
1462 B. R. MARTI N AN 0 E. oa RAFAEL

reduced considerably. We recall that both ) stso (
and

~
s) (

are directly accessible to experiment:

I'(Es sro ')
~rt('=0. 986

I'(Es ~ sr+sr )

where the numerical factor on the right-hand side is the
phase-space correction.

(3) The determination of 0~, the phase of the
amPlitude As+= (At't'& —A&st'&)/v2 is a much more
dificult task. Recently, it has been suggested by Cline, '
that 0+ could, in principle, be obtained from the meas-
urement of the z+-energy spectrum in E+—+m.+m. p
decays. The method, however, needs the a priori
knowledge of the direct matrix elements, and therefore
becomes very much model-dependent. Experiments on
E+—+sr+srop decays (measurement of decay rates,
spectra, and polarizations) are nevertheless very
important in the sense that they can lead to the
detection of sizeable CE-nonin variant eRects." A
better understanding of these decays could lead,
eventually, to the determination of the phase of the
32+ amplitude.

1Vote added il proof. Recently two values have been
obtained for Res by measuring the asymmetry in
three-body semileptonic Ez, decay [see Eq. (27)$.
Ignoring the small lLS= —t)Q correction term, Dorfan

"D.Cline, Nuovo Cim. 48A, 566 (1967).
"Some of the possible eBects have been recently discussed by

G. Costa and P. K. Kabir, Phys. Rev. Letters 18, 429 (1967);
S. Barshay, ibid. 18, 515 (1967); and N. Christ, Phys. Rev. 159,
1292 (1967).

et a/. so fin (from Ez, -+ srtsv) Res= (2.0&0.7) X10 ', and
Bennet t et al."find (from Ez —+ srev) Res = (1.11+0.18)
X10 ', both experiments showing that solution a is the
physical one. However, this solution (see Table II) pre-
dicts a value for (5s—Bs) which is inconsistent with the
evidence from a considerable body of other experiments"
(even allowing for the fact that (8s—8s) is determined
only up to &Nsr). If one accepts the latter estimatessr

of (8s bo—), then it is likely that the value of at least one
of the input parameters in the E —K' system is in error.
A possible candidate is 0+ whose value has Quctuated
considerably in the past. The latest "world-average"
value for 0+ is4' 60'~12', but the spread on the indi-
vidual experiments is still considerable.

Using the techniques of Sec. III and the data of
Table 14s we find that" —90'& (6s—6o)&0' irnPlies
20'&0+ &55', and for this range of 0+, 1.90&Re&
&2.05. We note that for a value of 0+ 45' a consistent
picture emerges for the parameters of X—+ 2z decay
provided that Res 2&10 '. It is clear that an ac-
curate measurements of 0+ is needed.
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A very crude model of oscillations of the meson &eld in the nucleon is made which gives an excitation

spectrum similar to that of the nucleon and which allows us to calculate the transition form factors for the
allowed normal-parity Coulomb transitions ~+ —+ —,', &+, —,', etc. The results are compared with the recent

Cambridge Electron Accelerator (CEA) data, and predictions, applicable to the planned Stanford Linear

Accelerator (SLAC) experiments, are made for the other relevant isobars and other momentum transfers.

l. INTRODUCTION

HE advent of very high-energy electron accelera-
tors makes electron excitation a practical means

of studying the details of the excited states of the
*Research sponsored by the U. S. Air Force OfFice of Scientific

Research, Once of Aerospace Research, under AFOSR Contract
No. AF49(638)-1389. A preliminary version of this work was
reported on at the International Conference on Electromagnetic
Interactions at Low and Intermediate Energies, Dubna, U.S.S.R.,
February, 1967 (to be published).

nucleon. The well-known J =as+, T=ss(1236 Mev)
resonance has already been studied extensively with

existing machines. ' ' However, the nucleon is now

'W. K. H. Panofsky and E. Allton, Phys. Rev. 110, 1155
(1958).

~ L. N. Hand, Phys. Rev. 129, 1834 (1963).
s H. Lynch, Ph. D. thesis, Stanford University, 1966 (un-

published).
4 K. Berkelman, International Conference on Electromagnetic

Interactions at Low and Intermediate Energy, Dubna, U.S.S.R.,
1967 (to be published).
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known to have many levels, and an exhaustive study of
the higher resonances is planned at the Standard Linear
Accelerator Center (SLAC).' Some important data on
these levels are already available from the Cambridge
Electron Accelerator (CEA) group. ' To indicate the
richness of possibilities here we show the "low-lying"
spectrum of the nucleon in Fig. 1.~

From both a theoretical and an experimental stand-
point, one would like to have some idea of what to
expect in these experiments. From a theoretical point of
view, one would at least like to make some predictions
before the experiments are carried out, and from an
experimental point of view, estimates of the transition
form factors are useful in planning new experiments and
in interpreting, understanding, and correlating the data
as they accumulate.

The detailed theoretical understanding of these higher
excited states requires a theory of strong interactions;
but reliable, quantitative calculations are exceedingly
dificult and in many cases quite impossible at the
present time, although the experiments themselves will
stimulate work in this area and lead to new ideas here.
In this paper we make a model, which by necessity is
very crude, which exhibits a level structure quite
similar to that shown in Fig. 1, and which allows us to
make a calculation of the transition form factors. The
results are compared with the existing CEA data, and
predictions are made for higher-energy t!xcitations and
other momentum transfers. Just by looking at the
existing data, it is evident that we have already learned
some exciting things about the structure Of the- nucleon.

FIG. 2. Kinematics for inelastic
electron scattering.

q=P-P = p-p
,2 2 2 2P' =-M P =-fn

with p=.~1q 0-and
x &~~yll J(o)Ilz'~z)

/EE'Qg
f =

I I (~»ll&o(0) lie*~~)
EsprMs)

(2.2)

Walecka' have given a relativistically covariant analysis
of the process of electron excitation of the nucleon and
have discussed all-that can be said about the transition
form factors on general grounds. They also show the
relation to photoexcitation of the nucleon resonances.
We summarize their results here.

The kinematical situation in the one-photon exchange
approximation is shown in Fig. 2. The angular mo-
mentum analysis is best carried out in the rest frame of
the Anal isobar, because one then has an eigenstate of
angular momentum and parity. The electromagnetic
vertex is characterized by four reduced matrix elements,
or equivalently. by the four linear combinations

2. ELECTROÃ SCATTERING

We erst give a very brief review of the theory of
electron scattering. We concentrate on the case where
only the 6nal electron is detected, as in most of the
experiments which have been done so far and as will be
the case in the SLAC experiments. ' Bjorken and

In these expressions E and 'E' are the initial and 6nal
target energies, 3f is the isobar mass, 0 is the normal-
ization volume, j„(0)= (J(0),imp(0)) is the electro-
magnetic current operator taken at the origin, and J ~

is the angular momentum and parity of the isobar. In
the rest frame. of .the isobar one has

M(Mev)

ps=—(ri* iqP) (2.3)

I'IG. 1. "Lour-lying" spectrum
of the nucleon (Ref. 7).

