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solution of (AS) is

f( x—)-e */-gx,

From (A1), (A3), (A4), and (A6), it follows that

(A6)

- L(-'~4)xl'"
f(x)=f(x)+f(—x)= 2Q, *»1. (A7)

(2n)!(4n)!

(g/2) ca

f(g) =—g, g»1.
V2 n=r 2srn(3n/e)'"

(A9)

In a simi)ar manner, the zeroth-order Bessel function
of imaginary argument can be written

(*/2)'" - (x/2)'"
I,(x)=P =P, x»1 (A10)

(n!)' ~=r 2srrt(n/e)s"

Since the main contribution to the sum for large x
comes from large e, we can use Stirling's formula

n!= (2 n)'"(n/e)"
to write

from which there follows

a Ers(x)+Io(e' 't'x)+I, (e"'t'x)j
(x/2)sa .

(1/es«"ts+e4r'"») x»1
n r2-srN (n/e)'"

(g/2) sn,

x»1.
o r 6srn(3rt/e)so

(A11)

there follows

f(x) =e*/(47rx)'~, x&&1. (A14)
"B.O. Pierce and R. M. Foster, 2 Short Table Of Ietegrals

(Ginn and Company, Boston, 1956), p. 94.

A comparison of (A9) and (A11) yields

f(x)= (1/V2) LIs(x)+Is(e'rt "x)+Is(e4r"'x)),
x» i. (A12)

Making use of the asymptotic expression for Is(x), 'r

Ip(x) = e*/(2srx)'ts g»1 (A13)
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We discuss the sum rule for the isovector anomalous magnetic moment of the nucleon Fsv(0) =1.85,
which is obtained from the current commutation relation e(xo)LAo+(x), A„(0)j=2V„'(x)e'(x) by use of
the covarjant method proposed by Fubini. We Gnd that (1) the sum rule cannot be evaluated without
explicit knowledge of one of the axial-vector-nucleon "scattering" amphtudes; (2) calculating the con-
tributions from the P33(1236) and D1d(1525) using a dispersion-pole model of the weak amplitude gives
only Fq '(0) =0.37, and (3) estimating the high-energy continuum contribution to the sum rule from Regge-
pole fits to xp charge-exchange scattering increases the result to Ft'(0)—1.0. It seems that the sum rule is
dominated by low- and high-energy continuum contributions, which must be more accurately known before
the validity of the sum rule ca.n be judged.

I. IgTRODUCTION

HE success of the Adler-Weisberger' sum rule for
g~' has led to several attempts" to generalize the

method and derive additional sum rules (or low-energy
theorems) involving the parameters of sr% scattering.
We have independently made such an attempt which
diQ'ers considerably from previous eGorts, and leads us

to a sum rule which can only be evaluated with the help
of a model for the weak axial-vector amplitudes, and
seems to be dominated by high-energy contributions.
The results of this calculation have already been
briefly described elsewhere. 4

Our principal result may be stated as a sum rule for
Fs"(0)=1.85, the isovector anomalous magnetic mo-
ment of the nucleon
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dp
s (0)= —f.'I!I —JmA -'(v)+—2Mgt, (0), (1)

71 yp P2

where 3E is the nucleon mass, f,=0.935m is the sr+
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decay constant, v =Moiz„where rpr, is the total labora-
tory energy of the pion, and A i-1 is half the difference
between the A amplitudes for s p forward scattering
and 7r+p forward scattering (extrapolated to zero pion
mass). The amplitude A ii(0) is one of the invariants in
the decomposition of the axial-vector —nucleon "scat-
tering" amplitude, and is defined in Sec. II. The tilde
over A ~~ refers to the fact that the nucleon pole term has
been extracted.

The derivation of Eq. (1) is described in Sec. II and
III. In addition to (1), we obtain a second sum rule,
which yields the original Adler-Weisberger sum rule
when combined with (1).In this combination the model-
dependent amplitude Air(0) cancels out. To obta, in
useful information from (1) requires a model. This is
discussed in Sec. IV, and will be seen to present inter-
esting difficulties.

High- energy contributions to the sum rule are
estimated in Sec. V. For this purpose a Regge-pole
model of m-cV scattering is employed. A summary and
conclusions can be found in Sec. VI.

PctOg
Cater

FIG. 1. Diagrammatic representation of the
amplitude T„„discussed in the text.

NtNs —d'x e' p's*
8( xp)

on the 0 function. The existence of seagull terms implies
the noncovariance of E„„+.This is directly related to the
existence of Schwinger terms in the equal-time commu-
tator of A„+ and A„.~

We now take the dot product of Eq. (4) with qp,
yielding

qssT„„+=qs"R„„++qs (seagull)

II. DERIVATIOÃ OF THE SUM RULE

Ke consider the covariant axial-vector —nucleon
scattering amplitude T„„+,defined as

X (p, I [Ap(x),A„*(0)7Ip, &

d4x e"s'8 (xp)

T„„+=iNiNs d4x e'« *X,8(xp') X &p, I[8 A„~(x),A„+(0)7Ip, &

+qs (seagull).
X (psI[W„'(x),Ap(0)7 I p, ), (2)

Using the equal-time commutation relation

(6)

where N~ and X~ are nucleon normalization factors, lV„
is an axial-vector field which mediates the weak
interactions, and A„ is the axial-vector current. We have +Schwinger terms, (7)
defined 8'„by Eq. (6) becomes

X.ry„+(x) =A„+(x).
This scattering amplitude is shown schematically in
Fig. 1.It corresponds to the scattering of (hypothetical)
W particles by nucleons. The superscripts + and-
refer to positive and negative charges, respectively.

