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reduced considerably. We recall that both |74] and | 7]
are directly accessible to experiment:

I'(K 1 — 7°Y)
[n60] 2= —————
T'(Kg— n°n°)
and
[7]2=0.986

T'(Ks— wtn) ’

where the numerical factor on the right-hand side is the
phase-space correction.

(3) The determination of 6., the phase of the
amplitude A;*= (4@ —46/2)/V2 is a much more
difficult task. Recently, it has been suggested by Cline,®
that 6, could, in principle, be obtained from the meas-
urement of the zt-energy spectrum in K*+— xtaly
decays. The method, however, needs the a prior:
knowledge of the direct matrix elements, and therefore
becomes very much model-dependent. Experiments on
K*— rfn% decays (measurement of decay rates,
spectra, and polarizations) are nevertheless very
important in the sense that they can lead to the
detection of sizeable CP-noninvariant effects.?® A
better understanding of these decays could lead,
eventually, to the determination of the phase of the
A, amplitude.

Note added in proof. Recently two values have been
obtained for Ree by measuring the asymmetry in
three-body semileptonic K; decay [see Eq. (27)].
Ignoring the small AS=—AQ correction term, Dorfan

8 D. Cline, Nuovo Cim. 484, 566 (1967).

# Some of the possible effects have been recently discussed by
G. Costa and P. K. Kabir, Phys. Rev. Letters 18, 429 (1967);
S. Barshay, ibid. 18, 515 (1967); and N. Christ, Phys. Rev. 159,
1292 (1967).

B. R. MARTIN AND E.

pE RAFAEL 162
et al®find (from K1 — muv) Ree= (2.0-:0.7) X 1072 and
Bennett ef al.*! find (from K1, — mev) Ree= (1.114 0.18)
X 1073, both experiments showing that solution a is the
physical one. However, this solution (see Table II) pre-
dicts a value for (65—0dg) which is inconsistent with the
evidence from a considerable body of other experiments®
(even allowing for the fact that (82—3&o) is determined
only up to ==nr). If one accepts the latter estimates®
of (85— dy), then it is likely that the value of at least one
of the input parameters in the K°— K% system is in error.
A possible candidate is 65— whose value has fluctuated
considerably in the past. The latest ‘“world-average”
value for 6, _ is*2 60°+12°, but the spread on the indi-
vidual experiments is still considerable.

Using the techniques of Sec. III and the data of
Table I# we find that” —90°< (82—8,)S0° implies
20°<60,-555°, and for this range of 6;_, 1.90SRee
<2.05. We note that for a value of 6. _~45° a consistent
picture emerges for the parameters of K — 2r decay
provided that Reex~2X1073. It is clear that an ac-
curate measurements of 6, _ is needed.

ACKNOWLEDGMENT

We wish to thank the members of the Theory Group
at Brookhaven for discussions.

40 D, Dorfan et al., in Proceedings of the Stanford Conference on
Electron and Photon Interactions at High Energies, 1967 (un-
published).

4 B, Bennett ef al., in Proceedings of the Stanford Conference
on Electron and Phonon Interactions at High Energies, 1967
(unpublished).

4V, L. Fitch, Lectures at the Second Hawaii Topical Con-
ference, 1967 (unpublished).

4 For |neo| we use the most recent value of |70 = (4.170.30)
X 1078 as given by J. W. Cronin [in Proceedings of the Rochester
Conference on Elementary Particles and Fields, 1967 (un-
published)].

PHYSICAL REVIEW VOLUME 162, NUMBER 5 25 OCTOBER 1967

Model for Electron Excitation of the Nucleon™®
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A very crude model of oscillations of the meson field in the nucleon is made which gives an excitation
spectrum similar to that of the nucleon and which allows us to calculate the transition form factors for the
allowed normal-parity Coulomb transitions 3+ — §~, §*, 2, etc. The results are compared with the recent
Cambridge Electron Accelerator (CEA) data, and predictions, applicable to the planned Stanford Linear
Accelerator (SLAC) experiments, are made for the other relevant isobars and other momentum transfers.

1. INTRODUCTION

HE advent of very high-energy electron accelera-
tors makes electron excitation a practical means
of studying the details of the excited states of the

* Research sponsored by the U. S. Air Force Office of Scientific
Research, Office of Aerospace Research, under AFOSR Contract
No. AF49(638)-1389. A preliminary version of this work was
reported on at the International Conference on Electromagnetic
Interactions at Low and Intermediate Energies, Dubna, U.S.S.R.,
February, 1967 (to be published).

nucleon. The well-known Jr=3§+, T=3% (1236 MeV)
resonance has already been studied extensively with
existing machines.!* However, the nucleon is now

1W, K. H. Panofsky and E. Allton, Phys. Rev. 110, 1155
(1958).

2 L.)N. Hand, Phys. Rev. 129, 1834 (1963).

sH. Lynch, Ph.D. thesis, Stanford University, 1966 (un-
published).

4K. Berkelman, International Conference on Electromagnetic
Interactions at Low and Intermediate Energy, Dubna, U.S.S.R.,
1967 (to be published).
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known to have many levels, and an exhaustive study of
the higher resonances is planned at the Standard Linear
Accelerator Center (SLAC).5 Some important data on
these levels are already available from the Cambridge
Electron Accelerator (CEA) group.® To indicate the
richness of possibilities here we show the ‘“low-lying”
spectrum of the nucleon in Fig. 1.7

From both a theoretical and an experimental stand-
point, one would like to have some idea of what to
expect in these experiments. From a theoretical point of
view, one would at least like to make some predictions
before the experiments are carried out, and from an
experimental point of view, estimates of the transition
form factors are useful in planning new experiments and
in interpreting, understanding, and correlating the data
as they accumulate.

The detailed theoretical understanding of these higher
excited states requires a theory of strong interactions;
but reliable, quantitative calculations are exceedingly
difficult and in many cases quite impossible at the
present time, although the experiments themselves will
stimulate work in this area and lead to new ideas here.
In this paper we make a model, which by necessity is
very crude, which exhibits a level structure quite
similar to that shown in Fig. 1, and which allows us to
make a calculation of the transition form factors. The
results are compared with the existing CEA data, and
predictions are made for higher-energy excitations and
other momentum transfers. Just by looking at the
existing data, it is evident that we have already learned
some exciting things about the structure of the nucleon.

2. ELECTRON SCATTERING

We first give a very brief review of the theory of
electron scattering. We concentrate on the case where
only the final electron is detected, as in most of the
experiments which have been done so far and as will be
the case in the SLAC experiments.® Bjorken and

M(Mev) J T
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2825 — . U¥, 3
— +.
2650 2
2360 ———— 2 3
« TR} 2190 - 2 £
Fi1e. 1. “Low-lying” spectrum z < 2
of the nucleon (Ref. 7). 1924 — I+ 3
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688 <~ ———— & L
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5 SLAC Group A—Proposal 4B, 1966; W. Panofsky, D. Coward,
H. DeStaebler, J. Litt, L. Mo, R. Taylor, J. Friedman, H. Kendall,
L. Van Speybroek, C. Peck, and J. Pine (unpublished).

6 A. Cone, K. W. Chen, J. R. Dunning, Jr., G. Hartwig, N. F.
Ramsey, J. K. Walker, and Richard Wilson, Phys. Rev. 156, 1490
(1967). See also Phys. Rev. Letters 14, 326 (1965).

7 A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Barkas, P. L.
Bastien, J. Kirz, and M. Roos, Rev. Mod. Phys. 37, 633 (1965).

MODEL FOR ELECTRON EXCITATION OF THE NUCLEON

1463

F16. 2. Kinematics for inelastic
electron scattering.

Walecka® have given a relativistically covariant analysis
of the process of electron excitation of the nucleon and
have discussed all-that can be said about the transition
form factors on general grounds. They also show the
relation to photoexcitation of the nucleon resonances.
We summarize their results here.