2825

2360

2!90

)924

[688
I5i8 ...
f480

9+@

9—
2 ~

7-
2

7+
2

5+
2

2 I+r
31
2

3
2

There is still one relation among these four quantities
coming from current conservation, and it simply elimi-

nates fp

(2.4)

The electron-scattering cross section in the laboratory is
then shown to be (we set m, =0)

do n' cos'(-', 0)

dQ t,b 4e' sin'(se)I 1+(2s/m) sin'(se) 1

5 SLAC Group A—Proposal 4B, 1966;%.Panofsky, D. Coward,
H. DeStaebler, J.Litt, L. Mo, R.Taylor, J.Friedman, H. Kendall,
L. Van Speybroek, C. Peck, and J.Pine (unpubiished).' A. Cone, K. W. Chen, J. R. Dunning, Jr., G. Hart@rig, ¹

I".
Ramsey, J.K. Walker, and Richard Wilson, Phys. Rev. 156, 1490
(1967). See also Phys. Rev. Letters 14, 326 (1965).' A. H. Rosenfeld, A. Barbaro-Galtieri, %. H. Barkas, P. L.
Bastien, J. Kirz, and M. Roos, Rev. Mod. Phys. 37, 633 (1965).

I f, I
'+ (gs/2q*'+ (Ms/m') tan'(-'0))

A+4

J. D. Bjorken and J. D. Walecka, Ann. Phys. (N. Y.) 38, 35
(1966).
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In this expression e is the initial electron energy, 8 is the
electron scattering angle, m is the nucleon mass, and
q'= q„' is the invariant four-momentum transfer. We see
that electron scattering measures two independent
combinations of form factors, the Coulomb and trans-
verse form factors. These may be separated experi-
mentally by keeping q' and the energy loss —go= e—e'

6xed and varying 0 or by working at 8= 180', where only
the transverse contribution remains. The transverse
form factor can also be measured O,t ore momeetlm
transfer, namely, q„'=0 or

With a well-localized source, as is the case in nuclear
physics, one can give expressions for the transition form
factors in terms of the Fourier transforms of the
transition charge and current densities":

threshold = (M '//t )/2M q

in photoexcitation

o.,(to) dos =
lab; over resonance cV —m m

(2.6)

Mr, sro-'(q*) = jz, (q*x)F/sr(Q. )p(x)dx,

(2.10)

Thus, with electron scattering, we can add a whole new
dimension to the photon problem. There is also the
possibility of direct Coulomb excitation.

Detailed properties of the form factors f„ f~ are
highly model-dependent. However, in the limit q*~ 0
(which implies —

qo
—+ M—m), the form factors have

simple threshold behaviors:

1. Normal-parity transitions ~+ —+ 2, ~+. ~ ~

f ~(qa) 7—1/s

f ~ (qe) s—s/s

2. Abnormal-parity transitions -,'+ —+ —,', —,'+, —', ~

f (q4) s+1/s

~ (q4) j—1/2

One of the interesting questions on which we would like
our model to shed some light is whether or not these
threshold behaviors are of any use, because only space-
like momentum transfers are available experimentally
Cqs&&0], and it is not clear whether the threshold be-
havior still persists there, since this implies a minimum
three-momentum transfer

q*&~q*th„,hotd = (M' —nzs)/2M .

For the normal-parity transitions there is an addi-
tional relation between f. and f~ valid near threshold:

(2.g)

This relation is well known in nuclear physics. ' In
particular, it is the relation which allows one to get
photon lifetimes for electric transitions from Coulomb
excitation.

s For the special case st+ ~ st+, f,~(q*)s and f ~q*(f+——0)."T.deForest and J.D. Walecka, Advan. Phys. 15, 1 (1966).

~ J(x)dx,

T"
t, & "(q*)= Cj/, (q*x)I/, /r (n.)].J(x)dx,

where the nuclear electromagnetic current operator is"

(2.11)

and 'Q/, /r are vector spherical harmonics.
What we shall do when we make our model is use the

form of the cross section of Eq. (2.5), which was derived
in a Lorentz-invariant way, and which has the rela-
tivistically correct kinematic factors extracted; and
then use the above expressions, which are applicable to
a axed-source theory, to evaluate the transition matrix
elements. We shall also evaluate the transition multi-
poles for a momentum transfer q*. For a axed-source
theory there is no ambiguity; however, when the source
recoils there is no unique prescription here. We use q*
because the original analysis' was carried out most
directly in the rest frame of the final isobar. What we
are doing, therefore, is evaluating the kinematic factors
correctly, and neglecting recoil only in the transition
matrix elements. In nuclear physics, at least, one can
show that the main recoil correction is the density-of-
states factor C1+(2e/ns)sins(8/2)] ', which we have
treated correctly. "Such a treatment must break. down
at very large momentum transfers and. our results there
are at best qualitative. A better treatment, while
greatly desirable, would be very dificult Cwitness the
situation in the much simpler case of elastic scattering
from the deuteron at large momentum transfers].

We will also, in our model, conhne ourselves to the
consideration of the Coulomb transition form factors.
The motivation here is that it is known from nuclear
physics that even very crude models of the transition

~~ There is an extra intrinsic magnetization contribution to the
current in nuclear physics (see Ref. 10).J (x) =j//(x)+ ~ &&1ss/(x).
js/(x) is then the convection current density.
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charge densities can give very reasonable form factors.
For example, by saying the transition charge density is
concentrated at the surface of the nucleus

&f'(x) b(x It.) m
I f I' Lj r, (qR)3',

one can understand a great deal of the systematics of
collective nuclear excitations. " One, of course, also
wants to know what the transverse form factors look
like, but, in nuclear physics at least, it is a problem of
another order of magnitude" to construct a model which
yields the correct excited states at the right energies and
also describes the convection current correctly I in
particular, maintains BJ„(x)/Bx„=0j—

3. THE MODEL

We proceed to discuss a very simple-minded model of
the nucleon. The two requirements of our model are
that it should yield levels with correct quantum num-
bers at about the right energies and that it should allow
us to compute the transition matrix elements of the
charge-density operator.

We start from the following pair of observations:

(i) From a dispersion-theory point of view, the higher
nucleon isobars are very complicated combinations of
many-meson states. We might get a first approximation
here by going to the other limit and treating the pion
held as a classical field, an approximation which should
be good when there are many (free) quanta present.

(ii) There should be excitations that correspond to
normal-mode oscillations of the pion cloud —similar in
spirit to the collective shape oscillations one has in
nuclear physics. "

I.et us start from the following Hamiltonian for a
symmetric, pseudoscalar meson field":

FIG. 3. Assumed form of
S(x), the nucleon source dis-
tribution.

S(x)

S( ) =S (I-—) 8(o-x)0 a
$0 ma~

So

0

3 x
5= 1——8(a—x)

gled

8
(3 2)

and, partially integrating, we find

I~source =
2m

Lo V(r.y.)]S(x)dx

3g a

rr" x(r P )dx, (3.3)
4za~ p

where we have defined

g=—4G/2risa.

