
P HVSI CAI.
REVIEWS]

VOI UME 161, NUMBER 5 25 OCTOBER 1967

N/D Effective-Range Theory with J-Independent Short-Range Forces*
LoUzs A. P. BALAzs

Department of Physics, University of California, Los Angeles, California

(Received 9 January 1967; revised manuscript received 14 April 1967)

Optical models and Regge-pole theory both suggest that the low partial-wave amplitudes are independent
of the angular momentum J at very high energies. This, in turn, implies that short-range forces (faraway
cuts) should likewise not depend on J. We therefore set up an N/D representation in which the distant
singularities are approximated in terms of J-independent effective-range parameters. Nearby force singu-
larities are obtained from single-particle-exchange graphs in the usual way. Thus, if we know the residue
and position of a resonance or bound state, we can adjust our effective-range parameters to reproduce it cor-
rectly. Our N/D formulas then enable us to calculate the Regge trajectory on which it lies. If we do this for
the p meson, we can compute approximately the position of the dip in the mN charge-exchange differential
cross section observed near the forward direction at high energies.

I. INTRODUCTION
' PERHAPS the greatest inadequacy of most dynami-

cal calculations in strong-interaction physics is the
total neglect of short-range forces. This, of course, is
due to. our inability to calculate such terms explicitly,
and the accompanying hope that they may not be too
important. %hile this may be reasonable in certain
cases, it more typically yields results in violent dis-
agreement with experiment. It therefore becomes neces-

sary to And some way of taking into account interactions
at small distances or, in dispersion language, the singu-
larities in distant regions of the complex plane.

One way of representing distant cuts is to make an
effective-range approximation. By this we simply mean
that, as long as we are interested in a small enough

energy range, we can always replace them with a set of
simple singularities (such as poles) which only depend
on a few constants. ' This can be most easily seen in
terms of the analogy between the singularities in the
comp]ex plane and two-dimensional electrostatic charge
distributions. Here, faraway charges always produce a
smoothly varying potential in the area of interest, pro-
vided that the area is suKciently small. Such behavior
can always be simulated by a simpler equivalent charge
distribution (such as a collection of point charges).
This, for instance, is what one does when one makes a
multipole expansion.

Although an effective-range representation of distant
singularities should increase the accuracy of dispersion
relations when making detailed calculations, it is, by
itself, not very useful if we are only interested in a small
number of properties (such as the mass and width of a
resonance). In a previous paper, ' hereafter referred to as
S, it was argued that distant cuts should obey internal
symmetries, however. It is then possible to at least
correlate various low-energy results by imposing sym-
metries on our effective-range parameters. In particu-
lar, one can calculate all the masses and couplings of an
SU(3) multiplet in terms of two or three constants. Any

~ cwork supported in part by the National Science Foundation.
' See, e.g., G. F. Chew, S Matrirc Theory of Strong I-nteractions

(W. A. Benjamin, Inc. , New York, 1961), Chap. I.
2 L. A. P. Bali,zs, Phys. Rev. 152, 1512 (1966).
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symmetry breaking which takes place would arise from
nearby singularities (long-range forces), which can be
easily obtained from conventional dispersion theory.

In S, the above approach was applied to the vector
mesons, which were treated as resonances in the scat-
tering of pseudoscalar mesons. Thus the masses and
widths of both the p and the g could be found from the
same pair of constants. Adjusting these constants to
give the correct properties of the p, the parameters of
the P could then be predicted.

In the present paper we shall extend the above ideas
to another type of "symmetry. "We shall assume that
distant singularities are independent of the angular mo-
mentum J, at least for low partial waves. This, again,
is suggested by high-energy scattering, where both opti-
cal models' and Regge analysis4 suggest that the high-
energy amplitude varies slowly with J (see Appendix A).
Such a property is not usually thought of as a symmetry
in the same sense as, say, SU(3). The main reason is
that it is diKcult to visualize any kind of limit of un-
broken symmetry at low energies, which would, for
instance, predict resonances at the same energy for dif-
ferent J. The "symmetry" is very badly broken. 'How-
ever, if we only assume it for faraway cuts, it appears
much more natural. As in S, symmetry breaking would
come from nearby cuts, which can be readily handled
in the usual dispersion theory.

