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Complex Scattering Amplitudes in Elastic Electron Scattering*
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The scattering amplitudes derived from the Moliere approximation are compared with those derived
from the Grst- and second-order Born approximations. A numerical analysis applying a Thomas-Fermi
potential was performed. In certain ranges of a=Z/137P and the scattering angle, the Grst-order Born
approximation rendered amplitudes that can be applied for the more exact modulus of the Moliere ap-
proximation, and the second-order Born approximation rendered phases of the scattering amplitudes that
are comparable with those obtained by the Moliere approximation.

I. INTRODUCTION
'
lN a classic paper Glauber and Schomaker' pointed

~" out that scattering amplitudes must be complex in
order to conserve the number of particles. Despite this
cardinal requirement, which is termed the unitarity
condition, many theoretical considerations and inter-
pretations of electron contrast in electron microscopy
and electron diffraction work are based on a first-order
Born approximation that is real by nature and prone to
give erroneous results. For example, in high-resolution
electron microscopy the main contribution to contrast
stems from interference of the coherently scattered
amplitude with the unscattered uniform background
(reference beam); in other words, scattering amplitudes
are observable, just as they are in holography. The
often-heard statement that phase contrast plays a role
only when phase shifts are introduced by defocusing is
false, since the complex nature of correct scattering
amplitudes in itself provides intrinsic phase shifts.
Similarly, these intrinsic atomic phase shifts must be
considered in the structural analysis of matter by
electron diffraction because they add to the phase shifts
resulting from the structural arrangement of the atoms.
In conclusion, the unitarity of the scattering amplitude
is not an esoteric theoretical refinement but an observ-
able fact.

The theoretical calculations are simpli6ed by the
fact that for small-angle scattering only screening sects
and. no spin effects have to be included; that is, the
plein-Gordon wave equation instead of the Dirac
wave equation sufBces. The only tables of complex
scattering amplitudes available, however, are those by
Ibers, ' which are calculated only for an electron energy
of 39.5 keV. This is not sufhcient for the experimentalist

*This investigation was supported in part by a research
contract, Project No. 3A014501A71Q, from the Medical Research
and Development Command, U. S. Army, Washington, D. C.,
and in part by Grant No. 259D from the American Cancer Society.' R. Glauber and V. Schomaker, Phys. Rev. S9, 667 (1953).' J. A. Ibers, in International Tables for X-Ray Crystallography,
edited by K. Lonsdale (Kynoch Press, Birmingham, England&
1962), p. 222.
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to "get a feel" for the diGerent trends of real and
complex amplitudes.

This paper has two purposes. The 6rst is to enable
the experimentalist to estimate the errors caused by
the use of real amplitudes in a wide range of experi-
mental conditions.

Ibers's calculations are based on WEB approximation
of the phase shifts. '4 Physically this approximation is
equivalent to the Moliere approximation, ' which is
used in this paper. Indeed, when the same expression for
the potential is used, both approximations give values
that agree within the margin of computational errors.
In a recent paper' we have shown that as long as spin
effects can be neglected, the Moliere approximation
renders values for the elastic scattering cross section
that deviate only by small errors from the values of
nonapproximated phase-shift calculations by Lin, ~

which in turn were confirmed by experiments. ' Our
paper' also shows how spin sects can be accounted
for by a multiplicative correction.

Mathematically, however, Ibers's calculations re-
quire summation of up to one hundred single terms,
each of which consists of an integral that must be
computed, whereas the Moliere approximation is
accomplished by a single integral. Thus the Moliere
approximation is more economical. -'"&0

The second purpose of this paper is to demoristrate
the feasibility of producing calculations for each partic-
ular experiment.

De5nitions

Throughout this paper, energies and momenta are
measured in units nsc' and mc, respectively, and lengths
in units of the electron Compton wavelength Xg. The
scattering event changes the momentum pr ——per of the

3 J. A. Hoerni and J. A. Ibers, Phys. Rev. 91, 1182 (1953).
4 ].A. Ibers and J. A. Hoerni, Acta Cryst. 7, 405 (1954).
5 G. Moliere, Z. Naturforsch. 2a, 133 (1947).
e E. Zeitler and H. Olsen, Phys. Rev. 136, A1546 (1964).
7 S. R. Lin, Phys. Rev. 133, A965 (1964).
s g. W. Motz, R. C. Placious, and C. E. Dick, Phys. Rev. 132,

2558 (1963).
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pA'+4p'h. '+p'q'(1 —t') y'dt

incoming electron into pl
——pe& of the outgoing electron, t Eq. (5)j can be readily evaluated, and we obtain

and the momentum q=pi —ps is transferred to the
scattering atom; q=2p sin(8/2). For the scattering
amplitude we write

f(ei es) =g(ei em)+sh(e, e2) = (es/PA')A tanh '(ysA), (7)

indicating real and imaginary parts.
The unitarity condition then becomes

h(ei es) = (p/4sr) f(ei e)f*(e es)dl&, ,

which is simplified to the optical theorem upon setting
eg= eg, namely,

h(ei ei) = (p/4sr)o,

directly relating the imaginary part of the scattering
amplitude in forward direction to the total cross
section 0-.

