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A Hamiltonian formulation is constructed for the classical dynamical equations of slightly deformed
rectilinear vortices. The system is then quantized by interpreting the conjugate variables as quantum-
mechanical operators that obey canonical commutation relations. A linear canonical transformation diago-
nalizes the Hamiltonian in terms of operators that create and destroy single quanta of vortex vibrations.
The theory is applied to two distinct configurations in He II: a single vortex and a rotating vortex lattice.
The specific heat associated with the vortex waves. varies approximately as 7!/2 at low temperatures.
Quantum-mechanical and thermal fluctuations produce a finite mean-square displacement of the vortex

core, which is studied both at 7=0 and at 7">0.

I. INTRODUCTION

HE concept of quantized vortices'=? has success-
fully explained many of the properties of super-

fluid helium and type-II superconductors. For most
purposes, these vortices may be treated classically, with
the quantized circulation as the only remnant of their
fundamental quantum-mechanical origin. Such an ap-
proach cannot be wholly satisfactory, however, for a
fundamental difficulty of principle remains unsolved:
the localization of the vortex axis necessarily leads to
zero-point motion, which cannot be included in the
classical framework. A related question is the calcula-
tion of the mean-square displacement of the cores in a
vortex lattice. In the quantum theory of a crystal
consisting of point masses,¢ the mean-square displace-
ment depends on the frequency spectrum and on the
temperature. The analogous frequency spectrum of a
vortex lattice has been derived for He I1,”:® for bulk
type-1I superconductors,®1° and for thin superconduct-
ing filmsM Direct substitution into the standard
expressions®$ apparently predicts a divergent mean-
square displacement at any finite temperature, which
suggests that a more fundamental approach is needed.
Finally, the thermal excitation of vortex waves con-
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tributes to the specific heat, and it is interesting to
consider the possibility of experimental detection of
vortices by calorimetric techniques.

In order to answer the above questions, a fully
quantum-mechanical treatment is required ; the present
paper therefore proposes a quantum theory of slightly
deformed rectilinear vortices.? In the approximation of
small bending, the classical equations of vortex motion
may be cast in a Hamiltonian formulation (Sec. II),
in which the # and y components of the displacements
act as conjugate variables. The system is quantized by
interpreting these variables as quantum-mechanical
operators subject to the canonical commutation rela-
tions. For the special case of a vortex lattice, the
translational invariance allows the introduction of
plane-wave states, which simplifies the Hamiltonian
considerably (Sec. IIT). A linear transformation di-
agonalizes the Hamiltonian in terms of operators that
create and destroy single quanta of vortex waves (Sec.
IV). It is then straightforward to calculate both the
specific heat associated with the excited states of the
vortex lattice (Sec. V) and the mean-square displace-
ment of the vortex cores (Sec. VI). For simplicity, the
present work is restricted to a vortex lattice in He II;
most of the formulas remain valid for a general vortex
lattice, however, and a subsequent paper will treat the
situation in bulk type-II superconductors.

II. HAMILTONIAN FORMULATION

It has been known for nearly a century!*?5 that the
motion of a system of rectilinear vortices allows a
Hamiltonian formulation; the Hamiltonian is propor-
tional to the interaction energy of the vortex array, and
the x and y coordinates of the 7th rectilinear vortex
constitute the 7th pair of conjugate variables. This
simple dynamical approach depends crucially on the

12 The only previous attempt at a quantum-mechanical treat-
ment is by H. E. Hall, Proc. Roy. Soc. (London) A245, 546
(1958), whose approach is rather different from that used here.

8 G. Kirchhoff, Vorlesungen iiber Mathematische Physik:
Mechanik (B. G. Teubner, Leipzig, 1883), 3rd ed., pp. 251-272.
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two-dimensional nature of the motion and is incorrect
for an arbitrary three-dimensional vortex system.
Nevertheless, it is possible to extend the Hamiltonian
formulation to include a restricted class of three-
dimensional configurations, in which rectilinear vortices
are slightly bent from their original straight form.
Since such deformations are precisely those of interest
in the small oscillations of a vortex lattice, the resulting
theory is able to treat interesting physical questions, in
spite of its limited range of validity.

The energy of a system of vortices in an incompres-
sible fluid is the total kinetic energy of the moving
fluid. Each vortex contributes linearly to the velocity
field, so that the kinetic energy contains two distinct
contributions: the self-energy of each vortex, and the
interaction energy between each pair of vortices. It is
therefore sufficient to construct a Hamiltonian for a
system consisting of only two separate vortices; the
general theorem then follows from the linearity of the
dynamical equations. Furthermore, the self-induced
motion does not require a separate treatment because a
single vortex may be considered as a bundle of parallel
elementary filaments. This last picture is identical with
that used in calculating the self-inductance of a current-
carrying wire.!®

Hence we shall temporarily study an infinite incom-
pressible fluid of density p, containing two vortices with
circulation «. The vortex axes are specified by the three-
dimensional vector functions R; and R,; these functions
depend on a single parameter, which is usually chosen
as the arc length along the vortex. It is convenient to
resolve all vectors in cylindrical polar coordinates: R,
= (r1,21) and Ry= (r5,25), where r is a two-dimensional
vector in the xy plane, perpendicular to the undeformed
vortex axis. A straightforward calculation shows that
the fluid velocity at R, due to the presence of the second
vortex is given by'?

(R) d82X(R1 Rg) 1)
' ‘_4? [Ri—Ro|* (

where the line integral is along the length of the second
vortex. In addition, a basic theorem of classical hydro-
dynamics!” states that each element of a vortex core
moves with the local fluid velocity at that point; Eq.
(1) therefore provides the dynamical equation for the
first vortex, apart from self-induced effects, which are
considered in Sec. ITI. A second fundamental result of
classical hydrodynamics expresses the interaction en-
ergy of two vortices as!?

oK? dsy-ds,
En——// (2)
|Ri—Ra|

16 See, for example, M. Abraham and R. Becker, The Classical
Theory of Electricity and Magnetism (Blackie and Son, Ltd.,
London, 1954), 2nd ed., pp. 125-131 and 172-177.

