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driving forces this cancellation must be handled with
adjustable parameters. The e-pole approximation
provides a convenient parametrization" in that the
threshold conditions lead to constraints on the residues
of the poles. It is also known'7 that this cancellation has
an important eGect on partial-wave calculations and
cannot be ignored as has been the practice in the past.

Perhaps the most interesting application of the m-pole
solution will be in self-consistent S-matrix calculations.
Because the partial-wave driving forces are determined
by the physical amplitudes in the crossed channels, and
these in turn can be found by the N/D method for the
crossed-channel partial-wave amplitudes, ' it is ad-

"J.Dilley, Nuovo Cimento (to be published)."R.W. Childers and A. W. Martin (unpublished).
'8 See Ref. 14 for a formulation of the self-consistency problem

in terms of convergent sums over partial-wave amplitudes alone.

vantageous to have a closed-form solution of the N//D
equations. Self-consistent solutions involving more than
a few partial-wave amplitudes would be extremely
dificult to obtain if the integral equation had to be
solved numerically at each step. But with the m-pole

solution much of the problem reduces to a complicated
but manageable algebraic problem. The m-pole solution,
both for the unsubtracted and the once-subtracted case,
also has the very important property that as the number
of poles is increased the solution converges to the solu-

tion of the integral equation.
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It was shown by Mandelstam that the double spectral function in the elastic strip is determined by double
integrals over crossed-channel absorptive parts. The content of this consequence of elastic unitarity can be
expressed in a number of different ways, some of which significantly simplify the problem of determining the
spectral function for given absorptive parts. Among the results presented. are rigorous moment conditions,
"open-ended" integrals, and the Laplace transform of the double spectral function. An approximation pro-
cedure for the determination of the spectral function in terms of simple, one-dimensional integrals over the
absorptive parts is developed.

I. INTRODUCTION

'HE Mandelstam representation' for two-bodyscat-
tering amplitudes has provided a powerful tool

in the description of properties of scattering processes.
As examples one may cite the I roissart bounds' for the
high-energy behavior of the scattering amplitude and
the numerous more recent results~ of a similar nature.
It is also evident that the requirements of crossing sym-
metry in the S-matrix approach to the strong inter-
actions are most easily satisfied in a framework such as
the Mandelstam representation.

But the Mandelstam representation has not been a
useful tool in the actual calculation of scattering ampli-
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' S. Mandelstam, Phys. Rev. 112, 1344 (1958).' M. Froissart, Phys. Rev. 123, 1053 (1961).' See, for example, T. Kinoshita, J. J. LoeGel, and A. Martin,
Phys. Rev. 135, B1464 (1964); Y. S. Jin and A. Martin, ibid. 135,
81375 (1964).

tudes, and the reason is a simple one. It is well known
that the requirements of unitarity are of profound im-

portance in the description of the strong interactions
and the mathematical problem of imposing unitarity
upon the Mandelstam representation is formidable. Not
only is it a problem in two variables but also the com-
plications of inelastic unitarity must be overcome.

In the elastic domain, Mandelstam derived' rigorous
expressions for the double spectral functions in terms of
integrals over combinations of crossed-channel absorp-
tive parts. Insofar as these double spectral functions
determine the imaginary part of the s-channel scattering
amplitude in the elastic region, and hence the partial-
wave phase shifts up to a sign, there is a good deal of

physical information to be obtained from further in-

vestigation of this consequence of elastic unitarity. One

practical dBBculty with the expressions deduced by
Mandelstam is the complicated structure of the double
integrals which must be evaluated and their sensitivity
to regions of integration in which the integrand becomes
singular.
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f(f,x,y) =x+.y+2xy/(s 1) —t, —

and K(t,x,y), the Mandelstam kernel, is given by

(4)

E(f,x,y)
= ft'+x'+y' 2tx 2ty—2x—y 4t—xy/(s —1)]"'.—(5)