The foundation and basic significance of Eqs. (1) and

(2) can be found in any monograph on modern theory
of scattering. In applied electron scattering, however,
these conditions are seldom appreciated. .

For the potential we use a general form

V(r) =—Z 3

ts e bgAr. — '

137f i=&
(3)

fi(q) =~(~'+q') '=—gi(q), (4)

v being the Born parameter Z/137 times twice the total
energy E.

Utilizing the unitarity condition, we can construct
an imaginary part, ' namely

h, (,)="(p/4~) (~s+qi')-'(~'+q")-'«. . (5)

Here qi —p(ei —e) and q&
——p(e —es); the two fixed

vectors e~ and eg and the variable vector e define a
spherical triangle on the unit sphere, or

With the aid, of the Feynman identity the integral

~ T.Wu and T. Ohmuray guantNNs Theory oy SCOII8ri ng (Prentlce-
Hall, Inc. , Englewood CQFs, New Jersey, 1962).

tl being Z ts/0. 885X 137.
In the demonstration of our approach to the calcula-

tion we shall reduce Eq. (3) to one Yukawa potential

V(r) = —(Z/137r)e 4".

Il. BORN' APPROXIMATION

The scattering amplitude in first-order Born approx-
imation is a real quantity

f2 g2+&h2 —gl+g +'Lh2=fi+f

How can we find the expression g'? Since h2, the
imaginary part of f, is an analytic function in q and p,
as can be seen from its integral representation PEq. (7)j,
we find the corresponding real part g' of f' as a Hilbert
transform of hs with respect to p; that is, we apply the
Kramers-Kronig dispersion relations. "

We obtain

g'(q) =-',4'v' Ltls+ iqs (1 ts) g-1/2

X L&4+4p'A'+ p'q'(1 —ts)j—idt

= (rt'/pA')A tan '(sy'A).

Equation (8) represents the real part of the second-order
correction to the scattering amplitude, which we could
have obtained also in a straightforward. evaluation of
the second-order Born approximation. "We preferred
the method sketched above, however, because (a) it
reveals the inner connection of the different contributing
components and (b) it facilitates computation when the
general potential of Eq. (3) is to be applied.

Small Angles, q«Zp

As noted in the Introduction, our main concern is the
small-angle-scattering amplitude. Mathematically the

'4 P. M. Morse arrd H. Feshbach, methods of Theoreticot Physics
(McGraw-Hill Book Company, inc. , ¹wYork, 1953), Vol. 2,
p. 1084.' G. R. Screaton, Dispersion EelaIjoes {Interscience Publishers,
Inc., New York, 1961).

with A ' being y4+4y'(1+s'); and y=q/tl; s=g/2p.
Equation (7) represents the imaginary part of the
scattering amplitud. e calculated, in the second-order
Born approximation. "

This approximation gives us the desired estimate of
the phase shift inherent in the scattering event. The
imaginary part h2 does not improve the value for the
scattering cross section, however, as can be seen by
inspecting Eqs. (4) and (5), h&(0) = (p/4sr)o i. The
optical theorem is fulfilled only when the first-order
amplitude is applied for calculating the total cross
section; it holds true in general that h„relates only to
o-„~, thus leaving the contributions of nth order to the
real part undetermined. Since the second-order Born
approximation must also improve the cross section, we
expect it to add. second-order terms to the real part g~
of the scattering amphtude.

We write for the second-order Born approximation
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region of small-angle scattering is defined by the
possibility of replacing the sine of the scattering angle
by the angle itself. The physical consequence of this
replacement can be seen from the following considera-
tion. The total transferred momentum qi equals
2p sin282, whereas the transverse component qii,
perpendicular to the direction e, equals p sin8i. Hence
in small-angle approximation the total transferred
momentum is replaced by its transverse componerit,
and the longitudinal component is neglected. This
considerably simplifies the condition defined. by Eq. (6),
since now the angular relation between the various
momenta is not determined by the geometry on the
unit sphere but by geometry in the tangential plane of
the unit sphere at the point e. As a consequence, all
integrations must be performed, in this plane, in which
the element of the solid angle dQ, reduces to d oo qidqi/p';
otherwise, all the procedures of the previous section
hold. The results, however, will change; therefore, it
seems justi6ed to develop the pertinent expressions
again. We obtain

h..(q) =
47i-

(A2+ 2)—1

XLA'+(q —qi)'] 'qi~qido, (9)

which again can be written as an integral representation

h2(q) = 2pn2- $4p'A'+ p'q'(1 t') p'dt. (1—0)

This equation differs from the corresponding Eq. (7)
only by the absence of h.', which makes h2(q) propor-
t.ional to 1/p. As an important consequence the Hilbert
transform g' of h~ will be zero; we recall that the
principal value of f (p —po) 'dp equals zero. In prepar-
ing for the Moliere approximation we should, like to
point out here that h~ can also be represented, by a
Bessel transform. First, we can write

Actually the small-angle-approximation amplitudes
as h2(q) of Eq. (9) may be shown to follow from the
wave function ip= e'&'F, F satisfying the approximated
wave equation

EP ~ (1-/P)V]F=0

instead of the correct wave equation

fsV"+if V' (—1/p) V'+sV"]F'=0

given in Eq. (10a) of Ref. 6. In the latter equation all
lengths are measured in units A

—', indicated by the
prime added to the symbols, and the potential V is
assumed to have the form V=A.V' (as in the case of a
Yukawa potential).

