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Goldberger-Treiman Relation for a Composite Pion~
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We consider the problem of obtaining the Goldberger-Treiman relation for a composite pion. We use
the N/D formalism so that our basic assumption is that the pion shows up as a dynamical pole in the pion-
channel strong-interaction D matrix. We formally obtain the Goldberger —Treiman relation by examining
the residue of the dynamical pion pole in the pion-channel tr ~ i reaction (i labels the ith strong channel).
With an approximation suggested by the small mass of the pion, and results of a bootstrap-theory calculation
of Dashen and Frautschi, we suggest that the experimental success of the Goldberger —Treiman relation
may be understood in a bootstrap theory.

f= —V2Mgg/g tv (4)

and this value of f agrees with experiment to =10%.
There have been two main approaches to the G.T.

relation; the original one of Goldberger and Treiman,
and an alternate approach, which we will call the PCAC

~ Work supported in part by the U. S. Atomic Energy Com-
mission.' M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178
(1958).

s E. Fermi and C. N. Yang, Phys. Rev. 76, 1'739 (1949).' G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
(1961);for a review and a large bibliography see F. Zachariasen,
1965 Paci6c International Summer School in Physics, Honolulu,
Hawaii (unpublished). Simple dispersion-theory calculations
LR. C. Arnold, Nuovo Cimento 37, 589 (1965); J. S. Bali, A.
Scotti, and D. Y. Wong, Phys. Rev. 142, 1000 (1966)g provide
some support for composite pions.

See, for example, S. L. Adler, Phys. Rev. 137, B1022 (1965).
5 For simplicity we will not write isotopic spin indices for P„.
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I. INTRODUCTION
' "T is our purpose in this paper to discuss the Gold-

& ~ berger-Treiman (G.T.) relation with the explicit
assumption that the pion is a composite particle. The
possibility that the pion is composite was raised by
Fermi and Yang, ' and, of course, in a bootstrap uni-
verse the pion will be composite. The G.T. relation is
often written in the form'

f= V2iVgx/fg—.trEtrtv (0)j, (1)

where 3E is the nucleon mass, g~ is the ratio of the nu-
cleon —axial-vector weak coupling to the nucleon-vector
weak coupling, g tr'/4s. = 15, and Err~(0) is the pionic
form factor of the nucleon, normalized to Etrtr(ts') =1
with p the pion mass, evaluated at zero momentum
transfer. The quantity f is defined by

(O~P„(0)~sr+)=isr„L(2sr)'2E $ '"f, (2)

where E„is the axial-vector weak current, ' x„is the pion
four-momentum, and E is the pion energy. In terms of

f the decay rate for sr+ ~ 'fv is
—I (Gf)s~s (tt2 ~2)2 (8s.tts)

—1 (3)

where 6 is the weak-coupling constant, G= 10 'M 2, and
m is the charged lepton mass. The form of the G.T.
relation 6rst written down by Goldberger and Treiman
has Ztvg(0) =1,

(partially conserved axial-vector current) approach, due
to Gell-Mann' and Nambu. ~

The characteristic assumption of the G.T. approach
is that F (s), the analytic continuation in the pion mass
of the invariant amplitude associated with (0

~
P„(0)1sr),

satisfies an unsubtracted dispersion relation; this dis-
persion relation is then used to calculate f=F(tt') . The
alternate approach stresses the axial-vector nucleon
form factors, and has led to the partially conserved
axial-vector current hypothesis (PCAC)' ' ' which has
played an important role in current algebra calcu-
lations. Our calculations are in the spirit of the boot-
strap approach, ' ' as this approach allows us to formu-
late our basic assumption of a composite pion. For
example, we assume that the pion shows up as a dy-
namical pole in the 'So, T= 1, EE scattering amplitude,
and then we obtain the G.T. relation from the residue
of the dynamical pole in the lv —& XX reaction ampli-
tude. We also consider the case when the pion is a bound
state in a coupled two-body multichannel system. Our
approach is thus more closely related to the PCAC
approach than the Goldberger-Treiman approach.

