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An analysis of current-algebra methods of deriving broken SU(3) sum rules for three-point coupling
constants initiated in a previous paper is expanded and concluded. It is shown quite definitely that current
algebra does not intrinsically provide more information than is present in conventional group-theoretical
derivations. In so doing, we rederive broken SU (3) sum rules for both strong- and weak-interaction coupling
constants. In addition consistency conditions in the form of iirst order, broken SU(3) sum rules for partially
conserved axial-vector current and partially conserved tensor current proportionality constants are found.

baryons and pseudoscalar mesons. Once again we obtain
the same broken SU(3) sum rules derived previously'
by a group-theory method. One of these sum rules can
be tested from experiment and the agreement is
excellent. '

Finally, we consider weak. -interaction coupling con-
stants in Sec. V with the usual agreement with the
group-theory derivation. ' In Sec. IV and V very slight
modifications of our general method are required and
these are described in detail.

Our final conclusions and a summary of our results
are presented in Sec. VI.

I. IgTRODUCTION

'"N a previous paper' )hereafter referred to as (I)j,i. we derived a current-algebra method for obtaining
broken SU(3) sum rules for form factors. The method
was illustrated by a derivation of the Muraskin-
Glashow' sum rules for spin--,'+-baryon —pseudoscalar-
meson coupling constants. This, of course, conflicted
with the results of an independent current-algebra
derivation' of broken SU(3) coupling constant sum

rules and we attempted to resolve and explain this
difference.

In the present paper, we extend and conclude the
analysis described in I. The explanation of the differ-

ences involved between our approach and that of Ref. 3
is given in detail in Sec. II.This is followed by a deriva-
tion in Sec. III of broken SU(3) sum rules for couplings
involving vector mesons. We use partial conservation
of both axial-vector currents and tensor currents
(PCAC and PCTC) in our analysis, and in so doing,
Gnd sum rules to first order in the symmetry breaking
for the PCAC and PCTC proportionality constants. It
is also found that the vector-meson coupling constants
satisfy the same broken SU(3) sum rules that were

derived by conventional group-theory techniques. '
Moreover, this latter result follows without having the
meson source densities (currents) forming part or all

of a closed algebra with the SU(3) generators Las
assumed in (I)j but from commutators' of the gene-

rators with axial-vector and tensor currents along with

PCAC and PCTC.
In Sec. IV we consider the coupling constants of the

~ ~ ]spin-~3+ baryon decuplet with the octets of spin-2

II. THREE-POINT FUNCTIONS AND
BROKEN SYMMETRY

In the approach used by Bose and Hara' to derive
coupling constant sum rules, it is assumed that all the
first-order breaking effects are confined to the matrix
element (Bs,sr~~He. s. ~Br), where H, .b. =ht7)sq is the
symmetry-breaking part of the Hamiltonian. Sy citing
a particular example, we showed in I that this approach
is equivalent to saturating a commutator with octet
single-particle states. The situation thus appears very
similar to using a quark model and, in fact, Eberle' has
recently shown that both the quark. model and the
method of Ref. 3 are equivalent, from a perturbation-
theory point of view, to assuming that the breaking is
due only to graphs such as the one' in Fig. 1. In a
quark. -model approach' this is, of course, unavoidable.
However, we shall show, using the method derived in
I, that the additional breaking terms present in a group
theory derivation should also be present in the type of
approach used in Ref. 3. We start by considering the
matrix element
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8Ro KEN GYM jvf ETRE sUM RULES

where Q& ' is the nth SU(3) generator and Ss is the
SU(3) preserving part of the S matrix. Fallowing the
method of I, we find the dispersion sum rule

(B„,XI );B„'

/ 8 8 8.~
I
rs- g~~."(~')4EB„n Bs

/8 8 8.q
+v3I IXre-™gon-"(~')3-s

n w~l

(8}

Fro. 1.The basic graph which contributes to the 5U(3) break-
ing in the quark, Bose and Hara (see Ref. 3) models.