The expression (3) is valid only for 1 ~& s(4 since that
is the range of validity of the elastic unitarity condition

(1). The next step in Mandelstam's procedure is to
identify the discontinuity for positive I, of the right-
hand side of (3). This involves tracing the singularity
structure of the logarithm and leads to the basic result

Inserting the fixed-s relation (2) into the elastic
unitarity condition (1) and carrying out the angular
integration leads' to the expression'

"dx p(s, x)

Ls(s—1)]'t'16m'

dxdy 2 t*(s,x)A t(s,y)
X

K(t,x,y)

f(t,x—,y)+K(t, x,y)Xln, (3)
f(t,x,y) K(t,x—,y)

where

applies only to pi(s, t). The subscript will be dropped for
simplicity in what follows but it should be borne in
mind that all results hold only for pi(s, t) in the elastic
strip.

Equation (6) determines the double spectral func-
tion in terms of the absorptive parts in the crossed
channels. It is not an easy integral to evaluate, however,
even for approximate forms for the absorptive parts. It
is readily seen that the integral is quite sensitive to the
values of the integrand in the vicinity of the upper limit
since the Mandelstam kernel vanishes there. The equa-
tions derived in the following sections are implicitly
contained in (6). Their usefulness stems from the fact
that they express the content of (6) in different ways,
some of which promise to make the determination of
the double spectral function a simpler problem, if not
a more direct one.

III. GE5'ERATING FU5 CTION APPROACH

With the expression for the Legendre function of the
second kind Qs(z) in terms of a logarithm it is possible
to write (3) in the form

"dx p(s, x)

p(s, t) =
Ps(s —1)]"'Ssr'

dxdy A t*(s,x)A t(s,y) 8(Ks)
X , (6)

K(t,x,y)

Ls(s—1)]'tsgsrs

dxdy A,*(s,x)A, (s,y)

K(t,x,y)

f(f,x,y)—
XQ (8)

K(f,x,y)

where 0 at the upper limits of integration indicates that
the range of integration is 6nite, for 6nite t, and is
determined by the step function in the integrand.

One well-known consequence of (6) is that the double

spectral function has a curved boundary, coming from
the step function, outside of which the spectral func-
tion vanishes. This boundary is not symmetric in s and t

indicating that purely elastic unitarity and crossing
symmetry are not compatible. When crossing symmetry
is taken into account it is seen that the spectral func-
tion can be written

p(s, t) = e(st 4s t)pi(s, t)+—0(sl—s 4t)pt(t, s), —(7—)

where p, (s,t) has no particular symmetry properties in

its two variables. The first term on the right-band side
of (7) can be called the "first wing" of the spectral
function and the second term, the "second wing. "The
second wing vanishes for s in the elastic region and (6)

' In the general case in which the three double-spectral functions
are not identical, the elastic unitarity condition leads to expressions
of the form of Ect. (3) for both p, ~(s,t) and p, (s,tt). Furthermore, as
is well known, the combination of absorptive parts on the right-
hand side of (3) is replaced by A~~(s, x)A&(s,y) ~ —',LA&~(s,x)
XA~(s, y)+A„~(s,x)A„(s,y)$ for p, & and by a similar replacement
for p,„.

and to recognize that the integrand involves a generat-
ing function for the Legendre functions'

"dx p(s, x)

g—t n 0

"dx p(s, x)

6 Higher Transcendental Functions, edited by A. Krdelyi
(Mcoraw-Hill Book Company, Inc. , New York, 19S3), Vol. I,
p. 154.

Z h"Q.()
m=0

= (1—2hz+h') —'tsQs((z —h)(1 —2hz+h') —'"]. (9)

The sum in (9) converges for ~h (~z+(zs —1)'ts~

L) 1 for z not in the interval (—1,1)].With the choice

h=t(x y) ', z=[x+y—+2xy($—1) '](x—y) ' (10)

the right-hand side of (9) reduces to the function in the
integrand of (8), and the domain of convergence of the
infinite sum in (9) is readily seen to coincide with the
onset of the singularity of the integral.