Our starting Hamiltonian is therefore

(3.4)

a=- dx(4.4.+v4. v4.+t '4A. )
2

when it is inside the source region. This term is meant to
represent other meson exchanges with the nucleon
source (p, fs, etc.), baryon pair exchange, and anything
else that contributes. We do not give an explicit
mechanism for it here. To simplify the problem still
further, we assume that S has a uniform gradient out to
radius a, as shown in Fig. 3. Thus we write

dx(4A-+v4- v4-+t '4A-)
2

a

+-'). dx(p @ )' ',p dxp, Q—-
0

3g a

+ o x(r.rt.)dk. (3.5)
4xa' p

2m
dxLe v(r p )~S(x). (3.1) L«us now try and. find the ground state of this

Hamiltonian. It clearly possesses a minimum as a func-
tion of P, since ) )0.To find the minimum we set

n is an isotopic-spin index which runs from 1 to 3, 5(x) is
the nucleon source distribution function, and X, P, and G
are coupling constants. In addition to the usual pseudo-
scalar coupling to the nucleon source, we have included
a repulsive sr'($ Q )' meson-meson interaction P )0)
for a reason which will become apparent shortly, and
since (as we shall see) in our classical field theory the
scattering effects of the nucleon source can essentially be
transformed away, we have included a phenomenological
attractive (p) 0) potential term which scatters the meson

'2 W. Pauli, Meson Theory of Xgclear Forces (Interscience
Publishers, Inc., New York, 1946).

a 0 ) (3 6)

(3.7)

This leads to the following nonlinear differential equa-
tion for the ground-state field:

3g[p—t
'—Zy, ty, s+p]y, .(x) = r.(e.x), x&a

(3.S)

LV' —mrs —),ys&ys&Qs (x)=0,

which lowers the energy, and then look for vanishing
variations of H:

8II/bgs ——0.
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and using this differential equation backk in the Hamil-
tonian, we obtain

3
Z, =—-', X d (y,.y,.)'+-~

4r g(r yo )dx. (3.9)

this simple model, just as in theThe source term
'

ared and we are left

rm

(3.16)rare $—~e+seapyr

we can reduce the Hamiltonian to"

gp (x) of

4o ()= ( *)4o(*). 3.10

t both e and z simply assume that we can treat oe ass
nucleon source. us. Th6xed vectors characterizing the nu

we assume that"

dxtf il +@~ dxyp (x)rf rf . (3.17)2
0

The corresponding Klein-Gordon equation is

oui e llatlolls for —Zo= — dx(rl rf +V'q Vrf +p rf 'q )Ke shaH now look for a solution to our equations for
the form

—e—0,
dt

—~—0,
dt

(3.11)

82

P——f4'+P —5K&os(X) rf =0, X(a
Bt2

$2
V'——fs' —5Xyos(x) rf"=0. x&a

BP

(3.18)

( ~)=1,
7-T =3

we arrive at

3g
x——ps —3li&ps(x)+P yp(x) =, x(a

(3

*—,-~'-»~" (*) ~.( )=o,
x d~' x'

x)a.

e want to look for normal modes of
h 'll o of hexcitation that co prres ond to t e osci a i

1 servestod The nucleon source simp y seexisting pion cloud. The
6x the center of mass o y .of our s stem, an g an e

amiltonian only so that we can
as a symmetric pseudoscalar meson e . nse

this form for pp (x) and using

18s 2
|7'(4r @o(x))= (4r x) — x——,(x),

%e can look for the normal-mode solutions

rf =if (x)e-'"'
and, defining

M p, =k )

(3.19)

(3.20)
we finally find

P'+P —t(x)]if (x)=0,

( ) = —p+»~o'(*) ~ ~t x = — ' x(a (3.21)

=S,y,s(x) . x& a

range a wiith an additional repu sive
f the ground-state meson

e in t is potential repulsive is
the resence o e

~ ~

have sharp resonanc
ndth ol tous su ose we have oun e

~ ~ ~

to this equation, il„&~(x), p
and normalized toco~Z) a11

lution of these equations shortly.We will return to the solu ion o
r that we have

ow look for small oscillations of
the meson field about the equilibrium va ue.

y. (x,f)=@, (x)+~.(x,f) (3.14)

h' in II. Using the diRerential equationand insert twas in
1 al ebrasatisled by pp (x), we find after a btt e a ge

&—&o— dx(g.g.+Vg'—V—g-+f.q-~-)
2

dxrf rf +isli dx(2(rtio~yoe)rf rf

+4(n.~")(n9")j (3.»).

gnZm X gn'Z'm, 'w ~ t ~ i i(X)dX= 544m'fillr5os~' ~ (3.22)

h Ei ld in a fashion entirely ana o-We now expan t e e

gous to that of the free-meson 6eld,

t ~ x, oo(x'))=Oifa&p. We will verify"We assume here that Lo~(x, o x = ' . rif

d' oth t tb L. I. S huffTh' approach was first u

ting a ii@4 theory as a classical e
«h. t...t. fi.,t.'.relar e. Hepoints ou a-theoryvrhen) or@ a e g

tions then become large. Ke viz re ur
later.

g.(X,f) = p [e„,„.g„i„(x)e-".&'

'(x)e*"""3 (3 23)+&74&N4 'gntN4
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and inserting this expression into the Hamiltonian, we
find, after a little algebra and the use of the defining
differential equations,

~0+ Z esne 2Lcntm cntn +est~ cs~~ j. (3.24)
nlma

We can therefore immediately interpret c„& ~ and
c„~ as the creation and destruction operators for these
normal-mode excitations of the meson field in the
presence of the ground-state meson "soup. "To quantize
these excitations we impose the commutation rules

$c (,c„p "'tf=b...b„„.b((.8„„,. (3.25)

I,et us turn our attention to the charge-density opera-
tor. We will concentrate on that part of the charge
density coming from the pion field. For a Klein-Gordon
field it is well known that

c„,„,,~o) =0. (3.34)

The ground state is just the nucleon with its surrounding
static meson field. For an excited state of the nucleon
we can now write

~n(l's)JMpTMq)=P g (1q-', q'(1 ,'TMq)-
qq& mme

X (tm ,'m I-lsSM&)c„& qt10.)$~'fq" (3 35)

The next task is to construct the states of the theory
and this is very simple. The ground state is

tG&= t0)4l „(333)
where (, and f, are two-component spin and isospin
Pauli spinors for the nucleon core, and ~0) is the
"vacuum" for the meson-Geld excitations:

Inserting our expression for p",

We have coupled the orbital angular momentum of the
meson 6eld to the spin -', of the nucleon core to give a
state of de6nite J, and the isospin 1 of the meson 6eld

Bt 3 BI,
to the isospin -', of the core to give a state of definite T.
Note that these excitations have

$ (x,t) =go"(x)+st (x,t),

where g is the small oscillation we have

8
p=e ego (x)~e(x,t),

83

(3.22)

(3.2S)

T= ', , -,'(is-ospin of excitations) .

