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Gauge Problem in Quantum Field Theory
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The difhculties connected with the quantization of the electromagnetic Geld are analyzed in the framework
of axiomatic field theory. Under the assumptions: (1) existence of the vacuum, invariant under the Poincarfi
group, (2) existence of a representation of the Poincare group such that the fields have tensor transformation
properties, and (3) analyticity of the two-point function in the forward tube, it is proved that the Maxwell
equations 81"F„„=O,e &"&B„F„,=O do not admit the classical solution F„„=B„A„—8„A„,where the potential
transforms as a four-vector. The result is very general and can be obtained without assuming either local
commutativity or the spectral condition; it is also independent of whether the metric is positive or not.
Thus the difhculties connected with the gauge problem have very little to do with the Lorentz condition,
indefinite metric, etc., but rather they arise at the very beginning with the introduction of the four-vector
potential. As a corollary of the above result, the representations of the Poincare group for m ssless spin-one
particles in quantum field theory are shown to be essentially different from the corresponding ones of the
classical case. The I ock representation in the Gupta-Bleuler approach is discussed in connection with the
Lehmann-Symanzik-Zimmermann formulation of quantum electrodynamics. Some care must be used in
the definition of the asymptotic Hilbert space since, by the previous result, unphysical photon states must
be introduced as asymptotic states in order to have a local theory. The requirement that these states should
not aAect any physical result imposes definite restrictions on the S matrix. These conditions guarantee that
the definition of physical photon states in terms of equivalence classes still has significance in the presence
of interactions.

I. INTRODUCTIOH

~~QUANTUM electrodynamics has probably been the~ greatest success of quantum field theory, the
agreement between theoretical and experimental results
being much better than one could expect. Surprisingly
enough, quantum electrodynamics has never been a very
clean theory. It has suffered many serious diseases (like
unphysical photons and infinities) since its very begin-
ning and it is rather puzzling that it has survived all
of them. According to a widespread opinion, present
quantum electrodynamics is only a rough approximation
of the "true" theory, and it is rather hopeless to try to
understand and cure its diseases. As a consequence of
this attitude, the difficulties of quantum electrodynam-
ics have been regarded as due to our approximate theory
of nature, rather than being connected with our im-

proper formulation of the interactions between photons
and electrons. In fact, it is not very clear whether these
troubles are characteristic features of Lagrangian quan-
tum 6eM theory, or whether they are connected with
some specific points of the present formulation of quan-
tum electrodynamics. We will try to analyze some of the
difhculties of quantum electrodynamics and their con-
nection with the basic assumptions of quantum field
theory. We hope to clarify at least what the crucial
points are and what must be expected even under very
general assumptions.

The 6rst and probably the most annoying difFiculty
in quantum electrodynamics arose at the very begin-
ing: the quantization of the electromagnetic 6eld. ' It
was soon realized that in the quantization procedure

*Present address: Istituto Nazionale di Fisica Nucleare, Sezione
di Pisa, Pisa, Italy.' W. Heisenberg and W. Pauli, Z. Physik 56, 1 (1929); 59, 169
(1930).

there was no room for the Lorentz condition

8~A„=O,

for the vector potential. This diKculty has very strong
consequences. It implies that the four components of
the electromagnetic 6eld must be treated as independ-
ent, in contrast with the classical theory, and therefore
one must expect other particles besides photons, because
of the additional degrees of freedom of the vector
potential.

An alternative approach is to quantize only the trans-
verse part of the vector potential and to leave the
Coulomb field unquantized. ' This implies, however, the
splitting of the vector potential into a transverse part
and a Coulomb part, and this splitting is not Lorentz-
covariant. The manifest covariance of the theory and,
together with it, the elegance of the tensor formalism are
lost in this approach.

The diNculties connected with the impossibility of
imposing the Lorentz condition have strong implications
as far as the physical interpretation of the theory is con-
cerned, as may be seen by using the theory of the repre-
sentations of the Poincare group. 3 The part of the 6eld
corresponding to 8&A„&0 is in fact associated with
scalar photons which have never been seen and must be
regarded as unphysical. Because of the occurrence of
such unphysical particles in the theory, the metric of the
Hilbert space cannot be positive. One is then faced with

' E. Fermi, Rend. Accad. Nazi. Lincei 2, 881 (1929); Rev. Mod.
Phys. 4, 87 (1932); P. A. M. Dirac, V. A. Fock, and B. Podolsky,
Z. Physik. Sowjetunion. 2, 468 (1932);P. A. M. Dirac, Proc. Roy.
Soc. (London) All4, 243, 710 (1927); W. Heitler, The Quantum
Theory of Radiation (Oxford University Press, New York, 1954),
3rd ed. ; L. E. Evans and T. Fulton, Nucl. Phys. 21, 492 (1960).' R. Shaw, Nuovo Cimento 3?, 1086 (1965).

1429



F. STROCCH I

the problem of giving a meaning to states of negative
norm, to negative probabilities, etc.

A partial answer to these difIIiculties is to require

(2)

instead of Eq. (1);here r)&A„+ is the positive-frequency
part of the Geld operator BI'A „.This amounts to restrict-
ing the physical states to the subspace K'( X defined
by Eq. (2). In addition, an indefinite metric must be
used because there are states in BC' with zero norm. This
approach is known as the Gupta-Bleuler formalism.
Apart from some unpleasant features such as indefinite
metric, nonlocal condition, ' etc. , one may wonder what
the full implications are, in perturbation theory, of ad-
mitting unphysical particles in the theory.

