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Relativistic Parametrization of Resonances: the 9 Meson
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We construct a simple formula for a resonant scattering amplitude which employs relativistic phase space
and possesses reasonable analytic properties in the total-energy variable. This formula is a direct analog of
the nonrelativistic Breit-Wigner formula and contains the same number of parameters. With it, one can
immediately calculate electromagnetic form factors and determine the relative contribution of each channel
to the formation of the resonance. Application to the p meson indicates that the p resonance alone is not
sufBcient to explain the isovector form factor even when many channels are taken into account. It is also
noted that the dominant channels for making the p are the NX and mes, but not the m~. The coupling of the
~co channel to the p produces a ~m ~ vrcu cross section which has an enhancement near the 8-meson mass due
solely to the decrease of the p pole with increasing energy and the phase space of the +co channel. The value of
the isovector form factor in the timelike region is also calculated. Values for the p-wave ~x phase shift are
computed and compared with the nonrelativistic prediction,

I. INTRODUCTION

'HE dominance of nearby singularities in a scat-
tering amplitude has been exploited expensively

in S-matrix theory treatments of strong interactions.
In particular the dominance of a nearby pole plus the
requirements of unitarity have been used to describe
the behavior of the scattering amplitude in the neigh-
borhood of that pole. The size of the region in which the
scattering amplitude is accurately approximated is
roughly bounded by the nearest singularity that is in-

correctly treated. The most commonly used parametriza-
tion in the case that the pole corresponds to a resonance
is the Breit-Wigner (BW) formula. This treatment,
while exact at the pole, suffers from several deficiencies:
(1) Since only open channels enter into the BW
formula it cannot describe a resonance with energy
just below a closed-channel threshold as it neglects this
nearby singularity. (2) It produces poles on all sheets of
the scattering amplitude. (3) The position of the pole
is an independent parameter which is not related to the
partial widths and hence the SW formula says nothing
of the role each channel plays in the dynamical origin of
a resonance. Relativistic kinematics produce numerous
singularities making the analytic properties of the
amplitude complicated if not incorrect. (5) The BW
formula gives no direct information about form factors
that may contain the resonance as an intermediate
state.

The treatment of resonances in the E-matrix for-
malism overcomes the 6rst difhculty, and has been used
extensively in treating resonances of poles near thresh-
olds. ' It also can describe the case where a pole exists
only on certain sheets of the scattering amplitude. ~ De-
6ciencies 3—5 still exist in the usual E-matrix
formulation.

The ED ' formulation with the left-hand singulari-

' R. H. Dalitz, Strange Particles and Strong Interactions (Oxford
University Press, Oxford, England, 1962), Chaps. 6 and 7;
F. Uchiyama-Campbell, Phys. Letters 18, 189 (1965); A. W.
Hendry and R. G. Moorhouse, ibid 18, 171 (1965);P..N. Dobson,
Phys. Rev. 146, 1022 (1966).' W. Frazer a~nd A. W. Hendry, Phys. Rev. 134, B1307 (1964).
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ties approximated by a pole, as described by Shaw and
Nath, 3 overcomes the remaining difIiculties but at con-
siderable cost in complication.

In this paper we will obtain a parametrization of a
resonant-scattering amplitude which overcomes all of
the above-mentioned diQiculties but is still rather simi-
lar to the BW formula and contains no more free
parameters.

II. SIMPLE ND i DESCRIPTION OF
A RESONANCE

At a fixed energy an n-channel scattering T matrix is
completely determined by specifying the elements of
the E matrix which is real and symmetric. Thus T
depends in general on —,'N(st+1) parameters. For the
special case of a first order pole in the T, the residue is a
factorizable matrix depending on only n parameters.
The BW formula is obtained by assuming that the
residues of the pole are independent of energy except for
phase-space factors.

If we consider the matrix ED ' equations in which the
left-hand singularities have been approximated by a
pole, we find that the integral equations for E and D
reduce to quadrature. The following results are obtained
for E and D:

&'s= &'t/(s+so),
s+s„" P;(s')Bcsds'

D"=6"—
241 23

, (s'+s„)s(s'—s)
=5„+a,,R,-(s),

where
~'s = (&D ') s

= 2''s/(p'ps)'",

8;; is the residue of the left-hand pole at —s~ in M;;,
l; is the threshold of channel i, and p;(s) is the phase-
space factor for the ith channel.