/8 8 8.—vs~ re'1 gB2B~' (~ )

1 ImAg, n, e(v', 6')dv'
=0, (1)

where g~,~,~ is the contribution to the B~B2a~ coupling
constant from So and ImAg, ~, I' is the coefficient of ug,
ys Ng, in the expansion fi (27r)43(pt p,)T—o=1—So),

A (v' k t)s= 'i(2m-. )4+((Bs)7r~~ D&"& (0)
~
rt)

X(.
I
T.IB.)3(p.+~-P-)

—(B„weir, ll)&~ IDt-1(0)
I
B,)

»(p'-~-p-)}. (2)

It should be noted that the integrand in (1) is at least
of order X, since all zeroth-order contributions have been
explicitly extracted as pole terms and are contained in
the sum of residues.

Again following the analysis and notation of (I), we
see that ImA~, ~, t' is analogous to a sum of amplitudes
for the "reactions"

B,yb~B,+we+i. , ({8}~ {8}X{8}X{8}),
and (3)

Br+I ~Bs+rre+(o, ({8}X{8}~ {8}X{8}),
respectively, where $s is a "scalar particle" correspond-

ing to To. Using this analogy by expanding the con-
tinuum contribution into the SU(3) amplitudes indi-
cated by (3), one 6nds all the breaking termsr which
were previously overlooked through the assumption'
that g&,&,~ is de6ned only by its SU(3)-symmetry-limit
value. In particular, by virtue of the {8}X{8}-+
{8}X{8}amplitude one obtains an expansion of the
continuum in terms of five parameters exactly analog-
ous to that obtained in I in rederiving the Muraskin-
Glashow sum rules.

In summary, then, we have found that the matrix
elements of $0 are subject to renormalization by the
symmetry breaking interaction and that their con-
tributions g~,~,t' to the strong-interaction coupling
constants satisfy broken SU(3) sum rules determined

by the SU(3) properties of the continuum contribution
to (1).

We should note, however, that if we take single-

particle matrix elements of any operator which is a

linear combination of singlet and octet operators,
Js+XJs say, then the matrix elements of the singlet
part can be assumed to attain only their symmetry
limit value. If we take the particular example of octet
single-particle states then we can apply the same
analysis as above to the quantities (Bs~ Js~ B&). In this
case the amplitudes in the continuum have the form
{8}-+ {8}X {8} and {8}X{8}—+ {8}.Thus these
matrix elements will satisfy the same sum rule as

(Bs ~ ) Js~ B&) and so can be ignored in sum-rule deriva-
tions such as the Gell-Mann —Okubo mass formulas" for
which Js+) Js is the mass operator. Another such
example will be given below in which the same sum rule
as that derived by the Bose and Hara method is found
for the singlet vector-meson coupling constants.

IIL VECTOR-MESON COUPLlNG CONSTANTS

In deriving broken SU(3) sum rules for the baryon-
pseudoscalar-meson coupling constants in I we con-
sidered both the case in which the meson source density
J &~& transformed like an 8-vector even when SU(3) is
broken" and the case involving not J & & but rather, the
axial-vector current A„& & with the PCAC hypothesis
used to obtain the meson fields. However, vector-meson
source currents would appear to admit only one such
possibility since there exist arguments" opposing an
assumption that they transform like an 8-vector in the
presence of symmetry-breaking interactions. We are led
then to make the hypothesis of a partially conserved
tensor current" (PCTC)

B„J„„&&(x)=IS y„&al(x),

where Q„& «(x) is the nth vector-meson 6eld, E is a
proportionality constant, and J„„&~&(x) is an anti-
symmetric tensor current defined in terms of quark

This method of deriving the mass formulas can be found, for
example, in Riazuddin and K. T. Mahanthappa, Phys. Rev. 147,
972 (1966)."J &~& forms part or all oi a closed algebra with the SU(3)
generators, Q(1 ).