It follows that for
~
t

~
(4s/(s —1) the left-hand side

of (8) can be expanded binomially:
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which holds for complex p, with Rep,)—1. This result
is the generalization to complex e of the moment condi-
tions (11) and (12). Furthermore, because (20) was
derived from Mandelstam's expression for the double
spectral function [Eq. (14)) rather than from an
integrated form such as (8), it is clear that the moment
conditions hold for the E-times subtracted Mandelstam
representation. In this case the necessary number of
subtractions for 6xed s in the elastic domain is deter-
mined by the minimum value of (real) p for which the
right-hand side of (20) converges.

Application of other Laplace transforms leads to the
result

d*p(,*)g.[1+2*/( —1))=L ( —1)) '"(g ') '

X dx A i(s,x)Q„[1+2x/(s—1)], (21)

ds e r*p(s,e*)

dt t~'p(s, t-')

[s(s—1))'~'Sar'

dxdy A g*(s,x)A i(s,y)

I*-yl""
x+y+ 2xy/(s —1)-

I*-yl
(22)

Laplace transforms involving Legendre functions will

then yield further results.

which is recognized to be the continuation of the elastic
unitarity condition for the partial-wave amplitudes,

ImAi(s+fe) = [(s—1)/s)' 'lAi(s) l',

to arbitrary real /=v& —1. Again, the range of ~ for
which (21) is valid is determined by the convergence of
the integrals. As is well known, this result can be con-
tinued to complex v by appropriate modi6cation of the
right-hand side.

In addition to further, and for the most part rather
complicated identities resulting from Laplace trans-
forms of (19), it will be noted that (20) and (21), being
functions of a continuous parameter, allow the develop-
ment of additional identities. As the simplest example
set P=O in (20), use the results [from (15))

(t~t )"'= lx—yl, —',(t++t ) =x+y+2xy/(s —1),

and employ changes of variables in the left-hand side

of (20) to obtain the Laplace transform and the equiva-
lent Mellin transform

It has been shown that the content of Mandelstam's
expression for the double-spectral function in terms of
integrals over the absorptive parts can be expressed in
a variety of ways. To this point the derivation has been
formal with the purpose of suggesting alternative ap-
proaches to the problem of computing the double-
spectral functions in the elastic strip. One approach,
based directly upon the moment conditions, is developed
in the following section.

VI. DETERMIgYTATION OF THE SPECTRAL
FUN'CTIO3%S

The assumption of 5-matrix theory that the con-
straints of analyticity, crossing symmetry, and unitarity,
together with the possible speci6cation of a few con-
stants, lead to unique scattering amplitudes requires the
statement of unitarity for all physical energies. In
other words, elastic unitarity is insufficient for the self-
consistent determination of the double-spectral func-
tions. In the present case, because a rigorous expression
for the spectral function derived from inelastic unitarity
does not exist, the absorptive parts must be considered
as given and the problem reduces to finding the cor-
responding double-spectral function.

This problem is not so far removed from reality as it
may appear. The behavior of A, (s,x) for x=1 is deter-
mined by the low-energy behavior of the partial-wave
amplitudes in the crossed channels (the Legendre ex-
pansion of the imaginary part of the crossed-channel
amplitudes converges in a usable domain determined
by the boundaries of the spectral functions). The
behavior of A, (s,x) for large x can be inferred to
some extent from the phenomenological analysis of
high-energy scattering data, or from the Regge hypothe-
sis. In any case, reasonable estimates for the absorptive
parts can be made which incorporate inelastic unitarity.
It follows that the determination of the spectral func-
tion in the elastic strip, and hence the elastic phase
shifts up to a sign, in terms of these estimates can be
useful.