Our results are: (i) that the G.T. relation for a com-
posite pion can be derived from once-subtracted dis-
persion relations for the appropriate reaction amplitudes
describing lv —+ ~, where i is a strong-interaction channel,
whereas previous work based on dispersion relations
assumes unsubtracted dispersion relations for these
amplitudes; (ii) that with an approximation suggested
by the fact that the pion has a small mass in the scale
of strong interactions, and with results of a bootstrap
calculation by Dashen and Frautschi, ' we can obtain
the multichannel generalization of Eq. (4) with
E;(0)=1. Result (ii) suggests that the success of the
G.T. relation, Eq. (4), can be understood in a boot-
strap theory.

e M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960);
J. Bernstein, S. Fubini, M. Gell-Mann, and W. Thirring, ibid.
17, 755 (1960).

7 Y. Nambu, Phys. Rev. Letters 4, 380 (1960).
See, for example, W. F. Weisberger, Phys. Rev; Letters 14,

1047 (1965); S. L. Adler, ihsd. 14, 1051 (1965); S.:S. Weinberg,
ibid. 17, 616 (1966}.

9The point of view in the present paper is similar to that of
R. F. Dashen and S. C. Frautschi, Phys. Rev. 143, 1171 (1966);
187, B1318 (1965).' See the erst reference in Ref. 9.
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In the next section we give some definitions, establish
notation, and brieQy review earlier work on the G.T.
relation. In Sec. III we present our calculations, and in
Sec. IV we sulnmarize our work.

II. DEFINITION'S AND NOTATIONS

In this section we will establish notation and define
various amplitudes. Then we will briefly discuss earlier
approaches to the G.T. relation.

For the sake of simplicity we will omit spinorial and
kinematic factors when we define invariant amplitudes.
Also, we will formally treat all strong channels as two-
body channels, as has previously been done by Ida,"
and Nishijima" in their work on the G.T. relation;
we will not consider any difficulties associated with
anomalous thresholds and overlapping cuts. The basic
amplitudes of interest describe the strong-interaction
part of the h —& i reaction generated by the axial-vector
current in the pion channel; these amplitudes are

where s is the center-of-mass energy squared. For actual
two-body channels, R; can be expressed in terms of
weak-interaction form factors; for example,

Riiri(s) = 2MFg (s)+SHg (s), (6)

where F~(s) is the nucleon axial-vector form factor,
and H~(s) is the induced pseudoscalar form factor. Our
normalization is such that

Rivg(0) = 2Mgg.

We note the important fact that R; has a pole at s=y2,

p fgwi
R,(s)

s—p,
2

The quantity g, is the "coupling" of the pion to the
strong channel i; when i=NN, g rip=v2g ri, where

g N is the usual renormalized pion-nucleon coupling.
We delne the pionic form factors E;(s) by

The unitarity relations for R; and K; are

Img;E, (s) =P g„,E,(s) T;;*(s)p;, (s),

ImR;(s) =P R, (s) T;;*(s)p,,(s),

where p is a diagonal phase-space matrix such that p;;
is nonzero only for s) threshold for channel i, and T;;*
is the complex conjugate of the pion-channel T matrix
for the strong reaction j—+ i.

Now we will briefly review work on the G.T. relation.
The original G,T. approach assumes an unsubtracted

'I M. Ida, Phys. Rev. 132, 401 (1963)."K.Nishijima, Phys. Rev. 133, B1092 (1964).

Goldberger and Treiman kept only the EE intermediate
state in ImF (s), a,nd they then made numerous approxi-
mations in order to calculate f; their result is given by
Eq. (2). More detailed investigations of this approach
have been made by Barret and Barton, " Ida,"Nishi-
jima, "and Saito."The key question in this approach is
whether the integral for f is actually convergent, and,
as it turns out, two cases must be considered: (i)
Z &0 and (ii) Z =0, where Z is the wave-function
renormalization of the pion. Goldberger and Treiman's
assumptions are consistent with Z &0.Saito has shown,
with reasonable assumptions and without the restriction
of only XX intermediate states in ImF(s), that if
Z WO the integral for f is convergent; and further, that
if the G.T. relation with EIvtv(0)=1 is to hold, then
Z «1.On the other hand, if Z =0, then in general the
integral for f is divergent. However, ImF(s) explicitly
depends on f, and neglecting the possibility of oscil-
latory behavior for ImF(s) as s —&eo, the convergence
condition ImF(s) —+ 0 as s-+~ determines f, as was
first pointed out by Barret and Barton. Ida showed that
use of the convergence condition allows the G.T. ap-
proach to be used when Z =0. Furthermore, as noted
by Ida, and particularly emphasized by Nishijima, the
requirement, in the case Z =0, that the convergence
condition and the dispersion relation give the same f can
give rise to consistency requirements among the strong-
interaction parameters. We note that one possible way
of having Z =0 is to have a composite pion, "so that
considerable care must be taken with the G.T. approach
with a composite pion. Our approach to the G.T. rela-
tion for a composite pion goes through in a more
straightforward manner than does the G.T. approach.