The kinematical situation in the one-photon exchange
approximation is shown in Fig. 2. The angular mo-
mentum analysis is best carried out in the rest frame of
the final isobar, because one then has an eigenstate of
angular momentum and parity. The electromagnetic
vertex is characterized by four reduced matrix elements,
or equivalently by the four linear combinations

EE’QZ 1/2 2]'+1 1/2 . )
() () Gtelii+n

8w M? 2J+1 )
X(@eT |3 O)llg*x5), (2.1)

with p==+1, 0 and

EEQN\!"
o= wrJ [ Jo(0)llg*xT). 2.2
f= () Bl @2

In these expressions E and ‘E' are the initial and final
target energies, M is the isobar mass, Q is the normal-
ization volume, J,(0)=(J(0),i7,(0)) is the electro-
magnetic current operator taken at the origin, and J*2
is the angular momentum and parity of the isobar. In
the rest frame of the isobar one has

gx=(q*iq0) . (2.3)

There is still one relation among these four quantities
coming from current conservation, and it simply elimi-
nates fo:

fo=(g0/4®) f- (2.4)

The electron-scattering cross section in the laboratory is
then shown to be (we set m.=0)

do o? cos?(36)

@l 4 sint GO+ (2¢/m) sin?(36)]

X {f;\ Folo (/204 (/) tant (30))
><[If+12+1f-l2]} . @3

8 J.)D. Bjorken and J. D. Walecka, Ann. Phys. (N. Y.) 38, 35
(1966).
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In this expression e is the initial electron energy, 6 is the
electron scattering angle, » is the nucleon mass, and
¢?=g,?is the invariant four-momentum transfer. We see
that electron scattering measures two independent
combinations of form factors, the Coulomb and trans-
verse form factors. These may be separated experi-
mentally by keeping ¢ and the energy loss —gqo=e—¢€
fixed and varying 6 or by working at §=180°, where only
the transverse contribution remains. The transverse
form factor can also be measured at one momentum
transfer, namely, ¢,°=0 or

q*threshold = (M 2— mz)/ M ) (26)
in photoexcitation
An’a M?
/ a0 =——— —
lab; over resonance M*—m? m
XL+ 12+ 18] gm0 (2.7)

Thus, with electron scattering, we can add a whole new
dimension to the photon problem. There is also the
possibility of direct Coulomb excitation.

Detailed properties of the form factors f., fi are
highly model-dependent. However, in the limit ¢* — 0
(which implies —go— M —m), the form factors have
simple threshold behaviors:

1. Normal-parity transitions® 1+ — 3— 5$+...

fen (g,
fam (g7,

2. Abnormal-parity transitions 3+ — 31—, 3+ 5~ -

fc~ (q*) J+1/2 y
f:!:N (q*) J=172

One of the interesting questions on which we would like
our model to shed some light is whether or not these
threshold behaviors are of any use, because only space-
like momentum transfers are available experimentally
[2>0], and it is not clear whether the threshold be-
havior still persists there, since this implies a minimum
three-momentum transfer

(1* 2 q*threshold = (M2— m2)/2M .

For the normal-parity transitions there is an addi-
tional relation between f. and f.. valid near threshold:

el 12 TR\ oY

TAEE VAR AV

This relation is well known in nuclear physics.’® In
particular, it is the relation which allows one to get

photon lifetimes for electric transitions from Coulomb
excitation.

(2.8)

9 For the special case 3+ — 3%, fo~(g*)? and f_~g*(f,=0).
10 T, deForest and J. D. Walecka, Advan. Phys. 15, 1 (1966).
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With a well-localized source, as is the case in nuclear
physics, one can give expressions for the transition form
factors in terms of the Fourier transforms of the
transition charge and current densities!:

‘fc|2=21¢+1 z [T AL (g)|IT )2, (2.9)
dr = .
| fel2+1 /-] =2]i+1LZ=‘.1[I(JfHTL (@721

+ (T Al T2 (g1 T %],

MG (g¥) = /]L (g*2)Y Lar (22)p(x)dx,

(2.10)
. 1
TLMel(q*)=_*/VX[jL(Q*x)g)LmM(Qz)]
q

S (x)ax,
TLM’““(Q*)= /E]L (¢*0)Dr2™(22)]- j(x)dx,

where the nuclear electromagnetic current operator is™
Ju= 0 ®),i(x), (2.11)

and 9 L1 are vector spherical harmonics.

What we shall do when we make our model is use the
form of the cross section of Eq. (2.5), which was derived
in a Lorentz-invariant way, and which has the rela-
tivistically correct kinematic factors extracted; and
then use the above expressions, which are applicable to
a fixed-source theory, to evaluate the transition matrix
elements. We shall also evaluate the transition multi-
poles for a momentum transfer ¢*. For a fixed-source
theory there is no ambiguity ; however, when the source
recoils there is no unique prescription here. We use ¢*
because the original analysis® was carried out most
directly in the rest frame of the final isobar. What we
are doing, therefore, is evaluating the kinematic factors
correctly, and neglecting recoil only in the transition
matrix elements. In nuclear physics, at least, one can
show that the main recoil correction is the density-of-
states factor [14 (2¢/m)sin2(6/2) T, which we have
treated correctly.’® Such a treatment must break down
at very large momentum transfers and our results there
are at best qualitative. A better treatment, while
greatly desirable, would be very difficult [witness the
situation in the much simpler case of elastic scattering
from the deuteron at large momentum transfers].

We will also, in our model, confine ourselves to the
consideration of the Coulomb transition form factors.
The motivation here is that it is known from nuclear
physics that even very crude models of the transition

U1 There is an extra intrinsic magnetization contribution to the
current in nuclear physics (see Ref. 10). J (x) =jn (x)+ v X un (x).
jn (x) is then the convection current density.
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charge densities can give very reasonable form factors.
For example, by saying the transition charge density is
concentrated at the surface of the nucleus

pri(®) <8(x—R) = | fe|? = [jL(gR) T,

one can understand a great deal of the systematics of
collective nuclear excitations.® One, of course, also
wants to know what the transverse form factors look
like, but, in nuclear physics at least, it is a problem of
another order of magnitude!® to construct a model which
yields the correct excited states at the right energies and
also describes the convection current correctly [in
particular, maintains 9J,(x)/9x,=0].

3. THE MODEL

We proceed to discuss a very simple-minded model of
the nucleon. The two requirements of our model are
that it should yield levels with correct quantum num-
bers at about the right energies and that it should allow
us to compute the transition matrix elements of the
charge-density operator.

We start from the following pair of observations:

(i) From a dispersion-theory point of view, the higher
nucleon isobars are very complicated combinations of
many-meson states. We might get a first approximation
here by going to the other limit and treating the pion
field as a classical field, an approximation which should
be good when there are many (free) quanta present.

(i) There should be excitations that correspond to
normal-mode oscillations of the pion cloud—similar in
spirit to the collective shape oscillations one has in
nuclear physics.!