The parity of these states is easily discussed. In the
space of creation and destruction operators for the
normal-mode excitations the parity operator is clearly
given by

ffc„~ "tQ '= (—1)'+'c t (3 36)
and we see that p is linear in the creation and destruction
operators for the excitation of the meson cloud. In-
serting our expression for pq and st~ we find

p(x, t)=t'e ps' (e l)yp(x)

the extra (—1) coming from the pseudoscalarity of the
pion Geld. This guarantees that

fttI-(x, t)ft-&= —q-( —x, t), (3.37)

(~nl)
X p ( ~

Lc„i ~q.t '(x)esca. ~&

&2i

and also gives us

fop(x, t)ft—'=+p(—x, t), (3.38)

3 29' ouM be so. Thus we conclude that the parity of the—c.) ~.&,x
excited states is

Going over to spherical tensor notation using' fic.(„'~0)=(—1)'+'c ) t~0) (3.39)

LaXbjs= v2i g(—1q1q'~ 1110)atqbtq', (3.30)

where e and b are tensor operators, we Gnd

(cc ) 1/2

p(x, t) =%2(o"X)Ps(x)Q Q (1q1q (1110)rtq(
qq& nlm &2)

Xgc~&nqtrt i t(x), e' ""
—(—1)q'c„~~ q.st~~~(x)e '"""g. (3.31)

The spherical creation and destruction operators satisfy

Les tea, q&c n' l'm&, q'") =& as'& l t~5mm&b q q' ~ (3.32)

'6%e use the angular momentum notation of A. R. Edmonds
/Angular Momcntnm in Qnantnm Mechanics (Princeton Uni-
versity Press, Princeton, New Jersey, 1957)g.

II= (—1)'+' (parity of excitations) . (3.40)

We have used f1~0)= ~0), as must be true, since the
nucleon has positive parity.

We are now in a position to compute the allowed

transition matrix elements of the charge-density oper-
ator. We need

qqt qr i mnaI

(1q'q' I
1-', TM,) (tm~sm'It@ M J)

fqqn&)

X(1q"Iql»10)l I
&.~'(x)I't-'«*» (34»

&23
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where we have written-

g„, (x)=Z.i(x)r, (Q,). (3.42)

Now, let us use
(,&(e g)g = —(4+)&&2P(im"-,'m'! 1-,'-', m.)V, „(Q.), i, &r„„),=V3(,'m-, iq"!,'1,'-q'-), (3.43)

and project out the LMth multipole:

Mz~o'"'(q*) = dx jz(q~x) Fz~(Q,)p(x),

using

(3 44)

(2L+1)(3)(2l+1) '"l'L l 1 (L l 1 )
F) *(Q,)Fz "(Q,)Yz~(Q,)dQ, = (—1)" (3 43)

Eo o 0EV —mm")
We find

(n(lz~) JMJTMr! Mz~ '"'(q*)!-2+m„-,'mg)

) 1/2 L l iiL l
(Q6) ! ((2L+1)(3)(2l+1)7&&2 p g ! !(—1) (im"2m'! 1~ ~m, )2) tnt'm, " qq'q" 0 0 0) mm—

X (~m&iq"! —1—q') (iq—q'! 1 TM r) (—lm m'! l J—Mz) (—1q"1q!1110)! E„P(x)pz (q*x)$0(x)x dx !, (3.46)

and using standard angular-momentum recoupling techniques'~ we 6nd

(n(l2') JMJTMr!Mz~ '"'(q*)!-,'+m„-,'mg)

~L l 1 2 1 2
=+! ! E„P(x)gz(q*x)yo(x)x'dx!L(2L+1)(3)(2l+1)J~'! !(2J+1)'2

&2) ) (0 0 0) l J L

1 1 1
X (—1)~+'(L—MJMg! LJ-',m,)3L2(2T+1)J" (10TMr! 1T2Mr). (3.47)

T2 2

Reading off the reduced matrix element we conclude

4x—I(~(l2)JTMrllMz""'(q') II2+2m~& I'
2

)L l 1'-', 1 -,''-,'1
= 27 (4m) (2T+ 1)E(2L+1)(2l+ 1)(2/+ 1)ll (10TMr! 1T-,'M~)'

(0 0 0 l J L 1 T 1

Xcu & R„P(x)jz,(q*x)&0(x)x'Ch (3.48)

This is our main result. Note that all the selection rules need
are contained in the 3-j and 6-j coeKcients

(i) L+l+1 even (parity),

8$ 8/0 Bg
p= pX—= &OX + $0X—

~ (3.30)
Bt 3 Bt 3 8t

L= lw1,
(ii) L= JW-', ,

(iii) T=-,', 2.

(3.49)

Now we might hope to get still more information by
using our model to describe elastic scattering, but'a very
interesting thing happens. If we try and compute the
contribution of the pion cloud to elastic scattering, we

The second term does not contribute to elastic scattering
since it is linear in the creation and destruction opera-
tors, and the Grst term vanishes since 8/0/Bt= 0 There-.
fore (0!p!0)=0 and the meson Geld does not contribute
to elastic scattering in this approximation. Actually this
is not so unreasonable, since it is known that the elastic
form factors come mainly from vector-meson exchange,
and this is presumably a phenomenon relegated to our
core region, as indicated in Fig. 4. However, we clearly
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~-p(s—a)

(3.67)x&a
We are now in a position to compute elastic scattering

in this model, and we have
as sketched in Fig. 5. We treat c as the parameter to be
varied. Inserting this expression into Ho, we find

e' 2'*(~+~m,
~
p(x) ~-'2+~m )dx

-(9g )
Ho= -2'~ap

(
)c+ {3(1+~a)+6L1+I2(~a)j

ttf22{1+72)ff t
et'o*S( x)d x, {3.62) E4 ap)

which at least has the correct threshoM behavior built again, and as a variational form we take
1Q.

(iv) None of our other results are affected, since these ~.( )=,
arguments only concern the monopole moment.

and, therefore, we can inunediately identify the isoscalar
and isovector elastic-charge form factors as where

—pa'+ (pa)2}c2+-4'9X/1+3I4(pa) jc4, (3.68)

Gz (q')=Gz (q')= e' '2*S( )xdx (3.63)

and setting

I (~a) eapa e aaatd'/'2

1

{3.69)

+9~a221+3I4(pa) jc'=0. (3.70)

We can evidently use these relations to completely de- 8Hp/bc=0

termine the source function S(x). we find

We proceed to a discussion of solving the equations 9
for pp(x) and pat~(x). The equation for pp(x) is a non- +3{3(1+&a)+6L1+.I,(&a)j
linear differential equation which we have so far solved 4~a
only in a few limiting cases. It was, however, derived
from the variational principle

8Hp/hap ——0, (3.64) Let us consider the following limiting case of this result:
where

C

Hp dX/Vpo———V@o +p'po Qo j 2p A—p A dX
2 0

Pa'&)1,

pa 1y

3''a2«Pa'.
(3.71)

3g
dx(yo yo )'+

4ma3

This is the situation we will actually be most interested
in. We find, under these conditions,

and we can use this principle to get an approximate
solution for Pp . We write

/'3g( 1
c—

~ ~

(variational).
(4+a pa'

(3.72)

$o(x)

~"( )="( *)~ (*) (3.66) The exact solution in a very similar case is given in the
Appendix. If

(3A'
«~) (pa2)2

0)

pa 1~

%pap—Pa'»1,

( (Pa2) 1/2 tan((Pa2) 1/2g ())1

the solution reduces to

(3.73)

FIG. 5. Crude variational form for &0(+}.