17 Reference 14 Pp- 202—204 211, and 217.
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Equations (1) and (2) are direct analogs of the Biot-
Savart law and of Neumann’s formula for the mutual
inductance of two current-carrying wires.!6

For a general three-dimensional configuration, Egs.
(1) and (2) are not directly related. In the special case
of rectilinear vortices subject to small deformations,
however, the equations may be greatly simplified. Let
the axes of the undeformed rectilinear vortices be
specified by the vector functions R;°(z)= (r1,2) and
R20(2) = (r4,2), where the coordinate z(— o <2< ) has
been chosen as the parametric variable. When the
vortices are deformed, the corresponding axes are given
by the vectors (r;+u1(2),2) and (rs+u2(2),). Here, the
small displacements u; are confined to the xy plane,
since it can be shown that displacements along the
vortex axes do not contribute to the linearized equa-
tions of motion.!® It is natural to take z as the integra-
tion variable, so that ds,= (ds;/dz)dz= dz[ 2+ (du,/dz)].
Hence, the translational velocity of the vortex element
originally at R,® is given by

[Z+ (dllz/dzz)]x [R10+ u;—
[R °+u;— Ry —11213

llz]
i(z)=—/[ daz .
TJ —»

®3)

This equation may be linearized in the small displace-
ments, yielding!®

00

de{ 1 R1201_3

—0

X[EX r12F2X (u1— us)+ (duy/dzz) X 2(21—22) |
—3| R | 78X r1o[ 112 (m—ug) ]}, (4)

where Ris®=r15+4(21—20) and rig=r1—rs.
In a similar manner, the interaction energy between
the deformed lines may be written exactly as

pK? du
Elzz—//dzld22l:1+— —“‘]1 R120+ll1 llgl-l (5)
4r dz1 dzs

This expression must be expanded to second order in
the small displacements, and we find

pK2 1 duag
E12=—//‘d21d22{ | RIZOI —14 l R12°["1(““ "’—)
47 dZ], de

_1'12'(111"_112) (ul—‘u2)2J-3_[1’12‘(“1_112)32} ©)
IRl 2[Re)® 2 |Re|® )

1'11(21) = (47!’)—116

Equation (6) is a bilinear functional of the displace-
ments w; and wy, and a straightforward calculation
shows that its variational derivative is equal to

6E12/5111 (Z) = pkﬁx wm (Z) . (7)

18 This conclusion is inherent in the discussion of E. S. Raja
Gopal, Ann. Phys, (N. Y.) 29, 350 (1964), Appendix.
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This equation may be resolved into x and y com-
ponents as

8 E19/0uz1(2) = — prtys () , 8)
6E12/6u,,1 (Z) = pK’l,'Lzl (Z) ,

which explicitly exhibits the Hamiltonian nature of the
system. In particular, the interaction energy E;; is
identified with the Hamiltonian, while the deformations
#s; and u,; are proportional to the conjugate variables.
The zero-order term of Eq. (6) represents the inter-
action energy of the undeformed vortices and does not
affect the equations of motion; the linear and quadratic
terms in Eq. (6) correspond, respectively, to the zero-
order and first-order terms in Eq. (4) for the velocity.

The above considerations may now be applied to a
large vortex lattice confined to a circle of radius R. In
equilibrium, the array is specified by the set of two-
dimensional vectors {r;}, while the small horizontal
displacement of the ith vortex at the height z is given
by w;(z). The total energy of the system is equal to

E=3%:Ei+3 2 Ey, )

where E; is the self-energy of the ith vortex and E;; is
the interaction energy between the sth and jth vortices.
Here, the primed sum is over ¢ and j separately, omit-
ting the terms ¢=j. In the harmonic approximation,
the explicit form of E;; has already been given in Eq.
(6). Furthermore, the self-energy may also be calculated
from Eq. (6) by restricting r; and r; to the same circle

of radius ¢, which represents the vortex core; the aver-,

age value of E;; over the circle then yields the self-energy
E;. It will be shown below (Sec. IIT) that this procedure
correctly reproduces the self-induced motion originally
calculated by Kelvin.!?

Equation (6) contains terms linear in w;, which pro-
duce a uniform rotation of the vortex lattice about its
center.20 It is convenient to eliminate these linear terms
by a transformation to a coordinate system rotating
with angular velocity Q. The transformed total energy
of the system is given by

H=E—QL, (10)
where L is the total angular momentum about the axis
of rotation. This transformation does not alter the
Hamiltonian properties of the system, so long as u; is
now interpreted as the displacement from equilibrium
observed in the rotating frame.? The explicit form of

9 W. Thomson (Lord Kelvin), Phil. Mag. 10, 155 (1880).

2 In Ref. 10, the unphysical assumption of an infinite non-
rotating array led to the erroneous conclusion that a vortex lattice
in superfluid helium was unstable. As noted in Refs. 7 and 8, a
rotating triangular lattice is stable if the angular velocity @ is
determined by the self-consistent condition Q= 3nx, where # is
the density of vortex lines per unit area.

 See, for example, G. B. Hess, Phys. Rev. 161, 189 (1967).
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the angular momentum is
=—pK D fdzi{ roui(z)+3[wz) Py,  (11)

apart from terms independent of u; that do not affect
the equations of motion.
Equation (10) has two distinct linear contributions,

pr D / dzir;- wi(z:) — (8m)2oi? 34/ / / deids

Xri[w(z)—w(z)] R0 2, (12)

arising from L and E, respectively. We shall now show
that these two terms cancel identically if @ is deter-
mined self-consistently. The second term of Eq. (12)
may be rewritten as

— @) 24 | daitiie wa(z) / dzi| Ri?| =

=—2m) 2 2 / dzirywi(z:) v, (13)

where the symmetry in ¢ and j has been used in the
first line. Thus Eq. (12) reduces to

px Zi/dziui(zi)'{in—Zf;ci(ZW)'leijll‘ij‘_z}' (14)