The widespread belief that these particles do not con-
tribute to anything is not correct. As a matter of fact,
those unphysical photons enter into the theory with a
gradient-type coupling to the electromagnetic current

8C81~j QP p

and it has been proved that the above interaction affects
the renormalization constants by infinite amounts. ' The
gauge dependence of the renormalization constants sug-
gests that the gauge problem might not be entirely dis-
connected from the ultraviolet problem.

Another difficulty connected with the zero mass of
the photon and the gauge is the infrared problem whose
implications are not very clear.

The above problems are not confined to Lagrangian
field theory. They arise also in the S-matrix approach to
Geld theory. Apart from difficulties connected with the
infrared problem, doubts have been raised' about a pos-
sible Lehmann-Symanzik. —Zimmermann (LSZ) formu-
lation of quantum electrodynamics on the basis that the
photon field operator A„creates states containing un-

physical scalar and longitudinal photons, and therefore
the physical state vectors (those containing no, un-
physical photons) do not form a complete set of states.
As a consequence, a set of integral equations for the in-
terpolating Geld cannot be derived in a straightforward
way.

The treatment of Evans and I'ulton' succeeds in
avoiding unphysical photons at every stage of the theory
but at the price of using a definite and nonmanifestly
covariant gauge (Coulomb gauge) and an unquantized
Coulomb field. (In this case, of course, an LSZ formula-

' S. N. Gupta, Proc. Phys. Soc. (London) 63, 681 (1950);K. T.
Bleuler, Helv. Phys. Acta 23, 567 (1950).

'S. Okubo, Nuovo Cimento 19, 574 (1961); A. S. Wightman,
lecture notes, Cargese, 1964 (to be published); B.Klaiber, Nuovo
Cimento 36, 165 {1965).' K. Johnson and B. Zumino, Phys. Rev. Letters 3, 351 (1959),

7 R. E. Pugh, Ann. Phys. 30, 422 (1964). For earlier papers on
asymptotic quantum electrodynamics see K. Nishijima, Phys.
Rev. 119, 485 (1960); H. Rollnik, B. Stech, and E. Nunnemann
Z. Physik 159, 482 {1960).' L. E. Fvans and Y. Fulton, Nucl. Phys. 21, 492 (1960).

tion can be easily carried out as the above problem does
not arise).

All these difhculties seem to indicate that the problem
has been formulated in an improper way. At least, it is
not clear what price must be paid and for what. Actually
the definition of the photon Geld operator is a very deli-
cate one because of the difhculties of combining Maxwell
equations and commutation relations. The analysis of
this definition may be carried out in many dBerent
ways and often the choice of one rather than another is

merely a matter of philosophy. ' As a matter of fact, in
the present situation it is not clear what the arbitrary
parameters of the problem are which may or may not
be accepted, and what intrinsic features are strongly
connected with the general principles of quantum Geld

theory.
In the following we will analyze the problem of quan-

tizing the electromagnetic Geld in the framework of
Wightman theory. ' We shall use the smallest number of
hypotheses in order to see the roots of the diS.culties
connected with the gauge problem in quantum field
theory.

Using only the assumptions of (1) the existence of the
vacuum, and (2) the existence of a unitary representa-
tion of the Poincare group (u,A} —+ U(u, h.), such that

U(uA)F (x)U(uA. ) '=h. ' &h. ''E (Ax+u)

we will show that the second set of Maxwell equations,

e"""l'8 F =0,II &P

does rot admit the classical solution

F„„=B„A„—B„A„,

U(uh)A (x)U(uA) '=A.—' "A (Ax+u),

apart from the trivial case F„„=O.
This result is very general and can be obtained with-

out using the positive or negative metric of the Hilbert
space, the local commutativity of the Gelds, or the spec-
tral condition.

Thus, the gauge problem has very deep roots and
has very little to do with the Lorentz condition, inde-
Gnite metric, etc., in contrast to what is generally stated
in the literature. The difhculties connected with the
introduction of the vector potential are associated with
its definition as a solution of the second set of Maxwell
equations.

The conclusion which can be drawn from this result
is: Either A„cannot transform as a four-vector, or the

s S. N. Gupta, Proc. Phys. Soc. (London) 63, 681 (1950); S.
Mandelstam, Ann. Phys. {N. Y.) 19, 1 (1962); E. P, Wigner,
Theoreti ca/ Physics (International Atomic Energy Agency, Vienna,
1963);R. Shaw, Nuovo Cimento 37, 1086 (1965);F. Rohrlich and
F. Strocchi, Phys. Rev. 139, 8476 {1965).

A. S.Wightman, Phys. Rev. 101, 860 (1956);A. S.Wightman,
lectures given at the Faculte des Sciences, Universite de Paris,
1958 (unpublished); and I.es Problemes Mathdmatiqles de la
Theoric QNaetiqge des Champs (Colloques Internationaux du
Centre Nationale de la Recherche Scientilque, Paris, 1959).
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Maxwell equations cannot be satisfied as operator equa-
tions if A„ is introduced as a local operator.