Comparing the two equations, one sees that the
correct and the approximate wave functions F' and Ii
di6er by terms proportional to s. This explains the
absence of s in Eq. (9').

Since the numerical value of s is small compared to
unity (even for the heaviest elements it remains under
0.05, provid, ed the kinetic energy of the electron is
beyond 40 keV), the discussion above explains why the
small-angle approximation also gives very agreeable
results for large arigles as long as 8 is replaced by
2 sin(-2'8).

IIL MOLIERE APPROXIMATION'

The Moliere approximation is also a small-angle
approximation. It is based on the approximate wave
function F, as discussed in Ref. 12. Hence the corre-
sponding scattering amplitude will be independent of
s Las will be confirmed explicitly in Eqs. (21) and (22)
below]. As a result it follows that the validity of the
Moliere approximation rests on the smallness of s. In
this approximation the scattering amplitude assumes
the form of a Bessel transform

f(q) = ~o(qp)f(p) pdp.

(g2+q 2)
—1— &o(qip% o(AP)p~p,

The corresponding space function f(p) is determined by
the phase shift the electron undergoes when passing
through the atomic potential V(r):

J& and E2being the Bes'sel and modified Hankel
function of 4th order. With the aid of the convolution
theorem of Bessel transforms, Eq. (9) can be refor-
mulated, as Here

f(p) = Jo(qp) f(q)qdq= ipse 'o—o'1 1]. (1—2)

~2(q) = 2 ('o /p) ~o(qp)L+o(AP)] PdP
~(p) =-(1/~) V(., )d, (13)

= (v2/ph. 2)Ao tanh '(y'A ) (9')

with A,—2 equaling y'+4y2, which equals A with s=0.
Incidentally, the nonappearance of g' in the small-angle
approximation can also be achieved by setting s=0 in
Eq. (8).

the s axis of the cylindrical coordinate system (p,s)
being along the direction of the incoming electron.
This choice of the path of integration is the essence of
the Moliere approximation. It is permissible provid, ed,

"H. Olsen, L. C. Maximon, and H. Wergeland, Phys. Rev.
106, 27 (1957).
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that q is small compared to,the total electron energy
E, that is, q/2E&&1.

The total cross section thus becomes

2'a=-
p2

2'
f(q)f*(q)qdq= , —f(p)f*(p)pdp (14)

0 p p

4 (p) = (&/p)&p(») (16)

Inserted into Eq. (11), we obtain for the scattering
amplitude

f(q) = ip —Jp(qp)(expLiv/pzp(») j—1}pdp. (17)
0

The relationship of the Moliere amplitude to the small-

angle Born amplitudes becomes evident upon the
expansion of the exponential function in the integrand
of Eq. (17).The first member gives the first-order Born
approximation; the second leads directly to the second-
order Born approximation, Eq. (9'), for small-angle

scattering. The correction g' to the real part of the
second Born approximation for large-angle scattering
cannot be expected from the small-angle Moliere
approximation. We can readily estimate the contribu-
tion of g' to g1+g', however. Since s is small compared to
unity, and since the expression y'3 remains always
smaller than unity for all values y, the value of g'/g1
never exceeds 2sZ/137p=-2'$. For small angles the ratio
remains even under sg. Values for g are tabulated in a
previous paper. ' There the smallness of P assured that

~ L. I. Schi/1, Phys. Rev. 103, 443 (1956).

It can easily be seen from Eq. (12) that for the space
function the id,entity

h(p) = (1/2p)f(p)f*(p) (15)

holds, which, with the aid of the convolution theorem
and Eq. (11), can be transformed into the unitarity
condition Eq. (1);or, with the aid of Parseval's theorem

LEq. (14)g, into the optical theorem Eq. (2).
It is not surprising that the Moliere approximation

fulfills all these conditions a priori if one recalls the
various derivations of this approximation. (a) It can be
seen as an approximation of the in6nite sum of phase
shifts, ' the latter complying with the unitarity condi-
tion. (b) In the small-angle region the Moliere approx-
imation constitutes the complete set of Born approxima-
tions of all orders. "Hence, the connection of h„with
0.„'

~ becomes irrunaterial; that is, the unitarity condition
is always fulfilled. (c) Specializing for small-momentum
transfer at the onset, the Moliere approximation evolves
from an exact solution of the Klein-Gordon equation, "
thus conserving the number of electrons a priori.

In contrast to the Born approximation, we could
show all these relationships to hold without having to
specify the kind of potential. When the single Yukawa
potential is applied, Eq. (13) becomes

spin and screening sects do not overlap or inQuenre
each other mutually. Thus for two reasons it seems
justi6ed to omit the contribution of g to the second, -
order scattering amplitude: (a) Its correction is small
and also of the wrong sign, as the actual calculations
will show, and (b) it does not occur in the consistent
small-angle approximation.

