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new experimental deca, y rates of V a*(1518). The
model rather favors a higher decay rate for the
Va*(1518)—+ZiV mode than that given in the com-
piled data. '

(3) For the optimum value of the Il//D ratio, the
(Zsr) decay rate of V i*(1660)is two to four times higher
than that of the (Ear) decay. The currently reported
V'i*(1680)"with a large ratio of I'(hsr)/I'(Ear) might be-
long to another unitary multiplet if its spin-parity is —,

' .
(4) The fits to *(1815) decays are not so good if

we take the existing experirn. ental data. Because of the
meager experimental situation, we do not consider the

disagreement severe. If the *(1815)is a real object and
if the AK dominance of its decay is true, some other
mechanism to suppress the ZE decay mode is
necessary.

"M. Derrick, T. Fields, J. Loken, R. Ammar, R. E. P. Davis,
W. Kropac, J. Mott, and F. Schweingruber, Phys. Rev. [.etters
18, 266 (1967)."R.H. Capps (unpublished).

It is surprising that the J /D ratio obtained in this
paper is nearly equal to the values derived from different
methods and diferent input data""

One of us (S.M.) wishes to thank Professor M. L.
Good for his encouragement and Professor R.
Hartung for his support. We are very grateful to Dr.
A. R. Swift and Dr. M. A. Thompson for reading the
manuscript.

Pote added in proof. After this paper was written,
G. B. Yodh published a paper LPhys. Rev. Letters 18,
810 (1967)j, in which he showed the incompatibility
of a pure SU(3) singlet assignment for Va*(1518) and
also suggested the difficulties of the singlet-octet mixing
scheme. In this paper we predict rather the decay
widths which are experimentally uncertain by taking
the most reliable data as input. More data for the
decays of the Vi*(1660) and *(1815) should be ac-
cumulated before the predictions can be judged.

2'A. Kernan and YV. M, Smart, Phys. Rev. Letters 17, 832
(1965).
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YVe investigate by means of examples whether the Drell —Hearn —Gerasimov sum rule can hold simulta-
neously for a lightly bound state and for its constituents. Subject to certain assumptions, whose applica-
bility is discussed, we Gnd in particular that if the rule holds for the nucleons, then it holds for the deuteron
but fails for Hea and H3. If neutron and proton masses were appreciably unequal, then the rule would fail
for the deuteron as well.
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1. I5TRODUCTIO3%

ECENTLY Gerasimov and Drell and Hearn' have
proposed the following sum rule for the absorption

of photons by protons:

Here, cr=e'=1/137 is the fine structure constant (we
use natural units, A=1=c), tcv=1.79 is the anomalous
magnetic moment of the proton in units of e/2M, cV is
the nucleon mass, and trv~(ca) (a.„"(ca)) is the total ab-
sorption cross section for photons of frequency
with spins parallel (antiparallel) to the initial proton
spin. Corresponding rules are implied for any spin-~
particle; we shall call them DHG rules in the following.

To derive (1.1) (to order n), one needs two results
rigorously provable from microcausality and charge
conservation (gauge invariance), plus two further in-

dependent assumptions. The first of the proved results
is the dispersion relation for the forward Conlpton scat.—

':ering amplitude' f(ca):
f(ca)=a~ efz(ca)+icatr e "Xefs(&a), (1.2)

' M. Gell-Mann, M. L. Goldberger, and &V. Thirring, Phys. Rev.
95, 16i2 (1954).
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where a and a' are the polarization vectors of the initial
and anal photons. In particular one needs the disper-
sion relation for the spin-dependent part fs, which we
write, provisionally, as

1
f (~)=f2( )—

4x'

dM (d

fT~ CO
—0~ M

CO OJ

(1.3)

y, (m) =0. (1.5)

Then (1.1) follows immediately from (1.3), (1.4), and
(1.5). It is known, ' of course, that the corresponding
assumption fr(~) = 0 is untenable, because it leads to a
contradiction4 between the dispersion relation for f, and
the Thomson limit fi(0) =- n/M. —

The present paper aims to test the plausibility of the
assumption (1.5) by investigating whether the DHG
rule ca,n apply, simultaneously, both to a bound state
and to its constituents. We shall consider only non-
relativistic bound states, whose binding energy is neg-
ligible compared to the masses of the constituents. In
Sec. 2 we outline the general arguments and the calcu-
lation for a simple model. Other more realistic cases are
dealt with later by straightforward adaptations of this
prototype calculation and the hydrogen atom' is
simply related to the model. Sections 3 and 4 deal with
the deuteron and with the 3=3 isodoublet He', H'.
Section 5 sets out the corresponding results for iso-
scalar and isovector photons. At the end of Sec. 3,
and in Sec. 5, we compare our results with those of
G-erasimov, ' of Pagels, ' and of Konisi and Yamamoto.
Section 6 contains some final comments and conclusions.