In the present work specific and more or less realistic
models for the absorptive parts will not be studied.
The results for such models will be reported at a later
time. Instead the purpose of this section is to develop
some tools for the analysis. The starting point is the
moment conditions of Eq. (11).It will be assumed, for
convenience only, that the moment conditions hold
for e&~ 0. The disadvantage of the exact moment con-
ditions, as in Mandelstam s direct expression for the
spectral function, is the complicated double integral
which must be evaluated.

It would clearly be advantageous to work only with
one-dimensional integrals as in the generalized partial-
wave unitary condition of Eq. (21).To see that the mo-
ment conditions can be well approximated by such
forms consider one of the standard hypergeometric ex-
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pansions of the Legendre functions'

1 ~ I'(k+-', )I'(k+n+1)
Q.(s) = Z

w "+' /-o k!I'(k+n+a2)w'~
where

w =s+ (s'—1)"'.
It follows easily' from (23) that for s& 1 the Legendre
function satis6es the bounds

m'/'I'(n+1) ~l/21 (n+1)&Q-()&, (1— ') '" (24)
I'(n+-') w "+' I'(n+-') w "+'

In the estimates to follow the lower bound will be used.
This approximation can be systematically improved by
keeping more terms in the expansion (23) and by in-
cluding corrections to the estimate of m '.

The bounds given in (28) have the desired property
that the x and y dependences factor. As a consequence
the moment conditions LEq. (11)] are well approxi-
mated by

"dx p(s, x) 7r'/'I"(n+1) s—1 '/2 s—1

x"+' 32$1'(n+-,') s 4s

The lower bound in (24) is just the first term in the ex-
pansion (23) (all terms of which are positive for s&1)
while the upper bound is an overestimate of the infinite
sum.

For the Legendre function appearing in the moment
conditions the upper and lower bounds are very close.
That is, for

one 6nds

s= Lx+yy 2xy(s —1)-'](x—y)-', (25)

Lxl /2(y+s 1) l /2+y l/2(x+$1 ) l /2]2
V8= (26)

(*-y) ($—1)(x—y)

and this function is bounded for fixed s and 1&-x,
y& oo by

(s'/'+1)'/(s —1) & w &

It follows that

maxL(1 —w ') ' ]=($' '+1)/(2$' ')

which for 1~& s&4 is very close to unity. With s and ~v

given by (25) and (26), respectively, the bounds on the
Legendre function can be written./ r(n+I) (s'"+1) lr'/'I'(n+1)

&Q.(s) & (27)
I'(n+-') w "+' 2s"4 I'(n+-', )w "+'

These estimates indicate that the expansion (23) con-
verges extremely rapidly for the Legendre functions in
the moment conditions, and that it provides an ex-
cellent approximation procedure for those functions.
Hut the goal of expressing the moment conditions in
terms of single integrals has not as yet been accom-
plished. This is done by noting the bounds

(s—1)(x—y)/(4sxy) & w '& (s—1)(x—y)/(4xy)

with which (27) can be written

~'/'P(n+1) /s —1 "+'
Q-()

I'(n+-', )(xy) "+1k 4$ (x—y)"+'

($1/2+ 1) ~1/2P(n+1) ($1) +1

(»)
2s'/ I'(n++) (xy) "+'( 4 )

9 E. W. Hobson, Theory of Spherical and E~llzpsoidal Irarmorjics
(Chelsea Publishing Company, New York, 1955), p. 61.

» Reference 9, p. 61. A trivial improvement of the upper bound
derived in this reference is used in Eq. (24).

1 "dx A 4(s,x) ' '
(29 I

x"+'

To see how this form involving relatively simple one-
dimensional integrals can be used to obtain first ap-
proximations to the double-spectral functions suppose
that the integral over the absorptive part has been
evaluated with the result

1 "dxA, (s,x) '
= -(s)

Then summing t" times the moment condition yields

'" dx p(s, x) n' '//s —1 ' ' I'(n+1)
, f-($)

x / 32$( s — =o I'(n+-,')

(s—1)t-"
X — . (30)

4s

If the integrals in (29) do not converge for n&/V a
simple modification is needed. One such example is
treated below.