If the latter solution is adopted, one cannot have a
local theorv involving only physical photons, and states
corresponding to longitudinal and scalar photons must
be present in the Hilbert space. Kithin this framework,
one can still use an LSZ formulation of the S matrix.
However, suitable auxiliary conditions must be imposed
in order to single out the physica, l states and, by the
above result, they cannot be written as loca1 equations.
The scalar photons may be separated out by requiring
the subsidiary condition

8&A „+0'=0.
(See below for detailed discussion. ) However, the longi-
tudinal photons cannot be eliminated in a Lorentz-
invariant way. Therefore the physical photon states
cannot be sharply defined. The longitudinal photons
will always be present and the only way to get rid of
them is to deGne the subspace of the physical photon
states as a quotient space X'/K", where K"C K' is the
subspace of vectors with zero norm (i.e., containing at
least one longitudinal photon). Within this framework, "
an asymptotic Hilbert space may be constructed and a
complete set of states may be introduced. As stressed
before, in order to have a local theory (as required for
LSZ), unphysical photon states must be introduced as
asymptotic states, even if at the end they should not
a6ect the physical results. This may be guaranteed by
requiring that K' and BC" be left invariant by the S
matrix. As we shall see, these conditions are necessary if
the definition of physical photons given above has a
physical meaning. The classification of the representa-
tions of the Poincare group, in terms of physical and
unphysical photons, must in fact be independent of the
interactions, i.e., must be left invariant by the S matrix,
if we want any connection with reality.

11. QUANTIZATION OF THE ELECTROMAGNETIC
FIELD IN AXIOMATIC FIELD THEORY

In this section we will analyze the problem of describ-
ing a massless spin-one particle in axiomatic field
theory. "

According to the classy. cation of the representations
of the Poincare group, a massless spin-one particle is
described by a completely antisyrnmetric tensor of rank
two F„„which obeys the following equations:

(3)

This description does not suffer from the ambiguities
connected with the gauge problem, and in fact it can
be obtained by simply requiring a manifestly covariant

"A. S.Wightman and L. Garding, Arch. Fysik 28, 129 (1964).~ The analogous problem for gravitons will be discussed in a
subsequent paper.

description of a free spin-one massless particle without
involving unphysical partic1es.

In order to formulate the problem of quantizing the
above equations in the framework of axiomatic field
theory some of the wightman axioms" will be assumed.
In particular we will assume:

(I) F„,(x) may be defined as an operator-valued dis-
tribution in a Hilbert space K. It is not necessary to
specify which type of distribution F„„is supposed to be.
It is sufhcient that the two-point %ightman function
(see below)

W„„„.~(x—y) = (O',P„„(x)P„(y)%')
can be regarded as the boundary value of an a,nalytic
function W„„„~(z),analytic in the forward tube

—oo &Res(+ ~, Imzg V~,
where

V+ ——(x~x is a four-vector, x')0, xo)0).
This condit. ion is clearly satisfied if F„„(x)is assumed to
be an operator-valued tempered distribution. However,
the validity of the condition is more general and in fact
it can be proved for a large class of opera, tor-valued
distributions. "

(2) There exists a unitary representation of the
Poincare group: (a,h. ) ~ U(c,A) such that

(3) There exists an invariant state%' (vacuum state)
such that

Local commutativity and the spectral condition are not
needed for what follows. "It must be stressed that no as-
sumption is made about the positive or negative metric
in the Hilbert space. It may very we11 be that the
"product" of two vectors 0'~, 4'2 is deGned as a sesqui-
linear form

(@g,e2) = (peg, @2),

where (, ) is the scalar product in BC, and g is the metric
operator. (See Sec. III for details. ) In this case the
vacuum expectation values would be deGned as

(O',P„„P,.@')= (q+',F„„F,.%') .
The conclusions of the following theorems are, however,
independent of q being =1 or &1.

The problems connected with the gauge arise when
Eq. (4) is solved by putting

F„„(x)= B„A,(x)-B„A„(x),

"A. M. Jaffe, Phys. Rev. Letters 17, 661 (1966);in Proceedings
of the MIT Conference on Scattering, 1966 (unpublished)."A detailed exposition of Wightman axioms may b found in
R. Streater and A. S. Wightman, PCT, Spin, aed S a'istics, and
All That (W. A. Benjamin, Inc., New York, 1964). See also Ref.
0&l
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where A„ is a four-vector satisfying

U(aA)A (x)U(aA) '=A. ' "A (Ax+a) (7')

and A„(x) may be considered as an operator-valued dis-
tribution. Again it is not necessary to specify which kind
of distribution A„ is assumed to be, provided that the
two point function may be regarded as the boundary
value of an analytic function, analytic in the forward
tube.

Under these assumptions, it can be proved that the
solution given by Eqs. (7), and (7'), leads to a trivial
physical theory, and thus it cannot be accepted. In
order to prove this we need some preliminary results.

Ke consider the two-point function

(O',A„(x)A.(y)+') =D„,(x,y) . (8)

The invariance of 0' under space time translations gives

D„„(x,y) =D„.(x-y),

Wightman theorem, "D&(s) and D&(s) may be written
as functions of s'.

Now, for an arbitrary function of s',

(s') =kg" "(s')+-:s.s.
I
G(s') .

Bs Bs' ds ds'

I
G(s') =4D (s'). (16)

Equation (16) may be easily solved. by integration in the
analyticity domain of D&(s'):

We now define a function G(s') as a solution of the fol-
lowing equation:

and the analyticity property is

D„„($)=boundary value of D„„(s),

where D„„(s)is analytic in the forward tube

—~ (Res(+ ~,
Finally, by using Eq. (7') we get

G(s') =4 ds'

Thus, we have
(93

D2(s")ds".