With the above de6nition,

~;; I» = [4~(21+1)/It'jp;p, t M;; )',
' P. Nath and G. L. Shaw, Phys. Rev. 138, B702 (1965),
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where r;;&~& is the total cross section for the processi~ j with total angular momentum J, and k is the
incident momentum in channel i in the center-of-mass
system.

Thus we see that for even the simplest phenomenolo-
gical interaction the A D ' equations depend on
~zzz{&z+I) parameters, the residues of the interaction
pole. It is clear that in a phenomenological description
of a resonance, only m parameters and the position of the
interaction pole can be determined from the partial
widths and the position of the resonance, and the re-
maining zzz(&z —1) parameters can only be determined
by the detailed energy dependence of the partial wave
in question. The number of undetermined parameters is
quite acceptable for n=1 or 2, but in strong coupling
physics where all channels with the same quantum
numbers are essentially equal, one may easily imagine
seven important channels coupled to the p meson. In
this case we are left with 21 parameters after the first 8
are fixed by the data.

In view of the disparity mentioned above, we propose
the following parametrization of a resonance containing
no undetermined parameters, but possessing all of the
advantages of the SD ' parametrization.

If we assume that the input residue is factorizable, we
obtain

and
1V@——C;C,/(s+s„),

D;; =8;,+C;C,R;(s),

where we have set 8;,=C;C; and

R, (s) =—s+s " p;(s')ds'

(s'+s„)'(s'—s)

It is easy to show that

detD= 1++;R;(s)C;z,

(D );;=8;; R, (s)C;C—,/detD.

Thus, N =ED ' yields

M;, =C;C~/[( +s )(1++;R, (s)C;"-)]. (2)

The simplicitv of this result is due to the algebraic sim-

plicity of S;;.This is seen explicit, ly in the Appendix.
It is clear that the e residue parameters and the pole

position can be determined from the partial width and
resonance energy. The ratios M;;/M;& are independent
of energy because of the simple form of D '. Further-
more, in the nonrelativistic limit, the above expressions
reduce t.o the BW formula.

By employing the above formula we obtain a para-
metrization with the following properties:

(a) Relativistic cinema, ties are employed v ithout in-

troducing unwanted singularities.
(b) The scattering amplitude is completely deter-

mined by the resonance parameters.
(c) Since the amplitude is resolved into E and D ',

the D functions can be identified and the form factors
resulting from considering the resonance as an inter-
mediate state in the coupling of each channel to the
photon (provided the resonance is 1 of course) are as
follows:

F,(s) =P F, (0)D, I, (0)Dg;
—'(s) .

(d) The expression for D ' is suKciently simple so
that it can easily be generalized to a continuously infi-
nite set of channels. The sum over i goes over into an
integral. Thus it is possible to handle many-body
thresholds in this approximation. For example, an
s-wave 3+ threshold can be represented by

s+ sy
E3=

where

3m )'
ds

2m &'

p, (s')dt

(s'+ s„)'(s'—s)

(e) If threshold properties are ex~ressed as linear
relations between T-matrix elements, the threshold be-
havior is guaranteed automatically by the input
residues.

(f) Since the value of sz is determined by

P; C;zR, (s,)+1=0,
the relative contributions of each channel toward pro-
ducing the resonance (in this model) is given by

CPR;(s]z) .
This at least gives a rough indication of the relative im-
portance of each channel in the dynamical origin of the
resonance. 4

With p;(s) = p'/F. = [(s—t~)'/{16s)j'~', appropriate
for a p-wave channel, we find that as t;—+ ~,
R;{s~)~1/t, , which is encouraging. This means that, all
other things being equal, the more distant the threshold,
the smaller the contribution to the formation of the
resonance, as v'e would expect.

It is interesting to note, however, that while thresh-
olds above the resonance always produce positive con-
tributions to the formation of the resonance, the same
is rot true of all the thresholds besom the resonance. In
fact, if the resonance is far enough above the threshold
t;, then Re[R;{sa))(0.In such a case, it would appear
that such a channel would have to be considered as im-
peding rather than helping the formation of the
resonance.

Ke would also like to point out that the use of a
factorizable residue for the interaction pole is not with-
out some theoretical justificat, ion. If one considers a

4 We wish to thank G. F. Chew for calling to our attention the
above interpretation of the relative contributions of each channel
to the formation of a resonance.

