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Bethe's Formula for Coulomb-Nuclear Interference*
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Approximations involved in the deduction of Bethe s formula for Coulomb-nuclear interference are re-
examined. Some corrections to the formula are obtained by improving the approximations. It is, however,
expected that these corrections are small.

'SING the semiclassical %IAMB approximation,
Bethe' deduced a formula for the small-angle

scattering of protons by a nucleus which takes into ac-
count the interference between Coulomb and nuclear
amplitudes. In recent years, the Bethe formula has been
extensively used by various experimental groups' —' to
evaluate the real part of the nuclear amplitude in the
forward direction. This real part of the amplitude is of
considerable physical importance, since it provides a
check on dispersion relations, ' indicates the possible
asymptotic behavior of the total cross section, v and
serves as a test for various theoretical models. ' Except
for the work of Soloviev, ' very little theoretical work
has been done since Bethe's on the Coulomb-nuclear
interference, as compared to the large amount of experi-
mental effort. "

In this paper we reexamine the approximations in-
volved in Bethe's formula and explore the possibility
of any signiicant corrections to it. This work has partly
been stimulated by the fact that the semiclassical %KB
result has recently been found to be exactly the same
as that of a completely relativistic impact-parameter
approach. "

The spin-independent elastic-scattering amplitude
in the relativistic impact-parameter description is given
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f(s,A) =ik bdb Jo(bA)$1 —e "'

fctv(s, A)=ik bdb Jo(bA)esc' "s $1 esa'tr "s j—(4)

fc(s,A) =ik bdb Jo(bA)$1 esc'«8 s&j —(5).
forcy involves both Coulomb and nuclear interactions,
while fc involves only the Coulomb interaction.

Bethe's formula is now based on the following two
approximations:

(a) In the amplitude fc~(s,A), Eq. (4), the Coulomb
phase shift can be considered as independent of b. The
reason is that because of the short range of the nuclear
interaction, this amplitude gets its main contribution
from small values of b, and for these values of b, the
Coulomb phase shift bc(s, b) does not vary appreciably.

(b) In the Coulomb amplitude fc(s,A), Eq. (5), the
phase shift can be taken as that due to two point char-
ges, neglecting the Qnite charge distributions of the
particles. This is based on the argument that for sma11

6, the main contribution to Coulomb scattering comes
from large values of b, for which the phase bc(s, b) is not
very much affected by the finite sizes of the pa, rticles.

Using the above approximations, we get

fctr(s, A) = es'»f~(s A)

where 6=2k sin-,'0, k being the c.m. momentum and 8
the c.m. scattering angle, and s is the square of the c.m.
energy. 8(s,b) is related to the complex, energy-depen-
dent "potentia, l" V(s,r) by

1 " V(s,r)rdr
8(s,b) = —— (2)

2k o (r' —b')'"

Since we are dealing with the scattering of protons by
another charged particle, there are two potentials in-
volved, namely, the Coulomb potential Vc(s,r) and
the nuclear (or strong-interaction) potential VN(s, r).
Correspondingly, we have 8(s,b) = bc(s,b)+btv(s, b) The.
scattering amplitude (1) can now be written as

f(s,A) =f (s,A)+f (s,A),
where
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where g~ is the average nuclear Coulomb phase shift,
and f/v(s, A) is the pure nuclear amplitude given by

f~(s, Is.)=ik bdb Je(bh)I 1—est'/v&' '&j. (7)

Further,

where )=Ze'/t/r, (t/I, ——lab velocity of the incident par-
ticle), and rto rte

———$ ln sin-,'0 is the pure Coulomb phase
shift; here qe

——argI'(1+i)) and c= ts= 1.The differential
cross section for small values of 6 now takes the form

where (=Ze'/t/r„as given before. Putting this into Eq.
(2), we get

oo(s,b) = PE—//(tt(b'+P') "');