The summation over j does not converge absolutely,
but a physically motivated procedure is to perform the
sum in successive concentric circles about the origin of
the lattice. Although the angular sum may be evaluated
analytically, even for a finite lattice, the remaining
radial sum requires numerical computation. For this
reason, Eq. (14) will be calculated only in the continuum
approximation, where the discrete lattice is replaced by
a smoothed vortex density #. The summation over j
then reduces to

K , T mx ri—r
27 2

ri? 2 [ri—1'|2

nk (B 2 ri—7r' cose
=—+;| 7dr| de
2r Jo o r—2ry coseptr?

s
=nukfri | r'dr'=3%nkr;. (15
2
0

It is clear that the two terms in Eq. (14) cancel if the
angular velocity satisfies the self-consistent relation?
Q=3nk. Notice that the angular integral in Eq. (15)
vanishes if #'>7;, which means that the continuum
approximation to the sum is independent of the radius
R. The corresponding exact analytical evaluation for a
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square or triangular array is possible only for an in-
finite lattice (R—x); detailed calculations show that
the angular velocity satisfies the same self-consistent
relation.’?

Equation (10) may now be expressed as a bilinear
form in the displacements

H=3% :H+%> ./ Hyj, (16)
where
H,~=E,--I—%pxﬂ/dzfui2, (17)
and
pxz du,-(zi) du,'(Zj)
Hij="//dzidzi|lRiiol~l[ : ]
47 dZ,‘ dZ,'
1 (u;— u,)2 3[ry (wi—wy) ]
i [ | a9
|Ru0|3 |RM'0I5

Here, as mentioned previously, u; represents the dis-
placement from the equilibrium position r;, as measured
in the rotating frame.

III. QUANTIZATION OF THE HAMILTONIAN

The equations of motion of the vortex lattice may be
written as

8H /61:(3) = — pityi(3)
8H /b1,:(2) = prtlzi(2) ,
where H is given in Egs. (16)-(18). In order to bring

Eq. (19) into conventional form, it is convenient to
define new variables

q:(2)= () 1i(3)
pi(2)= (o) uyi(2)

so that Eq. (19) becomes a set of strict Hamiltonian
equations

(19)

(20)

8H/bqi(2)= —pi(3),
8H/5pi(2)= g:(2).

We now assume that the vortex system may be quan-
tized by interpreting ¢; and p; as quantum-mechanical

21
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operators that obey Heisenberg equations of motion

ihgi(z)="[q:(2),H],
ihpi(z)=[p:(z),H],

where H is a symmetrized form of Eq. (16) written in
terms of the ¢’s and p’s. Equation (22) reproduces the
classical equations of motion (21) only if the operators
¢s and p; satisfy the canonical commutation relations

Lg:(2),p5(2") J=ihd:58 (z—2') , - (23)

where the appearance of the two different &’s reflects
the peculiar anisotropy of the vortex lattice.

The motion of the vortex lattice now assumes a
standard quantum-mechanical form : a quadratic Hamil-
tonian expressed in canonical variables ¢ and p. This
Hamiltonian may be greatly simplified by the intro-
duction of plane-wave states.” Since the translational
invariance is continuous along the z axis and discrete
in the xy plane, the plane-wave decomposition in the
two directions requires separate treatments, and it is
simplest to consider first the motion along the z axis.
Suppose that the lattice extends a length L in the z
direction; then the operators p:(z) and ¢:(z) may be
expanded in a Fourier series

q,-(z)= - Zk eiszik ,
p;(z) =L123, eFepy

where k=2rs/L (s=0, 21, =4=2- - ) and periodic bound-
ary conditions have been assumed. The Fourier co-
efficients are given by

qin= L1 / dze—*2q,(z),

(22)

(24)

(25)
Pik= L—~1/2/dzeik'zp‘(z) ,

and they obey the following commutation relations:
Lgir, piwe 1= hdiiBu - (26)

The Fourier-series representations of the canonical
operators [Eq. (24)] may be substituted into the
Hamiltonian Eq. (16). As an example, we shall consider
the first term of Eq. (18) expressed in terms of the ¢’s
and p’s:

OB o

=—k(4nrL)™? / / dzd? Y ae kR {quaqin e F=H¥ ) pupaieikat ke [y 2t (z— 5/ )2 1

= (4m) % 2 k2 (qargirt pirpir) / dz2 cos(kz) (rif+25)1 2= (4r) 7k 2k B2 (qargsst pirpi—i) 2K o(krs) ,  (27)
0

2 See, for example, J. M. Ziman, Electrons and Phonons (Oxford University Press, Oxford, 1960), Chap. 1, which serves as a model for

the present calculation.
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where K, is the modified Bessel function of order zero, defined by the integral representation®
T(+3)(2r) r* cos(kz)ds
K, (kr)=——— . (28)
kBT (%) ° (Z2+r2) v+1/2
The remaining terms of H;; are evaluated in a similar manner, which yields?1#
Hij= (4r) 7 il [qangi—itgings—k— birpi—r— pinpi—Jrii 4 (%~ yi?)
+Lgapat pagat girpint pindinIra 22y qags v+ Gingi—kt pipi -t pindi—i K o (kris)
— 582 qungi—kt @inGi—k— Dirpi—i— Pirbi—r i 2 (%t — yi) Ko (kr ;)
— 3k qapint gt ginpat pugin i 220:5y:5Ka (kriy)} . (29)

Here, x;; and y;; denote the x and y components of the two-dimensional vector r;;.