(s—2[(gt m)'+m —']+,Dgt .m) m —']', s,)'
-'—&'.

p~=/
4s
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TABLE I, The necessary data for the parametrization of the p meson as described in the text. The t; and I; are the thresholds.
For any channel t = (mi+m&)' and I= (mi —m2)', where mi and m& are the masses of the particles involved.

Channel
(i) Particles

pg
E*E

NN(++)
NN(+ —)

Masses

m. —1

m =5.61
m~ ——3.56
m p

——5.47
m„=3.93

m~*=6.38
mN =6.72

Thresholds

(t;) {u;)

4.0 0
43.7 21.2
507 0
88.4 2.37
98.8 7.90

180.6 0
180.6 0

Coupling
constants

(|-")

0.90
0.47
0.45
0.27
0.47

0.64 (1+3.7s/4mst')
3.00

Photon
coupling

constants

e

0.56e
e/2

0.33e
0.56e
e/2

2.35e

Functions (p;)

L (s —t~)'/16s]"
P(s —t&)'(s —tt&)'g"/(16s)

L(s—t,) /16sj~'s

Inp2, let m ~ m„m„~ m,
Inp2, let m + m~, m ~mg+

mN'$(s tp)/s—j'~'

P (s tv) s/—4g'~'

dynamical model for e channels, each with two equal
mass particles (i.e. , hatt; for the pth channel), in which the
interaction arises from the exchange of a single particle
of mass m, the coupling-constant matrix for that pole
in the momentum-transfer variable will be of rank one
(factorizable) in the crossed channel. The multiplication

by the crossing matrix to obtain the direct-channel
interaction cannot increase the rank of this matrix. The
resulting interaction is of the form

Q m2-m 2-m 2 1
v 2f

B; ($)= Qt
(q'qt)"' 2q,q;

If one now approximates 8;, by a pole and adjusts the
residue so that the pole approximation agrees with the
Born term at the threshold t;=4m, then

C,,= (s;+s,)1~„t(t,)-G,,
(ss sstP m,'—+ ', t,)—'+'-

Thus, if ~yg;s —ttttp~&(m', C;; is factorizable. So, we see
that for single-particle exchange, C;, is factorizable pro-
vided the mass of the exchanged particle is large com-

pared to the energy separation of the channels involved.

III. PARAMETRIZATION OF THE p MESON

Let us consider the 7-channel problem consisting of
the J~=i, I=i, states of x7|., ~M, ICK, pg, E*E,
NN(++), NN(+ ). The (+&) r—efers to the helicity
values of the NN system, properly symmetrized to give
the correct parity states. ' This is a situation with one
known resonance —the p meson. The equations de-

veloped in Sec. II may be applied directly to give a one-
resonance approximation to the scattering amplitude.

A. Calculational Details

In Table I is to be found a synopsis of all the numbers
that enter into the calculation C"= g'/12sr and we have
used g...'/47r=2. 0, g, trg'= ,'g, ,', g, „'/4p -=0.67m, ',

obtained from SU(3), the values for g„,' and g,„'
from the widths of the p and co mesons. ' The couplings we

~ M. Jacob and G. Wick, Ann. Phys. (N. Y.) 1, 427 (1959).
6 See Appendix II of Ref. 13 for a discussion of the details of

these determinations.

have used are V„[(B„Pt)P pt (g„p—)g, p„„„,et„p'„g„p,'p, '

and —',&eNLay„+ (b/2slp;) ~„„P„jN,where V is the vector
meson, I' is the pseudoscalar meson, N is the nucleon,
and P= p~+py. The NN(++) coupling constant is
-', (a+bs/4m'), that for NN (+—) is —', (a+b). It is known
that a'/4x 2.0 and the anomalous isovector magnetic
moment. of the nucleon suggests that (a+b)/a= 2.35/0. 5.

The coupling constants in Table I do not go directly
into formula (2), but must be multiplied by a factor de-
pending on s„and the R, (s). This factor will be dis-
cussed in a moment. Table I also gives the p functions
chosen. In order to make the integrals over channels 2,
4, and 5 converge, the following convergence factor was
used:

c($ sp) = (sp/$)0($ sp)+0(sp —s) .

This yields the same asymptotic behavior for each
E;(s), and was chosen for that reason.