Now we come to the PCAC approach, due primarily
to Gell-Mann' and Nambu. There are two distinct
arguments associated with PCAC, and we will call these
arguments PCAC(1) and. PCAC(2).

PCAC(1). Here we require R,(s) -+ 0 as s —+eo; that
is, we require P„ to be conserved in the limit of large
momentum transfer. Then we can write an unsubtracted
dispersion relation, say for i=TW for R;

p fV2g~N 1 ImRIvg(s )
Rive(s) = + its (12)

s—p, s —s

"B.Barrett and G. Barton, Nuovo Cimento 29, 703 (1963)."P.Saito, Phys. Rev. 140, B957 (1965).
~5See, for example, B. W. Lee, K. T. Mahanthappa, l. S.

Gerstein, and M. L. Whippman, Ann. Phys. (N. Y.) 28| 466
(1964).

dispersion relation for F(s), the analytic continuation in
the pion mass of the invariant amplitude associated
with (s.lP„(0)IO). With the standard normalization
F (p') = f, we have

1 ImF(s')
f~— its

7r s —p2
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When we set s=0 we have

1 ImRivg($ )
2Mgg= V—2g ~f+ —ds'

S
(13)

p
(A Ia„P (0) IB)=

t—p2

X(A I

—(o+~ )y.(0) IB)I,=„, (16)

where t= (Pz& Pz&)s. We shall —refer to Eq. (16) as
PCAC. In PCAC (1), Eq. (16) provides the pole domi-
nance condition; in PCAC (2),Eq. (16) is equivalent to
the assumption E,(y )=sE';(0). If Eq. (16) is true, then
we have

f= R'(o)/g-—

"In the case that
~
i) contains more than three particles, R;(s)

depends on variables other than s, such as relative c.m. energies
of two particles in ~i), Adler (see Ref. 4) points out that, in general,
different sets of variables lead to different pion-pole residues of
R;(s). Thus, strictly speaking, PCAC(1) must contain a precise
speci6cation of the variables on which E; depends.

'r R. Haag, Phys. Rev. 112, 699 (1958); K. Nishijima, ibid
ill, 995 (1958);W. Zimmermann, Nuovo Cimento 10, 597 (1958).
For a discussion of the H.¹T.and its relation to current algebra
calculations see A. P. Balachandran, M. G. Gundzik, and F.
Nicodemi, in Proceedings of the Boulder Conference on Particle
Physics, 1966 (to be published). We wish to thank Professor
Balachandran for a report of this work prior to publication
which brought the H.N.T. to our attention.

's See, for example, J. S. Bell, CERN Report No. CERN
66-29 (unpublished).

When the integral is negligible, pion-pole dominance,
Eq. (13) gives the G.T. relation in the form of Eq. (4).
The essence, then, of what we call the PCAC(1) argu-
ment is that R;(s) obeys a s--pole-dominated unsub-
tracted dispersion relation. "

PCAC(2). Here we assume the relation, sometimes
called the PCAC hypothesis '

ci„P (x)=@aft' (x), (14)

where g, (x) is the pion field. The G.T. relation, in the
form Eq. (1), follows inunediately by taking the
vacuum-1''E matrix element of Eq. (14).However, this
derivation is empty in as much as Eq. (14) does not
specify Ezzp(0); in'fact, the Haag-Nishijima theorem'r
(H.N.T.) says that Eq. (14) may be considered a
definition of the pion field. The H.N.T. says, if B(x) is
almost local Geld with the quantum numbers of the
pion such that

(0 B(x)IO)=0,
(0 B(0)0)=aL(2')sls2E ] ',

then B(x)/u may be used as the pion field, in as much
as B(x)/u will have the asymptotic properties we require
of the pion Geld. To make an argument based on Kq.
(14) go past mere definition, we must make some as-
sumption about E~g(s), for example that E~p(s) is
slowly varying for 0(s~p2.