In Sec. II, the detailed form of the self-energy was left unspecified, and it is now possible to complete the calcu-
lation. Although the vortex core will be treated as an assembly of parallel vortex filaments, we shall assume that
a single quantum-mechanical operator suffices to describe the motion of each elementary length of core. The opera-
tor aspect of the self-energy is therefore obtained from H,; merely be setting 7= j in the operators ¢ and p. This
procedure fails to treat the extended core with sufficient accuracy, however, and it is necessary to average the
spatial variables r; and r; over a small circle of radius ¢. Such an average is equivalent to computing (twice) the
total interaction energy between all pairs of elementary filaments. In addition, the restriction of small bending

implies that ke<1.
With these assumptions, the self-energy E; becomes

Ei= (4r)7 ' Li(qargs—x+ parpi, ) 302~y —(In(k| r—r']))]
+ (4m) 7k Zon(qirgi—— parpi,— 1) 10| r— 1’| [ (x—2')?— (y—/)*])

where the expansions Ko(x)~ —In(3x)—y and K.(x)
~2x2—% have been used, and y=0.5772- - - is Euler’s
constant. An additional factor 1 has been inserted into

+ (4m) % Lk (gapat pagi) 38 | r—1' [ 2 (x—2") (y—5")), (30)
final expression becomes
Hi=%3 1(qaqi—x+ pirpi—r)
XA{Q+ (4m) Wk (An(2/ka) —y+51}.  (34)

Eq. (30) to ensure that each pair of filaments is counted
only once. The average implied by the angular brackets
is defined as

f(x,x))=(wa?)2 / / drd¥ f(r,Y), (31)

where the integrals are confined to a circle of radius a.
Detailed calculations yield

—(In(k[r—r'|))=In(1/ka)+%
(lr=r'[?[(z—2")2— (y—5')])=0,
(lr=7'[Z(z—2") (y—9))=0,

and the self-energy operator of the ith vortex reduces to
Ei= (4m) % 2_1(qinGi,—at pinpi—r)
X3#n(2/ke)—v+1]. (33)

As a check on the averaging procedure, the additional
term % agrees precisely with that obtained in a different
way by Kelvin!® in his study of the vibrations of a
classical vortex with a core in solid-body rotation.!s The
remaining term of Eq. (17) is easily evaluated, and the

(32)

% We follow the notation of G. N. Watson, 4 Treatise on the
Theory of Bessel Functions (Cambridge University Press, Cam-
bridge, 1962), 2nd ed., p. 185.

In the particular case of a single rectilinear vortex in an
unbounded fluid, @ vanishes and Eq. (33) represents
the total Hamiltonian of the system.

Equations (16), (29), and (34) constitute the exact
Hamiltonian operator of a system of rectilinear vortices
uniformly filling the xy plane and executing small
oscillations about their straight undeformed shapes. No
further progress is possible without additional assump-
tions, and we shall therefore restrict the discussion to a
square or triangular lattice of area 4 containing N
vortices with a mean density #=N/A. The operators
ga and pi may now be expanded in a second Fourier
series

qie=N7123%" gil'rigyy,
p'.k._-_-N—lﬂ Zl e—il-r,'?”‘,

where periodic boundary conditions have been used
and {1} is the set of reciprocal lattice vectors associated
with the two-dimensional array. The corresponding
Fourier coefficients and commutation relations are
easily found to be

qu=NT2 55 ehrigy,
pu=N23; e ripy,
Cque,pri J=hd11dsn .

(35)

(36)

(37
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Equation (35) must be substituted into the total
Hamiltonian Eq. (16), and, as a typical example, we
consider the first term of Eq. (29)

B 2k 204 (queqi-rtgingi—i)rii* (% — i)
= (4m) 7% 2k 2 qugr—iN7?
X2 e wip 4 (5, — )
= (4m) 7 T 2w ququ—iN7 X4 ¥ T
X U i 4 (5, 2y, 2)
In the limit of a large lattice (IR>>1, ' R>>1), the double

sum over i and j may be evaluated approximately by
shifting the origin in each term

N1 Y i) 10 300 gi (M) rip ~4 (g2 4.2)
=01,—r Zi, fi—4(xiz"yi2) =0,

where the final equality follows from the symmetry of
the square or triangular lattice. The remaining terms of
Eq. (16) are all evaluated in a similar manner, and the
total Hamiltonian of the vortex lattice reduces to a
sum of uncoupled terms

H=3% 1 Hy, (38)
where
Hy=%Qe¢—1— ) ququ’+3Qe¢—n+ ) pupuct
+ialquputpuiqunt). (39)
Here, the adjoint operators are defined as®
t= _1,—k
Qix'=Gq-1,—k ( 4 0)
put=p_1s,
and the following abbreviations have been used®:
Q=0+ (4r) k[ In(2/ka)—v+1]
+ (4m) "k 3 Ko(kr;), (41)
a= (4r) 7wk 3/ (1— ™) 259/ 1)Ko (krj),  (42a)

§= (4m)7k? 2 (1—e1%0) (97— a )1 ?Ko (krj) ,  (42D)
1= (4r)7kk* L7 (1— €153 Ko (kr;). (42¢)

The frequency Q¢ was first derived by Raja Gopal!® in
his study of the axial vibration modes of a vortex array;
Eq. (41) differs from his result only in the explicit core
correction %, and in the appearance of a lattice sum
instead of an integral approximation. It is remarkable
that these lattice sums describing the three-dimensional
oscillations of a vortex lattice in superfluid helium are
identical with those occurring in the two-dimensional
oscillations of a vortex lattice in a bulk type-II super-
conductor,®® when the vortices move without bending.
This relation was first noted by Stauffer, who has
carried out the classical analysis corresponding to that
given above.?

IV. DIAGONALIZATION OF THE HAMILTONIAN

The Hamiltonian Eq. (38) may be diagonalized by a
linear transformation of variables. Although this pro-

ALEXANDER L.
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cedureis well known in the quantum theory of solids,?6:22
the present situation is slightly more complicated be-
cause Eq. (39) contains terms proportional to ¢p as
well as the usual ggt and ppt. Nevertheless, the proper
linear combination of operators can still be determined
from the corresponding classical equations. Define

qu=[%/20Q¢—n+£) 12 (Qe¢—n+£)
X[o—1—rtawt],

put=[%/20w(Qe—n+£) T2 (43)
X I:— (Oé‘l"l:(d)(l_],__k—— (a— iw)alk T] ,
where
o=o(lB)=[@—n)— @+OT" ()

represents the general dispersion relation as a function
of the wave vector (Lk) and was first obtained by
Stauffer.® The inverse transformation is given by

dka=qw(a+1:w>+PlkT(QG—n+ £)
iL2ho@e—n+0T2
qu(a—iw)+put(Qe—n+£)

—i[ 2% (Qg—n+£) ]2

and it is not difficult to verify that the operators ¢ and
a't obey the usual boson commutation relations

(45)

1=

La,arp t]=81drr ,
[dlk,dxrk':|= [alkf,ax'k' 1:|= 0.
Substitution of Eq. (43) into Eq. (38) eventually yields
H=3 3w fw(anan+antan), (47)

where the dependence of » on (1,%) has been suppressed
for simplicity. Equation (47) shows that @yt may be
interpreted as the creation operator for a single vibra-
tion quantum in the normal mode specified by the wave
vector (I,k) and frequency w, determined by Eq. (44).