B.Nucleon-Coupling Constants

The NN(++) amplitude leads to minor difhculties.
One would expect that Cp(s) should be evaluated at
s=m, '. This causes two problems:

(1) The 'D~ threshold behavior requires Cp=C7.
(2) Gssr(0)/G~" (0)=2.35/0. 5 suggests (Cp+C~)/Cp

=2.35/0. 5. t GMr(q') and Gzr(q') are the isovector
electromagnetic form factors of the nucleon. ) Allowing
C6 to vary with s as shown in the table solves both these
problems but introduces two more:

(3) Two unwanted poles appear on the physical
sheet, fairly far away, however.

(4) Gss(q')/G~(q') Gss(0)/Gtt(0) fo—«&q'&50tmm'.
The unwanted poles are not a serious difhculty; they

are far away and we are only approximating an analytic
function anyway. Point (4) was solved at the cost of
some more analyticity, by taking

C6=0.64, s&0
=0.64(1+3.7$/4mtp ), $&0.

The approximation still has all the features it had
before, plus threshold behavior and a nice form-factor
relationship. These adjustments are not severe ones, and
it is hard to believe that they seriously affect the results
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Io l C. Results
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FIG. 1.The function Q(s), as described in the text.

As described in the Appendix, the C; which appears in
(2) are related to the C,' of Table I via the relation
C;=kyC .

Having determined s„and the C;, one may use (2)
immediately to calculate cross sections, and (3) to cal-
culate form factors.

The cross sections all depend on the function

Q(s) = I1/L(s+s.) (1+2 R*(s)C')jl'

of the calculation. That this is so was checked by cal-
culations with C6=constant; the essential features of
the results were unchanged.

Using the parameters and p functions of Table I and
the nucleon-coupling constants as described above, the
procedure of the Appendix was carried out by a com-
puter, which found

so=+50.9m„', kq = 1.08,
with

so=120m '.

Some of the results have been selected and presented
in Figs. 2—4. The mw cross section shows the expected
peak at the p mass (Fig. 2). The sr'-+ mar cross section
(Fig. 3) shows a bump near the 8-meson mass, although
eo resonance has been inserted near this peak. This is
entirely an effect due to the decreasing contribution of
the p pole and the threshold behavior of the channel.
Comparison with the experimental curve of Abolins
et cl.7 (see Fig. 4) shows some similarity. No parameters
have been juggled here; and it is clear that one can
obtain a "8"meson merely from the decay of the oG-
the-mass-shell p meson. s

In Fig. 4 is seen the nucleon form factor for spacelike
q', normalized to 1 at g'=0. The available experimental
information has also been indicated, also normalized to
1 at q'=0. As one can see from inspection, the agree-
ment, while qualitatively good, is not good in a quan-
titative sense.

The curve of Fig. 4 was produced after many trial
values of the pSÃ-coupling constants. The reader may
have noticed in Table I that g, /g~ =g,„ /g~„=
=g,sr*rr/g, ~*rr 0 90/——e, . but that g,„~(s=0)/g, ~~
= 1.4/e. The reason for the difference is that g,~~ (s=0)/
g~~~ )09 0/e makes the nucleon form factor fall off
more quickly with increasing q2. The Anal choice for
go~~ reflects this fact. If one chooses g,~~(s=0)/g~~~
=0.90/e, then the form factors for all channels are pro-
portional, and are given by

P, (s) =J,(0)/L1 —g R,(s)C,2j,

which simply says that they all look like 1/(q'+m ').
In the timelike region, preliminary results indicate

that for s= 350m ',
~
Ger j &0.2.' The theory here yields

~

G&sv
~

=0.5. Not knowing the isoscalar Gse, there is not
much more one can say.

D. Relative Contributions to p Meson

By examining the various R;(s)Ce2 at s=m, ', one can
see what channels most contribute to the formation of
the p meson in this calculation. One 6nds that the

9—(10%) + (30%)
+ (20%)KoK+ (40%)gN (+ ). —

in the following way:

o;;= (12~/h') p,p„.C,"-C Q(s),

where the p's are as given in Table I and k is the incident
momentum in the center of mass. This function Q(s) is
plotted in Fig. 1 for s~, so, and the C; as given in the
previous paragraph. Thus, if desired, it is a simple
matter to calculate the cross sections we do not ex-
plicitly discuss in the next section.

The actual numbers, as obtained from the computer

7 M. Abolins et al, Phys. Rev. Letters 11, 381 (1964).' For a more detailed and somewhat different discussion of the
p —+~or decay and the 8 Ineson, see M. Parkinson, Phys. Rev.
T etters, 18, 270 (1967).