Let us start from the following Hamiltonian for a
symmetric, pseudoscalar meson field2:

1
H_—_.-2- /dx((j;ad;a+v¢u'v¢a+ﬂ2¢a¢m)

+iA / dx(apa)’— 36 / X papa
0

¢ /d v )]s 3.1)
+2_7; x[o- (Ta¢a] (x). .

ais an isotopic-spin index which runs from 1 to 3, S(x) is
the nucleon source distribution function, and \, 8, and G
are coupling constants. In addition to the usual pseudo-
scalar coupling to the nucleon source, we have included
a repulsive 1\(¢a¢po)? meson-meson interaction (A\>0)
for a reason which will become apparent shortly, and
since (as we shall see) in our classical field theory the
scattering effects of the nucleon source can essentially be
transformed away, we have included a phenomenological
attractive (3> 0) potential term which scatters the meson

2W. Pauli, Meson Theory of Nuclear Forces (Interscience
Publishers, Inc., New York, 1946).
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S(x)
S{x) = Sp(1-%-1 8 (a-x)
So K 50"3_3
N ma
Fic. 3. Assumed form of AN
S(x), the nucleon source dis- N
tribution. N

when it is inside the source region. This term is meant to
represent other meson exchanges with the nucleon
source (p, f°, etc.), baryon pair exchange, and anything
else that contributes. We do not give an explicit
mechanism for it here. To simplify the problem still
further, we assume that S has a uniform gradient out to
radius @, as shown in Fig. 3. Thus we write

S=%<1—§>B(a—x}

and, partially integrating, we find

(3.2)

G
[Isource = /[0 % (Ta¢a) :lS (x)dx
2m

_ (;i 3) /0 Dot (rapix, (3.3)

where we have defined

g=4G/2ma. (3.4)
Our starting Hamiltonian is therefore
1
H= 5 dx (éa‘ﬁa"‘“ Vo V¢a+ﬂ2¢d¢a)
+%)\/dx(¢a¢a)2—%ﬂ‘/ dx Do
0
3g r°
+-——/ o-E(r.0.)dx. (3.5)
4rad 0

Let us now try and find the ground state of this
Hamiltonian. It clearly possesses a minimum as a func-
tion of ¢, since A>0. To find the minimum we set

(130“: ’ (36)

which lowers the energy, and then look for vanishing
variations of H:
6H/5¢o“= . (37)

This leads to the following nonlinear differential equa-
tion for the ground-state field:

3
[V2— 12— Ao o+ Jpo* (x) = a r(o-£), x<a
4ra® (3.8)
[V2—p2— NP0 Jpo* (x) =0, x>a
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and using this differential equation back in the Hamil-
tonian, we obtain

1/ 3¢
Ey=—%\ ] dx(¢oa¢0°’)2+—(—'—>
2\4ra?®
X/ a-£(rpo)dx. (3.9)
0

We shall now look for a solution to our equations for
¢0*(x) of the form

¢ (x) =720 £)po(x). (3.10)

We assume that we can treat both ¢ and = simply as
fixed vectors characterizing the nucleon source. Thus
we assume that!?

d

—o=0,

dt

d

—r=0,

dt
in our model. We want to look for normal modes of
excitation that correspond to the oscillations of the
existing pion cloud. The nucleon source simply serves to
fix the center of mass of our system, and = and ¢ are
included in our Hamiltonian only so that we can treat
¢« as a symmetric pseudoscalar meson field. Inserting
this form for ¢o*(x) and using

(3.11)

1 92
v2<a~£¢o(x>)=<«-£)[;5;2x—;; o),
(3.12)
(0'£)2_17

we arrive at

14 2 , \ 3g
[; =3 (x)+ﬁ]¢o(x)=z;;3; x<a
(3.13)

[1 d? 2 \ ( @)
— —x———u2—3Npo? x}ﬁ x)=0, x>a.
xda? a2 (=) o

We will return to the solution of these equations shortly.
Let us assume for the moment, however, that we have
the solution, and let us now look for small oscillations of
the meson field about the equilibrium value. We write

¢=(x,1) = o™ (x)+1(x,) (3.14)

and insert this in H. Using the differential equation
satisfied by ¢¢*(x), we find after a little algebra

1
H —Eo=§ / dx(nen*+ V- Voot+unon®)

—38 / dx non*+i\ / dx[2(poPpo®)ynn*
0

+4(n¢o®) (Ppef)].  (3.15)
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The source term in this simple model, just as in the
neutral scalar theory, has disappeared, and we are left
with just the Klein-Gordon Hamiltonian for a meson
field in a potential. Now using our form for ¢*(x) and

rorb=§%1-te,p,77, (3.16)
we can reduce the Hamiltonian to®
1
H— Eo='?: dx(9en+ V= - Vno+utn*n®)
—38 / dx non®+3\ / dx ¢ (®)nn=. (3.17)
1)
The corresponding Klein-Gordon equation is
62
[Vz—é—;— 2+6—5A¢o2(x)]n“= , x<a
t
\ (3.18)
[V?—————u2—5)\¢02(x):]n“=0. x>a
a2
We can look for the normal-mode solutions
ne=n(x)e" (3.19)
and, defining
wE—pu2=Fk?, (3.20)
we finally find
[V +-k2—v(x) Jn*(x)=0,
v(x)=—B+5Np2(x) 2<a (3.21)

=5S\g2 (). x>a

The problem is reduced to solving a “Schrédinger
equation” in a square-well potential of depth 8 and
range @ with an additional repulsive potential SA¢y* (%)
coming from the presence of the ground-state meson
field.M The reason for making this potential repulsive is
now clear. It will serve to boost the centrifugal barrier
and allow us to have sharp resonances high in the
continuum. Let us suppose we have found the solutions
to this equation, 7xm(X), corresponding to frequencies
wni1, and normalized to

/"I nlmt (x)nn’ Um! (X)dx= 0nns07Omms (3.22)

We now expand the field 2, in a fashion entirely analo-
gous to that of the free-meson field,

212(x0)= 2 [Cnim®nim(X)eintt
nlm (2(,0,,,[)1/2 .
+Cnlmaf7lnlm1‘(x)ew"”] ’

13 We assume here that [72(x), 78 (+")]=0 if 8. We will verify
that our final solution satisfies this.

14 This approach was first used in another context by L. L. Schiff
[Phys. Rev. 84, 1 (1951)7]. See also D. Yennie [Phys. Rev. 88, 527
(1952)] for a criticism of treating a A¢* theory as a classical field
theory when X or ¢ are large. He points out that quantum fluctua-
tions then become large. We will return to this interesting point
later.

(3.23)
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and inserting this expression into the Hamiltonian, we
find, after a little algebra and the use of the defining
differential equations,

I7= E0+ Z Wnl %[anmafcnlma"i‘CnlmacnlmaT]- (3~24)

nlma

We can therefore immediately interpret ¢n;»*" and
Cnim® as the creation and destruction operators for these
normal-mode excitations of the meson field in the
presence of the ground-state meson “soup.” To quantize
these excitations we impose the commutation rules

(3.25)

r
[Cnlma,cﬂ' vme® 1‘:I;—‘50((:;’5nn'all’amm’ .

Let us turn our attention to the charge-density opera-
tor. We will concentrate on that part of the charge
density coming from the pion field. For a Klein-Gordon
field it is well known that

3¢ 3
p<x,t>=[¢><—] — copmpa( ) da(x,). (3.26)
ot ds at

Inserting our expression for ¢¢,

¢ (x,0) =0 (X)+71*(x,1) (3.27)
where 7 is the small oscillation we have
<]
gfnﬁsd’oa (X);;)B(X,t) ) (328)

and we see that p is linear in the creation and destruction
operators for the excitation of the meson cloud. In-
serting our expression for ¢o* and 7® we find

p(x,8) = teapsT®(0 - £)po(x)

w0\ 12
X Z (7) [cnlmmnnlmf(x)eiw””
nlm
— CrimPnim (X)), (3.29)
Going over to spherical tensor notation using'®
[aXb]s=—V2i Y (1q1¢’|1110)a1¢db1s", (3.30)

qq’

where ¢ and b are tensor operators, we find

) =2 (0BT T (1qlq'lmo>nq(32"—’)

qq’ nlm
X[Cnlm,q’fnnlmf(x)eiwn”
— (= 1)YCntm,—gMnim(X)e~em1t]. (3.31)
The spherical creation and destruction operators satisfy
[Cnim,aCnvm 0t ]=0nn®108mmbeg.  (3.32)
15 We use the angular momentum notation of A. R. Edmonds

[Angular Momentum in Quantum Mechanics (Princeton Uni-
versity Press, Princeton, New Jersey, 1957)].
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The next task is to construct the states of the theory
and this is very simple. The ground state is

[G>= Io)gm.g-m; ’

where &, and ¢m, are two-component spin and isospin
Pauli spinors for the nucleon core, and |0) is the
“yacuum” for the meson-field excitations:

Cnlm.ql0>=0-

(3.33)

(3.34)

The ground state is just the nucleon with its surrounding
static meson field. For an excited state of the nucleon
we can now write

[n(5)JIM ;TMr)=3 3 (1¢3¢'|13TM 1)

qq! mm?