It has been shown’ that an infinite square vortex
lattice in He Il is unstable with respect to small
perturbations confined to the xy plane, and only the
triangular lattice is expected to occur in physical
situations. Unfortunately, the exact lattice sums have
been evaluated!®? only in the long-wavelength limit
(kn12<1, In—12K1), which is insufficient for the pres-
ent calculation. In order to deal consistently with a
single model, we shall therefore restrict this work to
the continuum approximation, which allows a complete
determination of the dispersion relation. In the long-
wavelength limit, this approximation reproduces the
exact results for the triangular lattice.”-81 Furthermore,
the specific heat and zero-point motion are rather in-
sensitive to the detailed form of the frequency spectrum,
assuming only that the lattice is stable, so that the
continuum approximation is not expected to lead to an

(46)

% A, L. Fetter, Phys. Rev. 147, 153 (1966).
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appreciable error. The continuum approximation to
Eq. (42) has been evaluated in Appendix A of Ref. 10;
the similar integral obtained from Eq. (41) was com-
puted numerically in Ref. 18, but it can also be evalu-
ated analytically as follows:

(4m)"wk? 37 Ko(krs) = (47) knk? / drKo(kr)

=1nk / xdxK o(x)
kb

=3nk(kb)K (kD). (48)
The lower cutoff b= (n7)~12, which characterizes the
intervortex spacing, excludes the area »~' associated
with the vortex at the origin.

The frequency spectrum must be considered sepa-
rately in four distinct regions of the /& plane. It is clear
that the wavelength for propagation perpendicular to
the vortex axes cannot be shorter than the length b,
so that I generally satisfies the restriction /6<1. In
contrast, no such restriction applies to the quantity %®é.

(1). If k0>>1>>1b, then the wavelength for propaga-
tion along the vortex axis is much smaller than the
intervortex spacing, and the vortices are effectively
independent. The lattice sums a, £, 7, and Eq. (48) all
vanish exponentially in this case, and the vibration
frequency is given as

w=Q¢= (4r) k[ In(2/ka)—v+1+0(k272)],
which is just Kelvin’s result for a vortex with a core in
solid-body rotation.!®

(2). If 1>>kb>>Ib, then the wavelength for propaga-
tion -along the vortex axis is much larger than the
intervortex spacing &, and the vortices interact appreci-

ably. In this region, the lattice sums a, £, and % are all
small (of order QI?%%—2), and we find

Qe=20[141(k0)* In(b/a)]
=20+ (4n)~%k2 In(b/a),

w=2Q,

(49)

(50)

(51)

where the relation Q=%nk= (27b%)~x has been used.
Equation (50) represents the dispersion relation for
propagation along the vortex axis (!=0, k6<1) and is
implicit in the work of Raja Gopal.!®¥ The small correc-
tion of order (kd)? is given with only logarithmic
accuracy because the additional constants depend on
the detailed lattice structure; the precise values may
be obtained from the sums in Ref. 24, but are not
important here. It is interesting that this correction
term does not contain a factor Inka, which arises from
a cancellation between the logarithmic dependence on
k due to the other vortices [Eq. (48)] and the self-
induced logarithmic term in Eq. (41). The leading term
in the dispersion relation [Eq. (51)] conflicts with an
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assertion of Vinen? that vortex waves cannot be pro-
pagated if kb<1, but our result agrees with that of
Raja Gopal'® and Nozieres.? Indeed, Eq. (51) has a
simple physical interpretation as the natural oscilla-
tion frequency 22 of a fluid in solid-body rotation?’ with
uniform vorticity |curlv|=2Q; for if k6«1, then the
propagating wave cannot resolve the discrete vortex
structure, and the motion of the fluid is governed by
the mean vorticity, given by nx=2Q.

(3). Finally, it is necessary to consider the case
1>>16>>kb, where detailed calculation yields

Q ea—N= Q 5
w=2kQ/1, (E>1Pb) (52)
w=1060, GEESE). (53)

Equations (52) and (53) represent two nonoverlapping
regions, as indicated in parentheses. In the limit £=0,
Eq. (53) describes the motion of a lattice in which the
vortices move without bending; this dispersion relation
may also be written as w=21Ql(n7)~'2, first derived by
Tkachenko.”

It is important to notice that the long-wavelength
dispersion relation exhibits a very different structure
for propagation parallel [Eq. (51)] and perpendicular
[Eq. (53)] to the axis of rotation. Thus it is clear that
the linear dependence of Eq. (53) on the wave number
is unrelated to the usual phonon spectrum of a crystal-
line solid. In fact, the present results indicate a failure
of elasticity theory, which arises from the long-range
interaction between vortices in He IL}! This feature
represents one of the major differences between vortices
in helium and in bulk type-IT superconductors, where
the long-wavelength dispersion relation agrees precisely
with that predicted for an elastic continuum.*

V. SPECIFIC HEAT

The Hamiltonian [ Eq. (47)] may be used to compute
the thermal energy of a vortex lattice. It is simplest to
consider first the case of a single vortex line in an in-
finite fluid, whose Hamiltonian is obtained from Eq.
(34) in the limit @ — 0(b — ). The corresponding ex-
pression involving creation and destruction operators is

H=% Zk hw(awﬁ—f—aﬁaﬂ ; (54)
here the only degrees of freedom are associated with
waves propagating along the axis of the vortex, and w
is given in Eq. (49). At a temperature T'= (kpB)~L, the