2. CALCULATION FOR A SIMPLE MODEL

We first became doubtful of the unrestricted appli-
cability of the DHG rule by asking how the two sides
of Eq. (1.1) would be affected if the particle in question
could be bound, lightly, to another. In the case of
binding in an S~~~ state to a neutral scalar particle, the
total magnetic moment would be unaltered, but from
the point of view of the bound state it would be parti-
tioned differently between its "Dirac" and "anoma-

s F. E. Low, Phys. Rev. 96, 1428 (1954); M. Gell-Mann and
M. L. Goldberger, ibid. 96, 1433 (1954).

4 We emphasize that in principle this contradiction exists ir-
respective of whether f&(~) can be finite or not, i.e., it exists even
if the unsubtracted dispersion integral for f& Lanalogous to (1.3)J
con verges.

~ S. D. Drell and J. R. Primack (to be published).
s S.B.Gerasimov, J. Nucl. Phys. (USSR) 5, 1263 (1967).' H. I,.Pagels, Phys. Rev. 158, 1566 (1967), Appendix B.' G. Konisi and K. Yamamoto, Progr. Theoret. Physics (Kyoto)

37, 538 (1967),

The second proved result is a theorem' on the thresh-
old value of fr ..

f, (0)= —irx s/2M' (1 4)

Beyond (1.3) and (1.4), one must also assume:
(i) that the integral in (1.3) converges, and (ii), that the
real part of f2 vanishes at infinity, i.e., that

therefore the DHG rule for p' reads

2m-'n( m
lx+ (2.2)

where J~' is defined by analogy with (1.1).
Because the threshold 7 of J„ is taken to be high

compared to the binding energy, it seems physically
reasonable to decompose J„' into a low-frequency part,
E=ld~ —E~, corning from photodisintegration of the
bound state into p and o without excitation. of the con-
stituents, and into a high-frequency part. It seems
equally reasonable as a first approximation to take the
high-frequency contribution equal to J„+J, (in our
case J,=O, since o has zero spin). We base this simple
additivity on the argument that at high frequencies
each particle acts merely as a spectator of photoabsorp-
tion by the other, and feel that for sufficiently small
binding energy and for a sufficiently extended wave
function, corrections are likely to be negligible as re-
gards the total cross sections f7~ and 0~ that are relevant
for us. The reader is asked to suspend for the moment
his reservations both about the model as such, and
about the adequacy of the additivity assumption. The
model is designed primarily to introduce the physical
examples discussed later on; and. we shall see in Sec. 6B
that exact additivity is far from necessary for our con-
clusions, though it is convenient in presenting the argu-
rnent. At this stage we would point out only that even
if our model and approximations are not strictly appli-
cable to the real world, nevertheless they define a dy-
namical framework to which the DHG rule should be
no less relevant than it is to any other case.

Using (1.1) for the high-frequency part, the DHG
rule (2.2) can be written in the form

2' CX SE 2'7I 0!I%:

x+ =It+
Ms M+m M'

(2 3)

ious" parts; and a priori it would be surprising if this
purely kinematic reapportioning were exactly matched
by the changes in the integral J.To investigate this we
define the following model.

Suppose (1.1) holds exactly for a certain particle
which we call the "proton" p; let the threshold of the
integral J'~ (analogous to the pion photoproduction
threshold) be T. Suppose also that a neutral scalar par-
ticle o. exists, of mass m, and that it can be bound
lightly to p in an S&~s state, producing a particle p' of
mass M'=M+m. The binding energy is to be negli-
gible compared to M, m, and T.Then the total magnetic
moments of p and p' coincide; fi= fi'. Hence,

x'+1 x'+1 x+1

2M' 2(M+m) 2M
(2.1)

m
+

2M' (2M 2MM'1
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its validity now depends on the value of E, which we
can calculate by ordinary nonrelativistic quantum me-
chanics, once the coupling to the radiation 6eld is given
to the right order' in 3f '. To obtain it, we apply the
Foldy-Wouthuysen transformation for a proton with
Pauli moment" elr/2M, and find, to order M ': M it =Mm/(M+m); (2 7)