Ee(s) is the modified Bessel function of the second, kind.
The Coulomb scattering amplitude is now obtained
from Eqs. (5) and (11).To do the integration involved
we replace Je(bIi) by —', I Hei" (bA)+Ho&" (bh) $, and then
take the integral containing Hoi'&(bA) along the positive
imaginary axis and that conta, ining Hs"'(bA) along the
negative imaginary axis in the complex b plane. "The
6nal result is

ciao 2k) 2——If(s A) Is= es'f~o "~'+f~(s 6)
dQ

which is Bethe's formula.
We now want to examine the approximations in-

volved in the deduction of the above formula. Let us
begin with the Coulomb amplitude first, both because
of its fami1.arity and because it brings out the usefulness
of the impact-parameter description. To calculate
bc(s, b), we have to know the Coulomb potential Vo(s,r).
Since the integral in (2) has to converge, we need a
screened Coulomb 6eld. Further, it has been pointed
out" that in this formalism the potential has to be less
singular than 1/r at r =0. We therefore have to smooth
out the Coulomb potential at the origin. The above two
considerations can be put together by taking the radial
dependence of Vo(s,r) as (expL —ts(r'+P')'t'1)/
(r'+P')'". In the limit /~0, we obtain the usual
screened. Coulomb f'ield. The limit P —+ 0 corresponds to
treating the particles as point charges. " As regards
the energy dependence of Vc(s,r), we find that the
relativistic impact-parameter description" does not
indicate what it should be, and we need additional
physical information for it. We assume it to be such that
the corresponding s dependence of 5o(s,b) is 1/t/I. , that
is, the same as Bethe's. "Thus, the potential 6nally
takes the form'4

'~ This can be seen in the following way. I'or details see Ref.11.
Let us assume that the above potential occurs because the two
particles involved in the scattering have finite charge distributions
and that these distributions interact with each other through a
screened Coulomb potential. If F/(A') and Fs(rs') are the form
factors of the particles, then the Born amplitude becomes F/(rss)
XFe(A')/(A'+/a'). On the other hand, the Born amplitude calcu-
lated directly from the potential is PE&/LP(A'+/s') '"j/(A'+//, ')'".
Therefore, we have

F~ (+2)Fs (Q2) —P (A2+t/2) 1/2jf/ LP (+2+//2) 1/2j
Now, limit P —+ 0, F~(A')Fs(A') =1; that is, the particles behave
as point charges in this limit."As we shall see later, this energy dependence is also in agree-
ment with the relativistic calculation of Soloviev on the Coulomb
phase.

'4In the nonrelativistic limit, the factor 2k( becomes 2mZe'
(m =reduced mass) as it should. We note that when the incident
particle and the target particle have similar charges, ( should be
positive, corresponding to the fact that the potential is repulsive.
If they have opposite charges, P should be replaced by —g.

2k
fc(s,S)=

7l p

)&sinhLsr&Jp(z)fe'r&r«'& ddt, (12)

where s=ts(t' —P')'t' and Fe(s) is the Bessel function
of the second kind. Because of the oscillations of the
Bessel functions in (12), the main contribution should
come from small values of s. Correspondingly, we can
use the approximations Ve(s) = (2/sr) Lln-,'s+y j and
Jo(s) =1;y is the Euler's constant (y =0.577). Integra-
gration of (12) can then be done analytically" and the
result is

fo(s,Ii) = (k/~) (—2'/~)'+" P(1+st)&r+'t(PA)»nh(~&)
)&expL2i)(ln-', tu+y) ). (13)

F«6~0, Et+,((PA)=-,'1'(1+i&)(2/PA)'+'& so that
Eq. (13) becomes

fo(s,A) =—(2k//LV)exp 2i{)I ln(ta/8)+y)+rte}. (14)

We notice that apart froin a phase, (14) is exactly the
Coulomb amplitude from the Schrodinger equation. '7

Putting rts= —&y, we find that the phase in (14) is the
same infrared phase factor obtained by Soloviev" for
6 small. In the nonrelativistic limit it goes to the well-
known divergent phase of the Coulomb amplitude. "
It is worth noticing that in arriving at (14), we used
PA smaD but not P —&0, i.e., we did not consider the
particles as point charges. Thus, approximation (b) in
the deduction of Bethe's formula has been bypassed.