This fact is advantageous for presenting the results
of this paper, for if s does not appear, all formulas can
be written in relative units, so that for a Thomas-Fermi
atom neither electron energy nor scattering angle have
to be specified explicitly.

/, 1=—Z ~ L»'+y'j ',
A.2

(18)

g'= p g u/a1V tan '(QV),
p&2

h, = P P a;a, v tanh-1(P V),
p&2 1 1

with the following abbreviations:

(2O)

V—2 y4+2y2(b 2+b„2+2b 2b 2s2)+ (.b.2 b„2)2

Q=y'L2s(b+b )] '(s'(b, +b&)' L(1 +b,—ss)2' /2

—(1+bk's2)"'j'}+ (bp+bk')L2s(b;+bs) j '

&& (s'(b;—bs) +L(1+bgs')'/' —(1+bs s') 1/'j'}

P y2+Lb .(1+b&2s2)1/2 bs(1 +b .2s2)1/2]2

The formulas are written in such a way that for b;=b&
=1, the expression V becomes A; Q and I' become sy'
and. y', respectively. If a& ——1 and all other u&'s=0, we
obtain the previous results for one Yukawa potential.

Z. Moliere Approximatioe

For the numerical evaluation it is opportune to
perform a partial integration on Eq. (17).Furthermore,
a change of the variables q and p into y=q//1 and
x= ph. is indicated. We obtain

RIld

g=—P a,b; J1(yx)E1(b,x) cost(x)xdx, (21)
A. & p

00

b=—P a;b; J1(yx)E'1(b;x) sin&(x)xCx, (22)
g2 1

where

x(x) =—p asEp(box) .

General Potential

In this section we state the various expressions
derived for three Yukawa potentials and. used for the
actual computation.

1. First aed Secoe-d Order B-ore A pproximatioe
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TmLE I. Moduli of scattering amplitudes in forward direction,
y=O, in units 2Po/A'.

0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4
2.4

9.6

f
4.272
4.268
4.252
4.227
4.195
4.157
4.115
4.056
4.024
3.977
3.931
3.839
3.752
3.381
2.794
2.101

fI
4.272
4.272
4.272
4.272
4.272
4.272
4.272
4.272
4.272
4.272
4.272
4.272
4.272
4.272
4.272
4.272

4.272
4.274
4.279.
4.287
4.299
4.313
4.331
4.353
4.377
4.405
4.435
4.505
4.586
5.141
7.140

12.214

fs
s= 0.05

4.272
4.277
4.285
4.296
4.311
4.328
4.349
4.374
4.401
4.431
4.464
4.540
4.626
5.201
7,226

$2.312

lOA)

l.O

IV. ERROR OF FIRST- AND SECOND-ORDER
BOR5' APPROXIMATION

O.l

N

a

I

LO l0.0

The numerical analysis can be accomplished in a
rather straightforward manner by comparing the
results calculated from Eqs. (18) to (22). As to the
potential, we feel that the application of a Thomas-
Fermi potential is justified because its generality
permits the desired synoptic survey of the problem; in
terms of the constants a; and b; LEq. (3)j, it means
using the values a;=0.10, 0.55, 0.35, b;=6.0, 1.2, and
0.30, according to Moliere. ' Since the formulas were
introduced in a general form, they can be applied to
any particular potential as long as it is given as a
series of Yukawa potentials. The only problem remain-
ing is the manner of presenting these data. We per-
formed all computations in Fortran on an IBM 7090
Computer.

Modulus of Scattering Amylitude

Instead of having the two parameters e and p
describe the experimental variables in all the formulas,
we change to a=Z/137P=u/2p and p. It was found
appropriate to discuss the inQuence of the parameter a
on the modulus of the scattering amplitude in two steps,
namely, (1) on the modulus

~ f(0) ~
in forward direction,

y=0, and (2) on the ratio r(y)=
~ f(y)~/) f(0) ~. The

normalization procedure will make apparent the more
subtle dependence of f on a by eliminating the obvious
factor a.

In Table I the moduli of the various scattering ampli-
tudes in the forward direction are listed for a wide
range of a. The unit is v/A. ', which equals the Rutherford
amplitude for y=1.

The most important result of this table is found in
the last column, where the complete second-order Born
modulus

~ fs~ = L(gr+g')'+As O'" LEqs. (18), (19), and
(20)] is shown for s=0.05. Instead of choosing any
particular energy and element for determining s, we
used the maximum value occurring in usual electron-

FiG. 1. Deviation eI and e2 of the first- and second-order Born
approximation from the Moliere scattering modulus in forward
direction as a function of a=Z/137AS (double logarithmic presenta-
tion), Broken lines are quadratic approximations.

scattering experiments in order to find an upper limit
for the inhuence of s on the result. Comparing these
values with those for s=0, we see that the diQerences
are negligible for any practical purpose. This result is
the numerical proof for the fact that the second-order
Born approximation can be replaced by the expansion
of the Moliere approximation to the second order. We
have already seen this to be a consequence of a con-
sistent small-angle approximation. The first-order Born
and first-order Moliere approximation are identical in
any case, whereas the respective second-order contribu-
tions diBer by the parameter s being finite and small in
the one case and zero in the other. From now on we deal
only with computations for s=0 and hence speak only
of first-order and second-order approximations in
contrast to the Moliere approximation.