"Experimentally, an immediate example of such an argument
is au —p mixing. Theoretically, W. Kr61ikowski /Trieste Inter-
national Center Report No. IC/66/7 (unpublished)g has shown
that J„& & (which is rigorously conserved) cannot be the source of
generators of unitary transformations between particles of
diGerent masses, thus excluding the typical quark-model analogy
tIv. (~'/2) 0"W. Kr61ikowski, Trieste International Center Report No.
IC/66/IS (unpublished); S. Fubini et ol. , Ref. (4).
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6elds by

In analogy with the PCAC case of I, we sha}1 require
the commutator

scalar-meson states. Since the use of boson rather than
fermion states introduces no additional complications,
the method described in I is directly applicable and
yields the sum rules":

+3G,go "—2Ggogal" 3—Gxa, ax'*+G + +p' —0 (7)

8 8 8.i
pQ& & J,&&')(x)7= —v3 IJ„„& '(x) (5) Ex*

'go "+ (G+ ~ '—Gg;, o ')
1S~e

where the Q& & are the SU(3) generators as defined in
(I). Taking the divergence of this commutator, we
obtain

LQ(a) J (&&)g+[Q(~) () J (P)( )x]

/8 8 8.)
IB„J„,&» (x) . (6)

(n p

Matrix elements of the first commutator on the left-hand.
side of (6) are of at least order X and have the same
SU(3) properties as the continuum contribution to the
corresponding matrix elements of the second commu-
tator. '4 Thus, its contribution is removed at the same
time as that of the continuum and so we can ignore it in
all further considerations.

In the derivation of vector-meson —pseudoscalar-
meson coupling constant (VPP and VVP) sum rules
either PCTC or PCAC may be used. These sum rules
should therefore test the consistency of the two hy-
potheses and so we shall consider them first.

For VPP couplings we require the matrix elements

"(~;P I J."'I ';P ) ='PsG:.~(~')

(V; pl&EI JI ~ l)r" i P2)= ~ P2Gva. p(6 ) i

++8
gogo s-0 (8)

2
mt() 8

It is important to realize at this point that the propor-
tionality constants K /m„' attain a universal value
independent of (& in the SU(3) limit. When the sym-
metry is broken, the constants deviate from this
universal value to first order in X. Thus, since +3G„gox'*
=3Gxo "and G — +"=2Ggogo" in the SU(3) limit, the
E /m ' were cancelled out in (7) to first order in X.
However, similar SU(3) limit combinations do not
occur in (8) and so, in this case, the proportionality
constants cannot be removed. This procedure also
applies to the PCAC constants obtained below.

If we now derive the same sum rules using PCAC by
taking matrix elements of the equation'

(8 8 8.q
l~,~,("(x) (9)

ku p pj""
between a vector-meson state and a pseudoscalar-
meson state we obtain relation (7) again and a simplified
version of (8):

p8 8
=v3I Iir() (m '—m, '),

E,p p n l
+3Grc~go"8 4G ogox'*+G—gogo" G+ +"=0. —(10)

Since we must maintain consistency to erst order in X,
we therefore obtain, in addition to the coupling-con-
stant sum rules (10) and (7), a first-order sum rule for
the PCTC constants which is of the same form as the
Gell-Mann —Okubo mass formula:

(V .p, , ID((nlVv p, ,&„)

i'8 8 8.)
Iirv~(mv mv&')& p'

k~ p n& E„, EP E~*
+ —4 -=0.

SZg)8 mP SS++2 2 2

Finally, we note that (7) and (10) are the same as the
Muraskin-Glashow sum rules for these coupling con-
stants, although, because of the use of PCTC and
PCAC, all the coupling constants are evaluated off the
mass shell at 62=0.

~~ Ne should note at this point that if we assumed

(Q() J„t))i=—+( )J ( )
j'This is most easily seen if we assume B,.b. =XS8 so that

,j(o ~ i),g(6) ~(id [Q(o,jo„V&g 0: iX[S('~,Joi('~]—= —2''(i, V ( &,

p (k) q+ (Z(I(:)/2)q
we would directly obtain the same sum rules as Muraskin and
Glashow.

where D&&&(x) is the divergence of the unitary spin
vector current, J„(@(x)is the source current of the pth
vector meson and G i&'=G ay'. We note that if a
phenomenological Hamiltonian is written for the VPP
interaction and charge conjugation invariance is
invoked then one finds' that G ~,P (6') must be com-
pletely antisymmetric I i.e., pure F coupling in the
SU(3) linut].