In Sec. II we introduce a formalism in which the
nearby singularities are treated in the determinantal
approximation. Of course, two-body unitarity is exactly
satisfied, but the left-hand cut is only approximately
reproduced. On the other hand, it is simpler in many
ways than the full NjD method, which is discussed in

~ See, e.g., N. Byers and C. N. Yang, Phys. Rev. 142, 976
(1966).

4 Rather complete accounts of Regge-pole theory are given in
S. C. Frautschi, Regge-Poles and 5-Matrix Theory (W.. A. Benja-
min, Inc. , New X'ork, 1963);R. Omnhs and M. Froissart, Maedel-
stam Theory arid Regge Poles (W. A. Benjamin, Inc. , New York,
1963); E. J. Squires, Comp/en Angular Momenta and Particle
Physics (W. A. Benjamin, Inc. , New York, 1963);R. G. Newton,
The Complex j-Plane (W. A. Benjamin, Inc. , New York, 1964).

~ The breaking may be more or less linear, however, since many
Regge trajectories are almost straight lines when plotted as func-
tions of s. See, e.g., V. Barger and D. Cline, Phys. Rev. Letters
16, 913 (1966).
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Sec. IV. Our treatment of distant singularities differs
somewhat from the one given in S, which leads to cer-
tain diQiculties when one tries to impose a symmetry
between states of different angular momenta. Thus,
instead of introducing a cutoff on the left and treating
it as one of our parameters we shall make a cutoff on
the right. This we take to be at about the separation
point A between the low-energy resonance region and
the high-energy diffraction region, i.e., at the strip-
width' of Chew and Frautschi. We then introduce a
pole and a double pole in D at the same point, with J-
independent residues. These will be our effective-range
parameters.

In Sec. III, an approximate version of the above
method is applied to the I=1 state of xx scattering.
The nearby left-hand cut is assumed to come from p
exchange, while the effective-range parameters are ad-
justed so as to give the correct mass and width of the p
resonance in the J=1 state. Our equations then give
the mass of the corresponding resonance or bound state
for other values of J. In other words, they enable us to
calculate the Regge trajectory on which the p meson lies.
In particular, we can Qnd the point at which the p tra-
jectory passes through zero, which is just the position
of the bound state in the J=0 unphysical "state."This
zero of the p trajectory has been a subject of some
interest recently, ' since it can be used to explain the
dip observed in the mX charge-exchange cross section
near the forward direction at high energies.

II. EFFECTIVE-RAN GE APPROXIMATIO5'
WITHIN A DETERMINANTAL

FRAMEWORK

We will consider ~m scattering for simplicity, although
there is nothing to prevent us from applying our ap-
proach to more complicated problems. For a given iso-
topic spin I and angular momentum /, the partial-wave
amplitude is

A g (v) = p(v+1)/v jgise" sing),

where

v=g =ps —1)2 1

q
= c.m. three-momentum,

s= (total c.m. energy)',

and
b= phase shift.

We are taking the pion mass=1 unless other units are
specifically mentioned. The assumption of J indepen-
dence would now imply that A g (v) is independent of l for
large v.

Suppose we take as our input, or force term, the con-
tribution of p exchange Fg(v). If we treat the p as a

o G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961).' F. Arbab and C. B. Chiu, Phys. Rev. 147, 1045 (1966);
S. Frautschi, Phys. Rev. Letters 17, 722 (1966), and references
therein.