In practice, what PCAC has come to mean is that"

which we shall refer to as the PCAC result for f.PCAC,
expressed by Eq. (16), is by itself strong enough to
guarantee the G.T. relation with E;(0)= 1.It is reason-
able, but by no means necessary that Eq. (16) will be
true when (A Ic)„P&(0)IB)obeys an unsubtracted dis-
persion relation in f; it is, in fact, possible for Eq. (16) to
be true for matrix elements with IB)= IO) when the
R;(t) obey once-subtracted dispersion relations as we
will see in the next section.

To conclude this section we note that the dispersion-
theoretic approaches to the G.T. relation described here
require unsubtracted dispersion relations. We will see
in the next section that with the assumption of a com-
posite pion we will be able to derive the G.T. relation
with once-subtracted dispersion relations.

N'(5) =- L(s')D'(s') ds'

s 9(s')N'(s') ds'
D'(s) =I--

s'(s'- s)

(2o)

with L(s) the left-hand discontinuity of T(s). The factor
9(s) is the diagonal phase-space factor in the unitarity
relation

ImT(s) =T*(s)9(s)T(s). (21)

The equation for D' shows we assume that D' has no

'9 For details of the S/D formalism see the Hawaii lectures of
Zachariasen, Ref. 3.

III. CALCULATIONS

In this section we will discuss the G.T. relation with
the speciGc assumption that the pion is composite. To
handle this assumption it is most convenient to use the
1V/D formalism. "We will consider the strong reactions
i —+ j, where i and j stand for strongly interacting chan-
nels with the quantum numbers of the pion, and the
weak reactions lv ~ i. Our basic assumption is that the
pion shows up as a dynamical pole in t(s), the strong-
interaction T matrix describing i —+ j. We will obtain
f by calculating the residue of the pion pole in R;(s),
the amplitude which describes the lv —+i reaction, using
the fact that R;(s) is coupled to t(s) through unitarity.

SpeciGcally, we will consider the coupled-channel
T matrix T(s) which has the matrix form

t(s) GR(s))
!(~)=I

&GR (s) 8'(s) &

where R(s) is the vector whose components are R;(s),
and W(s) describes tv-+ Lv. We assume that T has only
dynamical singularities, and we write

T(s) = N'(s) D'—'(s),

where, apart from possible subtractions for N,
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poles; such poles represent the presence of elementary
particles, "and we want the pion to be a pure composite
particle. It is straightforward to show that the calcu-
lation which follows is independent of subtraction point.
Finally, we note again that we will neglect quadratic
and higher terms in G, the weak coupling.

Because the lowest nontrivial order of G in t(s) is
quadratic we have

t(s) =N(s) D-'(s), (22)

where N and D are the solutions of Eq. (20) when G=O.
Our basic assumption that the pion is composite is that
D ' has a simple, dynamically induced pion pole,

D-r(s) =d(s)/(s —p'), (23)

where d(p, ')WO. We assume, of course, that the pion
pole is the only pole of t.

It is straightforward matter to show that to first
order in G,

R;(s)=P EI,(s)dI„.(s)/(s —p'), (24)

where

s L(„;(s')D,s(s')ds'
kg(s) =Rp(0)+—Q . (25)

1r s s —s

We use a subtraction for EA, because the well-known
point structure of the basic V—A leptonic coupling
guarantees that R~ has no left-hand cut so that
L~„s(s)=0. Thus we have for R;

g~f~
t;; (s) ' "'s—p

(32)

The key property of d(p') is that it is of rank one. The
assumption that t has a simple dynamical pole at s=p'
guarantees that D(mrs) has rank e—1 for an n-channel
problem; then an application of Sylvester's law of
nullity"" suffices to show that d(p') is of rank one.
Now an arbitrary rank-one n)&e matrix can always be
written as {A;B,),sr where A; and. 8, are e-dimensional
vectors. This last-mentioned fact, along with Eq. (32),
tells us that there exists a vector a; such that

Furthermore, with our choice of E(s) we have

R(s) =vip'fg. ~K(s)/(s 1r,
'—), (31)

which is the vacuum-EX matrix element of Eq. (14).
We see that, given a de6nite model in which the pion
is an Xg bound state, the assumption that R;(s) needs
at most one subtraction leads to a prediction for f. We
will defer for the moinent any discussion of the condition
for which we can expect d(p')=d(0). We also note that
here we can have Eq. (14) hold for vacuum-XN matrix
elements with a simple and natural choice of K~7s(s).