" A, Tollestrup et al. , i~ Proceedings of the Thirteerztlz Interrogational
Conference ol Hegh Ersergy Ehysecs, Berkele-y, Caleforma, 1966
(University of California Press, Berkeley, California, 1967).
We would like to thank Professor Tollestrup for a discussion of
his results.
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cross section. t
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run, were: ReI R„(s)]just happens to have its second zero very
close to s=m, ' (one zero is at s= —s~). This is an ex-
plicit example of the remark made at the end of Sec. II.

P9
E*E
Ejtr' (++)
EE(+—)

16%

42%.

I I I I I I I I I I I I

3

2—

b

I I I

50
I I I I I I I I

100 150
s/rn~

FIG. 3. The x~ ~ vrco total cross section. The solid curve is the
theoretical prediction. The histogram is from Abolins et al. (Ref. /},
who constructed it by Chew-Low extrapolation of their ~p —+ ~~p
data. For another, somewhat different, discussion of this process,
see also Ref. 8.

One sees that, if anything, the p should be considered
as a EE bound state rather than a s.s. resonance, even
though it is only seen directly in the ~m channel. 4

One cannot help noticing the smallness of the mm con-
tribution to the p. It turns out that by increasing slightly
the coupling constants involved in this calculation,
which shifts s„ to smaller values, one can make the xm

contribution zero or even negative. This is because

IV. SIMPLE ANALYTIC FORM FOR
p RESONANCE

In view of the fact. that experimentalists are now
attempting to determine xx phase shifts, "it would seem
to be useful to have a closed and relatively simple
analytic form that describes the p meson. The expression
to be derived here is suggested by E-matrix theory
rather than the tV/D method, although both are
equivalent.

First of all, we have from unitarity

Z';, ('& '=It;, ('& '—ip;;('&0(s—t,) (4)

where p;, ('&= p;('&(s)8,;, which gives the usual de6nition
of the E matrix; as before, t; is the ith threshold, and
p;(s) is the phase-space function for the ith channel.

However, Eq. (4) is not analytic, due to the step
function. This can be remedied by replacing p;;(s)8(s—t,)
by " 1 p;, (s')ds'

E;,(s) =
g; ~$ —$ —ZC

(the"'limit e-+ 0 is understood), and now defining the
E matrix by the equation

Z '(s) =X-'(s)—E(s). (~)
If the integral defining E does not converge, we can

make subtractions, as in dispersion theory; e.g. ,
s—so " p(s')ds'

E(s)=a+--
(s' so) (s' s—'is)—

"W. D. Walker et al., Phys. Rev. Letters 18, 630 (1967);
P. Schlein and E. Malamud (to be published}. We would like to
thank Professors Schlein and Malamud for a discussion of their
work.
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Therefore,

( s—sR
T=C (s,—s)~ 1+

p(s')C

s sg s —s —z6

Calculating the inverse of the bracket and multiply-
ing by C, we again obtain a very simple result due to the
fact that the C factorizes:

s—sg
T=C (sR —s) 1+

p, (s')ds'
C,s, (7)

s sB s s z6

a formula whose similarity to the Breit-Wigner formula
is more easily seen if placed in the following form:

0.0
0

q /m~

150

n

D(s) —i P p;(s)8(s I;)C,x-
i=i

(8)

I'IG. 4. The nucleon isovector form factor, normalized to 1 at
q'=0, shown for spaceIike q'. The dashed curve is the (very good)
fit to experiment given by the formula m'/(q'+m')' with
eP =36m ' Lace K. W. Chen ef a/. , Phys. Rev. 141, 1267 {1966)j.
The theoretical curve (solid line) was produced using (3) and the
parameters of Sec. III of the text. The experimental error bars
associated with the dashed curve are much smaller than the maxi-
mum spacing between the two curves.

where

aIld

I (s) = (s—sR)'P
p;(s')ds'

S —Sg S —S

n

D (s) =sR s P(C,s/~—)I;(—s),

(s—sR)'
R(s) =

p(s')ds'

(S —SR) (S —S —se)

if one subtraction is enough. Next, at sg, the resonance
position, we know the T '(sR) has a simple zero; further-
more, E ' contains the coupling constants and must also
have a simple zero."Therefore, as s —+ st, , E—' —+ C—'
&& (sR—s) where C factorizes (i.e., C;;=c;c;), since it is
just the matrix of the coupling constants. In order that
E.(s) make no contribution at s = sR, we want
E(s) ~ (s—sR)' near s=sR. Thus, we want fwo subtrac-
tions at s=s~ in the definition of E:

where PJ indicates a principal-value integral.
Equation (8) is the same formula as Eq. (2), except

that s—s~ is factored out instead of s—s„. Other than
that difference in form, they are the same analytic func-
tion. It remains to explicitly evaluate the various inte-
grals involved. From Table I we take the parameters to
use in the evaluation of Eq. (8). We will not include the
the EX and A'E(++) channels because they do not
contribute significantly to the formation of the p meson,
as shown at the end of Sec. III.