D„„(s)=A-&„A-'„D,.(A.) . (10)

I.emery 1.D„„($)can be written in the following form:

D„„(f)= (+',U(O,A)A „(x)A „(y)U(O,A)-'+')
=A &„~A &„.D,.(-Ag).

-
This equation may be analytically continued to com-
plex A in such a way that D„„(s)yields a representation
of the proper homogeneous complex I orentz group
I+(~):

and Eq. (13) takes the following form:

D..(s)= .g. D~( )s+ D2(s)
Bs"Bs"

(17)

where Dj and D2 are suitable combinations of D~ and
G(s').

Taking the boundary value of Eq. (17) gives Eq.
(11) and proves Lemma 1."

Lemma Z. The diEerential equation

where
D..(~)= g,.D (~)+~.~.D (~),

D.(~)=D.(A~), D.(~)=D.(A~).

(gg„„+n8„8„)F(x)=0, (nWO, ns4), (18)

where F(x) is a generalized function, invariant under
Lorentz transformations

F(x)=F(Ax),

F(x) = const.

D„,(s) = g„„Dg(s)+s„s,D2(s) . Proof: On multiplying Eq. (18) by g"&, we obtain

Proof: Property (10) enables us to use a theorem by
Araki and Hepp" on the classi6cation of the representa- (19)
tions of I+(C) in terms of analytic functions. According does not admit any solution apart from the trivial
to that theorem, D„„(s)may be written in the following
form:

By the analyticity properties of D„„(s), the functions
D~(s) and D2(s) are analytic in the forward tube; more-
over they are invariant under the homogeneous Lorentz
group

Dg(s) =Dg(As), D2(s) =Dg(As), (14)

as a trivial consequence of Eq. (10).Then by the Hall-

'5 K. Hepp, Helv. Phys. Acta 36, 355 (j.963).

(gb".+nB"8,)F(x)=0

and by taking the trace we get

(4+a) gF(x) =0, i.e., ~F(x) =0.

"D. Hall and A. S. Wightman, Kgl. Danske Videnskab.
Selskab. Mat. -Fys. Medd. Bl, No. 5 (1957).

'7 I am indebted to Dr. H. Epstein for useful suggestions and for
drawing my attention to the paper by Hepp.
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Substituting this result in Kq. (18), we have

BsB„P(x)=0 Qp r (20)

implies that

1.e.)

llP"(f)+'ll'= (+' P"(f)P'(f)+')
F(x)= a"x„+const.

where p is a scalar field.
B„F(x)=a„=const. Proof: Let us consider the state F„„(f)@s,where f is

a test function for which F„„is defined, and compute
The symbol Q means: for any. ) Hence, P(x) must

have the following form:

D..(5)=g..C+B.B.Ds(5),

where C is a constant.
Proof: In terms of A„, Eq. (3) reads

(21)

(zBs„—B~B,)A„(x)=0. (22)

Thus, the two-point function must satisfy the following
equation:

(ebs„BsB„)D„—,(()= 0 (23)

On the other hand, when the explicit form, Kq. (17), of
D„„is substituted in the above equation, we obtain

(»". B"B.)g—..Di(k)=(og. , B,B.)D—i(k)=o

Hence, Lemma 2, (cr= —1), yields

Di($) =C=const. .
The above theorem has very strong implications. As a
matter of fact, Eq. (21) gives

(0 ',P„„(x)P,.(y) @s)=0,

But this is not invariant under Lorentz transformations,
i.e., it does not satisfy condition (19). Therefore the
only acceptable solution is

P(x) = const. ,

which proves Lemma 2.
We may now prove the following theorem:
Theorem. The two-point function D„„(g) has the fol-

lowing form:

d'xd'y f(x)j(y) l B„B+„(P)

B.—B.D:($) B.—B.D..(h)+ B.B D-(&)5

where $=x—y. Substituting the expression (24) for
D„„,we obtain

IIF"(f)+'ll'=0 i.e F"(f)+'=0
Hence, a well-known theorem' on local operators gives

F„,(x)=0.

This equation is equivalent to

Ap=8pp )

where q is a scalar Geld.
Clearly, this is a trivial solution and cannot describe

spin-one particles. This shows that the diKculties con-
nected with the gauge problem arise ut the very begimmeg,
when one tries to introduce a vector potential A„. The
use of a four-vector A„ is in fact inconsistent with very
general principles. The complications like nonpositive
metric, Lorentz condition, etc., are actually conse-
qlences of choosing a wrong solution of Eq. (4).

As a further remark on the above results we note that
the representations of the Poincare group in the classical
and in the quantum-field-theory case are essentially
diGerent. In the former case, in fact, one may require the
mass-shell condition

(26)and it is clear that one cannot get anything but a trivial
physical theory. The argument can be made stronger,
for which purpose it is convenient to add the following
assumptions:

(4) F„„(x) is a local operator, i.e., it satisfies local
comrnutativity:

together with the auxiliary condition

8"Aq=0,

which eliminates the scalar photons. In the quantum-
field-theory case, one has almost the opposite situation:
The Lorentz condition Ltogether with Eq. (26)5 implies
that A„ is a gradientlike field.

Corollary Z. If A„(x) can be defined as an operator-
valued distribution which transforms under the Poin-
care group according to Eq. (7'), and if F„„=B„A,—B„A„—
can be defined as a local Geld satisfying the conditions
(3) and (4), then the two equations

l:P,.(f) P,.(g)5=o,

if the support of f is space1ike with respect: to the sup-
port of g.