25 Reference 4, p. 99.

2 P. Nozitres, in Quantum Fluids, edited by D. F. Brewer
(North-Holland Publishing Company, Amsterdam, 1966), p. 15.

¥ An especially lucid treatment may be found in S. Chandra-
sekhar, Hydrodynamic and Hydromagnetic Stability (Oxford
University Press, Oxford, England, 1961), pp. 85-86.
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mean thermal energy is
E=(H)=Y"; }hw coth(3hw)
=2k bl (e —1)7+5],
where the angular brackets denote an ensemble average.
In Eq. (55), the second term represents the zero-point
energy and will be now omitted because it does not

affect the specific heat. The sum over 2 may be ap-
proximated by an integral

(53)

km
E=Ly / ke (ePro—1)1 (56)
0

where the additional factor of 2 arises from the two
directions of propagation. The upper cutoff k, is deter-
mined by the condition that the core radius ¢ represent
the shortest allowed wavelength

km= 271'/)\min= 27['/(1 ) (57)
which fixes the total number of states as
> w=Lk.'=2L/a. (58)

Equation (57) defines a “Debye” temperature ©p,
given by*?
Op="hw (km)kg—l
= (drkp) ickn?
= hkw/a?kp
~2.4X10?°K, (59)

where k=10~ cm? sec! and a¢=~10~% cm. Since 7K 0p
in all cases, Eq. (56) may be integrated to infinity with
negligible error, and we find (with logarithmic
accuracy)'?

E=L;(3)(kpT)*2(20) 2 In (hx/a*kpT) 72,

where the slow logarithmic dependence on & has been
neglected, and ¢(3)=2.612--- is the Riemann zeta
function. The heat capacity per unit length of vortex
line is given by

LAdE /AT~ 3¢ (3)ks (kT) 2 (20)—12
X[n(#x/a*ksT) T2,

apart from corrections of relative order [In (%x/a?ksT) T
The specific heat of an array of vortices may be

calculated similarly. Except for the zero-point con-

tribution, the mean thermal energy is equal to

E=(H)=3u hw(efro—1)71,

where » must now be taken from Eq. (44). As in Eq.
(56), we shall approximate the sum in Eq. (62) by an
integral, which now extends over,a cylinder_ of height
2k, and radius I

(60)

(61)

(62)

km Im
E=LA (27?1 / dk f ldihw(ePre—1)"1,  (63)
0 0
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Here A is the area of the lattice containing IV vortices,
and the radial cutoff /, is determined by the condition

N=Y,=(2r)24 / &

= Al2(4x)1,
or
' L= 2(7m)2=2/b. (64)

It is important to notice that /,<k., for all physically
attainable rotation speeds; in fact, the equality .=k
fixes the upper critical velocity Q.2~102 rad sec™ for
the transition to the normal state.*26

The thermal energy [Eq. (63)] may be evaluated
approximately by dividing the /% plane into four sepa-
rate regions, each characterized by the different dis-
persion relation Egs. (49), (51), (52), or (53). If 8701,
which is always satisfied in practice, it is not difficult
to see that the dominant contribution arises from the
region k6>>1, and we find

E=LAn(2)(RsT)*2(20x) 1 2[In (/0 T) 2. (65)

This expression shows that the thermal energy of the
vortex lattice is V times that of a single vortex [Eq.
(60)]; such a simple relation holds because of the small
fraction of states with propagation vector perpendicular
to the vortex axis (/»<<k»). Differentiation of Eq. (65)
yields the specific heat of the vortex lattice

Cyor= (LA)dE/dT
~3¢ (3 ks (ks T)2(20) 2 In (fu/ a2k s T) 2. (66)

Notice that Eq. (66) is proportional to 7V2[ In(T/T) 172
and thus decreases quite slowly for small 7. This
functional form differs from a corresponding calculation
for type-II superconductors,?® which predicts Cyor o 732
as T— 0. It is not surprising that the two systems
differ considerably, since the vortex density in the mixed
state of a superconductor is usually much higher than
in rotating He II.

Equation (66) may be compared with the phonon
contribution to the specific heat of superfluid helium?®

Con= (27*/15)kp(ksT/v)?, (67)

where v~ 238 m sec™! is the velocity of sound. Numerical
evaluation yields

C’vorz 8.8X IO—SQTUZEIH (76/T):]—1/2 s
Con=~3.0X107T3,
where C is measured in erg cm—3(°K)~Y, 7" in °K, and

Q in rad sec™®. Thus the vortex contribution to the
specific heat of rotating He II is negligible for all but

(68)

% J. Matricon, in Low Temperaiure Physics LT9, edited by
J. G. Daunt, D. O. Edwards, F. J. Milford, and M. Yaqub
(Plenum Press, Inc., New York, 1965), p. 544.

® L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts,
1958), p. 200.
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the lowest temperatures and highest rotation speeds:
at T=10"2 °K and 2=10% rad sec™, Eq. (68) predicts
Cvcx‘/C‘phz 2.8.

VI. ZERO-POINT MOTION

The present Hamiltonian formalism allows a direct
calculation of the zero-point motion associated with the
vortex core. It is simplest to start with a single vortex
line, in which case the creation and destruction opera-
tors have only the single label .. The mean-square
displacement at the point z is given by

(w(2))= (u* () +u*(2))
= (o) g (2)+*(2)),
where the angular brackets again denote a thermal
average. Since the system is invariant under transla-

tions along the z axis, a second average may also be
taken, defined as

(W)ey=L"" / dz(u*(2))

(69)

= (kL) 3 udqrqe -+ prpr’)
=h(pk L)™' 3 wlarart+artar)

=7(pkL)™ 2 1 coth (387) (70)
where Egs. (24) and (43) have been used (note that «,
£, and n all vanish as b — ), and w is given by Eq. (49).
At zero temperature, the thermal factor coth (38%w) re-
duces to unity, and the mean-square displacement is
simply

(W)ay="(ok L) 3 =2%/ pra,

where Eq. (58) has been used. The quantity %(ok)™ is
approximately equal to the volume v, per particle, so
that (u%),y=0(voe™*). Numerical evaluation (p=0.145 g
cm3, k=107% cm? sec™), a=~10~% cm) yields

[(u)e]2=38A (T=0)

(T=0), (1)

(72)

as the root-mean-square displacement of the vortex
core at T'=0; this value is comparable with the original
estimate of the vortex core radius.