In order to carry out the summation, the 6rst step is
to rewrite the Ei operator r. p by using the standard
equivalence p=Mgr', where r is the relative coordinate
of the two particles and 31~ is the reduced mass:

II'= (—(e/M)A p—(e/4M') (1+2m)o Exp
—(e/2M) (1+i~)o.H} . (2.4)

&ole* plf)= —s~M~&ole* rlf&,
&fl'pIO&=+~M~&f I'rlo). (2.8)

The second term is responsible for the spin-orbit split-
ting when E is a central field rather than the radiation
6eld; we shall call this the spin-orbit coupling. Its im-

portance was pointed out by Drell and Primack. "Note
the factor of 2 prefacing ~, which will be important in
the following.

It follows by standard methods'~ '3 that E~, say, is
given by

1 8 8
K~=4rrsg —I(fl —e p+ (1+2m)o stoexp

f oP M 4M'

+ (1+K)ir'ieXk e'"'I 0) I (2.5)
2M

the sum runs over all excited states, discrete and con-
tinuous, of the two-particle system; co=—(Er—Eo);
k=tos is the photon momentum, and if Io) is taken as
the ground state with its spin parallel to k then
e= (—) (9+i))/v2. Here 9, g, 9 are the unit coordinate
vectors.

For our purposes we can neglect retardation, i.e.,
set exp(sk r) =1; then the matrix elements of the last
operator in (2.5) vanish because of the orthogonality of
the spatial wave functions in

I 0) and
I f). Thus there is

no magnetic dipole (M1) contribution. The electric
dipole (E1) term ee. p/M is spin-independent; hence
only cross terms between it and the spin-orbit coupling
need be retained to our order'4 in M ':

E~—Z = (1+2~)
N'

xp (&ol.* plf&&fls~'xplo&
f

1—&Ols~ e*Xplf&&f le plo)}-, (26)

where E' does not involve the spin.
~ Actually we reckon in powers of 3f ~ and m ~ interchangeably,

so that m/(M+m) for instance is of order unity.
~ L. L. I'"oldy and S. A. %outhuysen, Phys. Rev. 78, 29 (1950).
"H. Neuer and P. Urban, Acta Phys. Austriaca, 15, 380 (1962)."S.D. Drell and J. Primack (private communication)."J.S.Levinger, Nuclear Photodisintegration (Oxford University

Press, New York, 1960).
"H. A. Bethe and E. E. Salpeter, Quagtem Mechaescs of Oee-

arld Two-E'lectron Atoms (Springer-Verlag, Stuttgart, Germany,
19S7), paragraphs 61 and 69-73."At erst sight one might suspect that contributions of the same
order arise from cross terms between the I.'1 and the once-retarded
M1 terms, where in the latter one replaces exp(i'4 r) by (i& r).
But by following the method outlined below one 6nds readily that
these contributions vanish,

m m
ir+ = its+ (1+2a)

M+m M+m
(2.11)

The terms involving ~s and a do indeed cancel in (2.11),
but the remaining "Dirac" contributions lead to the
condition

m/(M+m) =1, (2.12)

which is satisfied only in the special case M/m, —+ 0.
Kith some changes, our model reduces to the hydro-

gen atom, neglecting the nuclear spin. Our "p" then

~~ R. G. Sachs, Nuclear Theory (Addison-%esley Publishing
Company, Reading, Massachusetts, 1953).

'6 M. Danos, University of Maryland technical Report No. 221,
1961 (unpublished).

The presence of the reduced mass will prove crucial in
the sequel. Indeed Siegert's theorem" ""tells us that
the expressions on the right of (2.8) are more generally
valid than those on the left, for instance in the presence
of exchange forces. In more complicated systems such
as we shall meet later, the operator e p/M in (2.5) is
therefore replaced by sioe D, where D is the standard
electric dipole operator for the system relative to its
center of mass. (Recall that only relative coordinate
operators, but not the coordinate of the mass center
itself, can lead to photon absorption. ) In these more
complicated situations, the spin-orbit operator in (2.5)
is simply summed over all the particles, each taken with
the appropriate value of charge, mass, and anomalous
moment.