Let us now examine the Coulomb-nuclear amplitude
fc/r(s, A), Eq. (4), together with 8o(s,b) given by (11).
For this amplitude, only small values of b are important,
so that we may take
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Using this in (4),

where

2k)
e» bo vx)'+ f-&(& g)

Q2
(18)

tie = tie
—$ ln sin-,'0 and iliv ——$ lnkP. (19)

Equation (18) is exactly Bethe's formula. However, (19)
indicates that some small numerical difference with
Bethe's calculation can occur. Bethe' gives gg —g~
=$ ln(1.06/ka8), where a is a parameter, while from
(19) we find tie tlN = $ 1n—(1.123/kP8). "

Let us next see what correction occurs if the b de-
pendence of the Coulomb phase in (16) is not completely
neglected. To this end, we expand the logarithm in

(16) and keep the first term. In order to carry out the
integration, some knowledge of the nuclear phase shift
b&(s,b) is needed. For this purpose, we can safely
assume"

1—e"'N' '& = Ce '"i~' (C complex), ~(20)

when s is large and we are interested in small h. The
amplitude fg~(s, D) now takes the form

i$ ——1 (2 iP —i

f,„(.,S)= ,'tkc ———-exp —x'a'I ———
I

R2 P2 psi

+»&Dna~ p+Vj (»)

Bethe's parameter e and our parameter P are physically
similar. They are connected with the 6nite sizes of the particles.
To see how they compare with each other, let us examine the Born
amplitude, which in Bethe's case is —2k& exp( —u'6'/4)/6' and
in our case is —2k&phK1(pd)/6' (when the limit p —+ 0 is taken).
The form factors exp( —a'A~/4) and pAKl (ph) are both equal to 1
at 6=0. lf we consider that both the form factors fall to a value
t/e at the same value of a, we get p= 0.83u.

fo~(s, D) =ik bdb Js(bh)e*& '"&t+"+'&

0
es~ &~(~', &))e»tHa(~sls)+vi (16)

If now approximation (a) is made, i,e., the fi dependence
of the Coulomb phase shift in (16) is neglected, then we

get
fo~(s, D) =f~(s,D) e"&t'"t» "&+» (17)

where fN(s, h) is given by (7). Combining (14) and (17)
we have

On the other hand, the parametrization (20) gives the
following expression for the pure nuclear amplitude:

f~(s,d,) = ,'ikC—R'e-"'a'i'. (22)

do 2k/ iR'f- '
e"t"o ""'+f~(s 6) 1+ — . (24)

dQ 2 '

The quantity that occurs in the square bracket is the
correction that we have obtained to Bethe's formula
(18).This correction adds a term —Imf~(s, 0)R'$/2ps to
the real part of the forward nuclear amplitude, However,
since p' and R' should be of the same order of magni-
tude, and $ is small ($=Z/137), the correction to p-p
and s.-p scattering is not very significant, though for
proton-nucleus scattering it may add up to a few percent
in the measurement of Re f(s,0)/Im f(s,0).

Summarizing, we find that Bethe's formula (18) is
much more accurate than the original approximations
involved would suggest. %e have noticed that keeping
finite charge distributions of the particles does not alter
the Coulomb contribution. (The only requirement is
that PD should be small. ) Further, when the fi depen-
dence of the Coulomb amplitude is not completely
neglected in the Coulomb-nuclear part, the correction
that comes in is also small. Finally, the nuclear ampli-
tude that occurs in Bethe's formula (18) and in our
formula (24) is the pure strong-interaction amplitude,
in contrast to the nuclear amplitude occurring in
Soloviev's formula, ' which contains Gnite radiative
col l ectlons.
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The parameter R can be easily identified as the optical-
model radius. Neglecting $' and 6'$ terms, we obtain
from (21) and (22),

R'P
fez(s, D) = fz(s, h)~ 1+i ~e"&t' »t'+», (23)

2p&i

so that the differential cross section in the near-forward
direction in the c.m. system becomes