3g
0=

4s.a pa'
xCa

3g 1 ( pa ) 1+@x)e &(* '
x&a

4~a pa2(1+pa) px ) (x/a)

(3.74)
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and our variational solution is almost exact in this limit.
The nice thing about this variational form is that the

potential which now enters into the equation for p(x),

[V+A' —v(x)]&=0,

v(x)

-2p, (x-ci)
e

x/a)
2

v(x) = —p+5) c',

~
—2p(x—a)

x(u
(3.75)

= SXc' x&a
(x/a)'

is such a simple one. We show the situation in Fig. 6.
We now make the following observations:

(i) The effective repulsive barrier for the solution
inside the potential is, including the centrifugal barrier,

Ll(l+1)+SXc2u'g/a' (barrier height) . (3.76)

If this quantity is greater than k', the states will be
"quasistationary" states and will show up as resonances
in electron excitation. We also expect that because of the
additional centrifugal barrier, only the highest-l states
will show up as sharp resonances, as appears to be the
case experimentally. This of course depends on the )c',
and we must come back and check at the end that our
barrier actually has the required height to be above
those states which we assume to show up as resonances,
and to be below those states which we assume do not.

(ii) If the barrier is suKciently greater than )'l', we do
not change the solution inside the potential by extending
the barrier up to inanity. We can immediately write
down the solutions in this case:

g. l (x)=R„I(x)I'I (n.),
(3.77)

-/8+ 5)I,C

FIG. 6. The potential v(x) in PV'+k'-v(x))v=0.

pa' 5) c'—a'= 16,
5) c~u2= 40.

(3.80)

This is not meant to be a "best Gt,"but is simply chosen
as illustrative. This choice of parameters gives pu'»1,
/la=1, and 3Xc'a'«pa', so that the situation discussed
above is applicable. Also, with these parameters
(pa')'" tan L(pu')"'j =20. Our variational solution should
be a fair approximation in this case. We calculate the
total energy in the c.m. system:

gr (Qv+u2)1/2+ (Q2+~v)1/2~ (3.81)

and identify this with the mass of the resonance. The
results are shown in Table I and in I'ig. 7. In Table I
we show the barrier height and verify that it is above
the calculated eigenvalues. The places where the 2s, 2p,
and 2d levels would show up in an infinite well are also
indicated. We include the quantity (m'+ktP)'/'/u to get

We have computed the resulting spectrum for the
following choice of parameters:

pc=1)

and since

~m/2 (1/gv) P n l2 Pgv+ 5$C2g2j

olel Ilail +u ~~0|

(3.78)

(3.79)

where X l=E„Ia and jl(X l) =0. The last condition is
the familiar eigenvalue equation corning from the
vanishing of the solution at the boundary. We evidently
have

[KEEPING HIGHEST g STATESj

ii+
2

9+
2 9

2

7
2 7+

2

4 I0.5 9.5 7

v (W-m) W-m)
GAL u Exp

5 I26 l27 &

only k~&')~ —p,
' are meaningful and only p„&~&0 are true

continuum resonances.

TABLE I. Resonant masses for the choice of parameters in the text.

5+
2 5~

2

2 p+

I+
2

)+

7.9

5.6

2.6

6.2

4.I —P

5.0

0
1
2 2s

4
f-+ 2P

5~24

D(l+1)
+»c'o'3/(uo)' (hllu)'

40
42 4.1
46 17.2
52 32 8
60 51.0
70 71.5

2.6
5.6
7.9

103 '

' 12.6

7.0
8.0
8.8
9.8

10.8

(& ~)/u (~'+»l')'"/I
l+
2
I

.2 0

0.0 0.0

EXCITATIONS HAVE

2 & 2

Fxo. 'g. Spectrum for the choice of parameters in the text: pg =. $,
Pu' —5Xc~u'= 1.6.
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Projects J=/+s, T=ss,
projects J=7—-'

and simply replace

(3.82)

p ~p(Pt t+Pt t), (3.83)

we will obtain almost the correct spectrum. It is evi-
dently too strong a statement to assume that p is
independent of spin and isospin as we have done. Again,
an interesting question is to 6nd a mechanism for this
form of p."

some feel for the severity of our 6xed-source-approxima-
tion. ' In Fig. 7 we show the resulting spectrum. The
main features of this result are the following:

(i) Coupling the spin of the nucleon to the meson
excitations, and keeping just the highest-l states as we
go up in energy (as these are the states which will have a
high enough barrier to show up as resonances), we get a
spectrum very similar to that observed for the nucleon.
The fact that sr = (—1) '+', i.e., that we are dealing with
a pseudoscalar Geld, is essential for achieving this. Ke
assume, in Fig. 7, that there is some additional inter-
action which splits the J=/& ~ degeneracy of our model.
The quantity (8'—mjtt), o is simply taken as the
average of the positions of the corresponding observed
levels.

(ii) The excitations have T= sr and —,', since we couple
the isovector excitations to the isospin of the core. In
one sense this is a success, since it restricts us to the
lowest isospin states, as in the experimental case. How-
ever, it essentially gives us a doubling of the number of
levels, since it appears to be quite systematic that the
J=/ —si level has 2"= isand the J=/+islevel has T= as.

It is much less embarassing to the theory to have too
many levels than not enough, though. We can easily
correct the situation with a rather ad hoc procedure. If
we define the projection operators

(iii) There is a low-lying S-wave state (—, ) but its
exact position is, of course, very sensitive to what goes
on in the inner region of the nucleon. "The low-lying &+

state will get pushed up by its interaction with the
ground state.

All in all, the model seems to give some faint reflection
of the experimental situation. One can simply raise the
repulsive barrier SP c'u' while keeping the depth of the
well pa' —5)c'a' fixed, and in this manner understand
the apparent experimental continuation of the structure
of Fig. 7 to higher energies. The problem then is why the
2p, 2d, 2f, 3p, etc. levels do not show up as resonances.
Of course these levels would be much broader, but
perhaps one needs a more sophisticated potential which
is less attractive near the center of the nucleon to get
rid of these states. There are, of course, also the multi-
quantum excitations of all the levels. These will not be
excited by allowed Coulomb transitions, however.

We are now in a position to calculate
I f, l' for the

allowed normal-parity Coulomb excitations. These are
the transitions is+~ ss, as+, —', (T=is), and we show
the situation in Fig. 8. They take place through the

TABLE II. The quantity X&g.

X1)

4.49
5.76
6.99
8.18
9.36

C1, C2, C3, . multipoles. Using our expressions for
R„t(x) and p, (x)=c in the overlap region, we find

5+ 9+ t

2 2

pL / 1' —' 1
= 8sr(21.+1)(2/+ 1)(2J+1)

I(0 0 0 / J L

7 — t

2 2

+ 5+ I

2 2

p- 5 — t
2 2

X
o

jr.(blitt) jt (t)t'&t, (3.84)

ct c2 c3 c4

l+
2 2

for —,'+~ -', —,-', +, —,'-, ~+, etc. (2'=-', ) (note that I.=/ —1
here), where we have converted the integral to dirnen-

FIG. 8. The allowed normal-parity Coulomb transitions.

"The use of the Klein-Gordon Hamiltonian for the meson field
means that we are at least treating that relativistically, as, of
course, we must at these energies.