A g(v) =Fg (v)/Dg(v)
where

1 ~
p

v' )ggs Fg(v')
Dg(v) =1—— dv'i

o Ev'+ 1) v' —v

(3)

It is simple to see that this satisfies elastic unitarity
exactly for v& 3., where we would expect it to be at least
approximately valid. Of course, Fg(v), whether Reg-
geized or not, leaves out the contribution of many short-
range effects. One way of incorporating them is by
noting that we can get an exact expression for Ag(v)
provided that we modify Eq. (4) to read

1 ~ ( v' )g~s Fg(v')
D()=1— d"I, I, +C(»

~ o
where

1 Imt Ag
—'(v')Fg(v') j

C(v) =— dv'
v v
I

with the integral extending over the faraway cuts, both
on the right and on the left. Now in these regions, Fg(v)
is I independent, as we saw in the preceding paragraph;
so is Ag(v), from our basic assumption of J indepen-
dence. Hence C(v) is likewise independent of l

Of course, we have no way of caculating the integral
(6). However, we are only interested in low energies,
i.e., in the region of the nearby cuts. Since Eq. (6) in-
volves faraway cuts we can therefore always approxi-
mate it in terms of simpler singularities. The simplest
procedure would be just to put

C(v)~Cp+Cgv,

which corresponds to a pole and double pole at infinity.
Since C(v) is independent of g, the constants Co and C,
can only depend on I.

s M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958).

stable particle, we would get

vggl'g( v+ 1& ( vgg+1
F ()=12P

~

1+2 I()j 1+2, (2)
v 0 vgg) & v

where v = vgg is the position of the p, vggl'g Lvgg/ (vgg+1) j'"
is its half-width in the v variable, and Pzg is the crossing
matrix element connecting our state to the I= 1 state
in the crossed channel; thus Ppg

——1,P» ——s, and P» ———-.', .
From Eq. (2) we see that Fg(v) is independent of l for
large values of v. Unfortunately, it reaches this state
only very slowly. If, however, we take a Regge expres-
sion for p exchange, we find that Fg(v) becomes / inde-
pendent relatively rapidly (see Appendix A). In fact,
it has already reached this state in the diffraction region
v&A.. We shall take advantage of this fact in setting up
our effective-range approximation.

Suppose we assume for the moment that Fg(v) gives
a good approximation to the singularities of the ampli-
tude everywhere except in the resonance region v&A.
Then in the determinantal approximation we can write
the amplitude as'
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0.07. —

re~i From Fig. 1 we see that Eq. (11) is a reasonable ap-
proximation to Eq. (2) over a considerable range of v.
If we substitute Eq. (11) into Eqs. (3) and (5) we will
have an explicit expression for Ai(v). Actually, as long
as we are not interested in the region —1&v&1 we can
also make the "extreme relativistic" approximation in
the D function

L '/( '+1)3'"=1 (12)
0 I I 1 I I I I I l I I I I I I

0 50 100 150
P

Fio. 1. Plot of v 'F&(v) as given by Kq. (2) with vs=6.5 and
P~=0.17 (full line) compared with the threshold approximation
(11) (dashed line).

Equations (3), (5), and (7) enable us to calculate a
Regge trajectory. The position t=n(v) of a pole in the
complex / plane is given by

D („)(v)=0. (8)

Now the reduced width, i.e., the residue of the pole in
v 'A~(v) for a given t, is

I'( ———v 'Fi(v)/Dg'(v). (9)

The residue of the corresponding pole in the complex l
plane is thus

P(v) =~'(v)i'-(. ) . (10)

Ke can therefore determine our trajectory from the
constants Co and C~. These can be fixed if we know the
parameters of any resonance or bound state which lies
on the trajectory. For instance, a knowledge of the mass
and width of the p can be used to 6nd Co and C~ through
Eqs. (8) and (9) for t=n=1.

In the above discussion we assumed that F~(v) is t
independent for v&A.. This, as we have seen, is true for
a Reggeized exchange but is not such a good approxima-
tion for Eq. (2). However, our final expressions in-
volved an explicit knowledge of Fg(v) only for v(A. In
this region, the Reggeized and un-Reggeized forms do
not di6'er too much from each other. ' We shall therefore
use Eq. (2) in practice.

GL CALCULATIO5' OF THE ZERO
OF THE p TRAJECTORY

%'e now apply the above formalism to the p trajec-
tory, which occurs in the I=1 state. Our equations
become dificult to handle for noninteger /, so we shall
restrict ourselves to 3=0 and l=1. Since the p meson
occurs as a resonance in the latter state, we can use its
mass and width to 6x Co and C~. We can then see where
Ds(v) = 0 in the l= 0 state. This gives the point where
the trajectory passes through zero.