Let us de6ne the following functions:

for t&s&A,

for N&s(t,

for S+R

Js
f(s, t,N,A) =P, (0&u(t)

L(s' —I) (s' —t)]" s' —s

—2 s—e A 6,"'—
f=

j(s—u) (s—f)j'" s t A —u)—
2 s nA f )"'-— —

f= tan —'
L (t—s) (s—I)g'~' t sA —I)—

2 s—I h.—t
tanh '

((s—I) (s—f)j'i' s t A —u—
A nonrelativistic derivation similar to the relativistic one presented here may be found in R. H. Dalitz, Strange Parties end

Strong Interactiols (Oxford University Press, Oxford, England, 1962), p. 64.
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((A—t)/(A —u) ]'t'(u —t)1 (t+u
f'(s, t,u,A) =—f(s,t,u,A) = +i —s f(s, t,u, A.)

Bs (s—t) (s—u) (t—u) —{1—P(A —t)/(A —u)]'~') (s—u) k 2

Ht(s, t) =P

H2(s, t) =

(s' —t)' (s—t)'
f(s, t,0, ~)

Ls'(s' —t)]"2 (s' —m, ) (s'—s) (s—m, ')'

r) t (m '—t)'q (m '—t)'
+ i if(m, ', t,0, ~)+ f'(m, 2, t,0, ~),

am, 2& m, '—s i ''' '
m, '—s

(s' —t) (s') ds' (s—t) (s)
f(s,t,0, ~)

~ L"($'—t)]'" ($'—m')'($' —$) ($—m')'

Ha($&t, u&A) =P

c) ((m, '—t) (m, ')) (m t) (m —)+
I if(,', t,0,-)+ ' f ( „t,o, -),

am 'k mp' —s m' —sP

ds(s' —t)'(s' —u)' t'u r) ((m ' t)'(—m '—u))+
$(s' —t) (s' —u)]'~' s'(s' —m, ') (s' —s) $(m ')' Bm '5 m '(m '—s)

(s—t)'(s—u)-

s mp' —s'
A.—2r (u+t)) t'u' r) (m,'—t)'(m, '—u)'-

cosh '
i

— f(0,t,u,&)+ f(m, ', t,u,&)
-'(t—u) j s(m ')' c)m ' m '(m '—s)

(m 2—t)2(m 2—u)2 (s—t)'(s—u)'
+ f'(m, ', t,u,&)+ f(s,t,u,A) .

(m, '—s)m, ' s(s—m ')

D(s)=m '—s—

Then D(s) is explicitly

(s-m ')'
L(C1/4)H1(sqtl)+ (C2 /16)H3($)tm, u2,A)

+ (C4'/16)H3($)t4)u4)A)+ (Cz'/16)H3(s, t&,us,A)+ (Cr2/2)H2(s, t7)], (9)

where the C;, t;, and u; are taken from Table I. In the one used before. We expect (9) to be a good approxima-
above formula, we have used a sharp cutoff A. on the tion to reality only in the region isi &A. Since
vector-pseudoscalar channels rather than the gradual

2'= e" sin8/p = 1/[p cot8—ip],
TmLE II. Numerical values for the p-wave mm phase shift

from Eqs. (7) and (8) of the text. we may use the formula

s/ra '
18.0
19.6
21.2
22.8
24.4
26.0
27.6
29.2
30.8
32.4
34.0
35.6
37.2
38.8
40.4
42.0

s'(s)
{nonrelativiatic}

(radians)

0.209
0.270
0.350
0.458
0.607
0.814
1.093
1.424
1.747
2.008
2.199
2.337
2.437
2.512
2.569
2.615

b(s)
{relativistic)

(radians)

0.244
0.308
0.388
0.495
0.640
0.839
1.105
1.426
1.749
2.020
2.223
2.371
2.480
2.562
2.626
2.677

where

(I'(s)
b($) = tan —

'i
&(.) '

I'(s) =P p;(s)C,'8(s —t~),

to get the phase shift. 8(s) is tabulated in Table II for a
value of the cuto6 A. =300m '. One expects a value for
A. between 200 and 400m ', as in calculations of this
sort, this generally is the range in which a reasonable
A. will fall. 8(s) is not too sensitive to A in that range;
for example, at s=18m ', b changes by 8% as A goes
from 200 to 400m~'.