For small a the agreement of all three approximations
is as good as expected. For large a values, however, the
deviations of the second-order approximation from the
Moliere approximation exceed those of the first-order
approximation. In this presentation the modulus in
first-order approximation remains at least independent
of a, while the second-order modulus increases with
increasing a, in contrast to the decreasing result of the
Moliere approximation.

Figure 1 shows in double logarithmic presentation the
errors ei„.

——L ~ fs) —
) f ~ j/ ~ f ~

in the forward direction as a
function of a. For a smaller than unity the curves can
very well be approximated by a quadratic dependence
of the forms

er = 11.5a' % and es——15.5a' %.
In principle, all errors are positive because the approx-
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TABLE II. Moduli of scattering amplitude rl„normalized in forward direction,
as a function of the angular variable for different values of u.

0.01
X~ r r1(=r2)

0,2
r2

0,4
r2

0.8
r2

0.0063
0.0125
0.025
0.05
0.1
0.2
0.4
0.8
1.6
3.2
6.4

12.8
25.6
51.2

102.4
204.8

—3 1.000
—2 0.999
—1 0.994

0 0.976
1 0.909
2 0.718
3 0.409
4 0.175
5 0.637 E-1a
6 0.195 E-1
7 0.533 F-2
8 0.140 E-2
9 0.355 E-3

10 0.891 E-4
11 0.223 Lr'-4

12 0.558 E-5

1.000
0.999
0.994
0.976
0.909
0 ~ 718
0.409
0.175
0.637 E-1
0.195 F-1
0,534 E-2
0.140 L&-2

0.355 E-3
0.891 L"-4

0.223 E-4
0.558 E-5

1.0
r2

1.00,0
0.999
0.994
0.976
0.909
0.718
0.408
0.174
0.636 E-1
0.195 E-1
0.533 E-2
0.140 E-2
0.355 E-3
0.892 E-4
0.223 E-4
0,559 E-5

1.000
0.999
0.994
0.976
0.909
0.718
0.409
0.176
0.647 E-1
0.202 E-1
0.575 F-2
0.158 B-2
0.428 B-3
0.115 I -3
0.308 E-4
0.826 L~-5

1.2

1.000
0.999
D.994
0.976
0.909
0.717
0.407
0.174
0.632 E-1
0.193 E-1
0.532 E-2
0.140 E-2
0.356 E-3
0.895 E-4
0.224 B-4
0,561 E-5

r2

1.000
0.999
0 994
0.976
0.909
0.719
0,409
0.178
0.674 E-1
0.222 E-1
0.685 E-2
0.205 E-2
0.596 E-3
0.170 P-3
0.480 E-4
0.134 B-4

1.000
0.999
0.994
0,975
0,908
0.715
0.403
0.170
0.616 E-1
Q.183 E-1
0.527 B-2
0.140 E-2
0,359 E-3
0.905 L+-4

0.227 E-4
0.568 L&-5

2.4

1.000
0.999
0.994
0.976
0.910
0.721
0.417-
0.188-

0.7-73 E-i
0.290 E-1
0.101 E-1
0.329 E-2
0.102 B-2
0;302 E-3
0.875 E-4
0.249 E-4

1.000
0.999
0.994
0.975
0.906
0.711
0.397
0.166
0.974 E-1
0.184 E-1
0.521 E-2
0.140 E-2
0.363 E-3
0.920 E-4
0.231 E-4
0.579 L:-5

4.8

1.000
0.999
0.994
0.976
0.911
0.725
0.427
0.203
0.912 E-1
0.374 E-1
0.138 E-1
0.465 E-2
0.146 E-2
0.439 E-3
0.128 E-3
0,365 E-4

r2

1.000
0,999
0.994
0.974
0.905
0.706
0.390
0.160
0.570 F-1
0.178 E-1
0.515 E-2
0.140 E-2
0.367 E-3
0.937 E-4
0.236 E-4
0.592 E-5

9.6

1.000
0.999
0.994
0.977
0.913
0.731
0,441
0.222
0.107
0.464 E-1
0,176 E-1
0.602 E-2
0.203 E-2
0.574 E-3
0.168 E-3
0.340 E-4

0.0063
0.0125
0.025
0.05
0.1

0.2
0.4
0.8
1.6
3.2
6.4

12.8
25.6
51.2

102.4
204.8

—3
—2
—1

0
1

2
3

5
6
7

8
9

10
11
12

1.000
0.999
0.994
0.974
0.903
0.702
0.383
0.155
0.546 E-1
0.173 B-1
0.508 B-2
0.141 E-2
0.372 E-3
0.956 B-4
0.241 E-4
0.606 E-5

1.000
0.999
0.994
0.977
0.915
0.738
0.456
0.243
0.124
0.555
0.214
0.735
0.234
0.705
0.206
0.590