(5) Let Do denote the set of vectors which are ob-
tained from the vacuum state by applying polynomials
in the smeared 6elds F„,(f). Then we assume that the
metric operator g is positive-definite on Do. Under these
conditions one can prove the following corollary:

Corollary f. If conditions (1)—(5) are satis6ed,
following form of the two-point function

8"A„=0,&A„=O,

(Os,A„(x)A„(y)%')=g„„C+B„B,Ds(,")

the
' B. Schroer, Diplomarbeit, Hamburg 1958, (uIIpublished); R.

Jost, Lectures on Field Theory, Naples 1959, (unpublished); P. 6;
Federbush and K. A. Johnson, Phys. Rev. 120, 1926 (1960).
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imply that

where y is a scalar 6eld.
Proof: In fact, under the above assumptions A „would

obey Eq. (22), and the previous analysis applies.
This result should make clear which are the crucial

points in the quantization of the electromagnetic field.
For example, as a consequence of Corollary 2, the Fermi
solution" of the difhculties connected with the Lorentz
condition, is automatically ruled out. One cannot hope
to select the physical states as those on which the
Lorentz condition is satis6ed

In this case, one would have a subspace X'QX on which
the following two equations are simultaneously satisfied:

~A„=O, 8&A„=O,

and then, by Corollary 2, A„would reduce to the gradi-
ent of a scalar field on K'. As a matter of fact, the Fermi
condition leads to such monstrosities as states of infinite
norm, "etc. In general, there is no way of characterizing
a subspace of physical states by means of local condi-
tions, because the Maxwell equations cannot be satis-
6ed, as local equations in a suitable subspace, without
implying a trivial theory. This is why the Lorentz con-
dition can at most be imposed" in the form of a nomlocal

equation

where 8&A„+ is the positive-frequency part of the field
operator 8&A„. The extraction of the positive frequency
part, is in fact a nonlocal operation. All this indicates
that a Hilbert space formulation of the quantized
photon 6eld must imvolM states corresponding to un-

physical particles. A local covariant field A„can be
de6ned only in a Hilbert space 3C in which the Maxwell
equations are not satis6ed as local operator equations.
We will discuss this solution later in more detail.

As a possible alternative solution one could try to
formulate the theory in terms of F„„only. Clearly, in
this case, the above difficulties would disappear, but
other problems would arise. The free-field operators
F;;(p) behave as p;e, —p, e; (e being the polarization
vector) and therefore they cannot account for the pro-
duction and absorption of soft photons (p;-+ 0) which
is instead a characteristic feature of electromagnetic
interactions. A theory involving only the 6elds F„„
should necessarily be of a nonlocal character, and this
would complicate matters because very little is known
about nonlocal theories. As a matter of fact, we are not
able to write down a local interaction Lagrangian in

'~ E. Fermi, Rev. Mod. Phys. 4, 87 (1932).' G. Eileen, in EIandblch der Physik, edited by 5. FlGgge
(Springer-Verlag, Berlin, 1958), Band V, Vol. 1.

~' See Ref. 4.

terms of F„„.Clearly, in this case, the conventional
proof of the TCI theorem, based on local Lagrangian
field theory, does not apply. On the other hand, one
does not know whether local commutativity can be re-
quired for 6elds, which are solutions of a nonlocal
Lagrangian 6eld theory.

Another solution could be to give up condition (7')
and to use a 6eld A„which does not transform as a four-
vector,

U(ah)A„(x)U(uh) '=h. '„"A„(Ax+a)+el„F(A,x), (28)

F(A,x) being an arbitrary function. F(h.,x) can be de-
termined in the free-field case from the analysis of the
representations of the Poincare group for massless spin-
one particles. In the interacting case, however, S(A.,x)
is to a large extent unknown. This gives rise to serious
troubles if one tries to use a Wightman-type formulation
of these "noncovariant" fields. The extension of the
analyticity domain of the Wightman functions from
the tube V to the extended tube V'„' cannot be done
in the standard way and many (almost all) of the in-

teresting results of the Wightman theory (in particular
TCP) have to be proven anew. "

III. ASYMPTGTIC I5 AND OUT STATES

In the following sections we will discuss the solution
of the gauge problem which uses a local covariant field

A„. The problem is how to eliminate the unphysical
photons. In particular one is faced with this problem if
one wants to give an LSZ formulation of quantum
electrodynamics.

The de6nition of the Hilbert space corresponding to
asymptotic states is essentially a problem of free 6elds
and no serious difhculty arises in general. The case of
electromagnetic potential A„has, however, some pecu-
liar features because of the irT)possibility of eliminating
the unphysical photons corrpletely. Therefore, some
care has to be used in the definition of the in and out
states corresponding to the photon 6eld. We shall start
by defining" the asymptotic Hilbert space K corre-
sponding to the vector field A„as the direct sum of
Hilbert spaces

where X„consists of all tensors C»...„„(k', ~ k") sym-
metric under simultaneous permutations of the p's and
k's, defined for the values of the arguments satisfying
the following conditions:

k'=—k&k„=0, ko&~ 0.

The scalar product between two states C ~"& and +&"& is

«' The analysis of this problem will be done in a subsequent
paper.
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defined as

(@(n) @(n))—
d'k' d'k"

@(n) (kl. . .kn) 4

p, (. ) p, ( ) „,.=,

however, try to characterize the physical states .by
suitable conditions.