X (m3m | I5TM 5)cnim,o' | OVemar . (3.35)

We have coupled the orbital angular momentum of the
meson field to the spin  of the nucleon core to give a
state of definite J, and the isospin 1 of the meson field
to the isospin % of the core to give a state of definite 7'
Note that these excitations have

T=%,% (isospin of excitations).

The parity of these states is easily discussed. In the
space of creation and destruction operators for the
normal-mode excitations the parity operator is clearly
given by

ﬁcnlmaTﬁ_l= (_ 1) H-lcnlmat )

the extra (—1) coming from the pseudoscalarity of the
pion field. This guarantees that

(3.36)

D= (x )= —4*(—x, 1), (3.37)
and also gives us
Np(x ) =+5(—x,1), (3.38)

as should be so. Thus we conclude that the parity of the
excited states is

M nimet|0)= (—1)*cnim>t| 0) (3.39)

or

= (—1)# (3.40)

We have used 1I|0)=|0), as must be true, since the
nucleon has positive parity.

We are now in a position to compute the allowed
transition matrix elements of the charge-density oper-
ator. We need

(n(B)JTM sTM 2| p(x) |3 Fmsgme)
=3 X VZ¢0(x)[$m't (o-%) ém.][r q'*“'a"? r»z]

qqrqrt mms

(parity of excitations).

X (1gkq' | 13TM 1) (mm’ | 15T M 1)
Wni
2

172
X (lql,lﬂ 1110)(_> Rnl.r (x)ylmf(ﬂ .1:) ) (341)
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where we have written -

’)’]nzm(X) =Rnl(x)Yzm(Qz) . (3.42)
Now.let us use
bt (0 8)Emy=— (4m)"2 X (1m"3m' |13 3m) Vimrs (R2) , S 108 m=V3Gmil ¢ | 5157, (3.43)
and project out the LMth multipole:
Mra i (g*)= / dx jr(g**)Y L (Q2)p(x), (3.44)
using
Q@L+1)@)@+1)72/L I I\N/L 1 1
/Ylm*(ﬂr) Ylm” (Qx) YLM(Qx)d9x= (’—' 1)'”[ :l < )(M > . (3.45)
: 4r 0 00 —m  m"
We find

(n(B)TM sTM p| M 1% (g*) | S tmagm.)

e—<\/6>(“’—”—’)”2[<2L+1><s)<zz+1>11/2 D> (L ' 1)(; l 7:,,)<41>m(1m"%m'|1% bm.)

2 mm'm'’ qg’¢"’\Q0 0 O —m
X Gmdq”|315¢) (L¢3 | 13T M 1) (mim’ |15TM 1) (1" 1g 11110)< f an*(x)jL(g*x)qso(x)x%x) , (3.46)

and using standard angular-momentum recoupling techniques'® we find

(n(B)TM s TM r| Mra®(g*) | 5Hme5ma)

[

=+<%)m( / R,,ﬁ(qu*x)qso(x)dex)’[<2L+1><3><zz+1>]”2(§ ;)(21+1>1/2{f o

111
><(—1)M+1(L—M]MJ[LJ%m,)3[2(2T+1)]1/z{1 o
2 2

} (10TM | 1TEM ). (3.47)

Reading off the reduced matrix element we conclude

Ar .
-2-1 (n (BT TM | ML () |3 Ham)|*

L 1 1\*(3 1 3123 1 32
=27@4r) 2T+ 1) L+-1) (2+1) 2T+ 1)]( ) { } { } (10TM | 1T3M 1)?
o000 JLU1TI1
2
Xwny / Rt (x) jr(g*x)do(x)a?dz|  (3.48)
This is our main result. Note that all the selection rules need
are contained in the 3-j and 6-j coefficients N a¢ s dgo l: y on -
(i) L+I+1 even (parity), = ¢X§l= go ;;:L—'_ $o 5]3 (3.50)
L=I+1, g " st .
(i) L=J=+1}, (3.49) The second term does not contribute to elastic scattering

since it is linear in the creation and destruction opera-
3, tors, and the first term vanishes since d¢o/d¢=0. There-

(i) T=1,32. fore (0] | 0)=0 and the meson field does not contribute
to elastic scattering in this approximation. Actually this

Now we might hope to get still more information by  is not so unreasonable, since it is known that the elastic
using our model to describe elastic scattering, but a very ~ form factors come mainly from vector-meson exchange,
interesting thing happens. If we try and compute the and this is presumably a phenomenon relegated to our
contribution of the pion cloud to elastic scattering, we core region, as indicated in Fig. 4. However, we clearly
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have to be more careful, and in particular we have to
worry about over-all charge conservation. Let us ex-
amine the total charge-density operator in a little more
detail, including a contribution now from the nucleon
source region. Let us assume

d
ﬁ(x)ss(x>%<1+n)+[¢xﬂ

3

=s(x)%(1+73)+[¢0x%gl+[nx2—z:| (3.51)

and we identify
0= / p(x)dx.

If we now insert our expressions for n, ¢o, and .S(x), we
see that

Q= % (1+ 7'3) —1 Z euﬁscnlmafcnlmﬂ

nlmaf
I
+ / dx[vﬁox—:] . (3.53)
at g

The first two terms are fine, since the total isospin
operator in this theory is

T, =1 —l—/dx[ Xa_n]
k=32Tk n
at g

Z%’rk—i Z eaﬁkcnlmod'cnlmﬂ- (3.54)

nlmaB

3

(3.52)

Unfortunately, the last term, even though it has no
diagonal matrix elements, does not quite vanish, since

fofo]
) o) (o)

(I=1)

X CntmBo1m(— 1)’"—H.c.} . (3.55)

Note that none of our previous results are affected by
this, since it is only the Coulomb monopole moment
where we have a problem. That a problem exists is also
seen if we attempt to apply Eq. (3.48) to the monopole
transition 3+— #(13)3+, since we know that in the
long—wavelength limit the Coulomb monopole operator
is just the total charge:

MOCoul(q*)

A

/ dx 5o(q*%)Y 00(R2) 5 (x) — (3.56)

@0 (4 )12
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F16. 4. Vector-meson exchange as contributing to the potential
characterized by 8 and to elastic electron scattering.

and this operator cannot cause any transitions. There-
fore the monopole matrix elements must start as ¢*2, and
Eq. (3.48) does not satisfy this requirement. We can
remedy the situation in the following manner: Let us
modify the charge-density operator by taking

ﬁ(x)s%(1+T3)S(x)+[¢oxa_”l+[nx%:1]

——ﬁ(a—x) / dX|:¢oX } . (3.57)

47rad

This is presumably a more correct result, since we now
have the following properties:

@ fﬁ(x)dx=é=%+fs=%+%rg

. =1 Z €uﬂ35nlmaTcnlmﬁ,

nlmaB

(3.58)
which is as it should be.
(ii) Since
ﬁ= E0+ IZ wn[Cnlmafcnlma_l_Cnlmacnlbna'r] ) (359)

we have

[0.A]=0, (3.60)

and the total charge is now a constant of the motion.!®
(iii) In the Coulomb monopole radial matrix ele-
ments in Eq. (3.48) we must now make the replacement

/ Rut® () jo(q*2) o (x)2%dx —

f an*(x>[jo<q*x>~q37afl<q*a>]¢o(x>x2dx

Gt—n(13)37),

16 Notice [T,Z7]=0. In the same spirit we take the angular
momentum operator to be

=7o-—/dx [XXV]"?
—io+ T e Ll

(3.61)

This J is now the generator of rotations, as we see from Egs.
(3.31), (3.44), and (3.45),

R(@) M 1R () =1§ Darart ()M Larr;
and commutes with the Hamiltonian of Eq. (3.24):
[4,J3]=0.
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which at least has the correct threshold behavior built
in.