Also tabulated in Table II is the function 8'(s) de-
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fined by the nonrelativistic formula

—r'(s)—
8'(s) = tan —'

where

where

-%RAN

—S2

2C 2 p'
I"(s) =

1+(p/p„)' m,

p= L(s—4~ e)/4jU2

and p„=p evaluated at s=m, '. The 1+(p/p„)' factor
in the denominator is a guess at the correct "barrier
penetration" factor." As can be seen, 8'(s) and 6(s)
deviate away from the resonance position in such a
way that 8(s))5'(s) on both sides of the resonance.
No choice of barrier penetration factor can increase
8'(s) on both sides of the resonance. Although the
difference between the two sets of phase shifts is not
large, it is not insignificant, since it consistently goes
one way. One can hope that, with su%ciently good data,
it might be possible to favor one set over the other. Qn
the other hand, in the event the difference is not dis-
cernible, one can regard the relativistic theory as deter-
mining what the barrier penetration factor of the non-
relativistic theory must be.

plus possible subtractions, in conjunction with

Z~;(s) =F,*()&; (s)r,;(s),
where p, I„(s)=p;(s)8, r, .

Prom this one 6nds

F(q')—m, '/(q'+m ')

Lwe normalize F(0)= 1).Experimentally,

F(q')=LE p'/(q'+m ')g'.
@M. Gell-Mann and K. Watson, Ann. Rev. 5'ucl. Sci. 4, 231

{1954);K. A. Brueckner, Phys. Rev. 86, 106 {1952);E.P. Wigner
and L. Eisenbud, ibA. 72, 29 (1947); H. Feshbach, D. C. Peaslee,
and V. F. Weisskopf, i'd. 71, 145 (1947).

1' M. Parkinson, Phys. Rev. 143, 1369 (1966).

V. CONCLUSIONS

From the above analysis, we learn that the following
is true within the one resonance approximation given
by (2):

(a) Matrix elements differ only by the p-meson

coupling constants involved. This would explain why a
previous calculation" which used only the p-pole term
and did not satisfy unitarity could produce reasonable
branching ratios.

(b) The form factor for spacelike q' will be very simi-
lar to those given by the usual p dominance in the xw

channel alone, the other channels being neglected. This
follows from the dispersion formula

1 ImF (s')ds'
I~'(s) =

S —S

Although we can. produce somewhat different behaviors
for Ii depending on how we choose the photon and p-
meson coupling constants, we still cannot escape the
fundamental behavior given by (12), and thus we cannot
reproduce the experimental behavior.

(c) The experimental form factor for timelike g' is not
inconsistent with the one resonance approximation.

(d) An enhancement is seen in the mr —&7r~ cross
section (Fig. 3)which is somewhat like the 8 meson. The
theoretical cross section is, however, a factor of 4 below
the Chew-I. ow extrapolation for the zz —++co cross
section (Fig. 4). Nevertheless, it would seem that the
p~ 71m decay probably contributes a substantial part
of the 8-meson enhancement. '

(e) The relativistic p-wave arm phase shift is greater
by a few percent or more than the phase shift given by
the nonrelativistic formula LEq. (11)j on both sides of
the resonance.

The parametrization of other EX channels which are
coupled to a resonance or single-particle state in the way
described in Sec. II is also possible, although there are
complications for most cases. The ~ and g cannot be
treated independently. The m-meson bound state would
require three-body channels. The E~(890 MeV), how-

ever, could be parametrized just as we have done here.
And the z meson might well be approximately treated
with only the XE channels.

The advantages of this parametrization are that it is
simple and contains the minimum number of parame-
ters to determine, uses relativistic kinematics, has the
correct analyticity except that a pole replaces the left-
hand cut (effective-range approximation), and reduces
to the Breit-Wigner formula in the nonrelativistic limit, .
For these reasons, Eq. (2) would appear to be a leading
candidate for the most natural relativistic generaliza-
tion of the Breit-signer formula.