At finite temperature, on the other hand, Eq. (70)
formally diverges as £— 0, and a more careful treat-
ment is required. When the summation is replaced by
an integral, it is necessary to cut off the integral at a
lower limit ko= 2m/L, which then gives

km
(@) ey Tmpr) / dk coth(3Bhe).  (73)
ko

Since the dominant contribution arises from the lower
range of integration, an approximate evaluation of Eq.
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(73) proceeds as follows®:

(u2)gy =2 (mpxB)" / dkwt

ko

—8(p8)1 / a1 /ka) T

0

=8(ox?8) kg [In(1/koa) I
=4L(px*Br) [In(L/2wa) T.

Thus the root-mean-square displacement of a long vor-
tex at finite temperature diverges like L12[In(L/a) T/2;
if T=1°K, numerical evaluation of Eq. (74) yields
[(u).y "2~8.5X10? A for L=1 cm and [(u),, ]2
~13 A for L=10"* cm. As the temperature is reduced,
this divergent behavior persists until 7' reaches T,
defined by the condition that 23T is comparable with
the spacing of adjacent energy levels of the finite vortex.
T is given approximately by

Tommh (ks L)~ In(L/2ra) (75)

which predicts that Ty~ 4.0X 10 °K for L=1 cm and
that To=~1.8X107% °K for L=10"* cm. For T2 T, the
finite-temperature expression [Eq. (74)7] describes the
mean-square displacement, while the zero-temperature
expression [Eq. (71)] is correct only in the presently
inaccessible range 7' 7.

It is interesting to consider how a finite density of
vortices alters these results. The mean-square displace-
ment of a vortex core must now be defined as

(74)

(W)= (LN T / swe@),  (16)

where the sum is over all vortices; the evaluation is
similar to Eq. (70), and we find

(W)ey=2(LNp)™ 3 1x(Qe—n)w* coth(37w).  (77)

At T=0, the thermal factor does not appear, and Eq.
(77) reduces to

km Im
(W2)e =~ 2a2mp) / ah / 1dl@g—n)et, (78)
0 0

where the sum has been replaced by an integral, as in
Eq. (63). The most important part of the integral is the
rectangular region (In>0>0, km> k> 1) in the Ik plane,
where Q¢—7 and w are equal [Eq. (49)]; Eq. (78) may
therefore be evaluated approximately as

<u2>a.v =7 (47!‘2 npx)"lk,,,l,,,z
—~2i/pea, (T=0)

(79)

% The integral in the second line may be expressed in terms of the
logarithmic integral [E. Jahnke and F. Emde, Tables of Functions
with Formulae and Curves (Dover Publications, Inc., New York,
1945), 4th ed., p. 3]; the asymptotic expansion for kea<<1 then
yields the third line.
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apart from corrections of order a/b6<1. This result is
identical with that describing a single vortex [Eq.
(71)], so that the mean-square displacement of each
vortex core at zero temperature is unaffected by the
presence of the other vortices. Equation (79) remains
correct as long as the separation between vortices & is
large compared to the core size @, which is the case for
all feasible experiments with liquid He IT (210" rad
sec™1),

A different situation occurs at finite temperatures.
As in Eq. (73), the integrals must be cut off at the
lower limits

km Um
(W®)ay = (27%n0k) 1 [ dk / 1d1(Qe—n)w ™ coth (3Bhw) ,
ko lo
(80)

where ko=2w/L and lo=2w/A'2. The most important
part of the integral is the region (ln>!, I.>%), and an
approximate calculation gives

(u?)ay =85 (ox%B) ™

neglecting corrections of order [In(d/a) 1. In deriving
Eq. (81), it is assumed that /,>>ko(L>>D), so that the
lattice spacing b acts as the cutoff in the mean-square
displacement, instead of L [compare Eq. (74) for a
single vortex]. For definiteness, consider a rotation
speed 2=1 rad sec™; the spacing between vortices is
then given by b= (x/27Q)?~1.3X10"%2 cm, and Eq.
(81) yields [(u2).y ]'2~9.8 X 10? A at 1°K.

It must be noted that {u?),, is proportional to 4 and
therefore decreases as the vortex density increases: The
presence of other vortices reduces the zero-point mo-
tion. In contrast, the dimensionless ratio

(u)avb™> =8 (bpx’B) ", (82)

which characterizes the stability of the vortex lattice,
increases as b decreases. When (u?),,b2~1, the lattice
presumably “melts.” If the melting temperature Ty, is
defined by the condition

T=(8k5)'px?b, (83)

then a rotation speed of 1 rad sec™ produces a stable
lattice up to a temperature T,=2.3X10° °K. Alterna-
tively, at 2°K, the vortex lattice remains “solid” until
b~1.5A (@=~0.7X102 rad sec™?). These numerical ex-
amples show that the root-mean-square displacement
is always much less than the intervortex spacing, which
clearly represents a necessary condition for stability.

The dimensionless parameter of Eq. (82) is also
approximately equal to the Debye-Waller factor®® W
characterizing scattering of incident waves by the vor-
tex lattice. More precisely, W is defined as

W= %((K ' u)2>av s

where #K is the momentum transferred in the scattering
process. The Bragg peaks in the differential cross section

(T>0) (81)

(84)
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occur when K equals one of the reciprocal lattice vectors;
hence | K] is of order 4, and Eq. (82) indeed provides
an order-of-magnitude estimate of W. As noted above,
this quantity is small for all reasonable physical situa-
tions, so that the quantum-mechanical or thermal mo-
tion of the vortices has negligible effect on the Bragg
scattering by the vortex lattice. Whether such scattering
can in fact be observed experimentally requires a de-
tailed study, and has not been attempted here.