Returning to our model, we substitute (2.8) into
(2.6); the to's cancel, and the completeness of the states

I f) allows us to write

K K'= (m'Mit—/M')(1+2')&ol I
(e* r)tr exp

+o.e*xp(e r) jl0),
= (tr Mii/M')(1+2~)&oloo&I. s—il x,p,j}lo),
= (a7r'Mz/Ms) (1+2K)&0 I os(I-o+1) I 0),

K K'= (mr'Ma—/M') (1+2~) . (2 9)

Here, 1.0 is the s component of the orbital angular mo-

mentum, whose expectation value vanishes since
I
0) is

an S state. Evidently we also find (K" K)—
= —(K~ Ko), whence—

Kr —E"=E= 2/nMir (1+2~)/M'. (2.10)

Thus (2.3), (2.10), and (2.7) show that the DHG rules

for p and p' are compatible only if the following condi-
tion is satis6ed:
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corresponds to the electron, and 0 to the nucleus; o is
now charged oppositely to 'p". Hence both o and 'p"
contribute to the E1 operator 0, which becomes just
er, while the atom, p', becomes neutral. We can even
allow a hypothetical Pauli moment (i.e., one indepen-
dent of n); then (2.1) is replaced by K'/2M'= (»+ 1)/2M,
(2.10) by K = 2 s' n{1+2 K)/M', and the consistency
condition (2.11) by (K+1)'=&Ks+(1+2»)), which is
satisfied identically. Thus hydrogen obeys the DHG
rule; for infinite proton mass this has been pointed out
already by Drell and Primack. ' However, for nuclear
charge Z&1, the rule would fail again.

3. THE DEUTERON

In order to discuss the deuteron we need the analog
of (1.1) for particles of spin 1. The dispersion relations
for Compton scattering and the threshold theorem have
been generalized to particles of any spin by Lapidus and
Chou Kuang-Chao. "From their results, supplemented
by convergence assumptions like those discussed in
Sec. 1, the DHG rule for the deuteron follows on exactly
the same footing as (1.1):

after spin averaging would reduce to the sum rule of
Rustgi and Levinger":

1+»„
K(M) = —~snI (3.4)

The negative sign arises because conservation of angu-
lar momentum along the incident direction allows pho-
tons to be absorbed in these M1 transitions only if their
spins are antiparallel to the deuteron spin.

In addition to K(M), there is also a contribution
K(E) from E1 transitions. This is readily calculated
along the lines of Sec. 2, recalling that the reduced mass
is given by

M g M——~„/(M~+M„), (3.5)

and that in the spin-orbit coupling as written in (2.4)
the factor (1+2»)e/4Ms must now be replaced by

[(1+2» )/4M'3n +UK-/4M-'jn .
The calculation is made easy by observing that only
triplet states are relevant; it yields

«'L~~ —e/M~)'= —L«~(~) —«"(~)3=—~e (3 1)

M„1+2»r 2»„)
K(E)= 2s'n

M~+M M~s M sI
(3.6)

For the moment we allow for the hypothetical possi-
bility of significantly diferent neutron and proton
masses; and for simplicity confine ourselves to a
"model" without tensor forces, D-state admixtures, and
exchange currents. Then the deuteron is a 'S~ state, and
its total magnetic moment p, & is given by

pe= e(1+»„)/2Ms+e»„/2M„. (3.2)

As before, we split Jd into a high-frequency part equal
to (J„+J„),and a low-frequency part K due to photo-
distintegration without excitation of the individual
nucleons. Assuming the DHG rule for the nucleons, we
get

/1+Ks, »„1
+

(2M„2M„My+M J

/Ks K~= 2s'nI + +K. (3.3)M'

It remains to estimate K. Because of the spin depen-
dence of the binding forces, the orbital wave functions
of the continuum 'So states are not now orthogonal to
the bound (triplet) state; hence in the sum correspond-
ing to (2.5) there is a contribution K(M) from M1 dis-
integrations into these 'So states. '" An elementary cal-
culation, relying on the completeness of their orbital
wave functions, yields a closed form for K(M), which

"L I. Lapidus and Chou Kuang-Chao, Zh. F.xsperim. i Teor.
Fix. 89, 1286 {1966) LEnglish transl. : Soviet Phys. —JETP 12,
898 {1961)j.

