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A Hamiltonian formulation is constructed for the classical dynamical equations of slightly deformed
rectilinear vortices. The system is then quantized by interpreting the conjugate variables as quantum-
mechanical operators that obey canonical commutation relations. A linear canonical transformation diago-
nalizes the Hamiltonian in terms of operators that create and destroy single quanta of vortex vibrations.
The theory is applied to two distinct configurations in He II:a single vortex and a rotating vortex lattice.
The specific heat associated with the vortex waves. varies approximately as T'f' at low temperatures.
Quantum-mechanical and thermal ffuctuations produce a Gnite mean-square displacement of the vortex
core, which is studied both at T=0 and at T&0.

I. IÃTRODUCTIOH

'HE concept of quantized vortices' ' has success-
fully explained many of the properties of super-

Quid helium and type-II superconductors. 4 For most
purposes, these vortices may be treated classically, with
the quantized circulation as the only remnant of their
fundamental quantum-mechanical origin. Such an ap-
proach cannot be wholly satisfactory, however, for a
fundamental difhculty of principle remains unsolved:
the localization of the vortex axis necessarily leads to
zero-point motion, which cannot be included in the
classical framework. A related question is the calcula-
tion of the mean-square displacement of the cores in a
vortex lattice. In the quantum theory of a crystal
consisting of point masses, '6 the mean-square displace-
ment depends on the frequency spectrum and on the
temperature. The analogous frequency spectrum of a
vortex lattice has been derived for He II,"for bulk
type-II superconductors, "' and for thin superconduct-
ing 6lms." Direct substitution into the standard
expressions'' apparently predicts a divergent mean-
square displacement at any 6nite temperature, which
suggests that a more fundamental approach is needed.
Finally, the thermal excitation of vortex waves con-
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tributes to the speci6c heat, and it is interesting to
consider the possibility of experimental detection of
vortices by calorimetric techniques.

In order to answer the above questions, a fully
quantum-mechanical treatment is required; the present
paper therefore proposes a quantum theory of slightly
deformed rectilinear vortices. "In the approximation of
small bending, the classical equations of vortex motion
may be cast in a Hamiltonian formulation (Sec. II),
in which the x and y components of the displacements
act as conjugate variables. The system is quantized by
interpreting these variables as quantum-mechanical
operators subject to the canonical commutation rela-
tions. For the special case of a vortex lattice, the
translational invariance allows the introduction of
plane-wave states, which simpli6es the Hamiltonian
considerably (Sec. III). A linear transformation di-
agonalizes the Hamiltonian in terms of operators that
create and destroy single quanta of vortex waves (Sec.
IV). It is then straightforward to calculate both the
specific heat associated with the excited states of the
vortex lattice (Sec. V) and the mean-square displace-
ment of the vortex cores (Sec. VI). For simplicity, the
present work is restricted to a vortex lattice in He II;
most of the formulas remain valid for a general vortex
lattice, however, and a subsequent paper will treat the
situation in bulk type-II superconductors.

IL HAMILTONIAN FORMULATION

It has been known for nearly a century" "that the
motion of a system of rectilinear vortices allows a
Hamiltonian formulation; the Hamiltonian is propor-
tional to the interaction energy of the vortex array, and
the x and y coordinates of the ith rectilinear vortex
constitute the ith pair of conjugate variables. This
simple dynamical approach depends crucially on the

'~The only previous attempt at a quantum-mechanical treat-
ment is by H. E. Hall, Proc. Roy. Soc. (London) A245, 546
(1958), whose approach is rather different from that used here.

~ G. KirchhoR, Vorlesungen uber Mathemutische Physi k:
Mechanih (B.G. Teubner, Leipzig, 1883), 3rd ed. , pp. 251-272.

"H. Lamb, IIydrodynamics (Dover Publications, Inc. , New
York, 1945), 6th ed. , p. 230.

'~C. C. Lin, On the Motion of Vortices in Emo Dimensions
(University of Toronto Press, Toronto, Canada, 1943).
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two-dimensional nature of the motion and is incorrect
for an arbitrary three-dimensional vortex system.
Nevertheless, it is possible to extend the Hamiltonian
formulation to include a restricted class of three-
dimensional con6gurations, in which rectilinear vortices
are slightly bent from their original straight form.
Since such deformations are precisely those of interest
in the small oscillations of a vortex lattice, the resulting
theory is able to treat interesting physical questions, in
spite of its limited range of validity.

The energy of a system of vortices in an incompres-
sible Quid is the total kinetic energy of the moving
Quid. Each vortex contributes linearly to the velocity
6eld, so that the kinetic energy contains two distinct
contributions: the self-energy of each vortex, and the
interaction energy between each pair of vortices. It is
therefore sufhcient to construct a Hamiltonian for a
system consisting of only two separate vortices; the
general theorem then follows from the linearity of the
dynamical equations. Furthermore, the self-induced
motion does not require a separate treatment because a
single vortex may be considered as a bundle of parallel
e) ementary 61aments. This last picture is identical with
that used in calculating the self-inductance of a current-
arrying wire '6