The sum on the right-hand side of (30) wi!1 generally
have a radius of convergence of unity. That is, as a
function of t the sum will have a branch point at
(st 4s t)=0 wh—ich —is the proper boundary of the
6rst wing of the double spectral function. So the double
spectral function is estimated by evaluating the sum
and identifying the discontinuity across the branch cut.
As one extreme example consider the (physically un-

reasonable) case where f (s) is approximated by a
positive function of s independent of n, f„(s)=C(s).
The sum in (30) is then seen to be a hypergeometric
function,

"dx p(s,x) C(s) /'s —1) '/'

x / 16$ k s—
0&Iv(1,1; l; ($—1)~/(4$)) (31)

The discontinuity of a hypergeometric function with
one of its Grst pair of arguments equal to unity is
readily evaluated by a change of integration variable
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in the standard integral representation. That is, absorptive part yields a P function

(s—1) I'(c)(4$)'
F! 1,b;c;

4s I'(b) I'(c—b) (s—1)

1 "dxA~(s, x) 2«,z

n+1

"dx Lx(x—1)j'I'
xn+1

"dx (sx—4s—x)~~'

x~'(x t)— (32)
«.,I'(n —1)

zr'lsl'(n+-, ')

where ts 4s/——(s 1)—as in Sec. IV. Identifying the dis- The integral exists only for n&2, so we make the
continuity gives for the spectral function of (31) replacement n=k+2 and insert (34) into (29) to obtain

C(s)8(st 4s t—)—
p(s, t) =

8 (st) 'I (st 4s t)'—I'—
"dx p(s, x)

!

atot

16m'tss 4s /

-(s—1)t-""dx p(s, x) m'I'C(s) fs 1't' ~ —1

x t 32s—4 s e-o I'(n+-,s) 4s

and the sum is recognized as a conQuent hypergeornetric
function,

"dx p(s, x) C(s) (s—1 'I' ( (s—1)t)
(33)

1 x t 16$ E s ( 4$ )

But the conBuent hypergeometric functions are entire
functions of their argument so (33) is an impossible
equation. These examples support the intuitively ob-
vious conclusion that the moment integrals of the
absorptive parts must decrease with increasing n but
cannot decrease exponentially.

As the Gnal example of the application of the moment
conditions consider the more realistic case in which the
absorptive part is approximated by means of the optical
theorem Since A. ,(s,x) is the imaginary part of the
amplitude in the crossed channel in which x is the square
of the c.m. energy and s is the momentum transfer,
the optical theorem gives

~,(0,.)=2L.(*-1)j"' .(*).

Kith the assumption that the absorptive part does not
vary radically as s goes from zero to the range i &s&4
and with the further approximation of replacing «,&(x)

by a constant average value 0&,~, the integral over the

»A. W. Martin, Bull. Am. Phys. Soc. 11, 902 (1966); also
(unpublished).

This estimate is clearly a poor one; the double spectral
function is singular at the boundary whereas it is
known for the present case (as in pion-pion scattering)
that the double spectral function must be proportional
to (st 4s t)' —' at—the boundary"

As an extreme example in the other direction con-
sider the (also physically unreasonable) case in which

f„(s) is approximated by f„(s)=C(s)/I'(n+1), that is,
the moment integrals of the absorptive part fall oQ as
the inverse square root of I'(n+1). In this case (30)
becomes

I's(k+1)I'(k+3) t's —1)"
(35)

I'(k+-;)1(k+-', ) ~ 4s i
The next step is to sum (35) over t» and identify the

discontinuities. But in this case the sum is a generalized
hypergeometric function, and while multiple integral
representations exist for these functions it is more con-
venient to make the simplifying approximation

I's(k+1)I'(k+3) I'(k+-')

I"'(k+-', )I'(k+-', ) I'(k+4)
(36)

This approximation is excellent for large k and adequate
for smaller k. It remains to be verified that the qualita-
tive behavior of the resulting double spectral function
is not appreciably affected by such an approximation.
This point will be examined at a later date.