Recall finally that because of their diferent parities,
there is no interference between E1 and M1 contribu-
tions, so that

K=K(M)+K(E). (3.7)

Then it follows from (3.3), (3.4), (3.6), and (3.7)
that the DHG rules for the nucleons and for the deu-
teron are compatible only subject to the following
condition:

1+Ks »„2 ' ( K„s

EM„s M„s)

/1+»„K.~ 2M„ /2»„+1 2». ~I+ I;—,I (3g)
M„J M„+M„E M„s M„si

Most remarkably, all terms involving ~„and ~„do
cancel in (3.8), which reduces to

M„(M +M~) M~'(M„+M )
(3.9)

For the physical deuteron, M „=M„(to order n), and
(3.9) is indeed satisfied. It would also be satisfied in the
limit, reminiscent of (2.12) above, where M„/M„—+ 0.
However, it appears that for "general" values of
M„/M there is an inconsistency; for M~)M even
the signs fail to agree.

The DHG rule for the deuteron has already been
considered by Gerasimov' and by Pagels. "However,

'SM. L. Rustgi and J. S. Levinger, Progr. Theoret. Phys.
(Kyoto) 18, 100 (1957).
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they omit the contribution E(E) (as we also did in the
original version of the present paper), and conclude
therefore that the rule breaks down even in the physical,
equal-mass case. We are informed that conclusions
identical to ours have also been reached independently
by Primack (unpublished), both as regards the deuteron
a,nd as regards the hydrogen a,tom.

4. THE A=3 ISODOUSLET

He' and H' have exactly the same quantum numbers
as the nucleons. For simplicity we treat their orbital
wave functions as totally symmetric in the three nucleon
coordinates, and again we neglect exchange currents;
these are reasonably good approximations. Then one has

~(He") =~-, ~(H') =~. (41)

Sy the same procedure as before, we write the DHG
rule for He', say, as follows (recalling that Z=2):

ggp2n(» /2M —2/6M) = J(He ) =J„+E(He3). (4.2)

Hut by a, coincidence, the bound-state wave function is
an eigenfunction of the M1 operator, so that there is no
M1 contribution" to K. The E1 contribution follows
straightforwardly along the lines of Sec. 2:

E(He') = Snm» —/3M'

For H~ one finds

E(H') =+4nH (1+2»„)/3M'.

This can be interpreted very simply by comparing it to
(2.10), and noting that, as seen by the E1 operator, H'
consists of two neutrons forming a subsystem of spin 0,
plus an odd proton, and that the reduced mass is 132M.

Now, (4.2) and (4.3) show that the DHG rules for
nucleons and for He' are compatible only subject to the
foHowing condition:

by introducing a neutral particle e which forms an iso-
doublet together with p, and assigning i spin zero to 0;
then p' and n' also form an isodoublet. Because the con-
tradiction in (2.11) affects only the Dirac part, the
DHG rules for n and m' are compatible; hence the in-
compatibility between p and p' entails a simultaneous
breakdown in both isoscalar and isovector rules.

The physical deuteron is isoscalar; so, of course, is its
magnetic moment. Hence the isoscalar analog of (3.1)
reads

4m'[pg e/Md]—'= Jg', (5.1)

where Jd' is defined as in (3.1), except that it refers to
the absorption only of isoscalar photons. But both the
cV1 and the E1 disintegrations are isovector; therefore
J&' has only a high-frequency part, which equals 2J&'.
Thus (5.1) becomes

(mr'/M')(»„+», .)'= 2( 2''n/M')» '

4~'n»~+» ) 5.2)
M' -2 )

in other words it is satisfied identically. Similarly the
isovector moment is zero, so that the isovector rule
reads

0=E(M)+E(E)+2Jy",

= —(7r'n/M') (1+»„—» )'+ (7r'n/M') (1+2»„—2» )

2n'n /»„—»„
y2- (, (5.3)

which is also true. [In (5.3), we have used (3.4) and
(3.6) with M, =M„=M.)

For He' and H' the disintegration contributions, like
all E1 transitions, ""are again pure isovector. There-
fore the isoscalar DHG rule reads

The corresponding condition for H' reads

(»„+-;)'=»,+-', (1+2»„). (4.5)
2m n»„+»„)

(5.4)

(4.4)
8~'~ L (p (He') —2e/6M)+ (p (H') —e/6M) O'= J~'

The terms involving the»'s cancel in (4.4) and (4.5),
but in both cases the remainder is absurd.

S. ISOTOPIC SUM RULES

By starting from the 5U(2) isotopic-spin current
algebra, separa, te DHG rules have been derived for the
absorption of isoscalar and isovector photons. ' "In the
present section we test these rules by the methods
already used above.