Hence we shall temporarily study an infinite incom-
pressible Quid of density p, containing two vortices with
circulation K. The vortex axes are speci6ed by the three-
dimensional vector functions R1 and R2, these functions
depend on a single parameter, which is usually chosen
as the arc length along the vortex. It is convenient to
resolve all vectors in cylindrical polar coordinates: R1
= (r1,z1) and R2——(r2, z2), where r is a two-dimensional
vector in the xy plane, perpendicular to the undeformed
vortex axis. A straightforward calculation shows that
the Quid velocity at R~ due to the presence of the second
vortex is given by'7

ds2X (R1—R2)
v(R1) =—

4~
I R,—R I2

Equations (1) and (2) are direct analogs of the Biot-
Savart law and of Neumann's formula for the mutual
inductance of two current-carrying wires. "

For a general three-dimensional configuration, Eqs.
(1) and (2) are not directly related. In the special case
of rectilinear vortices subject to small deformations,
however, the equations may be greatly simplified. Let
the axes of the undeformed rectilinear vortices be
specified by the vector functions R12(z)= (r1,z) and
R2'(Z) = (r2,Z), Where the COOrdinate Z(—00 &Z& an ) haS
been chosen as the parametric variable. When the
vortices are deformed, the corresponding axes are given
by the vectors (r1+ u1(z),z) and (r2+ u2(z), z). Here, the
small displacements u; are con6ned to the xy plane,
since it can be shown that displacements along the
vortex axes do not contribute to the linearized equa-
tions of motion. "It is natural to taLe s as the integra-
tion variable, so that ds;= (ds,/'dz)dz= dzI z+ (du;/dz)).
Hence, the translational velocity of the vortex element
originally at 8&' is'given by

Lz+(du, /d, )jXI R '+u —R '—u ]
111(z1)=— dz2

4m.

This equation may be linearized in the small displace-
ments, yielding'8

u1(z1) = (42r)
—'~ dz2{

I
R12'I-'

xI zx r12+zx (u1 u2)+ (du2/dz2)xz(zl z2)j
3

I
R12

I
zXr12I r12' (u1 u2) j), (4)

where R12'= r»+z(z1 —z2) an«12= r1—r2.
In a similar manner, the interaction energy between

the deformed lines may be written exactly as

PK dNy dU2
812=— dz1dz2 1+ I R12+u1 u21 '. (5)

4m dpi

PK~u=—
dsy' ds2

IR1—R2I
(2)

"See, for example, M. Abraham and R. Seeker, The Classical
Theory of Electricity arid j/Iageetism {Blackie and Son, Ltd. ,
London, 1954), 2nd ed. , pp. 125—131 and 172-177.

"Reference 14, pp. 202—204, 211, and 217.

where the line integral is along the length of the second
vortex. In addition, a basic theorem of classical hydro-
dynamics" states that each element of a vortex core
moves with the local Quid velocity at that point; Eq.
(1) therefore provides the dynamical equation for the
first vortex, apart from self-induced effects, which are
considered in Sec. III. A second fundamental result of
classical hydrodynamics expresses the interaction en-
ergy of two vortices as'~

This expression must be expanded to second order in
the small displacements, and we 6nd

PK

+12
4m.

(du1 du2)
«1«2

I
R»'I '+

I
R»'I 'I

Edz, dz2)

r12 (u1—u2) (ul u2) 3 Lr12' (u1 u2) j+— (6)

"This conclusion is inherent in the discussion of E. S. Raja
Gopal, Ann. Phys. (N. Y.) 29, 350 (1964), Appendix.

Equation (6) is a bilinear functional of the disp»ce-
ments u~ and u2, and a straightforward calculation
shows that its variational derivative is equal to

BE12/8u1 (z) =pzz Xu1 (z) .
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where Ep is the modified Bessel function of order zero, defined by the integral representation"

I'(v+ z)(2r)" " cos(kz)dz
E„(kr)=

(&) p (z2+r2) vjl/2

The remaining terms of B;;are evaluated in a similar manner, which yields "
(28)

a;,= (4r)-'~ g, {Pq;»q;, «+ q, «q/, »
—p,»p;, »—p;«p;, »Jri/~(x;, '—y; )

+[pi»p «+p»qi»+q «p «+p&»g&«7r / 2x "yii+&k [g »qi, »'+q&«q , «+'p'»pi, «+p'«p', »gEp(kriss)
—pk'$q'«q;, »+q;«-q', » p,-«p;—, » p, -«p;—, «7»;; '(x;/p —y;/p)It«(kr, /)

——',k pqi«p, «+p;»q'«+q;«p;«+ p'»q;»]&'; »';y;, I/- p(k&,;)} (29)

Here, x@ and y;; denote the x and y components of the two-dimensional vector r@.
In Sec. II, the detailed forxn of the self-energy was left unspecified, and it is now possible to complete the calcu-

lation. Although the vortex core will be treated as an assembly of parallel vortex filaments, we shall assume that
a single quantum-mechanical operator sufBces to describe the motion of each elementary length of core. The opera-
tor aspect of the self-energy is therefore obtained from H,, merely be setting i=j in the operators q and p. This
procedure fails to treat the extended core with sufFicient accuracy, however, and it is necessary to average the
spatial variables r; and r, over a small circle of radius a. Such an average is equivalent to computing (twice) the
total interaction energy between all pairs of elementary filaments. In addition, the restriction of small bending
implies that ha&&1.