See for example P. Carruthers, in Lectgues In Theoretical
Physics (University of Colorado Press, Boulder, Colorado, 1965),

for a discussion of this problem and for further references in this
area.

'~ &, T=&, +~ resonances have been observed in phase-shift
analyses .in the region %=1500-1700 MeV. L. D. Roper, in
Proceedings of the WNiornsbnrg Conference on Intermediate Energy-
Physics (William and Mary College, Williamsburg, Virginia,
1966), p. 495.
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sionless variables, and

qtr=—q rz/Xtr. (3.85)

We recall that X~~ is the first zero of the Lth Bessel
function. It is shown in Table II. It clearly makes more
sense to look at the reduced quantity"

I f, Is/(po) (cu)' Lreduced form factorj, (3.86)

10

(p.o)(co)
2

2I90 MeV

l688 MeV

t5I8 Mev

cl- c2 c3

„ I

T=g:
IT~2 2

since this quantity, whee plotted against qt&, eo longer
depends os any of the parometers of the theory. Thus all
the shapes and relative form factors are predicted in a
parameter-independent fashion. The model still enters
through the exact shape of the radial-wave-function
overlap, but we would expect that this might be a oner
detail, as is the case for Coulomb excitation of collective
levels in nuclei. ' We have plotted this quantity out to

-IIO—

7
2

THIS POINT FIXED
a = I/l. 6ILI

TAnLE III. CEA values oi l f, l' using the analysis of the ex-
perimental data discussed in the text. ' C'Energies and momenta
in BeV.)

(CEA)

To ++(CEA)

-',7rar '
State e q' q qo 1'/(1+&) (cm') ( f, l

&

1.512 2.358 0.795 0.917 —0.202 0,93 0.98X10 3' 0.080
1.512 2.988 1.31 1.145 —0.033 1.00 0.36X.10 " 0.049
1.512 4.874 3.29 1.92 0.623 0.85 0.69X10 '4 0.003

-2
IO 0

I

.2
I

.6
I

.8
q'o

IE

I

I.O
I

l.2 I.4 I.6

1.688 2.358 0.652 0.90 —0.388 0.78 0.89X10 32 0,085
1 688 2.988 1 14 1 095 —0 242 0 94 0 33X10 " 0.047
1.688 4.874 3.05 1 775 +0.322 0.96 0.78X10 '4 0.003

a ReferenCe 6.

the 6rst diGraction minima for the three levels

~exp
(MeV)

3—
2
5+
2
7—
2

1518 (3.87)
1688
2190

in Fig. 9.The energy of the corresponding experimentally
observed level is also indicated above. We compute co

from this number. The most interesting feature of these
curves is that they have the same shape and same
maximum height but they are simply displaced relative
to each other, the higher multipoles having their
maxima at higher pic.

4. COMPARISON WITH EXISTING
EXPERIMENTAL DATA

Some recent CEA data' have just become available
which allow us to make a comparison with this simple
model. The inelastic cross sections to the —,

'—, T=~
(1518MeV) and ss+, T= z (1688 MeV) levels have been
measured at 31' and incident energies &=2.358, 2.988,
and 4.874 BeV. No experimental separation of the
transverse and Coulomb contributions has yet been
carried out, and we have to rely on the theory to make

"Note that both l f, l' and (pu) (cu)' are dimensionless.

Fro. 9. The reduced form factors
~ f, ~

'/(pa) (ca)' oi Eq. (3.g4)
pl«ted against the reduced momentum transfer q&& =q+g/g&, for
the allowed normal-parity Coulomb transitions. The first zero o
the lth Bessel function, Xi~, is given in Table II. emote

here I is the Coulomb multipolarity. Also plotted is the recent
CEA data (Ref. 6) analyzed as discussed in the text and summer
ized in Tables III and IV. The plot of the data is normalized to the
indicated point as discussed in Eqs. (4.15), (4;16), and (4.17).The
resulting threshold for the ~~+ ~ ~ transition is indicated with a
vertical line on the figure.

this separation. Since the experiments are at forwar
angles, one expects the Coulomb excitation of the co
lective levels (the allowed normal-parity Coulomb
transitions) to dominate the cross section. Since these
are normal-parity transitions, we can use the relation

If+I'+ If-I

If I'

~+ a /qo)'

,' (q*J——
to get an idea of the relative contributions. The indi-
cation is that under the conditions of the CPA experi-
ments, the transverse contribution is indeed very sma]1
and the excitation of these levels is predominantly
Coulomb. If $ is the relative contribution .oi the
Coulomb and transverse terms in the differential cross
section,

~—s /q'& 1
(4.2)J+s &qs' z+ (q*'/q') (3l/&)' tan'(8/2)

then the observed cross section must be multiplied b
$/(1+$) to get the Coulomb cross section. V/e give this
factor in Table III, and it is almost j at a]1 incident



J. D. WALECKA j.62

d'(r A I"/4

d e'dQ „, (c'—e...')'+ I'2/4
(4.3)

which implies

energies. Of course, the above estimate depends on a
threshold condition, and is therefore crude, but in the
absence of an experimental separation it is all we have
to go on. The CEA group assumes a resonance shape'

TAr3LE IV. Value of
l f, l' from photoproduction.

State
iBevl

1.512
1.688

0.465
0.580

0.20
0.21

e~(co~) '
(cm')

0.7X10-»
0.6X10»

a Reference 6.

If we write the photoabsorption cross section

o ~(coii)l'2/4

If.l'
0.038
0,051

I 7

res peak

d20 do'
d&'=-', 3I'=——

d6 dQ res dQ )gb

(4 4)
then

o, (4o)dco = -,'m I"o,(a&r4) .

(4.10)

(4 11)
and they give values for ~OAF, the quantities of direct
relevance to the analysis here. These are shown in
Table III. We can therefore find

I f,I' from the relation

I 1+(2c/m) sin'(8/2))
If I' *.=

The CEA group gives a value for o~ (4oii) from a compil-
ation of existing data, and to get —,'xF we have used the
value of

where

x II I(k~AI'). v) (4 5)
q*'ll' 6 ),
q4) (1+~)

crm cos'(-'8)

4c' sin4(~8)

de
de'dQ'

= —',v A I'/A = —,
' v.I' (4.12)

d6 dQ pes, g

given in their paper. These numbers extrapolate to the
values shown in Table IV.' Thus we have

and these are shown in Table III. The necessary kine-
matical relations are

(iv)

e—(1/2m) LM' —m'j
/

1+(2e/m) sin'(-,'8)

q2=4ee' sjn2( —8)

q*2= q~+(1/4M2) LM2 —m' —q'g'

qe ———(I/2M) LM' —nP —q'j.