VII. DISCUSSION

The general formula for the mean-square displace-
ment of the vortex core [Eq. (77)] may be compared
with the corresponding mean-square displacement of a
given atom in a crystal lattice, where (u2),, <> ™
X coth (3B%w). The difference between the two expres-
sions is due to the different structure of the Hamil-
tonians and represents a direct consequence of the
distinction between Newtonian and vortex dynamics.t
Thus the usual arguments® about the stability of a
crystal lattice in 1, 2, or 3 dimensions are not directly
relevant to vortex lattices, and it is necessary to re-
consider the question from first principles.

Another important distinction between the dynamics
of crystal lattices and vortex lattices is that the assump-
tion of small deformations here plays an essential role’
As a result, the present theory is meaningful only in
the harmonic approximation, when the Hamiltonian is
expressed as a quadratic form in the deformations. If
anharmonic terms are included, the motion is no longer
confined to the xy plane, and the displacements along
the vortex axis must also be considered. Such terms
destroy the symmetric relation between u,; and u,;,
which is necessary for the Hamiltonian approach. Hence,
we are unable to treat physical effects that depend on
the anharmonic terms, such as thermal conduction due
to vortex waves along the axis of the vortex. Such con-
tributions to the total thermal conductivity are pre-
sumably negligible in superfluid helium, but might
conceivably become important in the mixed state of a
type-1I superconductor.

A more important question concerns the rigorous
basis for the quantization conditions [Eqgs. (22) and
(23)]. Although these relations are guaranteed to satisfy
the correspondence principle, they have not been de-
rived from the fundamental N-body Hamiltonian and
must therefore be considered heuristic. Thus it is en-
tirely possible that our theory omits additional terms
of order % that also vanish in the classical limit (# — 0).
The existence of such terms is suggested by the partial
inconsistency between our initial treatment of the
vortex core as a cylinder of well-defined radius ~1 A
and theresulting root-mean-square displacement ~ 3.8 A
associated with quantum-mechanical fluctuations.

It is interesting to observe that a decrease in the
mass 7 of the background-fluid particles increases the
quantum of circulation x(=#%/m). Furthermore, simple
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quantum-mechanical estimates of the core size®! indicate
that ¢ varies as w12, Equations (71) and (74) then
imply the curious result that a reduced value of m leads
to a reduced mean-square displacement of the vortex
axis. This effect may be understood by noting that the
circulation « in vortex dynamics is analogous to the
inertial mass in Newtonian dynamics: An increase in «
decreases the zero-point motion. Unfortunately, these
qualitative arguments are not directly applicable to the
motion of quantized flux lines in type-IT superconduc-
tors, because the frequency spectrum is greatly altered

8L E. P. Gross, Nuovo Cimento 20, 454 (1961); L. P. Pitaevskii,

Zh. Eksperim. i Teor. Fiz. 40, 646 (1961) [English transl.: Soviet
Phys.—JETP 13, 451 (1961)].
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from that studied here whenever the wavelength is
larger than the penetration depth. The detailed theory
of vortex dynamics in bulk type-II superconductors
requires a separate treatment and will be presented in
a subsequent paper.
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Lambda Curve of Liquid He*}
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(Received 27 April 1967)

We have measured the pressure P) and the derivatives (dP/dT)\ and (dp/dT) of the lambda curve of
Het as a function of temperature from the upper lambda point to the lower lambda point, using an apparatus
of very high resolution. Empirical equations for Py and p) are presented which represent our data very well
and agree generally with previous measurements. These equations define the position and slope of the
lambda curve in the p, P, T space to a higher order of accuracy and detail than has been possible before.

I. INTRODUCTION

HE application of Pippard’s' relations or the
methods of Buckingham and Fairbank? to the
lambda transformation of He#, requires a knowledge of
various thermodynamic derivatives along the lambda
curve, such as (dP/dT), and (dp/dP),. However, the
values of these derivatives are not known with sufficient
accuracy, since the pressure and density of the lambda
transformation have not been measured at small
enough temperature intervals to permit accurate
differentiation.

The present experiment was designed to measure
the derivatives (dP/dT), and (dp/dP), directly at
many points along the lambda curve. The resolution of
the apparatus was about 1 udeg K in temperature, 105
atm in pressure, and better than 108 g/cm? in density.
With this resolution it was no problem to make mea-
surements over such small intervals that curvature
corrections were negligible.

The slope (dP/dT), of the lambda curve at the point
where it meets the vapor-pressure curve (the lower
lambda point) is needed for the correlation of heat-

t Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

1A B. Pippard, Phil. Mag. 1, 473 (1956).

2 M. V. Buckingham and W. M. Fairbank, Progress in Low-

Temperature Physics, edited by J. C. Gorter (North-Holland
Publishing Company, Amsterdam, 1961), Vol. 3, p. 80,

capacity measurements with thermal-expansion and
sound-velocity measurements at the lower lambda
point. Many values have been quoted, ranging from
—80 to —130 atm/deg. We have made a special effort
to obtain a reliable value for this slope.

While this experiment was in progress, Elwell and
Meyer® reported measurements of the lambda density
and pressure at 22 temperatures and the slope (dP/dT)\
at 11 temperatures. Their results are in general agree-
ment with ours, as will be seen later.

II. EXPERIMENTAL

The apparatus used in these experiments is similar
to that used previously.*=® It is shown schematically
in Fig. 1.

Helium gas was purified in a trap (not shown) im-
mersed in liquid helium and was condensed into the
sample compartment G through the low-temperature
valve A, which has kept closed during measurements.
G was isolated from the liquid helium bath by the

3D. L. Elwell and H. Meyer, Bull. Am. Phys. Soc. 11, 175
(1966); Proceedings of the Conference on Low-Temperature
Physics, Moscow, 1966 (to be published); Phys. Rev. (to be
published); H. Meyer (private communication).

4 H. A. Kierstead, Phys. Rev. 138, A1594 (1965).

5 H. A. Kierstead, Phys. Rev. 144, 166 (1966).

¢ H. A. Kierstead, Phys. Rev. 153, 258 (1967).