Kith these assumptions, the self-energy E; becomes

8;= (4/r) '/i g«(q, »q; «+p;»p; »)-', O'I ln2 —y —(ln(kI r—r'I))7
+(4 ) ' E (q' q',——p' p'.—)-'k'(I —'I 'L(*—')' —(y—y')'7)

+ (4 ) "Z»(q'«p'«+ p'»q'«) pk'(I r—r'I '(*—x') (y—y')),

where the expansions Ep(x) =—ln(-', x)—y and Ep(x)
=2x P—pi have been used, and y=0.57'I2 is Euler's
constant. An additional factor ~ has been inserted into
Eq. (30) to ensure that each pair of filaments is counted
only once. The average implied by the angular brackets
is defined as

//(r, r'))=(ws')-' fi'rd'r'/(rr'), (3I)

~ We follow the notation of G. N. Watson, A Treatise on the
Theory of Besse/ IiurIct~ons (Cambridge University Press, Cam-
bridge, 1962), 2nd ed. , p. 185.

where the integrals are confined to a circle of radius a.
Detailed calculations yield

—(ln(k I
r—r' I))= ln(1/ka)+-,'

(Ir—r'I 'I:(x—*')'—(y—y')'7)=o, (32)

(I r—r'I —'(x—x')(y—y'))=0,
and the self-energy operator of the ith vortex reduces to

K= (4/r) '/i P «(q'«q', «+p «p', »)

)&-'O'Pln(2/ka) —y+-', 7. (33)

As a check on the averaging procedure, the additional
term ~ agrees precisely with that obtained in a diferent
way by Kelvin" in his study of the vibrations of a
classical vortex with a core in solid-body rotation. ' The
remaining term of Eq. (17) is easily evaluated, and the

In the particular case of a single rectilinear vortex in an
unbounded fluid, 0 vanishes and Eq. (33) represents
the total Hamiltonian of the system.

Equations (16), (29), and (34) constitute the exact
Harniltonian operator of a system of rectilinear vortices
uniformly filling the xy plane and executing small
oscillations about their straight undeformed shapes. No
further progress is possible without additional assump-
tions, and we shall therefore restrict the discussion to a
square or triangular lattice of area A containing E
vortices with a mean density /i=/V/A. The operators
q, » and p;«may now be expanded in a second Fourier
series

q»= & '"Qi ~"'*qi»,

p.»
—

/V 1/2 Q z
—il r—ip

(35)

where periodic boundary conditions have been used,
and {1}is the set of reciprocal lattice vectors associated
with the two-dimensional array. The corresponding
Fourier coefFicients and commutation relations are
easily found to be

—g—1/2 P . &-il ~ r/q

pi«
—/V

—1/2 Q . gil rip.

Lqi», pi » 7= ik&iv4»"

(36)

(37)

final expression becomes

K= p P«(qi»qi, »+pi»p—i, »)—
)& {Q+(4/r)

—'/ik«gin(2/ka) —y+4i7}. (34)
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Equation (35) must be substituted into the total
Hamiltonian Eq. (16), and, as a typical example, we
consider the first term of Eq. (29)

(8~) '~ Z~ Z'r'((f'«V* «+-re«(k «)&'-r '(&')' X'r—')
= (~) ')( g«P» ql«ql -«& '

e'(I +1') ~,r, .—4 (g .2 y .P)
=(42r) ')(P«glVql«ql «& -'Q; 4""+""

X&((1+1') r r'&. .—4(~.2 y.2)

In the limit of a large lattice (/E»1, 1'R»1), the double
sum over i and j may be evaluated approximately by
shifting the origin in each term

cedure is well known in the quantum theory of solids ~ "
the present situation is slightly more complicated be-
cause Eq. (39) contains terms proportional to gp as
well as the usual gent and ppt. Nevertheless, the proper
linear combination of operators can still be determined
from the corresponding classical equations. Deine

(tl«= Lh/2 (Qg —)7+()q'"(Qg —2)+ $)

X)g 1, «+gl«tj,

pl« t = pi/2(p (Qg —))+&)$'~2
(43)

X t ((2+i(r)) g—1,—«(rr i(p) g1« tg,

where

+—1 P. (,4(1+1') ~ rr g!es(1+1') ~ r;&.—4(&.2 ~ 2)

=81, 1 Q r; 4(@42 y,2—)=0,
(p=—(p(l, k) = L(Qg —)))'—(cP+ P)j'" (44)

represents the general dispersion relation as a function
of the wave vector (1,k) and was first obtained by
StauGer. The inverse transformation is given by

where the final equality follows from the symmetry of
the square or triangular lattice. The remaining terms of
Eq. (16) are all evaluated in a similar manner, and the
total Hamiltonian of the vortex lattice reduces to a
sum of uncoupled terms

gl«((2+ i(p)+ pl« t(Qg —rl+ 5)
~1k

i)2k(p (Qg —))+P)j'"
(43)(38)&=pl«K«,

ql«(~ i )+p—l«'(Qg 2)+5)—
—iL2a (Qg —&+P)J»

where

K«= 2 (Qg 2) $)(—I)«(11—«(+2 (Qg 1)+5)p—l«pl«'