(4.7)

The values are shown in Table IV.
%e now want to put these points on our reduced form

factor plots in Fig. 9. To do this we have to fix both the
horizontal (a) and vertical (c') scales. We do this by
arbitrarily 6tting to the point indicated in Fig. 9. Thus
we take

I f.l' = 1.25, =0.89 (from fitting) (4.14)
(t4a) (ca)' Xi2

also get one value of I f, I' from photo-
for the experimental point for -', ~-',—, T= ', (1518-
MeV:

If I'=— , I

—
I
(If+I'+ If-I') (4.8) I f, I'=0.049, q*=1.145 BeV

(experimental values) . (4.15)

(if this relation is ever to work it must work here) and

o, ( ) ted=co

lab; over resonance 1+2Lvf 1Ã SZ

44r'cr M'(J+x2)

This allows us to determine the constants

a= 1/1.6t4, (tca) (ca)2=0.039 (from fitting) . (4.16)

The re/ative positions of a/l the other experimenta/ points
for both /evels is noto comp/ete/y determined.

5. DISCUSSION
M~ —m' m 0——;&

The most interesting features of the comparison in

X(If,I2)e„&~ &tssc. (4.9) Fig. 9 are the following:
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(i) From a comparison of the shapes of the theoretical
and experimental form factors, the relevance of the
threshold behaviors mentioned in the introduction be-
comes clear. These threshold behaviors can be thought
of as coming from the expansion of the Bessel functions
occurring in the transition multipoles:

(v)' (P)'
j&(qx = & — (51)

(2L+1)!! (21-+1)!!

(g. is the interaction radius), and these expansions
require that we be on the ascending side of the form
factors shown in Fig. 8. In fact, with the aid of the
photoabsorption points —the points farthest to the left—we see that we are still in the ascending region with
the experimentally obtainable values of q2, although we

rather quickly reach the maximum, by which point the
above expansion has no relevance. We can, however,
now make some predictions that we hope are meaningful
about the form factors for the higher-lying states. In
particular, we have now located the corresponding
threshold for the -', + -+ pr (2190 MeV) form factor, and

we see that this form factor should increase well into the
experimentally obtainable region. We are also able to
predict where the maximum in this form factor should

occur. These peaks should thus be clearly evident in the
higher-energy scattering experiments. From just looking
at the experimental points themselves, it is clear that
these conclusions are not particularly model-dependent.
They do, however, rely rather heavily on the values for
the photoabsorption cross sections.

(ii) One very interesting prediction, which appears to
be very well satisGed experimentally, is that the two
form factors should achieve the same maximum value,
and we can then extrapolate this value to the higher

levels. This is a model-dependent prediction, since there
is no a priori relationship between these relative transi-

tion strengths.
(iii) The fact that the relative Gt to the two different

levels agrees fairly well is an indication that we have

approximately the same interaction radius a for these
two levels. This is also a model-dependent statement,
but not a very striking one, as might be expected on
rather intuitive grounds. In fact, if we take the Gt in

Fig. 9 very seriously, there is some evidence that we

should use a slightly smaller value of the radius for the
&+~ $ (1518 MeV) transition. If there is a strong
variation of radius from level to level, then measuring

the transition form factor will not be a very powerful
tool for determining transition multipolarities (as it is,
for example, in nuclear physics). " Just looking at the
existing data, one is not in a very strong position as far
as differentiating multipolarities is concerned.

(iv) The existence of a diffraction "decrease" at the
larger values of q2 seems rather well established.

Let us now turn our attention brieQy to the empirically
determined size of the parameters in the theory and to
the over-all consistency of the model.

(a) We have seen that

a=1/1.6p (empirical) . (5.2)

Our rough Gt to the spectrum in Fig. 6 used up=|.
These values are diferent; however, they are still close
enough so that the model is not complete nonsense. We
can get another piece of information here by using the
model to describe elastic scattering, using Eq. (3.62).
Our assumed uniform-gradient source distribution will
not give a good Gt to elastic scattering; however, we can
at least try to Gt the mean-square radius of the proton.
Using the shape in Fig. 3, we compute

and using

we Gnd

f2 g2

"t/(» )proton=0 8 F,

a= 1/1.1y, ,

(5.3)

(5.4)

(5.5)

which gives a source radius only slightly larger than that
of the potential in Eq. (5.2).

(b) We have also seen that

(ltu) (cu)'= 0.039. (5.6)

This determines c and hence a certain combination of
the coupling constants in our theory:

(ca)' =0.062 . (5.7)

yp (x) .- cr (a l) (5.8)

whereas the tail from the one-pion-exchange pole is

p, G~ e~
v oiA (x)

"2m 4x
(5.9)

Comparing these results we see that

G y'/4tr=496,

whereas the known value is G lt '/4r = 15. Thus

(5.10)

Gempirical/Gtheoretical 5 7 ~t (5.11)

The coupling constant we need seems to be too large,
although the tail of the pion Geld is only very crudely
determined in this model.

(c) We can now also ask what is the actual expansion
parameter when we write

(5.12)

and assume g is a "small" oscillation. If we call the

We can compare with the experimental pion-nucleon
coupling constant through the tail of the pion Geld. We
have asymptotically

e—e(~e)
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dimensionless expansion parameter p, then very roughly

(1/2"-)'"(3/ ~&')'")'
q2-

C[T T (6g)] j

1p) 1 p
(5.13)

8~ (o„)(pa)(ca)' co.

and since X is not determined by the above conditions,
we can make X as small as we want by making c' large
enough. Note that our reduced form factors are inde-
pendent of any of these considerations. Our-empirical
6t, however, determines both u and (ca)'. If we proceed
and attempt to estimate 9 from our empirical values,
we can write Pps=c' and

This is not an astoundingly small number, but it is less
than 1, since

125K Xc'as'l'
5=1+

96~' Pa'J
(5.19)

era/2- =3.4p,

C05/2+ =4.2p, (5.14)

a)7]2-= 6.4y.
The interesting thing is that our approximation of
looking at the normal-mode excitations of the classical
meson Geld gets better for the higher-lying states, as we
hoped in the introduction.

(d) We have now also determined a value of X, since
we assumed that

5''a'=40 (5.15)

to get a high enough barrier. Now a very interesting
point here is made by Yennie, " who discusses the
neutral scalar theory and shows that one cannot treat
the Xp theory as classical, even as G ~",if XPp'is large
enough, because of the quantum fluctuations introduced
by the zero-point oscillations of our normal-mode
excitations. In fact, Yennie gives an explicit formula for
the corrections that are not simply renormalizations,
and hence absorbed into the renormalized coupling
constants. Yennie's correction to the ground-state
energy effectively multiplies the ppp' term by a factor

mp (XyP)' 5 '
m=1+,I, I-+

32m'4E') 9
(5.16)

then

pa'=56,
5Xc'u'= 40,

125K/1 '
8=1+ i- +".,

96m-' k7

(5.17)

(5.18)

~' By separating Kqs. (3.5) and (3.17) into three equations of the
type studied by Yennie, one for each isospin component, and
comparing withhis analysis Lnote also our Eqs. (3.12), (3.13),and
(3.18)g, we see that ho=3K and that we must include the extra
factor of (5/9)3 in the correction term here.

where, in our theory, we would have E'= —P+y' and
)0=3K."This term gives us a measure of the contribu-
tion of these zero-point oscillations. Now it is true that
we never need to calculate Eo, since we compute E—Eo
directly; however, we do

needles,

and Yennie shows that
the correct equation for pp comes from taking hap/5pp
=0. The quantum correction is large when the combina-
tion X(Xgp'/P) is large. If we use our original'choice of
parameters,