Actually, the scalar photons may be eliminated from
the state amplitude by imposing the auxiliary condition

xe(")„,...„„(k', "k"), A(f)+4=0, (29)

(C (o) @(o))= C, (o) @(o)

In general a state CEK has "components" on each K„
such that

Q (@(n) @(n))(~

and the scalar product between C and 0 is defined as

(@@) P (@(n}@(n))

Already at this point, difhculties arise if one wants to
give a meaning to the state 4 &"'„,...„„in terms of one-
particle states. For this purpose one should introduce
a vector-fieM operator A„and decompose it into crea-
tion and destruction operators, having definite meaning
with respect to the states 4 &"). By the results of the
previous sections, a well-defined covariant operator A„
can be introduced only if we give up Maxwell's equa-
tions. The more natural way to do so is to use a vector
field A„and to require that the following equation be
satisfied:

&A„=0.

However, not all the diKculties are eliminated in this
way. As a matter of fact, by using local commutativity
for A„, one can show" that the metric cannot be posi-
tive-definite. Thus a sesquilinear form must be intro-
duced in the Hilbert space

(@@) P (@(n) @(n))

where
(@(n) @(n)) (~@(n) @(n))

q being the metric operator. 4

The vector field operator A„, smeared with a-test
function f„(x), will be denoted by A(f). Its explicit
definition in terms of the vectors C (") is the following":

(A(f)C)'" ... (k' k")=7r'/'(v+1)'/'

d'k a
x f (k)c -+').„,.....(k,k(, k.)+-Zf.,(-k/)

kp Ã i=&

XC(.-»„,...„, ,„,.„...„„(k', k ',k~', k"),

where f„(k) is the Fourier transform of f„(x).
In order to have a consistent theory one has to in-

troduce unphysical quantities and work in a Hilbert
space in which longitudinal and scalar photons are al-
lowed. (Maxwell equations involving only physical
photons are satis6ed as operator equations. ) One may,

for all f„of the form B„g, gg 5). Here A (f)+ is def(ned by

(A(f)'C)'"} (k' " k")

—~1/2(~+ ] ) 1/2

XC '"+"„„,- „.(k,k', . k") . (30)

Condition (29) determines a subspace K' of K, consist-
ing of those vectors C &"'»...„„,m=1, ~, for which

k 4 "„„,...„,(k,k', ~ ~ k" ')=0. (3&)

The subspace K' does not contain only physical states.
There is in fact a subspace K"( K' consisting of those
vectors CpI p of the form

"R.Shaw, Novo Cimento 37, 1086 (I/65).

for at least one index /(, . These vectors are associated
with states in which at least one longitudinal photon is
present. In contrast with the previous case (scalar
photons), the separation of longitudinal photons can-
not be done in a Lorentz invariant way. "One can show
in fact that the spaces K' and K" are both left invariant
under a Lorentz transformation, but that is rot the case
for 3C' —BC". This means that a state belonging to
K'—K" in a certain reference frame, will acquire a non-
vanishing component in the space K" after a Lorentz
transformation. Thus, the number of longitudinal pho-
tons is not a Lorentz invariant quantity and the only
way to get rid of the longitudinal photons in a Lorentz
invariant way is to define the physical states as equiva-
lence classes: Two states are regarded as equivalent if
they differ only by the presence of longitudinal photons.
It is easy to prove that the quotient space K'/K" is in
fact invariant under Lorentz transformations. Thus a
physical photon state will be associated with an equiva-
lence class of K'/K" rather than with a ray in the
Hilbert space K'. This correspondence will have a
physical meaning if it is not destroyed by switching on
the interaction. Equivalence classes may be associated
with photon states only if the S matrix, defined on K',
maps equivalence classes into equivalence classes. This
imposes definite conditions on the S matrix. They play
the same role as the gauge invariance conditions in the
conventional approach. (They are, however, , weaker. )
In this way we will also guarantee that unphysical
photons do not contribute to any physical process, so
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that they may be really regarded as "unobservable"
particles.

In order to formulate the above problem in a clear
way wc need some mathematical tools.

IV. MATHEMATICAL TOOLS

For the reader's convenience we will list some defini-

tions and theorems. The theorems, which can be found
in the literature, '4 will be stated without proof.

Defiwifioii 1. A subset M of a linear space I. is a sub-

space if

(1) x+y+M, Qx,y+M;
(2) lix+M, Qx+M, PXQ t'. .

Defilition Z. If M is a subspace of L, one may define

equivalence classes in L, with respect to M: Two ele-

ments xi, x2 are equivalent if xi—x2&M. Clearly a class

is completely determined by any one of its representa-
tives. The set of all vectors equivalent to x will be de-

noted by $,. The classes can be considered as vectors in

a new linear space L/M, with the definitions

The zero vector is the class to which contains M. The
space L/M is called a factor space.

Definition 3. A functional p(x) defined on all of I. is

said to be convex if

(1) p(x) & 0, 'tIx&L;

/*+yq
(&) pl I

&-:Lp(*)+p(y) j, &,yeL;&2)
(3) p(~x) =Xp(x), y~&0, ~xgL.

A convex functional is said to be symmetric (or a
seminorm) if

pox)=l~lp(x), v~Ce, VxEL.

Theorem I If p(x) is .a symmetric convex functional,

then

M=(xl p(x) =0}is a subspace in I..
Theorem 2. If p(x) is an arbitrary symmetric convex

functional in L, and M is the subspace of all vectors
x&L on which p(x) =0, then the equation

l~l =p(*), «

A Hermitian bilinear form is positive if (x,x)&0. In this
case p(x) = (x,x) is a convex functional.