+2&(gl«pl«+ pl«teal«t) (39) and it is not diKcult to verify that the operators a and

ere, t e a joint operators are e ne as at obey the usual boson commutation relations

(1k g—1,—It: p

Pl«P —1,—«r

and the following abbreviations have been used' ':
(40)

Qg= Q+ (4)r) ')(k2(ln(2/kg) —y+ 4j
+ (4n.)-')(k2 g, ' Ep(kr;), (41)

a= (4)r) ')(k' g '(1 e"' ) (2x—y /rr«)K2(kr;), (42a)

$= (42r) ')(k2 p/ (1—e"rr') (F2—241«)r; F2(kr, ), (42b)

))= (42r)
—')(k2 g/(1 —e"rr)Ep(kr ) . (42c)

The frequency 0& was first derived by Raja Gopal" in
his study of the axial vibration modes of a vortex array;
Eq. (41) differs from his result only in the explicit core
correction ~~, and in the appearance of a lattice sum
instead of an integral approximation. It is remarkable
that these lattice sums describing the three-dimensional
oscillations of a vortex lattice in superQuid helium are
identical with those occurring in the two-dimensional
oscillations of a vortex lattice in a bulk type-II super-
conductor, "when the vortices move without bending.
This relation was first noted by StauGer, who has
carried out the classical analysis corresponding to that
given above.

IV. DIAGO5'ALIZATION OF THE HAMILTON'IA5'

The Hamiltonian Eq. (38) may be diagonalized by a
linear transformation of variables. Although this pro-

L««rgl'«' t$ '511'()««' r

Lgl«, «'«' j—fgl« t ««' t$ =0 ~

Substitution of Eq. (43) into Eq. (38) eventually yields

&=2 Pl«k (gl«««t+««tgl«), (4'7)

where the dependence of pp on (I,k) has been suppressed
for simplicity. Equation (47) shows that ««t may be
interpreted as the creation operator for a single vibra-
tion quantum in the normal mode specified by the wave
vector (I,k) and frequency (p, determined by Eq. (44).

It has been shown~ that an infinite square vortex
lattice in HeII is unstable with respect to small
perturbations confined to the xy plane, and only the
triangular lattice is expected, to occur in physical
situations. Unfortunately, the exact lattice sums have
been evaluated"" only in the long-wavelength limit
(k24 '»(&1, le« '»((1), which is insuflicient for the pres-
ent calculation. In order to d,eal consistently with a
single mod, el, we shall therefore restrict this work to
the continuum approximation, which allows a complete
determination of the dispersion relation. In the long-
wavelength limit, this approximation reproduces the
exact results for the triangular lattice.""I urthermore,
the specific heat and zero-point motion are rather in-
sensitive to the detailed form of the frequency spectrum,
assuming only that the lattice is stable, so that the
continuum approximation is not expected, to lead to an

~ A. L. Fetter, Phys. Rev. j.47, 153 (1966).
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appreciable error. The continuum approximation to
Eq. (42) has been evaluated in Appendix A of Ref. 10;
the similar integral obtained from Eq. (41) was com-
puted numerically in Ref. 18, but it can also be evalu-
ated analytically as follows:

(4z.)—'ttks P ' Kp(kr )= (4z.) 'tt—nks tPrKp(kr)

=-',ntt xdxKp(x)
kb

=-;ntc(kb)Kt(kb) . (48)

which is just Kelvin's result for a vortex with a core in
solid-body rotation. "

(2). If 1»kb» lb, then the wavelength for propaga-
tion along the vortex axis is much larger than the
intervortex spacing b, and the vortices interact appreci-
ably. In this region, the lattice sums cr, $, and tt are all
small (of order QPk —'), and we find

Q, = 2QLI+-', (kb)s ln(b/a) j
= 2Q+ (4tr)

—'ttk' ln (b/tt),
(50)

{51)

where the relation Q=rsnx= (2trb') 'tt has been used.
Equation (50) represents the dispersion relation for
propagation along the vortex axis (I=O, kb((1) and is
implicit in the work of Raja Gopal."The small correc-
tion of order (kb)' is given with only logarithmic
accuracy because the additional constants depend on
the detailed lattice structure; the precise values may
be obtained from the sums in Ref. 24, but are not
important here. It is interesting that this correction
term does not contain a factor lnka, which arises from
a cancellation between the logarithmic dependence on
k due to the other vortices )Eq. (48)j and the self-
induced logarithmic term in Eq. (41).The leading term
in the dispersion relation

C Eq. (51)j confiicts with an

The lower cutoff b= {nz-) '", which characterizes the
intervortex spacing, excludes the area n ' associated
with the vortex at the origin.

The frequency spectrum must be considered sepa-
rately in four distinct regions of the lk plane. It is clear
that the wavelength for propagation perpendicular to
the vortex axes cannot be shorter than the length b,
so that l generally satisies the restriction lb&1. In
contrast, no such restriction applies to the quantity kb.