We now take matrix elements of (6) between pseudo-
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To obtain sum rules for VVI' coupling constants, we
take matrix elements of (9) between vector-meson
states. Using the matrix element

GV'F~ (LS)eyuks~SPvSXpsn~ ~y ply psp1

and the same analysis as before, we obtain'

+3G„sgss '—+3G,s„s~'—2Ggxssss~' —Gxs», sx' ——0, (12)

~3Gxssxsss —3+3G„s„ss—+3Gsssss

It is now a simple task to derive the baryon-vector-
meson coupling-constant sum rules. We start by de6ning
the matrix element

(~s,psl ~."I ~r,pr)

( (ssss —ms))
=ss(P~) Gss Js "(~')I v.-—~.

g2

+Gsa, rs, ' '(&s)o„,h, N(Ps).

+12Gx"x '+by 3G,

C, C
(G 0 ss Gxssxsss) — GxssxsgP P

2
ms' mg

+3G&'&' s +3G—NN s G&N—s

+4Gzrssx" —Gg+s+s'= 0, (19)
Cz

+4 Gxs,,s&s =Q (14)
mIis' +3Gsopo"s +3G—s o"s -„G-„o—ss-„-„

+4Gzsmsx" +Gg+s+&'=0, (20)and

(13)
We now take matrix elements of (6) between baryon
states and with the aid of PCTC, relation (11) and our
usual analysis we 6nd'~

and)
3G„,„,s—4G,gs* '+G„„-+=0. (17)

We therefore have the four coupling-constant sum rules
(12), (13), (16), and (17) and, from consistency, the
6rst-order "Gell-Mann —Okubo" sum rule for the PCAC
constants

3 (Cs/sss ')+ (C,/m ')—4(Cx/mx') =0. (18)

We note that once again we have derived the same sum
rules as those of Muraskin and Glashow. Further, we
note that (17) is the same as the corresponding sum
rule derived by the Bose and Hara method. ' This
confirms our analysis in Sec. II. In addition, relation
(18) permits us to return to the analysis of the baryon-
pseudoscalar-meson couplings in (I), extending our
results derived under the assumption of PCAC to
obtain just the 6ve Muraskin-Glashow sum rules rather
than only three as stated in I.

C, CK C
3 G,„,s—4 G„,gs*x'+ G„„-~+=0, (15)

m m~ m.2
"

where C is the PCAC constant of proportionality.
However, we can also obtain these sum rules by taking
matrix elements of (6) between a vector-meson state
and a pseudoscalar-meson state and using PCTC. This
procedure leads to the following sum rules in place of
(14) and (15):
+3G&oss& *

+3G&ssp —2—Grr ssxos

+Gxss o& —2G ago& =Q
or

+3Ggssgoss —+3G o ss —4G ogss& +Ggosgss =Q, (16)

3Ggg" s—2G~~"s—2G-. s-. o"s+Gs+s+"s= 0. (24)

Finally, we note that all the sum rules involving an
+& or +8 coupling constant can be rewritten in terms of
the physical so and P mesons by taking's

ss= (/3)s08+ ("/s)osl and 4 = —(Qs')oss+ (gs)es, .

IV. SUM RULES FOR BARYON DECUPLET
COUPLINGS TO THE BARYON

AND MESON OCTETS

Our analysis is also easily applicable, with a few small
modincations, to the coupling constants of the J"=~+
baryon decuplet to the J"= ~+ baryon octet and pseudo-
scalar-meson octet.

We must take matrix elements of (9) between an
octet 8 state and a decuplet 8*state. We thus require
the matrix elements

&~.*,p I ~ s'I~.,p.)=G.:..s(~)-.(p )~:(P.),
(~s*,psID" I

~s*,ps)

(10 8 10~= (v'6)I, , Is(ssss*—~s*)»* ss„(ps)ss„(ps),

3+3Gz'zs"s —3/3G~~"s+4Gww"+4G=-o=s"
+8G~ssx +8Gvo-. ox"+6+3GsJ&'=0, (21)

+3GN sx'*—+3G~sg&' —2G~N&'+ G~sox'*
—

2Gz sos""—Gs+s+&'= 0 (22)