B-1
E-1
B-2
B-2
B-3
B-3
E-4

1.000
0.999
0.994
0.974
0.901
0.697
0.376
0.149
0.523 B-1
0.168 E-1
0.502 E-2
0.141 E-2
0.378 E-3
0.975 B-4
0.247 E-4
0.620 E-5

1.000
0.999
0.995
0.978
0.917
0.745
0.474
0.265
0.141
0.644 E-i
0.250 B-1
0.864 B-2
0.275 B-2
0.831 B-3
0.243 B-3
0.696 B-4

1.000
0.999
0.993
0.971
0.892
0,671
0.337
0.124
0.432 E-1
0.149 B-1
0.477 E-2
0.143 B-2
0.401 E-3
0.107 E-3
0.277 E-4
0.701 E-5

1.000
0.999
0.996
0.982
0.934
0.800
0.586
0.391
0.229
Q.109
0.432 E-1
0.150 B-1
0.479 E-2
0.145 B-2
0.425 E-3
0.122 F-3

1.000
0.999
0.992
0.967
0,877
0,631
0.289
0.102
0.362 E-1
0.131 E-1
0.457 E-2
0.145 E-2
0.433 E-3
0.121 L"-3
0.325 E-4
0.837 E-5

1.000
0.999
0.997
0.990
0.961
0,879
0.730
0,533
0.323
0.156
0.619 E-1
0.216 E-1
0.689 E-2
0.209 E-2
0.612 B-3
0.175 E-3

1.000
0.998
0.990
0.960
0.850
0.562
0.230
0.912 E-1
0.327 E-1
0.116E-1
0,436 B-2
0.147 E-2
0.485 E-3
0.144 E-3
0.404 B-4
0,108 B-4

1.000
0.999
0.999
0.995
0.979
0.931
0.816
0.614
0.376
0.182
0.724 E-1
0.252 E-1
0.806 E-2
D.244 E-2
0.715 B-3
0.205 E-3

+ The decimaI exponent B-03 means a factor 10 g.

I2

8.$—
l

6.0—
+10/. (

+5%1
o.o-

0 0.2 0,4 0.8 l.0 a

FH:. 2. Topographic presentation of the deviations gg and gg of
the first- and second-order Born approximation from the Moliere
scattering modulus normalized in the forward direction as a
function of the angular variable y and of u=Z/137P.

imations do not fully account for the interference
phenomena of the scattering event.

Table II lists the various moduli rI, (y), normalized in
the forward direction, as a function of the angular
variable y for different a values. For orientation, the
magnitude of y is given in a few examples, e.g., for

0=6 and T=50 keV, y equals 1.812 for Z=32 and
1.347 for Z=78; for T= j.00 keV the respective values
are 2.622 and 1.949. To cover the desired wide range
of y, a geometric division of the form y=0.05&(2~ was
chosen. Table II shows that the normalized modulus
r&(y) reproduces the exact values r(y) in a large (u,y)
region with an accuracy high enough to be sufhcient
for the experimentalist. Note that ri itself is independ-
ent of a; it can be seen as the limit of r~ for vanishing a.
The region of moderate accuracy of r& is smaller than
for ri, the reasons for which are already pointed out in
the discussion of e2. The over-all behavior of the
relative deviation rf&

——(r&—r)/r can readily be appreci-
ated from Fig. 2.

The phase angles q = tan '(h/g) and q r,
——tan '(h2/gr)

in radians are compiled in Table III; the fact that
y&

——0 was the primary objection to the erst-order Born
approximation. A division of the phase angle by a is
suggested by the following considerations: (1) For large
scattering angles, screening eRects are negligible, so
that the scattering amplitudes and, their phase angles
as well should approach the values rendered by the
Rutherford, formula, i.e., should, behave as does 2a lny
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(Mott and Massey). '4 Table III permits a simple check
of this point because

1 hy 1.443 hy

c b, lny u AA"

For the Moliere approximation this quotient is not only
constant for a wide range of a but also amounts to the
correct numerical value of 2, as shown in the last line
of Table III. (2) For small scattering angles and small
a the phase angles will be small, so they can be expressed
by their tangent (i.e., p=k/g), and. again an over-all
proportionality to a can be expected. Furthermore,
und. er these conditions q s (0) should give a good estimate
for y(0). We find

3 3 3 b;
(p (0)=a(P a /b 'P' Q Q a as(b '—bs') ' ln—

1 1

=0.2788a, (23)

FIG. 3. Scattering amplitude (modulus ) f&) in Compton wave-
lengths and phase ss in radians) in Moliere and in first- and
second-order Born approximations as a function of the angular
variable y for a=Z/13/P=0. 6. The suKxes 1 and 2 refer to the
first- and second-order Born approximations, respectively.

8
00

ChCh~K OH%t t oOOOOt oO~~Ch~tW&WOt t O&t ~&Ch0 0 0 0 0 0 0 ~ ~ a e m e oo Ch 0
C) Ch~M~ ~ OO W.M OO W ~ C) M Mnmnmmn~Ot t CDWt ~mCh0 O O O O 0 O ~ ~ H W % C' oO Ch 0

which correlates well with the result of the Moliere
approximation. It should be pointed out that in the
case of a single exponential potential, Eq. (23) becomes
ys(0) =0.5a, independent of the screening parameter
bk

mn~O~mm&mC)t oOChCD~n
I I I

~4¹F. Mott and H. S. W. Massey, The Theory of Atomic
Collisjols (Clarendon Press, Oxford, England, 1949), 2nd ed.
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TmLE Dt'. Scattering cross section in the Moliere approximation in units of the Rutherford cross section as a function of the angular
variable y for different values of a=Z/137P.