Now let us return to the general case. A most impor-
tant requirement is that f, when calculated from Eq.
(27), should be independent of the strong-channel index
i. To see that this requirement is satis6ed we need to
examine the properties of the matrix d(p'). Let us as-
sume that t(s) has been normalized so that

R;(s)=P R;(0)d;;(s)/(s —y') . (26) d;;( ')=a,g. . (33)

To calculate f we equate the pion-pole residues ob-
tained from Eq. (8) and from Eq. (26), and we get g b;d;I, (IJ,') = (const)g, ~. (34)

In particular, Eq. (33) shows that g, is an eigenvector
of d(p, ')r, and. that for any vector b;

fg-'= I
' 2 R.(0)d~'(I") (27)

Before we treat the general multichannel case, we
will discuss the calculation of f keeping only the FX
strong channel; while this restriction is no doubt
physically unreasonable, it has the virtue of simplicity.
In this case we have only a single strong-interaction
channel label which, for the sake of convenience, we will
often omit. Equation (27) reduces to

Nfg. v —2Mggd
—'(0)d——(ps), (28)

if we recall that R~g(0) =2Mg~, and. g~ ——v2g N. We
can get a recognizable answer if we bring in the pionic
form factor of the nucleon. The simplest way of satis-
fying the unitarity relation, Eq. (10), and the normali-
zation condition K(p') = 1, is to choose

K(s) = d(s)/d(~') (29)

g.;E;(s)=)—' P g,d;;(s), (35)

)=pa;b;,

satisies the unitarity relation for K;, and the normali-
zation condition, K;(ps) =1, for arbitrary b, as long as
)«0. Thus contrary to the case of the pion as an lV1V

bound state, we do not have unique expressions for the
K; in terms of a once-subtracted D matrix. In view of
the H.N.T. this lack of uniqueness is not disturbing.

From Eq. (34) we can see that our calculation does
indeed give an f independent of strong-channel label.

Let us investigate what relation, if any, exists be-
tween R;(s) and K;(s) when K, is expressed in terms of
d(s). Because of Eq. (33), we Qnd the curious fact that

in which case

f= —vs g, /I g.~K(0)]. (30)

's J. M. Charap and E. J. Squires, Phys. Rev. 127, 1387 (1962)."L. Mirsky, AN Introdgction to linear Algebra E'Oxford Uni-
versity Press, New York, 1955).
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D(s) = Dr, (s),
Dr, (s) =1—sr, (39)

where 1 is independent of s. Let us investigate the
consequences of the LDA. Of course we require

detDr, (p') =0 (4o)

and we require Di, '(s) to have a simple pole,

Dr, '(s) = di, (s)/(s —p'), (41)

with dr, (y') having rank one. An important result for
us, which we prove in the Appendix, is that

If we write
dI (v') dr(v') = Ii'd ~(u') . —(42)

(dr);, (p, ') =C;g.;,
we have from Eq. (42),

Z g;(& ) '(~')=g- cg-= —'g.'.

(43)

(44)

From Eq. (27) we get for f
f=I:—R(0) g-/lg-I'j —R(o) &,

Clearly there is no necessary relationship between the
E; and the E; as given above; to obtain the formal
expression for f implied by Eq. (14) we must properly
define E;(0). If we choose b; such that

g.;E',(0)=P-'R;(0), (36)

where P is a constant, then —p9 'b, =P 'R;(0), and
Eq. (27) then gives us the G.T. relation in the form

f= —P= —R*(0)/Lg-E'(0) j (37)

Also, the choice of Eq. (36) for b; leads to Eq. (14) as
far as vacuum-state i matrix elements are concerned,

g-E'()=( 'f) '( —')R*() (38)

Thus we see in detail how to make the choice the H.N.T.
says we can make, in the case of a multichannel bound
pion, in order to guarantee that Eq. (14) is true for
vacuum-state i matrix elements.

%e see that the assumptions of a composite pion and
once-subtracted dispersion relations for R,(s) are not
strong enough to get us past the formal result of Kq.
(37).To go further we need another assumption to play
the role of PCAC, Eq. (16). Naively, we would expect
that PCAC is equivalent to d(g')=I in Eq. (27);
however, because det d(p') =0, while det1=1, d(p, 2) =1
is evidently not a reasonable approximation. Neverthe-
less, we can obtain the PCAC result for f, given certain
assumptions which we will now discuss. A striking
feature of the pion is that it is the least-massive known
strongly interacting particle; this has suggested the
approximation that in some cases at least the pion mass
is negligible. Such an approximation is clearly in the
spirit of PCAC. For our purposes we shall assume that
a reasonable quantitative statement of the smallness
of the pion mass is the linear D approximation (LDA)
fol 0($(p .'