(iv) None of our other results are affected, since these
arguments only concern the monopole moment.

We are now in a position to compute elastic scattering
in this model, and we have

/ " xGm, | p(x) |3 5m)dx
=?mcf[%(l-i-rs)]i‘m./e"‘l*“S(x)dx, (3.62)

and, therefore, we can immediately identify the isoscalar
and isovector elastic-charge form factors as

Ge%(g*)=Ge"(¢*)= / e xS(x)dx.  (3.63)

We can evidently use these relations to completely de-
termine the source function S (x).

We proceed to a discussion of solving the equations
for ¢o(x) and 7,1m(x). The equation for ¢o(x) is a non-
linear differential equation which we have so far solved
only in a few limiting cases. It was, however, derived
from the variational principle

5Ho/5¢oa = 0 ) (3.64:)

where
1 a
H 0=E / dxX[Vo* - Voot pdo e 1— 38 / do°Po*dx
0

3g
4ra®

+iA ] dx (o)’ / o £(rope®)dx, (3.65)
0

and we can use this principle to get an approximate
solution for ¢o®. We write

$o® (x) =72(a- )0 (%) (3.66)

Poix)

|
|
|
|
|
I
|
|
I
a

F16. 5. Crude variational form for ¢o(x).
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again, and as a variational form we take
$o(x)=c, x<a
e—u(z—a)
=c , x>a (3.67)
(v/a)

as sketched in Fig. 5. We treat ¢ as the parameter to be
varied. Inserting this expression into Ho, we find

9¢ 3
Ho= %Ws[<4—‘,r;>c+;1;{3 (1+pa)+-6[14-I5(ua)]

ot (na)2}62+%9>\[1+3I4(ua)]c4], (3.69)

where

0

I.(ua)= e"““/ e nhatdi/
1

and setting

8Ho/6c=0 (3.69)
we find
9%
:1—-1-3{3 (14-pa)+-6[14-I2(ua) ]—Ba*+ (ua)*}c
Ta
+ONe[14-314(ua) Je3=0. (3.70)

Let us consider the following limiting case of this result:
Ba®>1,
pa=1,

3Nca*<<Pa?.

(3.71)

This is the situation we will actually be most interested
in. We find, under these conditions,

<3g> 1
=—)—
4ra/ Ba?

The exact solution in a very similar case is given in the

Appendix. If
3\? 1
() e
4r/ (Ba?)?

(3.72)

(variational).

ua=1, (3.73)
K2a*=3a>>1,
| (8a®)'2 tan[ (8a®)*]|>>1,
the solution reduces to
3g 1
~% , x<a
4xa Ba?
(3.74)
3g 1/ pa 1+yx\e""(“““)
G e
47ra Ba2\1+-pua ux } (x/a)
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and our variational solution is almost exact in this limit.
The nice thing about this variational form is that the
potential which now enters into the equation for n(x),

[V*+E—2(x) In=0,

v(x)=—B+5\2, x<a
(3.75)
e—26(z—a)
=5\+——, x>0
(x/a)?

is such a simple one. We show the situation in Fig. 6.
We now make the following observations:

(i) The effective repulsive barrier for the solution
inside the potential is, including the centrifugal barrier,

[1(14+-1)+5\c2a?] /a2 (3.76)

If this quantity is greater than %2, the states will be
“quasistationary” states and will show up as resonances
in electron excitation. We also expect that because of the
additional centrifugal barrier, only the highest-/ states
will show up as sharp resonances, as appears to be the
case experimentally. This of course depends on the A\c?
and we must come back and check at the end that our
barrier actually has the required height to be above
those states which we assume to show up as resonances,
and to be below those states which we assume do not.

(i) If the barrier is sufficiently greater than k2, we do
not change the solution inside the potential by extending
the barrier up to infinity. We can immediately write
down the solutions in this case:

Nnim(X)=Rn1(®) Y 1m(Q2) ,

v 3.77)
]I(anx) )

(barrier height).

an(x)"(m)

where X,;= K¢ and j;(X.;)=0. The last condition is
the familiar eigenvalue equation coming from the
vanishing of the solution at the boundary. We evidently
have

kait=(1/)[X.2—Ba*+5Na"],  (3.78)

and since

wn?=kn* 4?20, (3.79)

only k.22 —u? are meaningful and only k,,22> 0 are true
continuum resonances.

TasBLE I. Resonant masses for the choice of parameters in the text,

[L0+1)
l +5Ac2a?]/ (ua)?  (kri/w)? W—m)/u (m*+k1®)V*/p

0 40

1 ) a1 2.6 7.0

2 46 172 5.6 8.0

3o 52 328 7.9 88

4020 60 51.0 103 - 9.8
2

5 70 75 12.6 10.8
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vix)

-2p(x-a)
5Xcz e /.L X-0.
(x/a)

/

-B+5\¢?

F16. 6. The potential v(x) in [V24-A2—v(x) In=0.

We have computed the resulting spectrum for the
following choice of parameters:

pa=1,
Ba?— S c2a?=16, (3.80)
S\c?2a?=40.

This is not meant to be a “best fit,” but is simply chosen
as illustrative. This choice of parameters gives 8a”>1,
ua=1, and 3\c2a?&Ba?, so that the situation discussed
above is applicable. Also, with these parameters
(Ba?)V2 tan[ (Ba?)¥2]~20. Our variational solution should
be a fair approximation in this case. We calculate the
total energy in the c.m. system:

W= (k2+u2)12+4 (K2+-m?)2=M , (3.81)
and identify this with the mass of the resonance. The
results are shown in Table I and in Fig. 7. In Table I
we show the barrier height and verify that it is above
the calculated eigenvalues. The places where the 2s, 2p,
and 24 levels would show up in an infinite well are also
indicated. We include the quantity (m?+4%1.2)2/u to get

[KEEPING HIGHEST £ STATES]

k4 W—m) W-m
n+ 4" caL  H exe
: N —— 5" 126 12772
9+
?_9_—

'2_%_+

+
7 5
'2'_3_+

2 +
. AD_ I 26. 3.0
z
| +
4 —_ 0.0 0.0
1~ -
2

EXCITATIO'NS 3HAV!':'

Ry

Fi16. 7. Spectrum for the choice of parameters in the text: ug=1,
Ba*—5\c%a=16.
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some feel for the severity of our fixed-source approxima-
tion.” In Fig, 7 we show the resulting spectrum. The
main features of this result are the following:

(i) Coupling the spin of the nucleon to the meson
excitations, and keeping just the highest-/ states as we
go up in energy (as these are the states which will have a
high enough barrier to show up as resonances), we get a
spectrum very similar to that observed for the nucleon.
The fact that 7= (—1)™, i.e., that we are dealing with
a pseudoscalar field, is essential for achieving this. We
assume, in Fig. 7, that there is some additional inter-
action which splits the J =/-43 degeneracy of our model.
The quantity (W—m/u)exp is simply taken as the
average of the positions of the corresponding observed
levels.

(i1) The excitations have T'=% and £, since we couple
the isovector excitations to the isospin of the core. In
one sense this is a success, since it restricts us to the
lowest isospin states, as in the experimental case. How-
ever, it essentially gives us a doubling of the number of
levels, since it appears to be quite systematic that the
J=1I1—%level has T=% and the J=1I+4} level has T'=4§,
It is much less embarassing to the theory to have too
many levels than not enough, though. We can easily
correct the situation with a rather ad %oc procedure. If
we define the projection operators

P4+ projects J=Il+%, T=%, (3.82)
Py, projects J=I—%, T=1%,
and simply replace
B— B(Ptt+Piy), (3.83)

we will obtain almost the correct spectrum. It is evi-
dently too strong a statement to assume that 8 is
independent of spin and isospin as we have done. Again,
an interesting question is to find a mechanism for this
form of B.18

I T

”—j—— 5t

[

le
=

D

1
N
rof—

w
+
rojor
+
=

N

1
rolot

I
N

cl ||c2|| c3|| c4

i+ 1
z z

F16. 8. The allowed normal-parity Coulomb transitions.