The model defined in Sec. 2 can be adapted trivially

"For references, and for experimental data on He', see V. N.
Fetisov, A. N. Gorbunov, and A. T. Varfolomeev, Nucl. Phys. 71,
305 (1965).

'-' M. A. B. Beg, Phys. Rev. Letters 17, 333 (1966)."K.Kaivarahayashi and &. &P, &Vada, Phys. Rcv. 152, 1286
(1966).

which is satisfied by virtue of (4.1). By contrast, it is
trivial to verify that the isovector rule breaks down.

The isoscalar rule for He' and H' has been considered
already by Konisi and Yamamoto. ~ They do not intro-
duce the disintegration cross sections at all; as we have
seen, these are indeed absent from (5.4), so that the
correct conclusion is reached, namely that the isoscalar
rule holds. These authors also discuss the isoscalar rule
for the deuteron in the same way.

6. COMMENTS AND CONCLUSIONS

In this section we attempt to forestall some possible
objections which we believe are invalid or irrelevant, and
list some doubts that we do entertain,
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A. One might be tempted to hope that even though
the integrals J converge for nucleons, they will diverge
for bound states, and thus necessitate a subtraction
which would automatically prevent one from trying to
apply the DHG rule. But our arguments suggest that
the integrals in question either all diverge or all con-
verge, unless the additivity assumption fails even for
photons of arbitrarily high frequency, or unless there
are additional and asymptotically dangerous contribu-
tions to the distintegration integrals, such as might
arise for instance from derivative couplings in the strong
(binding) interaction.

B. The additivity assumption as regards the J's is
certainly not fulfilled exactly. But we see that it would
have to fail very badly in order to restore all the DHG
rules; moreover it would have to fail in a way precisely
dictated by the mass ratios and the anomalous moments
involved Lwitness for instance the left-hand side of
(3.8)], but which is completely independent of the
bound-state wave function. This possibility of escape
would appear to be rather remote. "

C. There may be a subtle ambiguity associated with
the use of the Foldy-Wouthuysen transformation lead-
ing to (2.4). This transformation, if carried further,
introduces couplings which contain higher derivatives
of the radiation field, compensated dimensionally by co-
efIicients of higher order in M '. Such terms contribute
to the summand in (2.5) with extra powers of a&/M, and
it is conceivable that eventually the sums cease to con-
verge. We underline that hitherto no such ambiguities
are known in applications of the transformation; we
point out the possibility not because we expect it to be
relevant, but because we cannot rule it out rigorously.
Even if present, it would presumably imply only that
the series resulting from the Foldy-Wouthuysen trans-
formation is an asymptotic one; to affect our conclu-
sions one would need to show that already the next-to-
leading term, with which we are concerned, is
misleading.

D. The ambiguity discussed in paragraph C could
be avoided if we could make a fully covariant calcula-
tion of the disintegration integrals. Then the treatment

' For instance, if additivity is seriously upset, it would be ex-
pected that the ~-dependent terms will no longer cancel, barring
yet another fantastic coincidence.

would become independent of the assumption, implicit
in the foregoing, that closure (over positive energy
states) and the Foldy-Wouthuysen transformation
commute. Unfortunately, because of the need to
account for center-of-mass and reduced-mass effects in
our two-body and three-body systems, we know of no
way to do this. Of course, this is just the reason why we
have restricted ourselves to discussing nonrelativistic
examples after first carr~ ing out the Foldy-Wouthuysen
transformation.

E. Subject to these provisos, we conclude from our
explicit examples that in general the assumption (1.5),
(fs(~ ) =0), underlying the DHG rule is violated either
for lightly bound states, or for their constituents, or for
both. Since an additive constant f&(~) must certainly
enter the spin-independent part of the forward Compton
amplitude (irrespective of any possible need for sub-
tractions to secure convergence), the presence of a simi-
lar constant fs(ao) in the spin-dependent part as well is
not in itself surprising. The need for it is unlikely to
depend critically on the precise magnitude of the bind-
ing energy; hence there would seem to remain no clear-
cut criterion for deciding, a priori, whether the DHG
rule should be expected to apply to any given particle.

Two complementary conclusions follow. First, em-
pirical verifications of the rule, if they are only rough,
become less significant, because rough agreement might
well be accidental. Second, close verification becomes
even more remarkable than before, because, far from
confirming a tautology, it wouM establish a property
which some particles (e.g. , either H', or the proton, or
both) certainly lack. In particular, it becomes very
interesting to check just how closely the proton does
satisfy the sum rule. "
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