(1). If kb»1» tb, then the wavelength for propaga-
tion along the vortex axis is much smaller than the
intervortex spacing, and the vortices are electively
independent. The lattice sums tr, $, rt, and Eq. (48) all
vanish exponentially in this case, and the vibration
frequency is given as

tp=Qg= (4tr) 'ttkst ln(2/ka) —y+4r+0(k 'b ')g (49)

assertion of Vinen" that vortex waves cannot be pro-
pagated. if kb(&1, but our result agrees with that of
Raja Gopal" and Nozieres. " Indeed, Eq. (51) has a
simple physical interpretation as the natural oscilla-
tion frequency 20 of a Quid in solid, -body rotation'~ with
uniform vorticity ~curlv~ =2Q; for if kb&&1, then the
propagating wave cannot resolve the discrete vortex
structure, and the motion of the Quid is governed by
the meum vorticity, given by e~= 20.

(3). Finally, it is necessary to consider the case
1»lb»kb, where detailed calculation yields

QG —g=Q,

~= 2kQ/I, (k»-', Pb)

tp = -'tbQ (-'Pb»k) .

(52)

(53)

Equations (52) and (53) represent two nonoverlapping
regions, as indicated in parentheses. In the limit k=0,
Eq. (53) describes the motion of a lattice in which the
vortices move without bending; this dispersion relation
may also be written as tp= —,'Q/(ntr) '", first derived by
Tkachenko. '

It is important to notice that the long-wavelength
dispersion relation exhibits a very different structure
for propagation parallel t Eq. (51)j and perpendicular
LEq. (53)) to the axis of rotation. Thus it is clear that
the linear dependence of Eq. (53) on the wave number
is unrelated. to the usual phonon spectrum of a crystal-
line solid. In fact, the present results indicate a failure
of elasticity theory, which arises from the long-range
interaction between vortices in HeII." This feature
represents one of the major differences between vortices
in helium and in bulk type-II superconductors, where
the long-wavelength dispersion relation agrees precisely
with that predicted for an elastic continuum. ~"

+= z Pp kta(ttpttp +ttptttp); (54)

here the only degrees of freedom are associated with
waves propagating along the axis of the vortex, and ~
is given in Eq. (49). At a temperature T= (kttP) ', the

'~ Reference 4, p. 99."P. Nozihres, in QNttttllm Ftttids, edited by D. F. Brewer
(North-Holland Publishing Company, Amsterdam, 1966},p. 15.

"An especially lucid treatment may be found in S. Chandra-
sekhar, Hydrodyttamic attd Hydromttgrtetic Stability (Oxford
University Press, Oxford, England, 1961),pp. 85—86.

V. SPECIFIC HEAT

The Hamiltonian LEq. (47)$ may be used to compute
the thermal energy of a vortex lattice. It is simplest to
consider erst the case of a single vortex line in an in-
6nite Quid, whose Hamiltonian is obtained from Eq.
(34) in the limit Q —+ 0(b —+~). The corresponding ex-
pression involving creation and destruction operators is
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mean thermal energy is

E= (H) =Ps —,'hta coth(-,'Pttca)

=Zs &~5(e'""—1) '+sj (55)

where the angular brackets denote an ensemble average.
In Eq. (55), the second term represents the zero-point
energy and. will be now omitted because it does not
affect the specific heat. The sum over k may be ap-
proximated, by an integral

(56)

where the additional factor of 2 arises from the two
directions of propagation. The upper cutoB k is deter-
mined by the condition that the core radius a represent
the shortest allowed wavelength

k.= 2~/~;. =2~/~,

which Axes the total number of states as

Here A is the area of the lattice containing X vortices,
and, the radial cutoff l is determined, by the condition

s=pg= (2 ) 'Afg/

ol
=A/„s(4sr) ',

l =2(irN)'ts=2/b. (64)

It is important to notice that l (&k for all physically
attainable rotation speeds; in fact, the equality l =k
6xes the upper critical velocity 0,2=10" rad sec-' for
the transition to the normal state. 4"

The thermal energy LEq. (63)j may be evaluated
approximately by dividing the lk plane into four sepa-
rate regions, each characterized by the different dis-
persion relation Eqs. (49), (51), (52), or (53). If PAQ«1,
which is always satis6ed in practice, it is not dificult
to see that the dominant contribution arises from the
region kb))1, and we Qnd

Qs=Lk sr '=2L/u. (5S) E=Lcfsti (—)(k T)sts(2htt) ' Eln(ttttt/uk T)3 '~. (65)

Equation (5'l) defines a "Debye" temperature 0'ti,
given by~

Oti=kta(k )kit
—'

= (4trktt) 'kiack '
=Ates-/asktt

=2.4X 102 OK, (59)

E=LA (2sr') ' dk ldlkta(et'"" —1) '. (63)

where tc= 10-' cm' sec ' and a= 10—' cm. Since T«O~ti
in all cases, Eq. (56) may be integrated to infinity with
negligible error, and we find (with logarithmic
accuracy)"

E=Li (—') (k T)st'(2k') —'"Lln(ktt/a'k T)$
—'" (60)

where the slow logarithmic dependence on 4 has been
neglected, and |'(ss)=2.612 is the Riemann zeta
function. The heat capacity per unit length of vortex
line is given by