In the l'= 1 state, we can make a threshold approxi-
mation for Fg(v). If, in addition, we take advantage of
the fact that-vg))1, we have

Fr(v) (I'r/2v )v. (11)
OP. D. B. Collins and V. L. Teplitz, Phys. Rev. 140, B663

(1965).

which leads to
1 I ] h.—v)

Dr(v) 1—— A+v ln
~

+Co+Crv. (13)
Ã 2vg —vi

Taking vg ——6.5 and Fj=0.17 for the position and re-
duced width of the p meson, "we can find Co and C~ by
substituting Eqs. (11) and (13) into Eqs. (8) and (9)
at l=n=1 and v= vg.

Ke next turn to the l=0 unphysical "state." Here
F~(v) has a more complicated shape (see Fig. 2). It was
therefore approximated by a constant plus a pole

Fp(v) A —X/(rl+ v), (14)

with 2=3.60, X=101.1, and q=32.72. Substituting
Eq. (14) into Eq. (4) and again making the extreme
relativistic approximation (12), we obtain

1( X & (A—v

Dp(v) =1--~ A —
~

1n~

g+v) E —v

1 X h.+rl)
ln ~+Cs+Ctv. (15)

wg+v

The zero of this function gives the point v= vo at which
the trajectory goes through zero.

Table I lists the results for various values of A, the
separation point between the resonance and diGraction
regions, ' which is expected to lie somewher'e in the region
200&A&50."The zero is seen to be relatively insensi-
tive to A. It should be compared with the position
t~—0.6 (GeV/c)' of the dip in the high-energy s.lV
charge-exchange cross section, which has been ex-
plained as arising from the vanishing of the p trajec-
tory. ~ Actually, the position of the dip and the zero of
trajectory do not necessarily coincide exactly. The
model of Arbab and Chiu, "' for instance, led to o.=0 at

0.52 (GeV/c)'—

TABLE I.The values up and tp of v and s at which the p trajectory
goes through zero for various values of h., using the method of
Sec. III.

75
113.3
300

Sp

—6—7.7—9.3

fp
(GeV/s)'

—0.39—0.52—0.65

We are taking mass =765 MeV and width= 105 MeV for the
p. See A. H. Rosenfeld et el., Rev. Mod. Phys. 36, 977 (1964).

'~For a recent discussion of this parameter, see N. F. Bali,
Phys. Rev. 150, 1358 (1966).
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IV. GEHERALIZATIO5' TO THE FULL
1V/D FORMALISM

We now discuss the extension of the above approach
to a full /t//D framework. This has the advantage of re-
producing exactly the nearby left-hand cut supplied by
the input F~(v) Its .main disadvantage is that it is more
complicated. The first complication arises from the fact
that for noninteger /, 2 ~(v) is singular for 0)v) —1, as
can be seen, for instance, from Eq. (2). This prevents
us from writing 1V/D equations for A&(v). We therefore
have to consider the modified amplitude

0
0 50 I00 150

B&(v) = v Ai(v) ) (16)

which does not have this difficulty. The corresponding
input function is

Vi(v) = v 'F)(v).

If we write N/D equations for B&(v), the equations
corresponding to (3) and (5) become"

where
Bi(v) =ATi(v)/Di(v), (18)

1 v' )"' "Arg( ')
%(v) =1—— dv', I, +C(v), (19)

p v+1/ v v

and
Im v)(v')D)(v')

X((v) =— (20)

with the integral extending over the singularities of
V~(v). As in Sec. II, C(v) represents the effect of singu-
larities which are not included in V~(v) or given by uni-

tarity. It has the form

1 1m[By
—'(v')X)(v')]

C(v) =— dv'
v v

(21)

where the integral extends over all faraway cuts. Now
it is not immediately obvious how E&(v) varies with /

in these regions. If we know it, we would not have to
make an effective-range approximation in the first
place. We will therefore make the additional assumption
that the dynamics of the high-energy region is essen-

tially independent of any effects coming from the
direct-channel low-energy region. This is true in a
Regge-pole theory, for instance, or, for that matter, any
theory which assumes that high-energy effects are
governed by the exchanges of low-lying systems in the
crossed channel. This means that Bq '(v)ATE(v) should
be essentially the same for large v as it would be if we '

made a calculation which assumed / independence
everywhere, both at low and high energies. Therefore,
C(v) is independent of /."