Theorem 3. If (x,y) is a positive definite bilinear Her-
mitian form in L and M = {xl (x,x) =0},then

(&,q) = (x,y), where xg(, ygg,
defines an inner product in L/M, i.e., ($,g) satisfies

($,$)=0 if and only if )=0, in addition to conditions
(1)-(3) of Definition 4.

This is the first step in the standard procedure to get
a Hilbert space out of a pre-Hilbert space. One en-

counters this problem in quantum electrodynamics
where the longitudinal photons have zero norm. A Hil-
bert space of physical photon states is obtained by com-
pleting R'/X". The compatibility of this definition with
the S-matrix theory imposes definite conditions. For
that we will need the following theorem.

Definitio

5. We will say that a linear operator 5, de-
fined in K', induces a linear operator S in X'/R", where
K" is a subspace of K', if

y'=Sy implies $„=Sf„,
y+R', $„QX'/X".

A linear operator S defined in K' will be said to be
compatible upwith a linear operator 5 defined in X'/X" if
$'=Sf implies that for any xP$ there exists a x'Q$'
such that x'= Sx.

Theorem' 4. A linear operator S defined in 3." induces

(is compatible with) a linear operator S defined in
K'/X", if and only if K" is invariant under S, i.e.,

see"~ac".
Proof:
Clearly if K" is invariant under S, we may define an

operator 5 in K'/K" in the following way:

5$,= („ if Sx=y.

This definition is independent of the choice of x and y
in P, and P„, respectively, so that the above equation
defines an operator in K'/R". As a matter of fact, if

xi—x2+X" and Sxi=yi, Sx2——y&, then by the invari-

ance of K" we have 5(xi—x2) =yi —y~+X" and

St.,=4,= hw, =St*;
Conversely, let 5 induce an operator 5 in R'/R".

Then

x' =Sx implies f =5$,.

Moreover, if yP t, and Sy =y', we have

defines a norm on L/M.
Dcfilitioe 4. A Hermitian bilinear form in L is a func-

tion of the two variables x, y&L, such that
Hence

4 =Stw=5$*.

(1) (x,y) = (y,x)*, (Z) (x,Xy) =X(x,y),
(3) (x,yi+y2) = (x,yi)+(x,ym).

24 See e.g., M. A. Naimark, Eormed Rings (P. Noordhoff Ltd. ,
Groningen, The NetherIands, j.964).

i.e., y' —x'PX" or 5(x—y) =x'—y'QX" whenever

x—yER".
Similarly, let 5 be defined on X'/K". We require that

there exist an operator S in 3.",such that 5 is compatible
with S.Then 5 must leave R" invariant. In fact S(o= $0
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will denote the basic vectors with m "out-photons" of
momenta g~

-
g and "polarizations" p~ .p, .

By the assumption that both the set of in and out
basic vectors are complete, every vector IC)&K may
be expanded in terms of any of them. Shortly, one may
write

f4 q p
(32)

A change of basis is given by the following formula:

14&=Z f 4-.,-,.(k) I
'-„-,.(k)&

implies that for any xg$o, there exists a x', x'&S/o ——(o
such that x'=Sr, i.e.,

S3."c3:".
V. CONDITIONS ON THE S MATRIX

We will now work in the whole Hilbert space of the
system, in which other physical particles may be pres-
ent, besides photons. For simplicity, only the indices
and the variables referring to photon states will be
spelled out explicitly. In the Hilbert space 3'. of the
asymptotic states, we will denote by

I
e'"„...„„(k,, k„))

the basic vectors with I "photons" of inomenta ki. k„,
and "polarization" v~. ~ v . These properties refer to
the "in observables". Similarly

By applying the previous analysis of the free photon
states, we may define the subspace K'i„+as the set of
vectors IC) such that

3

grrp @in (k) —0 Vj
Similarly, K'.„& is the set of vectors I 4), such that

go*'4'"'„,...„,....„„(q)=0, Vi (36)

The completeness of the in or out basic vectors, implies
~ —out

Finally, we will denote by K; ", the subspace con-
sisting of all those vectors

I 4) such that

V~o ~ eV 'e ~ eV+ytv I evVS' V piiV ' ~ ~ oV+y (3&)

for at least one n and one j.K",„& is de6ned in a similar
way. They describe states containing at least one longi-
tudinal photon, in or out, respectively.

We shall restrict ourselves to the subspaces 3."j ~. t.
In this way we will eliminate in a Lorentz invariant way
the scalar photons, which do not satisfy the Lorentz
condition. It can be shown that in 3."j~/D„t, g is &0. By
the standard procedure outlined in the previous section
we can generate two Hilbert spaces K';~/K";a (K',„i/
K",„r), such that rt de6nes an inner product in K'; /K";
(K'.«/K"«&). Physical in or out photon states will

correspond to equivalence classes in X'j or 3.",„t, re-
spectively. As the scalar photons, which do not satisfy
the Lorentz condition, should not contribute to any
physical process, the Smatrix must map K';„into itself.
This implies

Q f 4in(n) (k)
~ r q)'+ r~r P rV

3.";.=SSC'j =3.".„t. (3S)

&&~»-'.; i- -4») I'" ol"'o «)&

=Z f @'"""'.-'.(e) le'"'. -..(v)&
m, q, lM,

where

@out (m) (~)