Now using

we have

pa'=56,
5Xc'u' =40,
(ca)'=0.062 (empirical),

g) —1=0.35+ (5.20)

"J.D. Walecka, Nuovo Cimento 11, 821 (1959).

which indicates that the eGect of quantum Quctuations
on the ground state is not negligible for this particular
set of parameters. However, since the empirical value of
@=1/1.6p, the radius of the attractive potential, is
smaller than we originally assumed, we will not need
nearly as high a barrier coming from X. The problem
with a smaller radius is to get all the levels down at the
right energy. For this, one has to change the shape of the
potential term. No attempt has yet been made to Gnd a
completely consistent set of parameters and potential
shape. In any event, the effect of these quantum
Quctuations is certainly contained implicitly in the
empirical values of the coupling constants and radius
parameter u which we determine, and it is certainly im-
portant to include their effect in any rigorous theory
starting from quantized Gelds. There is a very inter-
esting analogous situation that comes to mind in nuclear
physics. One can make a model of collective shape
oscillations by studying a quantized, oscillating liquid
drop. "This crude model does very well on the transition
form factors, primarily because they are the leading
terms in the charge-density operator, being linear in the
creation and destruction operators (as is the case here).
However, the elastic scattering is only very poorly
described by a uniform liquid drop of definite radius,
and it is essential to consider the effect of the vacuum
fluctuations of the quantized surface coordinates, a
second-order e8ect, to begin to get anything like the
right ground-state properties consistently within the
model.

The question of the damage done by computing the
transition matrix elements in a Gtxed-source theory is a
much more serious one. Indeed, there is a paper by the
present author" that shows that recoil eBects in the
intermediate states are very important for computing
the elastic scattering form factors in the usual static
theory of the nucleon, and that the relativistic, dis-
persion-theory spectral functions are quite diferent
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from those of the static theory. However, even here
there is a ray of hope, because it was shown in that work
that one could understand essentially the entire di6er-
ence between the relativistic dispersion theory and the
static theory by computing the transition matrix ele-
ments to intermediate states in the static theory but
using the correct relativistic kinematics in the energy
denominators. These transition matrix elements occur
twice in elastic scattering. Thus one might still hope
that we have not done great damage to the theory by
computing the first-order transition matrix elements in a
static theory.

The main improvements, beside this, that one would
like to make are:

1 d 2 3g
x——i

'—3l~yp'(x)+P yp(x) =, g(u
gdx x 4m.u'

2
x——p' —3zyps(x) yp(x) =0.

xds x

(A1)

Our basic assumption will be that the solution is
dominated by the source term,

APPEIIx
In this Appendix we brieQy discuss a limiting case of

the solution to the nonlinear differential equation

(i) Include the coupling of the nucleon core to the
meson excitations, so that the transverse form factors
for these higher excitations could be estimated with a
little confidence. "

(ii) Find some mechanism for the generation of the
potential scattering term, which is essential to this
model, and repeat the calculation with a more realistic
potential and with the vacuum-Quctuation corrections
included.

(iii) Eliminate the dependence on the source density
S(x) by taking it from elastic scattering.

and we will solve

3ligps«3g/47ras,

2
, x——ps pp(x) =0.

x dH s'

We write

d 2 3g
x——its+p pp(x) =, x(a

g dg2 g2 4mu'

(A2)

(A3)

In summary, then, we have made a very simple-
minded model of the nucleon which gives many of the
correct levels at about the right place and which allows
us to compute the transition Coulomb form factors. One
can raise many objections to the model, and this paper
is by no means presented as an attempt to give a basic
theoretical understanding of the structure of the nucleon.
In fact, in several respects the model is not even con-
sistent, although we have tried as hard as possible to
make it so. The main reason for writing the paper at the
present time is, as stated in the introduction, to get
some predictions in before the experiments are carried
out, which may serve as a possible guide to experi-
mentalists in planning new experiments and correlating
data as the data accumulate. Some of the predictions,
for example the shape, location, and threshold location
of the reduced Coulomb form factors, are probably
fairly model-independent, and they will presumably be
fairly useful even in the future. Other, more model-
dependent statements, such as the fact that the form
factors all achieve the same maximum height, are, at the
very least, intriguing.
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E-
spout 1+.

S — pS
x)a (A4)

where

A sinter
y in

x Eg
—cosE'x +g„, x(g (A5)

(1 d' 2
x +E' ~y„=——

kxdgs g' ) " x&u
4xu3

(A6)

Es=p ~2 (A7)

„(g) = — (Kxj & (Kx)N, (Ky)

Kxl&(Kx)j &(Ky)g—
~

~ysdy
(3g l
&4~upi

3g 2
(1—cosKg)+Kx —2 sinKg . (Ag)

4s.(Ka)s Eg'
Now imposing the boundary conditions

y in —y out
7

(xA' )'= (Wp'"')'

We can write the solution in this equation as y„=I„/x,
where
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we Gnd

'(1+/t4a+ (/t4a)2)L(Ea)2 —2Ka sinKa+2(1 —cosEa)]~3g

'L(Ea)2—2Ea sinKa+2(1 —cosEa)]L(Ea)2 sinEa+Ea cosK'a —sinKa]

A
+ (1+/4a) t (Ea)2(1—2 cosEa)+2Ea sinEa —2(1—cosEa)], , (A10)

Ea 42r(Ka)4 '-
(1+/4a+ (/t4a) 2)LsinEa —E'a cosEa]+ (1+/4a) L (Ka)2 sinEa+ Ea cosEa—sinEa]

3g

42r(Ea)4
—L(Ea)2(1—2 cosKa)+2E'a sinK'a —2(1—cosEa)]LsinEa —Ea cosKa] ~.'(A11)

(1+/4a) L(K'a)' sinK a+Ea cosEa—sinEa]+ (1+/4a+ (/4a) 2)PsinEa —Ea cosEa]

I.et us now assume that

(3g)' 1

&4~) (pa2)2

of order 1/(Ea)'].

3g 1in~
42ra (pa')

&&a (A15)

pG~1)
K'a' —pa'))1,

)
(Pu2)1/2 tanL(Pa2)1/2] ~))1

3g 1, f /4a f1+/4g) e
g)a (A16)

42ra (Pa') (1+/4a k /4x 3 x/a

Our 6rst assumed condition guarantees that

3g /3g 1 3 3g
3X&p' &~ Xi

— && (A17)
42.ap (42r (Pa')' Pa' 42.ap

In this case our solution reduces to

and also

3g)' 1
3 X —

I &&pu
4n-) (pa')'

(A18)
1

We have in addition
k(Ea)2

—3g 1+/4a+ (/4a)2+ (1+/4a) (1—2 cosEa)A-
42r(Ea)' (1+/4a) sinKa

3ge~ /' /4a

42r (Ka)' (1+/4a)
(A14)

/'3g)' 1
3XPp2a2~&3 X~

—
~

— & (/4a)2+2 (A19)
k4 J (Pu2)

The leading term in our solution for Pp therefore comes under these conditions, so that the replacement of the
from p„, and we can write in this limit Lkeeping terms Eqs. (A1) by the Eqs. (A3) is also justified in this case.