Inserting (36) into (35) and summing over t» leads to
the result

"dx p(s, x) «,zs(s —1) 'Is
t ($—1)q

x'(x—t) 96s E 4s 3 4 4$

The integral representation (32) for the hypergeometric
function then gives the estimate for the spectral
function

2«.ss(st —4s—t) '"
p(s, t) =

15zr(4$) '(s—1)'tst

This spectral function has the correct boundary be-
havior and is not patently wrong. In view of the approxi-
mations that went into the derivation, however, it
should be viewed as at best an averaged. expression for
the double spectral function in the elastic strip.

The primary purpose of these examples is to indicate
the usefulness of the moment conditions as a tool in the
determination of the spectral functions. The necessary
integrals over the absorptive part are of a simple form
and. in a 6rst approximation they are determined by the
gross structure of the absorptive part. The method also
allows syxnmetric improvement of the estimate of the
double spectral function. Applications of interest would
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be the use of Regge theory to improve the optical
theorem approximation studied above together with
Breit-Wigner forms to include crossed-channel reson-
ance contributions to the total cross section.

VII. CONCLVSION8

The rigorous expression for the double-spectral func-
tion in the elastic strip in terms of finite two-dimensional
integrals over absorptive parts has been known for
some time. ' Because reasonable estimates for the absorp-
tive parts can be made and because the double-spectral
function determines the imaginary part of the scatter-
ing amplitude in the elastic region, it is of interest to
pursue this consequence of elastic unitarity. The
practical diKculty with Mandelstam's expression is the
complexity of the double integral and its sensitivity to
certain regions of integration.

In addition to the problem of determining the elastic
phase shifts to within a sign there is the larger problem
of the self-consistent determination of the scattering
amplitude itself. While this problem requires the
specification of inelastic unitarity, it is likely that
alternative approaches to the elastic case will be useful
in the more general situation. The central purpose of
this work has been the development of different ways
of expressing the content of Mandelstam's result.

The results divide roughly into three (not uncor-
related) categories. First, the observation that an inter-
mediate step in the derivation of the double spectral
function involves the generating function for the
Legendre functions of the second kind led to "moment
conditions" for the spectral function. These conditions
relate inverse moments of the spectral function to
integrals over absorptive parts and Legendre functions
of integer order. The application of known sums for
Legendre functions then leads to a number of further
identities,

The second category of results follows from the simple
operation of integrating the explicit t dependence of the
spectral function in the elastic strip with arbitrary
functions of t. In particular, the choice of a finite range
of integration yields "open-ended" identities. These
identities avoid the sensitive integration of the original
expression for the double spectral function because the
inverse-square-root singularity has been integrated out.
The third category of identities evolves from the use of
the integration procedure to deduce the Laplace trans-
form of the double spectral function.

With the Laplace transform in hand it is possible to
obtain a number of further identities for the spectral
function. As one example, a generalization of the mo-
ment conditions follows immediately from the trans-
form formulas. This derivation indicates that the mo-
ment conditions hold for the e-times subtracted
Mandelstam representation, the necessary number
of subtractions being determined in turn by the
convergence of the absorptive part integrations. An-
other simply obtained result is the well-known gen-
eralization of the partial-wave unitarity condition to
complex values of l.

Finally, as a practical approach to the problem of
determining the double spectral function in the elastic
strip, given the absorptive parts, it was shown that the
rigorous moment conditions lead to a simple approxi-
mation procedure. In this approximation the:inverse
moments of the spectral function are related to the
modulus squared of the inverse moments of the absorp-
tive parts. Because the integrals are of a relatively
simple form, it is possible to estimate the dominant
e-dependence of the moment integrals and hence to re-
construct the general behavior of the double spectral
function. The application of this approach to physically
reasonable models for the absorptive parts will be
presented at a later time.