when we write

c=—~'(c-/I g-I') —~'& (46)

a g„=o. (47)

f= f = —R'(o)—/g- (49)

Furthermore, with the LDA and Eq. (48) we get,
essentially, PCAC, as far as the E; are concerned, for a
composite pion. With Eqs. (48) and (49) we have

R;(s)= fZ —g.A '(s)/(s u') . —

Now, berause of our normalization for D,

R;(0)= fg;—
while, because of Eq. (44),

(51)

(52)

Thus our R,(s) satisfies Eq. (16), PCAC, for s=0.
Equivalently, we have with

E'(s) = —~ '2 g-~di;;(s),

E;(0)=E;(p')=g;. Without a detailed analysis of r
we cannot assert that for 0&s&p, ', Pg;dr, „(s)=g;,
although such an assertion seems reasonable; the point
is that a linear approximation is not necessarily valid
for D '(s) or d(s) when we require detD(p2)=0. For
many practical purposes the statement

&~ I ~.P"(0)I&) I
=o= —f

X(~ I-(o+u')~, (0) la) I, „, (54)

is as powerful as PCAC, Eq. (16); hence our use of the
word "essential" in the first sentence of this paragraph.

Finally, we note that Dashen and Frautschi" have
done approximate bootstrap calculations which suggest
that Eq. (48) is true at least as far as the baryon-
antibaryon channels are concerned. Thus we have the
distinct possibility that the success of the G.T. relation
can be understood in a bootstrap theory.

IV. SUMMARY

In this paper we have investigated the G.T. relation
for a composite pion by means of the multichaIipql

Note that the 6rst term on the right-hand side of Eq.
(45) has the general structure of (weak coupling/strong
coupling) which we associate with the G.T. relation.
Clearly the geometrical relation between R(0) and g is
of utmost importance for the G.T. relation. In particu-
lar, if

R,(0)=rg.;,
f= const. ,

then we get the PCAC result for f,
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X/D formalism. We have found that with the assurnp-
tion of a composite pion we can derive a formal expres-
sion for f, Eq. (37), from once-subtracted dispersion re-
lations for Z;(s), whereas previous dispersion-theory
work requires unsubtracted dispersion relations. Kith
two additional assumptions, (1) the LDA suggested
by the small mass of the pion and (2) the condition
suggested by bootstrap theory, g;/E;(0)=constant
independent of channel label i, we can derive the PCAC
result for f, Eq. (17).

We conclude that the G.T. relation can be obtained
for a composite pion, and that, assuming assumptions
(1) and (2) above are reasonable, the experimental
success of the G.T. relation can very likely be understood
in a bootstrap theory.

First we show

We have

Thus

a(detD(s))

f(»')= —
» 'Z~"(»').

8$

= —P I';;A;;(s) .

=Z D', ( ')~.*( ')

8(detD(s)) BD;,(s)
A;;(s)

(A7)
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APPENDIX

»' —Z b'»~»'(» ') . (A9)

The erst term on the right of (A9) is zero because
detD(p') =0, and, as detD(s) = (s—p') 8(detD(s)) Bs ~, „,+,we have demonstrated (A7).

Now we show (A4). We have

»» 'd(»»')d(»»') =A(p')A(p')/$Q A; (p')]' (A10)

Consider a matrix

D(s) =1—rs, (A1)

Now we use the fact, discussed in Sec. III, that d(»»')
is of rank one; hence A(»»') is of rank one. In particular,
all 2&(2 minors of A(p') vanish so that

where r is independent of s. Suppose that detD(s) has
a simple zero at s=p',

detD(»1, 2) = 0 (A2) Thus

~- (» ')~-~(» ') =~-(» ')~-~(» '). (A11)

so that
D—'(s) =d(s)/(s —

» ') (A3)
(A(p')A(p')) "=P A;I, (»»')A y (p')

where d(»»') WO. We will show that

We can write
(A4)

D '(s) =A(s)/L(s —»»')f(s)], (As)

where f(p')&0, and

P Dp, (s)A q„(s)= B~„(s p') f(s) = 8»„de—tD(s) . (A6)

or

=E ~»( ')~'»(»'),

A(~2)A(~2) = A(~') p &„I„.(~')

(A12)

(A13)

and (A4) follows since

(A14)


