is recognized to be the continuation of the elastic
unitarity condition for the partial-wave amplitudes,

ImA(s+ie)=[(s—1)/s]"2[ 4u(s)|?,

to arbitrary real l=»>—1. Again, the range of » for
which (21) is valid is determined by the convergence of
the integrals. As is well known, this result can be con-
tinued to complex » by appropriate modification of the
right-hand side.

In addition to further, and for the most part rather
complicated identities resulting from Laplace trans-
forms of (19), it will be noted that (20) and (21), being
functions of a continuous parameter, allow the develop-
ment of additional identities. As the simplest example
set 8=0 in (20), use the results [from (15)]

() 2= x—y|, F+1)=x+y+2xy/(s—1),

and employ changes of variables in the left-hand side
of (20) to obtain the Laplace transform and the equiva-
lent Mellin transform

00

/ dz e *p(s,e?)
0

= / dt t+p(s,t71)

JO

1 ° /‘ dxdy A¢*(s,2)A(s,3)
= [sG— 1)]1/287r2,/; Ix_.y|u+1

[tz o,
|z—y]

Laplace transforms involving Legendre functions will
then yield further results.
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It has been shown that the content of Mandelstam’s
expression for the double-spectral function in terms of
integrals over the absorptive parts can be expressed in
a variety of ways. To this point the derivation has been
formal with the purpose of suggesting alternative ap-
proaches to the problem of computing the double-
spectral functions in the elastic strip. One approach,
based directly upon the moment conditions, is developed
in the following section.

VI. DETERMINATION OF THE SPECTRAL
FUNCTIONS

The assumption of S-matrix theory that the con-
straints of analyticity, crossing symmetry, and unitarity,
together with the possible specification of a few con-
stants, lead to unique scattering amplitudes requires the
statement of unitarity for all physical energies. In
other words, elastic unitarity is insufficient for the self-
consistent determination of the double-spectral func-
tions. In the present case, because a rigorous expression
for the spectral function derived from inelastic unitarity
does not exist, the absorptive parts must be considered
as given and the problem reduces to finding the cor-
responding double-spectral function.

This problem is not so far removed from reality as it
may appear. The behavior of 4,(s,x) for x~1 is deter-
mined by the low-energy behavior of the partial-wave
amplitudes in the crossed channels (the Legendre ex-
pansion of the imaginary part of the crossed-channel
amplitudes converges in a usable domain determined
by the boundaries of the spectral functions). The
behavior of A(s,x) for large x can be inferred to
some extent from the phenomenological analysis of
high-energy scattering data, or from the Regge hypothe-
sis. In any case, reasonable estimates for the absorptive
parts can be made which incorporate inelastic unitarity.
It follows that the determination of the spectral func-
tion in the elastic strip, and hence the elastic phase
shifts up to a sign, in terms of these estimates can be
useful.

In the present work specific and more or less realistic
models for the absorptive parts will not be studied.
The results for such models will be reported at a later
time. Instead the purpose of this section is to develop
some tools for the analysis. The starting point is the
moment conditions of Eq. (11). It will be assumed, for
convenience only, that the moment conditions hold
for 2 0. The disadvantage of the exact moment con-
ditions, as in Mandelstam’s direct expression for the
spectral function, is the complicated double integral
which must be evaluated.

It would clearly be advantageous to work only with
one-dimensional integrals as in the generalized partial-
wave unitary condition of Eq. (21). To see that the mo-
ment conditions can be well approximated by such
forms consider one of the standard hypergeometric ex-
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pansions of the Legendre functions?

)= 1 & T(k+3)T(k+n+1) 2
O R e

where
w=z+(z2—1)1/2,

It follows easily’® from (23) that for >1 the Legendre
function satisfies the bounds

w120 (n+1) 72T (n41)
————— <) < ————(1—w)~ L2,
e

4
L(n+3)w+ ey

The lower bound in (24) is just the first term in the ex-
pansion (23) (all terms of which are positive for z>1)
while the upper bound is an overestimate of the infinite
sum.

For the Legendre function appearing in the moment
conditions the upper and lower bounds are very close.
That is, for

z=[xt+y+22y(s— 1)~ J(x—3)", (25)
one finds
e [rs— DYy (a-ts— U2
w= = , (26)
(x—y) (s—1)(x—y)

and this function is bounded for fixed s and 1<x,
y< o by
(s1241)%/(s—1) Sw< .
It follows that
max[(1—w2) 2] = (s1/24-1)/(2519),

which for 1 s<4 is very close to unity. With z and w
given by (25) and (26), respectively, the bounds on the
Legendre function can be written

7T (n1) (s124-1) 72T (n+1)
— .
T (n+3)wnt 2514 T(n+§wm

These estimates indicate that the expansion (23) con-
verges extremely rapidly for the Legendre functions in
the moment conditions, and that it provides an ex-
cellent approximation procedure for those functions.
But the goal of expressing the moment conditions in
terms of single integrals has not as yet been accom-
plished. This is done by noting the bounds