L—'dE/dT=-ss| (s)ktt(kttT)'"(2ttttt) '"
XPln(kit/a kit T)j (61)

apart from corrections of relative order Pln (htt/ttsktt T)1 '.
The specific heat of an array of vortices may be

calculated similarly. Except for the zero-point con-
tribution, the mean thermal energy is equal to

E= (H) =its hta(es"" —1)-', (62)

where ta must now be taken from Eq. (44). As in Eq.
(56), we shall approximate the sum in Eq. (62) by an
integral, which now extend. s over, .a cylinder, of height
2k and radius l

C~.,=S.SX10 'QT"tin(76/T)j '"
Cph= 3.0X 10'T', (6S)

where C is measured in erg cm s('K) ', T in 'K, and
0 in rad. sec '. Thus the vortex contribution to the

specific heat of rotating He II is negligible for all but

' j'. Matricon, in I.ozv Temperutgre Physics ITP, edited by
J. G. Daunt, D. 0. Edwards, F. J. Milford, and M. Yaqub
(Plenum Press, inc. , New York, 1965), p. 544."L.D. Landau and K. M. Lifshitz, Statistical Physics (Addison-
Wesley Publishing Company, Inc. , Reading, Massachusetts,
1958), p. 200.

This expression shows that the thermal energy of the
vortex lattice is E times that of a single vortex $Eq.
(60)j; such a simple relation holds because of the small
fraction of states with propagation vector perpendicular
to the vortex axis (l„«k„).Differentiation of Eq. (65)
yields the specific heat of the vortex lattice

C „=(LA) 'dE/dT
= sf(s )Nktt(kttT)'"(2htt) '"t ln(hatt/tt'kttT) 1-'" (66)

Notice that Eq. (66) isproportional to T"Pln(Ts/T)) '~
and thus decreases quite slowly for small T. This
functional form diGers from a corresponding calculation
for type-II superconductors, ' which predicts C „~T'"
as T~O. It is not surprising that the two systems
differ considerably, since the vortex density in the mixed
state of a superconductor is usually much higher than
in rotating He II.

Equation (66) may be compared with the phonon
contribution to the specific heat of superBuid helium"

Cph ——(2irs/15)kit (ktt T/As)s, (67)

where e= 238 m sec—' is the velocity of sound. Numerical
evaluation yields
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(u'),„=2(srpKP) ' dkto '
kp

VI. ZERO-POI5'T MOTlON

the lowest temperatures and highest rotation speeds: (73) proceeds as follows":
at T=10 ' 'K and 0=10s rad sec ', Eq. (68) predicts
ivor/Cp h

The present Hamiltonian formalism allows a direct
calculation of the zero-point motion associated with the
vortex core. It is simplest to start with a single vortex
line, in which case the creation and destruction opera-
tors have only the single label k. The mean-square
displacement at the point 2' is given by

=8(pK'p)-' dkk
—'[ln(1/kit)p'

kp

=8(pK'p) 'ko '[ln(1/kott) j '

=4L(pK'Psr) '[ln(L/2tra) 1 ' (74)

(69)

where the angular brackets again denote a thermal
average. Since the system is invariant under transla-
tions along the s axis, a second average may also be
taken, defined as

Thus the root-mean-square displacement of a long vor-
tex at finite temperature diverges like L"[ln(L/tt)| 't';
if T=1'K, numerical evaluation of Eq. (74) yields
[(u') $'to=8.5X10 A for L=1 cm and [(u')
=13 A for L= 10 4 cm. As the temperature is reduced,
this divergent behavior persists until T reaches To,
defined by the condition that A~TO is comparable with
the spacing of adjacent energy levels of the finite vortex.
To is given approximately by

(u'), =—I.—' ds(u'(s)) To=srAK(kt)L') —' ln(I/2srtt), (75)

= (pKL) ' Zs(gsqst+PhPs')

=A(p«) Zs(asGst+tsatGs)

= A(pKL)
—' gs COth(-', pAco), (70)

where Eqs. (24) and (43) have been used (note that u,
$, and rt all vanish as b —h ~ ), and oo is given by Eq. (49) .
At zero temperature, the thermal factor coth(-,'PAto) re-
duces to unity, and the mean-square displacement is
simply

(u'). = A(pKL)-' Ps= 2A/pKG, (T=0), (71)

where Eq. (58) has been used. The quantity A(pK)
—' is

approximately equal to the volume ~0 per particle, so
that (us), = O(t)ou '). Numerical evaluation (p= 0.145 g
clII K 10 ' cm' sec ' tt= 10 ' cm) yields

[(u') $'"=3.8 A (T=O) (72)

ttt') =h( p ) 'f dh ca.tht-,')the). (73)

Since the dominant contribution arises from the lower
range of integration, an approximate evaluation of Eq.

as the root-mean-square displacement of the vortex
core at T= 0; this value is comparable with the original
estimate of the vortex core radius.

At finite temperature, on the other hand, Eq. (70)
formally diverges as k~ 0, and a more careful treat-
ment is required. When the summation is replaced by
an integral, it is necessary to cut o8 the integral at a
lower limit ko= 2rr/L, which then gives

which predicts that To= 4.0)(10 "'K for I.= 1 cm and
that To= i.s)&10 ' 'K for L=10 cm. For T& To, the
finite-temperature expression [Eq. (74)j describes the
mean-square displacement, while the zero-temperature
expression [Eq. (71)j is correct only in the presently
inaccessible range T+ To.