As in Sec. II, we can make an effective-range approxi-
mation for C(v) if we are only interested in the ampli-

» G. F. Chew and S. Mandelstam, Phys. Rev. 119,467 (1960).
» This argument, of course, assumes that D/ is normalized in an

/-independent way at v= ~, which it certainly is with our
equations.

FIG. 2. Plot of tp(v) as given by Eq. (2) with vs=6.5 and
P&=0.17 (full line), compared with the approximate form (14)
with A =3.60, X= 101.1, and s =32.72 (dashed line).

tude at low energies. In this case, however, a linear ap-
proximation leads to certain difficulties in practice. We
approximate it instead by a pole and double pole placed-
at v=A, the point at which we expect the singularities
of C(v) to become important. Thus,

(22)

where cr and P are independent of /.

In practice, it may sometimes be more convenient to
use the Uretsky form of the X/D equations. "These can
be obtained by substituting Eq. (19) into Eq. (20),
which leads to an integral equation for E&(v). In this
equation the input is Vq(v), which is needed only for
0(v(A. In this region, as we saw from Sec. II, we can
use Eq. (2). Once we know E&(v), we can determine
D&(v) from Eq. (19), as before.

To see how an /t//D calculation compares with the
determinantal results of the preceding section, Eqs. (18)
(19), (20), and (22) were used instead of Eqs. (3), (5),
and (7) for the case A= 113.3. Since, as we noted in the
preceding paragraph, they are needed only for 0& v&3.,
Eqs. (11) and (14) were again taken as approximate
inputs, and the extreme relativistic approximation (12)
was used. As in Sec. III, the effective-range parameters
rr and P were taken so as to reproduce the p mass and
width in the /= 1 state, and the vanishing of Dp(v) then
gave the position of the zero of the trajectory. This
occurs at vo= —6.7, which is not too different from the
value obtained in Table I.

V. CO3%CLUSIOg

In S, we saw that it is possible to do calculations in
which distant singularities are assumed to obey an in-
ternal symmetry, like SU(3). The symmetry breaking
then comes from the explicitly calculable nearby singu-
larities. In the present paper this approach is extended
to what would normally not be considered a broken
symmetry in the first place. We assumed that distant
singularities are independent of the angular momentum.
Thus the slope of a Regge trajectory, as well as the

r4 J.L. Uretsky, Phys. Rev. 123, 1459 (1961).
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variation of the residue P with energy, is assumed to be
due to the nearby singularities, which can be handled
with conventional techniques.

Both S and the present work are attempts to Gnd a
middle ground between the symmetry and bootstrap
approaches to strong interactions. The symmetry
approach has yielded many relations between experi-
mental quantities. It is, however, severely limited when
the symmetry is badly broken, and usually relies on
additional assumptions when it is used to get specific
results. Many things cannot be predicted at all. The
bootstrap approach, on the other hand, can, in princi-
ple, predict anything. In practice, however, it is this
very "all-or-nothing" feature which has made it so difi-
cult to extract any useful results from it. One is always
forced to make approximations which are so drastic that
it is not clear whether the model one is using has much
relation to the problem one is considering. We have
therefore tried to combine various aspects of the two
approaches so as to be able to calculate at least as much
as would be calculable in an unbroken symmetry. This
should make it possible to extend the range of predic-
tions possible in the pure symmetry approach without,
hopefully, making the approximations so drastic as to
make the calculation useless.