(s—1)(x—y)/(4sxy) Sw < (s—1) (x—y)/ (4y)
with which (27) can be written
71T (1) s—1>”+1< 1 “
I‘(n+%)(xy)"+‘< 4s (=) ’
(st241) #2T(n+1) /s—l ntl
V" e
25114 I‘(n-l—%)(xy)"“\ 4

9 E. W. Hobson, Theory of Spherical and Ellipsoidal Harmonics
(Chelsea Publishing Company, New York, 1955), p. 61.

10 Reference 9, p. 61. A trivial improvement of the upper bound
derived in this reference is used in Eq. (24).
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In the estimates to follow the lower bound will be used.
This approximation can be systematically improved by
keeping more terms in the expansion (23) and by in-
cluding corrections to the estimate of w2

The bounds given in (28) have the desired property
that the # and y dependences factor. As a consequence
the moment conditions [Eq. (11)] are well approxi-
mated by

/’°° dx p(s,x)_ w20 (n+ 1)/5—1>1/2<s—1>"

N

e 32T (n+3)\ 45
1 rody Ai(s,x)|2
- / i RO
rJ1 xn+1

To see how this form involving relatively simple one-
dimensional integrals can be used to obtain first ap-
proximations to the double-spectral functions suppose
that the integral over the absorptive part has been
evaluated with the result

1

2

= fu(s).

/” dx A(s,x)

gntl

™

Then summing ¢* times the moment condition yields

redx p(s,x) w2 s—1\Y? © T(n+1)
J —p——~)=—<s ) £

32s n=0 T'(n+$%)

x[(::) t]n . (30)

If the integrals in (29) do not converge for <N a
simple modification is needed. One such example is
treated below.

The sum on the right-hand side of (30) will generally
have a radius of convergence of unity. That is, as a
function of ¢ the sum will have a branch point at
(st—4s—t)=0 which is the proper boundary of the
first wing of the double spectral function. So the double
spectral function is estimated by evaluating the sum
and identifying the discontinuity across the branch cut.
As one extreme example consider the (physically un-
reasonable) case where fu(s) is approximated by a
positive function of s independent of #, fa(s)=C(s).
The sum in (30) is then seen to be a hypergeometric
function,

°°ofacp(s,ac)_C(s) s—l)”2
/; x—t B 16s‘< s
XF(1,1; 35 (s—1)t/(4s).

The discontinuity of a hypergeometric function with
one of its first pair of arguments equal to unity is
readily evaluated by a change of integration variable

x—t s

(31)



162

in the standard integral representation. That is,

F( 1, .(s_l) _ L(0)(45)®
(”“ 4/ T@)T(—b)(s—1)

© dx (sx—4s—x)eo1
X/ , (32)
ty

x Y x—1)

where fp=4s/(s—1) as in Sec. IV. Identifying the dis-
continuity gives for the spectral function of (31)

C(5)8(st—4s—1)
8(st)V2(st—ds— )12

p(S,t)=

This estimate is clearly a poor one; the double spectral
function is singular at the boundary whereas it is
known for the present case (as in pion-pion scattering)
that the double spectral function must be proportional
to (st—4s—1)%2 at the boundary.n

As an extreme example in the other direction con-
sider the (also physically unreasonable) case in which
fx(s) is approximated by f.(s)=C(s)/T'(r+1), that is,
the moment integrals of the absorptive part fall off as
the inverse square root of T'(r-+1). In this case (30)
becomes

dx p(s,x) 7r”2C(s)/s— )1/2 o 1
4/; 32s \ s

|"(s—1)t n
Do T+l 45 ]

x—t

and the sum is recognized as a confluent hypergeometric

function,
2 dx p(s,x)  C(s) /s—1\1/2 (s—1)
/ —~——3=—i(—~) (1 SPNEY
1 x—t 16s \ s 4s

But the confluent hypergeometric functions are entire
functions of their argument so (33) is an impossible
equation. These examples support the intuitively ob-
vious conclusion that the moment integrals of the
absorptive parts must decrease with increasing » but
cannot decrease exponentially.

As the final example of the application of the moment
conditions consider the more realistic case in which the
absorptive part is approximated by means of the optical
theorem. Since A.(s,x) is the imaginary part of the
amplitude in the crossed channel in which « is the square
of the c.m. energy and s is the momentum transfer,
the optical theorem gives

A t(O,x) = ztx(x_’ 1)]1/20't0t(x) .