It is interesting to consider how a finite density of
vortices alters these results. The mean-square displace-
ment of a vortex core must now be defined as

( ') —= (L&) 'Z' d ( "()) (76)

where the sum has been replaced by an integral, as in
Eq. (63).The most important part of the integral is the
rectangular region (l )l)0, k )k)l ) inthelk plane,
where QG —rt and to are equal [Eq. (49)); Eq. (78) may
therefore be evaluated approximately as

(u'),„=A(4r'tspK) 'k l ' (79)
= 2A/pKG, (T=0)

~ The integral in the second line may be expressed in terms of the
logarithmic integral LE. Jahnim and F. Emde, Tables of FNrteteorts
miIh Formulae and Curves (Dover Publications, Inc. , New York,
1945), 4th ed. , p. 3g; the asymptotic expansion for koa«1 then
yields the third line.

where the sum is over all vortices; the evaluation is
similar to Eq. (70), and we ftnd

(us) A(LNpK) I
p ltt(f1G rt)—tto I coth(acket)) . (77)

At T=O, the thermal factor does not appear, and Eq.
(77) reduces to

km ltn

(u') =A(2m'npK) 'dk —
ldl(QG —rt)oo

—' (78)
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apart from corrections of order a/b«1. This result is
identical with that describing a single vortex LEq.
(71)j, so that the mean-square displacement of each
vortex core at zero temperature is unaffected by the
presence of the other vortices. Equation (79) remains
correct as long as the separation between vortices b is
large compared to the core size a, which is the case for
all feasible experiments with liquid He II (Q«10" rad
sec ').

A difterent situation occurs at 6nite temperatures.
As in Eq. (73), the integrals must be cut off at the
lower limits

(u'). =k (2x'npx) —' dk
kp

ldl(Qg g)cv
' —coth( —P~),

(80)

(u') k '=8(bp~-'P) (82)

which characterizes the stability of the vortex lattice,
increases as b decreases. When (u'),„b '=1, the lattice
presumably "melts. " If the melting temperature T is
de6ned by the condition

T =(8k') 'pz'b, (83)

then a rotation speed of 1 rad sec ' produces a stable
lattice up to a temperature T =2.3&&10' 'K. Alterna-
tively, at 2'K, the vortex lattice remains "solid" until
5= 1.5 A (Q=0.7&(10" rad sec '). These numerical ex-
amples show that the root-mean-square displacement
is always much less than the intervortex spacing, which
clearly represents a necessary condition for stability.

The dimensionless parameter of Eq. (82) is also
approximately equal to the Debye-Wailer factor" 8'
characterizing scattering of incident waves by the vor-
tex lattice. More precisely, 8' is de6ned as

W=-', ((K u)'). , (84)

where AK is the momentum transferred in the scattering
process. The Bragg peaks in the diGerential cross section

where ko ——2~/L and lo ——2'/A'I'. The most important
part of the integral is the region (l )f, t )k), and an
approximate calculation gives

(u'). =8b(p~'P) ' (T)0) (81)

neglecting corrections of order Dn(b/a) j '. In deriving

Eq. (81), it is assumed that l ))k, (L))b), so that the
lattice spacing b acts as the cutoff in the mean-square
displacement, instead of L )compare Eq. (74) for a
single vortex]. For definiteness, consider a rotation
speed 0=1 rad sec '; the spacing between vortices is
then given by b= (x/2mQ)'"=1. 3)&10 ' cm, and Eq.
(81) yields L(u') $' '=9.8&(10' A at 1'K.

It must be noted that (u'), is proportional to b and
therefore decreases as the vortex density increases: The
presence of other vortices reduces the zero-point mo-
tion. In contrast, the dimensionless ratio

occur when K equals one of the reciprocal lattice vectors;
hence

~

K
~

is of order b ', and Eq. (82) indeed provides
an order-of-magnitude estimate of 8'. As noted above,
this quantity is small for all reasonable physical situa-
tions, so that the quantum-mechanical or thermal mo-
tion of the vortices has negligible effect on the Bragg
scattering by the vortex lattice. Whether such scattering
can in fact be observed experimentally requires a de-
tailed study, and has not been attempted here.

VII. DISCUSSION

The general formula for the mean-square displace-
ment of the vortex core $Eq. (77)j may be compared
with the corresponding mean-square displacement of a
given atom in a crystal lattice, where (u'),„~Pzcu '
Xcoth(-,'P~). The difference between the two expres-
sions is due to the different structure of the Hamil-
tonians and represents a direct consequence of the
distinction between Newtonian and vortex dynamics. "
Thus the usual arguments' about the stability of a
crystal lattice in 1, 2, or 3 dimensions are not directly
relevant to vortex lattices, and it is necessary to re-
consider the question from first principles.