0.01 0.1
—3 0.279 E-7 0.278 E-7—2 0.445 E-6 0.444 E-6—1 0.705 E-5 0.703 E-5

0 0.109 E-4 0.108 E-3
1 0.151 E-2 0.150 E-2
2 0.151 E-1 0.150 E-1
3 0.782 E-1 0,778 E-1
4 0.228 0.227
5 0.486 0.482
6 0.725 0.720
7 0.872 0.868
8 0.956 0.953
9 0.986 0.986

10 0.997 0.997
11 0.999 0.999
12 1.000 1.000

0.2

0.276 E-7
0.440 E-6
0.698 E-5
0.1.08 E-3
0.149 E-2
0.149 E-1
0.768 E-1
0.223
0.472
0, ]07
0.858
0.947
0.984
0.995
0.999
1.000

0.4

0.269 E-7
0.429 E-6
0.679 E-5
0.105 E-3
0.145 E-2
0.144 E-1
0.732 E-1
0.209
0.437
0,661
0.820
0.923
0.974
0.991
0.997
P 999

0.6

0.258 F=7
0.412 E-6
0.653 E-5
0.101 E-3
0.139 I -2
0.137 E-1
0.684 E-1
0.190
0.391
0.601
0.770
0.890
0.956
0.985
0.995
P 999

0.247 E-7
0.394 I&-6
0.625 E-5
0.961 E-4
0.133 E-2
0.129 E-1
0.632 E-1
0.170
0.344
0.540
0.718
0.855
0.936
0.978
0.993
0.998

1.0

0.236 E-7
0.376 E-6
0,596 E-5
0.916 E-4
0.1.26 E-2
0.122 E-1
0.581 E-1
0.151
0.302
0.484
0.669
0.820
0.914
0.969
0.990
0.997

1.2

0.225 E-7
0.359 E-6
0.568 E-5
0.873 E-4
0.120 E-2
0.115 E-1
0.533 E-1
0.135
0.265
0.436
0.623
0.785
0.904
0.963
0.987
0.996

2.4

0.174 E-7
0.278 E-6
0.440 E-5
0.674 E-4
0.910 E-3
0.823 E-2
0.333 E-1
0.722 E-1
0.140
0.266
0.437
0.630
0.791
0.904
0.963
0.987

4.8

0.119E-7
0.190 E-6
0.300 E-5
0.456 E-4
0.600 E-3
0.497 E-2
0.166 E-1
0.331 E-1
0.670 E-1
0.139
0.274
0.439
0.629
0.791
0.904
0.963

9.6

0.674 E-8
0.107 E-6
0.169 E-5
0.254 F.-4
0,319 E-3
0.223 E-2
0.597 E-2
0.174 E-1
0.310 E-1
0.628 E-1
0.141
0.257
0.445
0.629
0.791
0.904

Comparing now the values y/a and qs/a in Table
III, it is seen that for small scattering angles (y«1)
the second-order approximation renders phase angles
accurate enough to be taken for the exact values. For
large angles, however, the discrepancies are tremendous.

V. DlSCUSSION

The results of the previous section show that neither
the first-order nor the second-order Born approximation
renders reliable scattering amplitudes when a is not very
small compared to unity. This remains true even when
the scattering angles are small, as can be seen in Fig. 3,
in which, as an example for the whole picture, the
scattering amplitude for a=0.6 is given. Thi's finding
refutes the statement often brought forth in electron
microscopic discussion that a first-order Born approx-
imation is applicable despite a large value of u, as long
as the scattering angles are small. This result also
demonstrates that the optical theorem is a necessary,
not a sufficient condition, since regardless of the fact
that it fulfills the optical theorem, the second-order
approximation is erroneous.

To obtain reasonably exact values, the Moliere
approximation must be applied, though on the one hand,
it is more involved than the low-order approximation
but on the other hand is less cumbersome than exact
or approximated phase-shift calculations. If, however,
one is interested in small-angle-scattering events, as in
electron diffraction and electron microscopy, the results
suggested the following simplified procedure for obtain-
ing rather fair values of the scattering amplitudes:
One calculates the modulus

~ f(y)~ as
~ ft(y)~ X ) f(0)/

ft(0) ~; i.e., one calculates the scattering amplitude in
the first-order Born approximation for whatever poten-
tial is requested and performs one integration. (numer-
ically) to establish the angle-independent normalization
factor. This is why a closed form of f(0) would be
desirable. Kessler, " in his experiments on electron

"J.Kessler, Z, Physi/ 182, 153 (1964).

scattering, applied empirically such an over-all correc-
tion factor for the scattering cross section, a procedure
that can be justified by the heuristic arguments given
above. To obtain the phase angle of the scattering
amplitude for small angles one can resort to q~. This
was proposed previously by Glauber and Schomaker. '
They, however, calculated ps as hs/g&, which for large
scattering angles incidentally has the logarithmic
behavior demanded by the Rutherford formula, thus
obscuring the actually large errors of the true phase
ps= tan '(hs/gt) in comparison to p. Furthermore, their
statement that the phase angle for small scattering
angles is little dependent on the scattering potential
cannot be confirmed. It is true that in the case of a single
exponential potential q»(0) =0.5u; yet for the Thomas-
Fermi potential we find qs(0)=0.25a, which is signif-
icantly different.