=Z f &., . ', '.(-~,k)4"-"'., '.(k) (-33)
'Sr1C r V

The transformation

(e'"'„,...„„(g)I
e'"„,...„„(k))=—5„,...„„,., „„(g,k) (34)

is called the S matrix.
By Kq. (32), a vector IC) is completely determined

by the sequence of symmetric tensors (4&"'»...„„(g),
m=0, 1, ~ ) so that instead of working in the abstract
Hilbert space of vectors

I 4'), one may work in one of its
realizations by the sequence of tensors (4&"i»...„„,
e=0, 1, ~ ). The former notation will, however, keep
clear the distinction between a vector

I 4) and its rep-
resentations (4 &"i»...„„,N=O, 1, ~ }'~ '"' in terms of
the basic in or out states.

k"'4'"&"i„,...„,...„„(k)=0, VN, Vi

must imply

q»4«'&"i (g) =0 Vm Vi

(39)

(40)

25 See: J. M. Jauch and F. RohrHch, The Theory of Phoiows and
ElectrorIs (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1959), p. 85.

This equation is essentially a transcription of an ana-
logous equation derived by requiring gauge invariance. "

The equality K'j„=3.",„t could also have been anti-
cipated from the beginning. It means that the charac-
terization of the space of transversal photons is inde-
pendent of the basis, in or out. The same result would
be obtained by describing the electromagnetic 6eld by
means of Ii„„instead of 2„.In this case, one may choose
K'; as the whole Hilbert space (K'; is left invariant
by I' „,) and therefore K'; '=K', „r,. From now on we
may talk of 3."without specifying in or out.

Condition (38) may be transcribed into explicit con-
ditions on the elements of the S matrix. In fact, the in-
variance of 3." under the transformations induced by
the S matrix means that the equation
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and vice versa. Here 4'"'»...„ is obtained from 4 ' „,...„„
by means of the S transformation, Eq. (34). Thus Eq.
(39) must imply

longitudinal photon in the in-vector, at least one longi-
tudinal photon must also appear in the out-vector, i.e.,
if

q" g J' S„... ,
.„,...„„(q,k)C'" " „,...„„(k)=0. it must be

C vl ~ ~ vn(k) kvlC yl v

:vl vj vvi 01 if'

must yield

qoiS„,...„„.. .„(q,k)C' &"&„,...„„(k)=0.
This gives

q 'S„,...„„...„,(q,k) —Q & „,...„„.„,...„„(q,k)k„. (41)
perm.

Conversely, by requiring that Eq. (40) must imply Eq.
(39), one obtains in a similar way

Svl. "vn ol' oyv(kvq)q~ n'l 2 kyle v2 vn. o2 oyv(klq) 1~ ~

perm.

where

S„,.. .„„,.„,...„(k,q) =—(e'"„,...„„(k)~

e'"'„,...„(q))
=(S„,...„„,„,...„(q,k))* .

The problem of eliminating any contribution by the
longitudinal photons is slightly more complicated.

The amplitudes for physical processes are given as
quantities of direct physical meaning. They will be de-
scribed in terms of scalar products of physical states,
i.e., elements of BC'/K". The probability amplitude for
the transition i —2 f will be described by

((ou2 (in.) (Spin (in.) (42)

where (r, $; are the classes corresponding to the initial
and final states, respectively. Equation (42) defines an
operator S in K';„/3C";„.We want to know under which
conditions S may be regarded as induced by a linear
operator S de6ned on 3C';„; and conversely which are
the conditions on S in order that S should be "com-
patible" with S. (See Sec. IV, Definition 3).The answer
is provided by Theorem 4 of the previous section:

SBC"; ~BC"; . (43)

In an explicit form Eq. (43) implies that if there is a

This must be true for any vector whose components
satisfy Eq. (39). In particular it must be true if the
vector has only one component, say C'"'"'.. .„(k).
Moreover the k dependence of C 'nin&„, ...„„(k)is to a large
extent arbitrary, since we may multiply 4'"'"' by an
arbitrary function of k. Thus, Eqs. (39) and (40) imply
that

Jhl"'Jhre M J ~ Jhl"'Ihrng vl"'vn vl" 'va

~out
g Jhl ~ o'2 "naris '

perm.

This yields

Sol"'nvn vl"'vn(qvk)k 2 qolS Il2"'ovn'v211vn(qvk) '
perm.

This condition guarantees that longitudinal photons
are not created out of physical states and that the two
subspaces K";„and 3C",„t coincide. By combining this
result with the previous one, one may say that the
characterization of the subspace of physical photons in
the larger Hilbert space 3'. does not depend on the basis
in or out. The same conclusion would, of course, be
reached by working with only Ii „„, without in-
troducing A„.

The invariance of BC" can also be derived by requiring
the invariance of the S-matrix under the gauge trans-
formation"

C in ~ «T»Vl'''Vg ~ Vl ~ ~ ~ Vti, I ~VI~ V2 ~ ~ ~ Vg

The usual requirement is, however, stronger than
ours, because by invariance of the S operator we do not
mean that

(44)

but only that

/vlcc%&n
Q Ihl~ Pg" 'Pm~ vl ~ "Vn~ ~ v2 ~ ~ vn )

perm.

so that 8S does not contribute to physical processes.
This means that S may very well have a non-gauge-
invariant part in the sense of Eq. (44); the only impor-
tant thing is that S and S+8S coincide in the physical
subspace 3C'/3C".
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