17 The use of the Klein-Gordon Hamiltonian for the meson field
means that we are at least treating that relativistically, as, of
course, we must at these energies. .

18 See for example P. Carruthers, in Leciures In Theoretical
Physics (University of Colorado Press, Boulder, Colorado, 1965),
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(ili) There is a low-lying S-wave state (3~) but its
exact position is, of course, very sensitive to-what goes
on in the inner region of the nucleon.” The low-lying 3+
state will get pushed up by its interaction with the
ground state.

Allin all, the model seems to give some faint reflection
of the experimental situation. One can simply raise the
repulsive barrier S\c%? while keeping the depth of the
well Ba?—S5\c%a? fixed, and in this manner understand
the apparent experimental continuation of the structure
of Fig. 7 to higher energies. The problem then is why the
2p, 2d, 2f, 3p, etc. levels do not show up as resonances.
Of course these levels would be much broader, but
perhaps one needs a more sophisticated potential which
is less attractive near the center of the nucleon to get
rid of these states. There are, of course, also the multi-
quantum excitations of all the levels. These will not be
excited by allowed Coulomb transitions, however.

We are now in a position to calculate | f,|? for the
allowed normal-parity Coulomb excitations. These are
the transitions 3+ — 3—, §+ I~ .. (T'=1), and we show
the situation in Fig. 8. They take place through the

TasiE II. The quantity X;;.

NP WN = O | ~
wn
~
[=

C1, C2, C3, --- multipoles. Using our expressions for
R,:(x) and ¢o(x)=c in the overlap region, we find

dr .
lfc|2=—2—l((l%)f",%MTHMLC"“‘(q*)”%“,%Mr)]2

N3 1 32
0){l JL]

L
=8r(2L+1)(21+1) (2]~l—1)<0

X (wn) (”“)2<;§(X_15>

2

X , (3.84)

1 X1
S / J(quit) . (8)dt
0

X1

for 3t — 3—, 3+, I-, $t etc. ('=3%) (note that L=]—1
here), where we have converted the integral to dimen-

for a discussion of this problem and for further references in this
area.

1= T=4% 3% resonances have been observed in phase-shift
analyses in the region M =1500-1700 MeV. L. D. Roper, in
Proceedings of the Williamsburg Conference on Intermediate-Energy
Physics (William and Mary College, Williamsburg, Virginia,
1966), p. 495.
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sionless variables, and o
qleq*a/X”. (3.85)

We recall that Xy; is the first zero of the /th Bessel
function. It is shown in Table II. It clearly makes more
sense to look at the reduced quantity®

| f|2/ (ua)(ca)® [reduced form factor], (3.86)

since this quantity, when plotted against qii, no longer
depends on any of the parameters of the theory. Thus all
the shapes and relative form factors are predicted in a
parameter-independent fashion. The model still enters
through the exact shape of the radial-wave-function
overlap, but we would expect that this might be a finer
detail, as is the case for Coulomb excitation of collective
levels in nuclei.® We have plotted this quantity out to

TasLe III. CEA values of |f.|? using the analysis of the ex-
perimental data discussed in the text.® [Energies and momenta
in BeV.]

l.,r a
State € ¢ q* g & (1A+% (cm?) | fel2
1.512 2.358 0.795 0.917 —0.202 0.93 0.98%X1073 0.080
1.512 2988 1.31 1.145 —0.033 1.00 0.36X10732 0.049
1.512 4.874 3.29 192 0.623 0.85 0.69X1073 0.003
1.688 2.358 0.652 0.90 —0.388 0.78 0.89%10732 0.085
1.688 2988 1.14 1.095 —0.242 0.94 0.33XX10732 0.047
1.688 4.874 3.05 1.775 +40.322 096 0.78x1073¢ 0.003
a Reference 6.
the first diffraction minima for the three levels
Wexp
Jr T (MeV)
3= 1 1518  (3.87)
5+ 3 1688
- 3 2190

inFig. 9. The energy of the corresponding experimentally
observed level is also indicated above. We compute w,
from this number. The most interesting feature of these
curves is that they have the same shape and same
maximum height but they are simply displaced relative
to each other, the higher multipoles having their
maxima at higher ¢i;.

4. COMPARISON WITH EXISTING
EXPERIMENTAL DATA

Some recent CEA data® have just become available
which allow us to make a comparison with this simple
model. The inelastic cross sections to the §—,
(1518 MeV) and 5+, T=1 (1688 MeV) levels have been
measured at 31° and incident energies e=2.358, 2.988,
and 4.874 BeV. No experimental separation of the
transverse and Coulomb contributions has yet been

carried out, and we have to rely on the theory to make

=1
—2

2 Note that both | f¢|2 and (k@) (ca)? are dimensionless.
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palic 1688 MeV —— Ty
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cl-c2¢c3
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/
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F1c. 9. The reduced form factors | f,|%/ (ue) (ca)? of Eq. (3.84)
plotted against the reduced momentum transfer ¢i;=¢*a/X,; for
the allowed normal-parity Coulomb transitions. The first zero of
the /th Bessel function, X1, is given in Table II. Note I=L+1
where L is the Coulomb multipolarity. Also plotted is the recené
CEA data (Ref. 6) analyzed as discussed in the text and summar-
ized in Tables III and IV. The plot of the data is normalized to.the
indicated point as discussed in Eqs. (4.15), (4.16), and (4.17). The
resulting threshold for the §+ — %~ transition is indicated with a
vertical line on the figure.

this separation. Since the experiments are at forward
angles, one expects the Coulomb excitation of the col-
lective levels (the allowed normal-parity Coulomb
transitions) to dominate the cross section. Since these
are normal-parity transitions, we can use the relation

A J+%/Qo>2
Ifolz =0 s—3\g*

to get an idea of the relative contributions. The indi-
cation is that under the conditions of the CEA experi-
ments, the transverse contribution is indeed very small
and the excitation of these levels is predominantly
Coulomb. If £ is the relative contribution .of the
Cou}omb and transverse terms in the differential cross
section,

I 1
I\ 1 /) (M /)y tan6/2)
then the observed cross section must be multiplied by

&/ (1+§) to get the Coulomb cross section. We give this
factor in Table III, and it'is almost 1 at all incident

4.1)

(4.2)
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energies. Of course, the above estimate depends on a TaBLE IV. Value of | /.|* from photoproduction.»
threshold condition, and is therefore crude, but in the .
absence of an experimental separation it is all we have (ng{f) (BqéV) %(E?\’Iz‘l; 4 v((c‘;’llfz)) : o2
to go on. The CEA group assumes a resonance shape® °
1.512 0.465 0.20 0.7X10728 0.038
& AT?/4 1.688 0.580 0.21 0.6X10728 0.051
= , (4.3)
de’dQ res (6'— fres,)z‘{‘ 112/4 a Reference 6.
:oh imoli If we write the photoabsorption cross section
which implies p P
& oy (wr)I?/4
7 =4, oy(@)=—— (4.10)
de'dQ res peak (w—wR)2+I‘2/4
(4.4)
&a do then
/ - dé=3r4 I‘E-da R
A" dQ ros lab /0’1(60)@:%#1‘0'7(0)]3) ) (411)

and they give values for $7AT, the quantities of direct
relevance to the analysis here. These are shown in
Table ITI. We can therefore find | f.|2 from the relation

[14- (2¢/m) sin?(6/2) ]
!fclzexpz oot
q*4 g >
—_— 3TAT)exp, (4.5
x(q“ ><1+$ ( ) @5)
where

a? cos?(30)

=7 (4.6)
4¢ sin(36)

oM
and these are shown in Table III. The necessary kine-
matical relations are
, € (1/2m) [ M2—m?]
€= ’

14 (2¢/m) sin*(36)

(ii) ¢*=4ee sin*(30),
(iii)
(iv)

We can also get one value of |f.|? from photo-
absorption as discussed in Sec. 2. We use

e _%<§)2(|f+l2+|f—lﬁ)

J+3

@
4.7)
0= g+ (/A —m— T,

q0=— (1/ 20— m— 7],

(4.8)

(if this relation is ever to work it must work here) and

T

4 M2
oy (w)dw= _(|f+|2+lf—!2)q’—0
lab; over resonance M2—m? m

dnloa M2 J+%)
T Mr—m? m \J—%

X (| fel®) gr=arr—miysom. (4.9)

The CEA group gives a value for o, (wg) from a compil-
ation of existing data, and to get 37T we have used the
value of

o

d%
| s/
de'dY’ de'dQ’

given in their paper. These numbers extrapolate to the
values shown in Table IV.® Thus we have

2 M2—m®\ s m\ /J—%
| fel q*=(M’—m’>/2M:< 4% ><54—2)<]+%>

X GrT)[oy(wr)].