+3Gg„=s —+3Gssg —2G=o„--s —2G~s s

+Gso=ox'*+G„r, &'=0, (23)
and

"These coupling constants are completely symmetric (D-type "We consider only G&p», ( &. Sum rules for G~,~,&«& folio~
coupling) as can again be seen from a phenomenological analogously.
Hamiltonian. "S. Okubo, Phys. Letters 5, 165 (1963).
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&&i,pil D"
I fl~ P~&

t8 8 8.
=v3j i(mi m—,)r ~(pi)N(p2)

Q, ma,

Gi,*-z-"+2G-.*-.o"—Gg~g"+V 3Gr;1~'= 0, (30)

2+3G„=~"-0"—2+3Gr,~-z-"+3Gy*zx' —6Gr,*=-ox'= 0,
(31)

y'6Go-g- —6Gr,*y +3G-.o zo +3+3Ga~1 '=0,
(29)

(32)

where use was made of (17) in relation (26). These sum
rules are the same as those obtained by Gupta and
Singh' by a conventional group theory approach. The
one testable sum rule (30) agrees with experiment very
well.

v P+m'P~p~ P~» P~»'-&
A„„= g„„—»p—„—2 +

2m 3m' 3m )

7ro

Since the projection operator for the Rarita-Schwinger G="'*z' +2Gri* z-'+G»&'*z

spin ~3 field is

it is easily determined that our initial dispersive sum
rule is

&n,e,A~'

( 10 8 10' C»
(v'6)j

J3,*i mp'

(8 8 8 ) Cp—v3j I& x a,*a.'
(82 e 8„.) mp'

1. glnAzgez2 (v )dp

~8 8 8.y C,
(»)

P p)m, '

We can now apply the same analysis as used in I to get,

rid of the continuum contribution. We must note,
however, that in this case there need not exist simple

relations between the s- and I-type "amplitudes" but
this does not add any additional complications. A,ll the
sum rules may be obtained, for example, from the
commutators [Q(+'), A„(x')g= —',A„( "—-',+3A„(»,

[Q«'& A (»)=-'g3A «'&

and
[Q(zo) A (1ro)]— 1A ()ro)

)

We find the following relations

3G ~a~ '+3+3Ga~g &—+6G()-g-~' —6Grpzo~'=0, (26)

3GN~~"—2+3Gi +e'—6Gr &»& '+2+3G=.»~ '= 0, (27)

+6G(& = ~'+6G=*z ~'+3Gnr*z~' 6&" '~'=o —(28)

where ImA», ~z, » is the coefficient of u„(pi)&„s(P2) in

the expansion

Cp
A (~') =z~(2~)'Z, [(&i'ID"(o) I +&

tlap

x &~l J.(»(0) la, &s(p,+e—p.)
—&~i*iJ-"'(0)I~&&NID" (o) Ifln&

x~(p, —&—p.)j.

J„=cosHJ„( +&+sin8 J„(x+),

where J (~) = V ( )+A (~) V '
gy (V'/2)q, and A„'

I7»y5(X'/2) q. The angle 0 is assumed to have nothing
to do with the strong interactions and hence all re-
normalization due to SU(3) breaking will involve the
current V„& ) and A„&"' only.

The derivation of the sum rules for the axial-vector
coupling constants is quite trivial and has, in fact, been
done implicitly in this paper and in I. We need only
consider the commutators

[Q(&') A (&r )g —0
and

[QR'0) A (+)j

from which we obtain via the usual analysis

+3gr& "&/3gz'& +—+2grx gr z'—
+2gz'=- "+gz'z'"=0, (33)

V3gz"& +V2gR'z +2grz'
gz'& —gz+z' =0. (34)

One should note the similarity between these relations
and the relations (9) and (10) of paper (I).

In order to derive the second-order sum rules for the
vector coupling constants we shall require some
modifications to our usual analysis.

We consider the commutator

LQ'" ', Vp' "j= 2Vp'" 2v'3—Vp'"'—(35)

Since V„( ' is the current corresponding to Q("&, the
currents V„& '& and V„«) carry conserved quantum

'9
¹ Cabibbo, Phys. Rev. I etters 10, 531 (1963).