If we include more symmetries, we may be able to
reduce the number of parameters needed to describe any
set of data even further. Another way of reducing the
number of parameters might be to make use of various
sum rules. This use of sum rules has, of course, been
attempted before in making bootstrap calculations. "
The results have been similar to those obtained from
any other bootstraps. If, however, we first reduce the
number of parameters through some symmetry (as we
have been doing above or in S), we have to use fewer
sum rules to determine the remaining parameters. We
could then select those which are more reliable, or less
sensitive to approximations. This might lead to better
results, perhaps even in a calculation in which there are
no remaining free parameters.

ACKN'OWLEDGME5'T

The author would like to thank Professor E. S. Abers
for several interesting conversations.

APPEIIX A

To get some idea of the range of validity of J inde-
pendence we mill consider the Regge-pole model of high-
energy scattering, which leads to this "symmetry"
automatically. As in Sec. II, we shall consider mm scat-
tering, which is described by a total invariant amplitude
A (s,t), where —t is the square of the momentum trans-
fer. We assume that for large s, A (s,t) is dominated by
a t-channel Regge pole. If we further assume that the
position n(t) and residue of this pole in the angular rno-

» See, e.g., L. A. P. Ba16zs, Phys. Rev. 128, 1939 (1962); 132,
867 (1963); V. Singh and B. M. Udgaonkar, ibid 130, 1177.
(1963);T. Kanki and A. Tubis, ibid 136, 8723 (1964)..

mentum plane vary slowly with t, we have

with
A(s, t)=y(-,'s) &',

n(t) =np+ et ) (A2)

where y, no, and e are approximately constant.
Let us project out the Z=O and Z=1 waves from

Eq. (A1). We obtain

(z~)" 1—(z~) '-"
Ap(v) =7

s—4 e ln(-z's)
and

2V(z~)"'
A r(v) =A p(v)—

[s(s—4) 1n(-,'s)P

(A3)

X{1—(-', s)—'&~4&fe(s —4) 1n(-', s)+1j) . (A4)

For very large s, Eqs. (A3) and (A4) both reduce to

A~(v) = s~(s~)~™/e»(z~),

with a fractional difference

R—= (A g
—A p)/A p~ —2/es 1n (-,'s),

(A5)

(A6)

instead of the usual projection formula, which corre-
sponds to the first term of (A7). This representation has
been shown by Wong to be equivalent to the usual
Froissart-Gribov continuation. "

The Regge model is also useful in deciding on the
extent of J independence when we bring in additional
quantum numbers, such as isotopic spin. For instance,
if we assume that high-energy behavior is dominated by
the exchange of the Pomeranchuk trajectory (or, for

~6 This result is mentioned in G. F. Chew, Phys. Rev. 129, 2363
(1963).

which falls oG fairly rapidly with s. We have J inde-
pendence when R((1. If, for instance, me take
&~0.0125, which is a typical value for the slope of a
Regge trajectory, we find that 8=0.1 when s~300, or
v~75. Since this is roughly the separation point A

between the resonance and diR'raction regions, "we see
that J independence is indeed valid for v&A, as we
have been assuming above. Of course, this value of g
may be somewhat different if y is a function of t and
n(t) is not linear, but it is unlikely that the order of
magnitude will be changed.

It is quite straightforward to show that Eq. (A5) is
valid for all l at suKciently large values of s. This is
true even if y and 0. are more general functions of t, in
which case we must replace p, np, and e by p(0), n(0),
and n'(0), respectively. In the case of unphysical l, one
has to use the representation

I
A i(v) =— dz I' t(z)A(s, ——,'(s—4) (1—z)j

—I

sin~Z
dz Qi(—z)A Ps, —-,'(s—4) (1—z)g, (A'7)
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that matter, by any I=O system), then A&(v) will be
independent of both l and I. If, however, we exchange,
say, the p trajectory, we find that, although A&(v) is
independent of / for any given I, it will be diBerent for
different I. Thus, I independence is likely to be a good
approximation only if we restrict ourselves to a given
value of I, although it may be roughly valid even if we
ignore isotopic spin, especially for extremely high
energies. Needless to say, these arguments apply even
if we exchanged more complicated systems, such as
Regge cuts. 4

APPE5'DIX B

FIG. 3. Plot of a(t) as'"calcu-
lated from Eq. (BS) with
21=0.17 and I'1=0.2j..Thecor-
responding experimental points
were taken from Ref. 7. (Here
t =s.)