With the assumption that the absorptive part does not
vary radically as s goes from zero to the range 1<s<4
and with the further approximation of replacing o(%)
by a constant average value o, the integral over the

1A, W. Martin, Bull. Am. Phys. Soc. 11, 902 (1966); also
(unpublished).
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absorptive part yields a 8 function

1 /“ dx [x(x—1)]42

dx Ai(s,x) 20101 [‘”

xn-{-l T J1 x‘n-l—l
a; otI‘(n— 1)
- (34)
Y

The integral exists only for #>2, so we make the
replacement #=£k-+2 and insert (34) into (29) to obtain

®dx p(S,’U)

Ttot? /S— >5/2
IETETAN
I‘Z(k-i—l)I‘(k—l—\'i)/S—l k
). (35)
D2(+5)TRA+D\ 4

The next step is to sum (35) over ¢* and identify the
discontinuities. But in this case the sum is a generalized
hypergeometric function, and while multiple integral
representations exist for these functions it is more con-
venient to make the simplifying approximation

D2(k+1)I(E+3)  T(e+1)
U2(k+5)T(k+3) T(k+4)

(36)

This approximation is excellent for large k and adequate
for smaller . It remains to be verified that the qualita-
tive behavior of the resulting double spectral function
is not appreciably affected by such an approximation.
This point will be examined at a later date.

Inserting (36) into (35) and summing over ¢* leads to
the result

/ dx p(S x) (71,0(, <S— 1>5/2 ( 1.
1 x2(x—t¢ ) 96s w54
The integral representation (32) for the hypergeometric

function then gives the estimate for the spectral
function

(s— 1)

20402 (st—4s—1)5/2
15m(4s)3(s— 1)1

p(s,t)=

This spectral function has the correct boundary be-
havior and is not patently wrong. In view of the approxi-
mations that went into the derivation, however, it
should be viewed as at best an averaged expression for
the double spectral function in the elastic strip.

The primary purpose of these examples is to indicate
the usefulness of the moment conditions as a tool in the
determination of the spectral functions.The necessary
integrals over the absorptive part are of a simple form
and in a first approximation they are determined by the
gross structure of the absorptive part. The method also
allows symmetric improvement of the estimate of the
double spectral function. Applications of interest would
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be the use of Regge theory to improve the optical
theorem approximation studied above together with
Breit-Wigner forms to include crossed-channel reson-
ance contributions to the total cross section.

VII. CONCLUSIONS

The rigorous expression for the double-spectral func-
tion in the elastic strip in terms of finite two-dimensional
integrals over absorptive parts has been known for
some time.! Because reasonable estimates for the absorp-
tive parts can be made and because the double-spectral
function determines the imaginary part of the scatter-
ing amplitude in the elastic region, it is of interest to
pursue this consequence of elastic unitarity. The
practical difficulty with Mandelstam’s expression is the
complexity of the double integral and its sensitivity to
certain regions of integration.

In addition to the problem of determining the elastic
phase shifts to within a sign there is the larger problem
of the self-consistent determination of the scattering
amplitude itself. While this problem requires the
specification of inelastic unitarity, it is likely that
alternative approaches to the elastic case will be useful
in the more general situation. The central purpose of
this work has been the development of different ways
of expressing the content of Mandelstam’s result.

The results divide roughly into three (not uncor-
related) categories. First, the observation that an inter-
mediate step in the derivation of the double spectral
function involves the generating function for the
Legendre functions of the second kind led to “moment
conditions” for the spectral function. These conditions
relate inverse moments of the spectral function to
integrals over absorptive parts and Legendre functions
of integer order. The application of known sums for
Legendre functions then leads to a number of further
identities.
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The second category of results follows from the simple
operation of integrating the explicit ¢ dependence of the
spectral function in the elastic strip with arbitrary
functions of ¢. In particular, the choice of a finite range
of integration yields “open-ended” identities. These
identities avoid the sensitive integration of the original
expression for the double spectral function because the
inverse-square-root singularity has been integrated out.
The third category of identities evolves from the use of
the integration procedure to deduce the Laplace trans-
form of the double spectral function.

With the Laplace transform in hand it is possible to
obtain a number of further identities for the spectral
function. As one example, a generalization of the mo-
ment conditions follows immediately from the trans-
form formulas. This derivation indicates that the mo-
ment conditions hold for the s-times subtracted
Mandelstam representation, the necessary number
of subtractions being determined in turn by the
convergence of the absorptive part integrations. An-
other simply obtained result is the well-known gen-
eralization of the partial-wave unitarity condition to
complex values of /.

Finally, as a practical approach to the problem of
determining the double spectral function in the elastic
strip, given the absorptive parts, it was shown that the
rigorous moment conditions lead to a simple approxi-
mation procedure. In this approximation the inverse
moments of the spectral function are related to the
modulus squared of the inverse moments of the absorp-
tive parts. Because the integrals are of a relatively
simple form, it is possible to estimate the dominant
n-dependence of the moment integrals and hence to re-
construct the general behavior of the double spectral
function. The application of this approach to physically
reasonable models for the absorptive parts will be
presented at a later time.