The values are shown in Table IV,

We now want to put these points on our reduced form
factor plots in Fig. 9. To do this we have to fix both the
horizontal (a) and vertical (c?) scales. We do this by
arbitrarily fitting to the point indicated in Fig. 9. Thus
we take

| fel? g*a
—————=125, —=0.89 (from fitting) (4.14)
(ua) (ca)? X1

for the experimental point for 3t —3—, T'=3% (1518
MeV):

| £:/2=0.049, ¢*=1.145 BeV

=17AT/A=3aT (4.12)

peak

(4.13)

(experimental values). (4.15)
This allows us to determine the constants
a=1/1.6p, (ua)(ce)?=0.039 (from fitting). (4.16)

The relative positions of all the other experimental points
Jor both levels is now compleiely determined.

5. DISCUSSION

The most interesting features of the comparison in
Fig. 9 are the following:
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(i) From a comparison of the shapes of the theoretical
and experimental form factors, the relevance of the
threshold behaviors mentioned in the introduction be-
comes clear. These threshold behaviors can be thought
of as coming from the expansion of the Bessel functions
occurring in the transition multipoles:

(gx) ™ (gR) ™
QL+ QL+1)!

(R is the interaction radius), and these expansions
require that we be on the ascending side of the form
factors shown in Fig. 8. In fact, with the aid of the
photoabsorption points—the points farthest to the left
—we see that we are still in the ascending region with
the experimentally obtainable values of ¢?, although we
rather quickly reach the maximum, by which point the
above expansion has no relevance. We can, however,
now make some predictions that we hope are meaningful
about the form factors for the higher-lying states. In
particular, we have now located the corresponding
threshold for the 3+ — I~ (2190 MeV) form factor, and
we see that this form factor should increase well into the
experimentally obtainable region. We are also able to
predict where the maximum in this form factor should
occur. These peaks should thus be clearly evident in the
higher-energy scattering experiments. From just looking
at the experimental points themselves, it is clear that
these conclusions are not particularly model-dependent.
They do, however, rely rather heavily on the values for
the photoabsorption cross sections.

(ii) One very interesting prediction, which appears to
be very well satisfied experimentally, is that the two
form factors should achieve the same maximum value,
and we can then extrapolate this value to the higher
levels. This is a model-dependent prediction, since there
is no a priori relationship between these relative transi-
tion strengths.

(iii) The fact that the relative fit to the two different
levels agrees fairly well is an indication that we have
approximately the same interaction radius @ for these
two levels. This is also a model-dependent statement,
but not a very striking one, as might be expected on
rather intuitive grounds. In fact, if we take the fit in
Fig. 9 very seriously, there is some evidence that we
should use a slightly smaller value of the radius for the
i+ 3— (1518 MeV) transition. If there is a strong
variation of radius from level to level, then measuring
the transition form factor will not be a very powerful
tool for determining transition multipolarities (as it is,
for example, in nuclear physics).”® Just looking at the
existing data, one is not in a very strong position as far
as differentiating multipolarities is concerned.

(iv) The existence of a diffraction “decrease” at the
larger values of ¢? seems rather well established.

Let us now turn our attention briefly to the empirically
determined size of the parameters in the theory and to
the over-all consistency of the model.

Jrgx)= (5.1)
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(a) We have seen that

a=1/1.6p (empirical). (5.2)

Our rough fit to the spectrum in Fig. 6 used au=1.
These values are different; however, they are still close
enough so that the model is not complete nonsense. We
can get another piece of information here by using the
model to describe elastic scattering, using Eq. (3.62).
Our assumed uniform-gradient source distribution will
not give a good fit to elastic scattering; however, we can
at least try to fit the mean-square radius of the proton.
Using the shape in Fig. 3, we compute

("=3a, (5.3)
and using
AV Pproton=20.8 F, (5.4)
we find
a=1/1.1u, (5.5)

which gives a source radius only slightly larger than that
of the potential in Eq. (5.2).
(b) We have also seen that

(ua) (ca)?=0.039. (5.6)

This determines ¢ and hence a certain combination of
the coupling constants in our theory:

(ca)?=0.062. (5.7

We can compare with the experimental pion-nucleon
coupling constant through the tail of the pion field. We
have asymptotically

g—#(z—a)
$o*(x) — cr*(0£) )
s xz/a

(5.8)

whereas the tail from the one-pion-exchange pole is

u Gy e rE
$o*(X) — — ——71%-E— . (5.9)
20 Im 4 x
Comparing these results we see that
Gan*/4r=496, (5.10)
whereas the known value is G,x?/4r=15. Thus
Gempirical/Gtheoretical =5.7. (511)

The coupling constant we need seems to be too large,
although the tail of the pion field is only very crudely
determined in this model.

(c) We can now also ask what is the actual expansion
parameter when we write

¢*(%,8) = 0" (x) +7(x,1)

and assume 7% is a “small” oscillation. If we call the

(5.12)
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dimensionless expansion parameter 7, then very roughly

((1/2wn)1/2 (3/4#03)1132
c[rere(o-£)2]2

S s

This is not an astoundingly small number, but it is less
than 1, since

(5.13)

wg/2~= 34/.& 5
w5/2+=4.2u, (514)
wy/2™= 64[1, .

The interesting thing is that our approximation of
looking at the normal-mode excitations of the classical
meson field gets better for the higher-lying states, as we
hoped in the introduction.
(d) We have now also determined a value of \, since
we assumed that
Shc2a2=240 (5.15)

to get a high enough barrier. Now a very interesting
point here is made by Yennie, who discusses the
neutral scalar theory and shows that one cannot treat
the \¢* theory as classical, even as G — o, if Ap¢? is large
enough, because of the quantum fluctuations introduced
by the zero-point oscillations of our normal-mode
excitations. In fact, Yennie gives an explicit formula for
the corrections that are not simply renormalizations,
and hence absorbed into the renormalized coupling
constants. Yennie’s correction to the ground-state
energy effectively multiplies the B¢, term by a factor

9o /A 2/5\%
@:[H ( °¢°2) <—> + J . (5.16)

3272\ K2/ \9
where, in our theory, we would have K*= —p-pu? and
No=23\.2! This term gives us a measure of the contribu-
tion of these zero-point oscillations. Now it is true that
we never need to calculate E,, since we compute E—E,
directly ; however, we do need ¢o, and Yennie shows that
the correct equation for ¢o comes from taking 6Eo/d¢o
=0. The quantum correction is large when the combina-
tion A(\ge?/B) is large. If we use our original choice of
parameters,

pe=1,
Ba*=56, (5.17)
S\c2a?=40,
then
1258 /1\?2
P-1+—(-)+-+, (5.18)
9672 \7

21 By separating Eqgs. (3.5) and (3.17) into three equations of the
type studied by Yennie, one for each isospin component, and
comparing with his analysis [note also our Egs. (3.12), (3.13), and
(3.18)], we see that Ao=3A and that we must include the extra
factor of (5/9)% in the correction term here.
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and since A is not determined by the above conditions,
we can make A as small as we want by making ¢2 large
enough. Note that our reduced form factors are inde-
pendent of any of these considerations. Our empirical
fit, however, determines both @ and (ca)?. If we proceed
and attempt to estimate 9) from our empirical values,
we can write ¢¢®=~c? and