Another important distinction between the dynamics
of crystal lattices and vortex lattices is that the assump-
tion of small deformations here plays an essential role'
As a result, the present theory is meaningful only in
the harmonic approximation, when the Hamiltonian is
expressed as a quadratic form in the deformations. If
anharmonic terms are included, the motion is no longer
con6ned to the xy plane, and the displacements along
the vortex axis must also be considered. Such terms
destroy the symmetric relation between n„. and I„;,
which is necessary for the Hamiltonian approach. Hence,
we are unable to treat physical effects that depend on
the anharmonic terms, such as thermal conduction due
to vortex waves along the axis of the vortex. Such con-
tributions to the total thermal conductivity are pre-
sumably negligible in superQuid helium, but might
conceivably become important in the mixed state of a
type-II superconductor.

A more important question concerns the rigorous
basis for the quantization conditions (Eqs. (22) and
(23)j.Although these relations are guaranteed to satisfy
the correspondence principle, they have not been de-
rived from the fundamental E-body Hamiltonian and
must therefore be considered heuristic. Thus it is en-
tirely possible that our theory omits additional terms
of order k that also vanish in the classical limit (k ~ 0).
The existence of such terms is suggested by the partial
inconsistency between our initial treatment of the
vortex core as a cylinder of well-defined radius =1 A
and the resulting root-mean-square displacement =3.8 A
associated with quantum-mechanical fluctuations.

It is interesting to observe that a decrease in the
mass m of the background-fiuid particles increases the
quantum of circulation ~(=h/nz). Furthermore, simple
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quantum-mechanical estimates of the core size" indicate
that u varies as tN '". Equations (71) and (74) then
imply the curious result that a reduced. value of m leads
to a reduced mean-square displacement of the vortex
axis. This effect may be understood by noting that the
circulation ~ in vortex dynamics is analogous to the
inertial mass in Newtonian dynamics: An increase in ~

decreases the zero-point motion. Unfortunately, these
qualitative arguments are not directly applicable to the
motion of quantized Aux lines in type-II superconduc-
tors, because the frequency spectrum is greatly altered

"E.P. Gross, Nuovo Cimento 20, 454 (1961);L. P. Pitaevskii,
Zh. Eksperim. i Teor. Fiz. 40, 646 (1961) LEnglish transl. : Soviet
Phys. —JETP 13, 451 (1961)g.

from that studied here whenever the wavelength is
larger than the penetration depth. The detailed theory
of vortex dynamics in bulk type-II superconductors
requires a separate treatment and will be presented in
a subsequent paper.
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Lambda Curve of Liquid He4t
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We have measured the pressure Pq and the derivatives (dP/dT)&, and (dp/dT)q of the lambda curve of
He' as a function of temperature from the upper lambda point to the lower lambda point, using an apparatus
of very high resolution. Empirical equations for Pz and p) are presented which represent our data very well
and agree generally with previous measurements. These equations dehne the position and slope of the
lambda curve in the p, P, T space to a higher order of accuracy and detail than has been possible before.

I. I5'TRODUCTIOH

'HE application of Pippard's' relations or the
methods of Buckingham and Fairbank~ to the

lambda transformation of He4, requires a knowledge of
various thermodynamic derivatives along the lambda
curve, such as (dP/dT)q and (dp/dP)q However, .the
values of these derivatives are not known with sufhcient
accuracy, since the pressure and density of the lambda
transformation have not been measured at small
enough temperature intervals to permit accurate
difterentiation.

The present experiment was designed to measure
the derivatives (dP/dT)q and (dp/dP)&, directly at
many points along the lambda curve. The resolution of
the apparatus was about 1 pdeg K in temperature, 10 '
atm in pressure, and better than 10 s g/cms in density.
With this resolution it was no problem to make mea-
surements over such small intervals that curvature
corrections were negligible.

The slope (dP/dT)q of the lambda curve at the point
where it meets the vapor-pressure curve (the lower
lambda point) is needed for the correlation of heat-

t Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

r A. B.Pippard, Phil. Mag. 1, 473 (1956).
~ M. V. Buckingham and %. M. I'airbank, Progress in I.om-

Temperature Physics, edited by J. C. Gorter (North-Holland
Publishing Company, Amsterdam, 1961),Vol. 3, p. 80,

capacity measurements with thermal-expansion and
sound-velocity measurements at the lower lambda
point. Many values have been quoted, ranging from—80 to —130 atm/deg. We have made a special effort
to obtain a reliable value for this slope.

While this experiment was in progress, Elwell and
Meyer' reported measurements of the lambda density
and pressure at 22 temperatures and the slope (dP/d T)y

at 11 temperatures. Their results are in general agree-
ment with ours, as will be seen later.

II. EXPERIMENTAL

The apparatus used in these experiments is similar
to that used previously. ~' It is shown schematically
in Fig. 1.

Helium gas was purihed in a trap (not shown) im-
mersed in liquid helium and was condensed into the
sample compartment 6 through the low-temperature
valve A, which has kept closed during measurements.
0 was isolated from the liquid helium bath by the

~ D. L. Klwell and H. Meyer, Bull. Am. Phys. Soc. 11, 175
(1966); Proceedings of the Conference on Low-Temperature
Physics, Moscow, 1966 (to be published); Phys. Rev. (to be
published); H. Meyer (private communication).

4 H. A. Kierstead, Phys. Rev. 13S, A1594 (1965).
s H. A. Kierstead, Phys. Rev. 144, 166 (1966).
e H. A. Kierstead, Phys. Rev. 153, 258 (1967).