Ke must keep in mind, however, the following limi-
tations: (1) We have used a cutoff on the vector-
pseudoscalar channels; (2) we have made some ad-
justments in order to obtain desirable properties for the
nucleon channel (namely, correct threshold behavior
and the magnetic to electric form factor ratio). Both of
these modifications derive from the use of so simple an
3~ function, and in the correct theory would not be
necessary.
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APPENDIX

The actual calculation using Eq. (2) of the text may
be broken into two steps, which will be illustrated by
the case of the p meson: (1) Find s~ so that there is a
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resonance at s=ttt, '; (2) find the C; so that the reso-
nance widths are correct.

Step (1) is accomplished by first finding the matrix
0 that diagonalizes the matrix M;;=C;C vrhere the
C are from Table I. Define R;;(s)=R,(s)5;;. Then
35=8 318 is a diagonal matrix; in fact,

r CI2

0

0

vrhere
7

C~2 —Q C /2

Let R(s)=PRO and R'(so)=O~R'(s„)0, where R'(s~)
=c}/c}s[R(s,s„)) ~,=„,s.

Then vre find s„by solving

MR'(s„) =1.
Step (2) is accomplished by setting gtr ———1/Rtt ', we

recover J3;;=C;C; by using B=OEe . Notice that this
prescription implies that the C; of formula (2) are pro-
portional to the C of Table I; C;=k~C, where k~
depends on the R;(s) and s„.
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Spin-Parity--', Baryons and Singlet-Octet Mixing*
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Recent experimental data are used to examine the effects of possible SU(3) mixing among the spin-
parity--, baryons. It is found that the mixing model is a quite reasonable one to account for the various
decay widths of the members. With a mixing angle 8=22.5', the following optimum values of the parameters
are obtained: F/D=1. 1, the ratio of the coupling of {8)Qx{8}to {1}and {8)Qx{8}to {8}=2.5, and inverse
interaction radius X=1000 MeV. Predicted decay widths of the members are also presented.

'HE recently observed Yse(1700)' ' appears to be
a neutral member of a spin-parity-2 baryon

octet which is completed by the iVtts*(1525), Yt*(1660),
and *(1815). It has also been speculated that the
Ys*(1518)belongs to a unitary singlet state. The experi-
mental situation concerning some members of this
multiplet is still unclear according to Rosenfeld et ul. '
There are large contradictions among the measured
branching ratios of the Y&*(1660), and poorly observed
branching ratios of the *(1815).It also seems that the
branching ratio for the Ys*(1518) is not as well con-
firmed as indicated by the earlier experiments.

The Ys*(1518) has been thought of as a unitary
singlet because the earlier data for the branching ratio4
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(ZN)/(Err) were compatible with the SU(3) prediction,
which is about 0.43.' ' The ratio from the recent com-
pilation is 39/51 (=0.76),' and it may be even higher
if the recently observed value of 52/37 by Dauber
et al." is taken into account. This suggests that the
Ys*(1518) can hardly be assigned to a, pure unitary
singlet state. On the other hand, if we assign the
newly observed Ys*(1700) as the neutral member of the
pure octet state, the mass (1700 MeV) departs by
30 MeV from the computed mass based on the Gell-
Mann —Okubo mass formula. ""The presently observed
evidence that the Ye*(1700) couples strongly to the Err
channel ( 50%) and weakly to the ZN ( 20%) con-
tradicts the assignment of the Ye~(1700) to a pure octet
state. " These deviations suggest that there might be

Radiation Laboratory Report No. UCRL-8030, August 1966
Revision (unpublished).' J. J. Sakurai, Phys. Letters 10, 132 (1964).' A. W. Martin, Nuovo Cimento 32, 1645 (1964).

7 R. Dalitz, in Proceedings of the Oxford International Conjerence
on Elementary Particles, September, 1965 (Rutherford High-Energy
Laboratory, Chilton, Berkshire, England, 1966), p. 157.

s J. J. Coyne, S. Meshkov, and G. B.Vodh, Phys. Rev. Letters
17, 666 (1966).' V. Barger and D. Cline, Phys. Rev. 1SS, 1792 (1967)."P.M. Dauber, E. I. Malamud, P. E. Schlein, W. E. Slater,
and D. H. Stork, University of California at Los Angeles Report
No. UCLA-1015, 1967 (unpublished).

"M. Gell-Mann, Phys. Rev. 12S, 1067 (1962)."S.Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962)."See Table I (part of no mixing).