-—I"*0.2l—I 'O. I7

-l,6

--0&

;0.6

—0.2

O O.O O.e
t(GeV/c)'

=0.4

=0.6

where V&(v) is given by Eq. (17).
It can be argued" that Eq. (B2) is a good approxima-

tion to Eq. (5) provided that

I, (v) =—

I) ( I ) r/s
g

v
v' —v kv'+1~

(B3)

is valid over the entire left-hand cut.
The approximation (B2) obviously fails on the right-

hand cut, where (B3) becomes meaningless. Suppose,
however, we rewrite Eq. (5) as

D((v) =1+C(v)—«(v)I)(v)

0

( v' )'" V~(v') —«(v)
d v'v"I

I (B4)
&v'+1) v' —v

The last integral is now nonsingular on the right-hand
cut. We can therefore use Eq. (B1) in evaluating it.

» H. Pagels, Phys. Rev. 140, B1599 (1965).

In Secs. III and IV, we restricted ourselves to t=0
and l=1 in calculating the Regge trajectory. We shall
now discuss a simple way of determining the entire
Regge trajectory. Although this method is slightly more
complicated for l=0 and /= 1, it can be readily extended
to noninteger L. For integer /, we can compare the results
with the ones obtained in Table I and Section IV. It will
be seen that they are not too diGerent.

As in Sec. II we shall start from the determinantal
formalism for simplicity. This is given by Eqs. (3) and
(5). We saw in Sec. IV that this approximation seems
to be a valid one for calculating the p trajectory. There
is no great simplification resulting from the use of a
linearized C(v), so we shall use Eq. (22) for C(v). In
dealing with the D function we shall use the Pagels ap-
proximation. ' This approximation consists of replacing
the phase-space factor by a 8 function

v"Lv'l("+1)3'"=g~5(v —v~) (B1)

Equation (5) then becomes

=0.8

This leads to
g~ «(v~) —«(v)

Dg(v) = 1+C(v)—«(v)I((v) ——,(BS)
vg —v

which can be used for v) 0. Ke shall use it for v& ~ vL, ,
where vt, ———vg —1 is the start of the left-hand cut. For
v(-,'vz, we shall use the simple expression (B2), since
Eq. (B3) is valid here.

In practice, g& and v& were determined for each t by
requiring that (B3) be exact at v= —2(v@+1) and
v= —~.For A= 113.3, this led to values which enabled
(B3) to be satisfied on the average to several percent
over the entire left-hand cut, at least for l= 0 and 3= 1.
Equation (B3) thus seems to be quite a reasonable
approximation. In evaluating I~(v), we have used the
extreme relativistic approximation (12). This was com-
pared with the exact form for l =0, ~, and 1, and found
to be accurate to a few percent for about the values of
v at which the Regge trajectory intersects these angular
momenta.

As in Secs. III and IV, the parameters n and P which
occur in C(v) were determined by substituting Eqs. (2)
and (B5) into (8) and (9) at l=n=1 and v= vr, with
v&= 6.5 and I'r ——0.17.'s Equation (8) then enables us to
evaluate the trajectory which is shown in Fig. 3 for
4= 113.3. We see that the zero of n is at about the same
point as in Table I.

Ke have also shown the results for I'~=0.21, which
corresponds to a width of 130 MeV for the p meson.
Such a larger width for the p tends to be increasingly
favored by experiment. The experimental points in
Fig. 3 are the results of a "model-independent" analysis
by Arbab and Chiu, ' who assumed that the p trajectory
dominates the w p ~ Hn differential cross section near
the forward direction at high energies. It is seen that
our trajectory tends to be Batter on the average than
the experimental one, but is otherwise approximately
consistent with it, especially in view of the uncertainties
of the experimental" analysis.