125\ /Nc2a?\2
D=1+ < . (5.19)
9672 \ Ba?
Now using
Ba?=356,
S\Pa?=40,
(ca)*=0.062 (empirical),
we have
P—1=0.354---, (5.20)

which indicates that the effect of quantum fluctuations
on the ground state is not negligible for this particular
set of parameters. However, since the empirical value of
a=1/1.6u, the radius of the attractive potential, is
smaller than we originally assumed, we will not need
nearly as high a barrier coming from \. The problem
with a smaller radius is to get all the levels down at the
right energy. For this, one has to change the shape of the
potential term. No attempt has yet been made to find a
completely consistent set of parameters and potential
shape. In any event, the effect of these quantum
fluctuations is certainly contained implicitly in the
empirical values of the coupling constants and radius
parameter ¢ which we determine, and it is certainly im-
portant to include their effect in any rigorous theory
starting from quantized fields. There is a very inter-
esting analogous situation that comes to mind in nuclear
physics. One can make a model of collective shape
oscillations by studying a quantized, oscillating liquid
drop.! This crude model does very well on the transition
form factors, primarily because they are the leading
terms in the charge-density operator, being linear in the
creation and destruction operators (as is the case here).
However, the elastic scattering is only very poorly
described by a uniform liquid drop of definite radius,
and it is essential to consider the effect of the vacuum
fluctuations of the quantized surface coordinates, a
second-order effect, to begin to get anything like the
right ground-state properties consistently within the
model.

The question of the damage done by computing the
transition matrix elements in a fixed-source theory is a
much more serious one. Indeed, there is a paper by the
present author? that shows that recoil effects in the
intermediate states are very important for computing
the elastic scattering form factors in the usual static
theory of the nucleon, and that the relativistic, dis-
persion-theory spectral functions are quite different

2 J. D. Walecka, Nuovo Cimento 11, 821 (1959).
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from those of the static theory. However, even here
there is a ray of hope, because it was shown in that work
that one could understand essentially the entire differ-
ence between the relativistic dispersion theory and the
static theory by computing the transition matrix ele-
ments to intermediate states in the static theory but
using the correct relativistic kinematics in the energy
denominators. These transition matrix elements occur
twice in elastic scattering. Thus one might still hope
that we have not done great damage to the theory by
computing the first-order transition matrix elements in a
static theory.

The main improvements, beside this, that one would
like to make are:

(i) Include the coupling of the nucleon core to the
meson excitations, so that the transverse form factors
for these higher excitations could be estimated with a
little confidence.?®

(ii) Find some mechanism for the generation of the
potential scattering term, which is essential to this
model, and repeat the calculation with a more realistic
potential and with the vacuum-fluctuation corrections
included.

(iii) Eliminate the dependence on the source density
S (x) by taking it from elastic scattering.

In summary, then, we have made a very simple-
minded model of the nucleon which gives many of the
correct levels at about the right place and which allows
us to compute the transition Coulomb form factors. One
can raise many objections to the model, and this paper
is by no means presented as an attempt to give a basic
theoretical understanding of the structure of the nucleon.
In fact, in several respects the model is not even con-
sistent, although we have tried as hard as possible to
make it so. The main reason for writing the paper at the
present time is, as stated in the introduction, to get
some predictions in before the experiments are carried
out, which may serve as a possible guide to experi-
mentalists in planning new experiments and correlating
data as the data accumulate. Some of the predictions,
for example the shape, location, and threshold location
of the reduced Coulomb form factors, are probably
fairly model-independent, and they will presumably be
fairly useful even in the future. Other, more model-
dependent statements, such as the fact that the form
factors all achieve the same maximum height, are, at the
very least, intriguing.
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APPENDIX

In this Appendix we briefly discuss a limiting case of
the solution to the nonlinear differential equation

1a& 2 3g
|:— —x———n2—3>\¢02(x)+ﬁ:|¢o(x)=“—‘, x<a

xdx?  «? 4rad
(A1)

1 & 2
[——x———p. —3Ap(x) po(x)=0. x>a

x dx?

Our basic assumption will be that the solution is
dominated by the source term,

3INpPK3g/4rad, (A2)
and we will solve
1a 2
[; chx———ﬂ2+3j|¢0(x)—~‘ x<a
144 2 “
[; E&x_;;—“ ]¢0(x)=0. x>a
We write
P out—ﬁ[l-‘. ]g—ux , x>a  (A4)
x B
. ArsinKx
¢0"‘=;[ ~ —cost:|+¢m x<a  (AS)
where
142 2
(; @x—;;+K2)¢p=;; , x<a (A6)
Kr=p—s (a7)

We can write the solution in this equation as ¢,=1u,/%,
where

() = — / K (Kam ()

—Kxny (Kx) jl(Ky)]< a) y'dy

3
—(1—cosK. Kx—2 .
471_ (Ka)"'I:Kx( cosKx)+Kx—2 sinK: x] (A8)

Now imposing the boundary conditions

¢0in — ¢oout ,
at x=a (A9)

(xpo') = (wpeout)’
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we find

(1+pa+ (ua)?)[(Ka)*—2Ka sinKa+2(1—cosKa) ]
A B —3g J
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+ (14+wa)[(Ka)*(1—2 cosKa)+2Ka sinKa—2(1—cosKa) ]\, (A10)
Ko 4r(Ka)*
o 4r(Ke) (14-pa+ (ue)?)[sinKa— Ka cosKa]+ (14-pa)[ (Ka)? sinKa+Ka cosKa—sinKa]
([ (Ka)*—2Ka sinKa+2(1—cosKa) ][ (Ka)? sinKa+Ka cosKa—sinKa]
N 3
—eHa= J < —[(Ka)*(1—2 cosKa)+2Ka sinKa—2(1—cosKa)][sinKa—Ka cosKa]p. (All)
Mna 47r([(¢l)4 N . .
L (14pa)[(Ka)?sinKa+Ka cosKa—sinKa]4 (14 pa+ (ke)?)[sinKa— Ka cosKa]
f order 1/(Ka)?]:
Let us now assume that of order 1/(Ka)’]
3\ 1 e 81 (A15)
b0l ) z<a
A —) <1, dra (Ba?
&) 5 e
3 1 ua 14 ux\ e rle—o
pam1, (A12) poun S 2 ( )( ) . x>a (A16)
Kratmspat>1, 4ma (Ba®)\14-pua/ \ ux x/a
| (8a2)!”2 tan[ (8a2)V*]|3>1. Our first assumed condition guarantees that
. 3 38\* 1 3
In this case our solution reduces to 3)\¢03<4_g3|:)\(4_g> ” Z)Z]E«% (A17)
Ta 2 a?)?18a?  4ra
A _3g [1+l‘a+ (#a)2+ (1+#d) (1_2 COSK”’)} and also
" 4n(Ka)? 1 sinKa 38\ 1
(. a) ( +/-I-d) 3)\¢02a2S3|:)\<—> ]<<5¢12- (A18)
4r/ (Ba?)?

o). ws

(A14)

3gere ua
Ne ( )
47 (Ka)*\1+ua

The leading term in our solution for ¢, therefore comes
from ¢,, and we can write in this limit [keeping terms

We have in addition

3\ 1
3>\¢02a2<3[>\<—> —]s (ma)*+2  (A19)
dr/ (Ba?)?

under these conditions, so that the replacement of the
Eqgs. (A1) by the Egs. (A3) is also justified in this case.