Haine" in his book points out the importance of
phase contrast in electron microscopy. This contrast
may be shown to be of the order 2a ln(1+yes) sin+ for
values of a considerably smaller than unity and for not
too large aperture angle yo. For a single exponential
potential this contrast amounts to a' ln(1+ps'). In
a recent paper Zeitler'7 has shown that the contrast of
a single atom in an aberration-free electron microscope
can exceed the value of 20%. Admittedly a single atom
seems a rather academic proposition. It is not unfeasible,
however; in a real electron microscope the phase shifts
introduced by spherical aberration are "balanced" by
optimal defocusing. Since, however, in the image plane
the scattered wave is shifted not only by s./2 with
respect to the unscattered wave, as the first-order Born
approximation would imply, but by an additional
amount depending on the Z of the scatterer, each kind
of atom in a specimen requires a different amount of
defocusing to exhibit optimal contrast. Heidenreich"

"M. S. Haine, The Z~Lectroe Microscope (E. and F. N. Spon,
Ltd. , London, 1961).'E. Zeitler, Flectrori, Microscopy (Maruzen Company, Ltd. ,
Tokyo, 1966), Vol. 1, p. 43."R.D. Heidenreich, Bell System Tech. J. 45, 651 (1966).
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has produced electron micrographs of low-Z material
with a point-to-point resolution of 2 A or better that
show an overwhelming amount of detail. If heavy atoms
were built into this matrix, the phase shifts discussed in
this paper would probably bring out these single atoms,
while the required defocusing would suppress the
matrix.

APPE5'DIX I
The inhuence of the screening eRect on the scattering

cross section is borne out most clearly if the Rutherford
cross section is used as the unit, since it is exact when no
screening is present. Moliere' published a set of curves
of this ratio for various a values; the usefulness of these
curves for discussion is documented by their repeated
reprinting. "'0 Since on the one hand the major part of
these curves is based on interpolation only and since
on the other hand our calculations automatically
rendered the ratio of cross sections in question, we
should like to include a table of these values (Table IV).

values from multiple scattering experiments. "Leaving,
however, the potential unchanged, that is retaining
b~=1.12 but changing from the second-order Born
approximation to the Moliere approximation alters the
results in the same fashion as does the change of param-
eters. The same holds true when Gorshkov's formula'4
for three Yukawa potentials is compared with the
Moliere approximation. Hence, multiple scattering
experiments and the argument by Nigarn et al. do not
refute the validity of the Moliere approximation,
whereas single scattering experiments and theoretical
considerations confirm it.

APPEN'DIX GI

In some instances"" more exact atomic potentials
have been applied to compute the 6rst-order Born
scattering amplitude, which in turn has been approx-
imated by best-it techniques in the form of

APPEÃMX Il

Nigam et al." have questioned the validity of the
Moliere approximation for obtaining the cross section
for single electron scattering. Their statement is surpris-

ing in view of many papers' ' ' which either show
numerical and experimental agreement between the
values of the cross section for single scattering obtained
from Moliere and exact phase-shift calculations or the
physical equivalence between the two theoretical
treatments for small scattering angles. Using Dalitz's
formula" for one Yukawa potential Nigam et al.
had to adjust the parameter bt Pour Kq. (3)j from its
actual value of 1.12 to 1.80 to obtain agreeinent with

~ H. Pleischmann, Z. Naturforsch 15a, 1090 (1962).
'0 W. T. Scott, Rev. Mod. Phys. 35, 231 {1963)."B.P. Nigam, M. K. Sundaresan, and Ta-You Wu, Phys. Rev.

115, 491 (1.959)."R.H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951).

The corresponding hs(g) can be readily found with the
aid of Eq. (9):

The two equations suKce to calculate the phase shift.
It is obvious that the unitarity condition is fulfilled.
For large angles these approximations cannot hold,
since the ratio of ft(q) to the Rutherford amplitude does
not approach unity for large values of q, the latter
amplitude being proportional to q

—'.
~ A. O. Hanson, L. H. I anzl, E.M. Lyman, and M. B. Scott,

Phys. Rev. 84, 634 (1951).
24 V. G. Gorshkov, Zh. Eksperim. i Teor. Fiz. 41, 977 (1961);

45, 1714 (1962) LEnghsh transis. : Soviet Phys. —JEPT 14, 694
(1962); 16, 1211 (1963)g."G.H. Smith and R. E. Surge, Acta Cryst. 15, 782 (1962).

s' D. T. Cromer and ].T. Waber, Acta Cryst. 18, 104 (1965).