V. WEAK-INTERACTION COUPLING
CONSTANTS

As a final application of our analysis, we shall
consider the leptonic weak-interaction coupling con-
stants. In Cabibbo's theory" of leptonic decays, the
weak hadron current is written as
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where Gt»,»,& & (0)=g»,s,~, nst&nts, we easily derive the
relation

En X- ~,&&, It+ n&

8 8,) 8 8 8,)
Ign J&o gJ&o~~&, Z- n'f n' It+ Bi&

1 ImA&&i&&o (p )0)A

8 S.q )8 8 S.q
&- z+ &)%, 7 a,t'

where Az,z,x x+(&',6') is the coeKcient of ui y„u in
the expansion

A(p'g)=sti(2z)4+ j(BiID& &In)

x (nI J &x+& IBs)8(pi p+k)—
—(BtI J„& '&In)(nID& I&B )s

xs(p„—p,+k)}.
Once again we can draw the analogy between the con-
tinuum contribution and the sum of "s- and I-channel
amplitudes". However, since CJ„( )C '= —J„& ), where
C is the charge conjugation operator, "we must replace
the relations between A and A;" in (I) by A = —A;"
for i=27, 8„8, 10, 10 and 1. Thus taking matrix
elements of (35) between I' states and states, we find

3gs=- +gz'z —3gzx —
g& zo =0, (37)

which is the only independent sum rule. Since, however,

gz, rr, 1+ge,e,' where g»,z——,' ——O(X'), we can write

g»,»,'=1+2gz,z,' and so derive the second-order sum
rule

3g +gzoy —3gp~ gonzo
=0.

Finally, if we redefine our coupling constant to be

p 8 8 S.y
Ig&&r&&o

K+ Bi)

(38)

"Note all our pseudoparticle sources were such that CS( )C '
=S& ~), i.e., self-conjugate octets.

numbers. Using the matrix element

~8 8 Sq
(~t,pi I ~.& &

I
~.,p.)='v'3I

2 &z +1

X(G,...,&-&(~ )~„+G,...,&-&(~ )(p,—p,)„
+Gee»o" (~')~"(Pi—Ps) )»

we 6nd

V'3(Gsz-v+&s~)+Gzo=-v+Gzz ~=0. (39)
We note once again that (39), (34), and (33) are the
same as the corresponding sum rules derived by
Kawarabayashi and %ada' by the conventional group-
theory technique.

VI. CONCLUSION

We have performed a reasonably complete analysis
of the derivation of broken SU(3) sum rules for three-
point vertex functions using current algebra. Our one
over-all conclusion must be that the current-algebra
method is completely consistent with the various group
theory methods. We must then ask what are the added
virtues associated with our method since in some cases
it is actually less tedious to use the alternative methods
of group theory. The answer to this question is twofold:
(1)The current-algebra approach appears more physical
in the sense that we do not require such entities as
symmetry-breaking spurions nor do we require our
meson 6elds to transform like 8-vectors even in the
presence of symmetry breaking, and (2) It is possible,
given experimental justification, to calculate second- or
higher-order corrections" to the sum rules.

It is interesting to note our result that assuming that
both PCAC and PCTC are valid hypotheses then we
obtain the broken SU(3) sum rules (11) and (18) for
the proportionality constants. Writing C /m s= f, we
can restate (18) in the form:

3(C„/m„s)+y.—4y =0.
However, we know from experiment" that fJr/f = 1.21
and hence we 6nd

C„=1.28ns„sf .
Since f can be determined from the pion decay width
we thus have a measure of the q PCAC proportionality
constant. This has important implications for calcu-
lations depending on PCAC in which the proportionality
constants were previously assumed to be universal. "

One can test the sum rules in Sec. VI (in the absence
of good experimental data) with the calculations of
corrected weak-interaction coupling constants per-
formed by Calucci et al.ss In particular, relation (3/)
checks with their results to within 0.5% as we would
expect. Further, their calculations present an interesting
example to follow for determining higher-order cor-
rections to these sum rules and coincidentally (in the
case of the axial-vector sum rules) to the corresponding
sum rules for baryon-meson coupling constants.

~' See the comment on this point in I.
KI' For a particular example of such a calculation, see K. Raman,

Phys. Rev. 149, 1122 (1966).
28 G. Calucci, G. Denardo, and C. Rebbi, University of Trieste

Report, 1966 (unpublished) .