The reason for starting with (2) is that we wish our
analysis to be completely covariant, and the covariance
of T„„is guaranteed by the covariance of the S matrix.

If we now operate on the integrand with X„we
obtain

T„p=R„p+"seagull terms, "
where

R„„+=sNiNs d'x e"s' 8(xp)

x&p I[A.+( ),A.+(0)7Ip & (5)

and the seagull terms are the extra noncovariant
polynomials in q~o resulting from the operation of X,

qssT„„+=—¹Ns d'x e'« *8( )x'p

&&(p I [8"A'(*),A, '(0)7I p &

~2¹N,&p, I
V„s(0) I p, &

—Schwinger+ qs (seagull) . (8)

We now use a theorem recently proved by Qrown, 6

which shows that the last two terms in (8) ca,ncel jf the
equal-time commutator between the axial current and
the W„6eld is no more singular than 5s(x). Qnhke
Keisberger, ' we must be careful with these terms since
we shall later take derivat. ives with respect to p (or,
equivalently, qsp). Assuming this cancellation, we
proceed to dot once more with q&', obtaining

LP= qssT„.+qi"= C++D+&2qi" V,s, (9)
' J. D. Bjorken, Phys. Rev. 148, 1467 (1966).' S. G. Brown, Phys. Rev. 158, 1444 (1967). See also D. G.

Boulware and L. S. Brown, Phys. Rev. 156, 1724 (1967).
W. I. Weisberger, Phys. Rev. 143, 81302 (1965).
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TABLE I. The tensor basis used in Eq. 14 of the text.

1 P„P„
2 P„Q„+P„Q„
3 P„a„+P„~„
4 P„y„+P„y„
5 Q.Q
6 Q„a„+Q„a„
& QwV. +Q.~w

8 a„a„
9 ~t Vv+~vVt

10 g„„
11 t y„,y, $
12 P„Q„—P,Q„
13 P„~„—P,~„
14 P„y.—P„p„
15 Q„a„—Q„a„
16 Q~v. —Q.vp,

1& ~„yv —Eve

1 P„P„Q
2 (P„-Q„+P„Q„)Q
3 (P„~„+P„~„)Q
4 L~.,QÃ, +Le„03'
5QQQ

'
6 (Q„a„+Q„a„)0
& b",KQ.+Le.,KQ.
8 z„a,„Q
9 E~„Qhn. +L~„03~.

10 g„,Q
i& b.,v.30
12 (P".'Q,'-P,Q.)Q

(P„w„—P„S„)Q
b",03~,—b„Q)&.I

&4 Lv.,03Q.—Lv. ,07Q.
&5 h„Olt. -E~„QP~.

where

C+= —iXilVp d'x e"2 *8(xp)

x(p, ll ~ A„'(*),A. (0)7lp ),

D+= iN iieet'p d4x e" '*8(xp)

x (p, I 9A„'(*),&"A.'(0)7I p ),
~.'=~.&.(P. I &,'(0)

I pi&. (10)

and similarly

= 2 (qp —qi)",
q2 ~2 g28
factors

for C and D. Here Q&=2(qi+qp)v, &"
P =-'(p, +pp)" and v=P. Q, t=4&',
Defining the isovector-nucleon form

Equation (9) is the basic equation from which the
sum rules are derived. If we restricted ourselves to
forward scattering, we would obtain only one relation,
the Adler-Weisberger result. However, if we consider
nonforward scattering, there are two independent
invariants, and hence two relations can be derived.

We decompose I, C, and D as follows:

=L-(p,)L L(., , t,q)q+~ QL.(,t,q', q')7 (p), (»)

The next step is to examine the functions I.l and L2.
Ke expand T„„in a complete tensor basis, 8„„:

17

2„„+=Q A;+(v, t,q', q')u(pp)8„„'u(pi)

+& B '(v t,q', q')&(Pp)~"'~(pi) (»»»)

=Z A'"(v, t,q'q')~(p )~.' (P )

+& B'"(v,t, q' q')&(P-)~"'~(pi) (B»i»1)
i~i (14)

The two choices of basis 8„,i are given in Table I. They
differ only in the choice of the tensor 8„„".Basis I refers
to the choice of 8„„"=(P„A„P,A„)Q a—nd .is the one
used in Ref. 4. Basis II (the primed basis) will refer to
the choice of 8„,"=tty. ,Q]P„—Pp„,Q7P„. In our subse-
quent discussion we will present equations for both the
A;, 8;, and the A, B .

The choice of tensor basis is important, and mislead-
ing results can be easily obtained with an inconvenient
choice. This question is discussed thoroughly in Appen-
dix A. Ke have chosen bases I and II above because
they are the only two bases which are entirely free of
kinematic singularities.

In terms of these bases, the L's become:

I.i—=I.i(v, 0,0,0) = vPA i(v, 0,0,0)+4vA ii(v, 0 0,0)
(Basis I)

= v'A i'(v, 0,0,0)+4vA ii'(v, 0,0,0)
—4v'Bip'(v, 0,0,0), (Basis II) (15a)

Lp=Lp(v, 0,0,0) = v2Bi(v, 0,0,0)—4M+ii(v, 0,0,0)
+2vA4(v, 0,0,0) (Basis I)

=v'Bi'(v, 0,0,0)—4M Q ii'(v, 0,0,0)
+2 vA 4'(v, 0,0,0)+4M v vBip'(v, 0,0,0),

(Basis II) (15b)

and hence (13) becomes (suppressing the v and t=qip
=qpP=O dependence and the & superscript)

Fpv t)
I'„, 12)

v'A i+4vA ii= Ci+Di& (2v/Mv)Fp, (Basis I) (16a)

Lp+ (v, t,q', q') = Cp+ (t)+Dp+(v, t.q', q')

&2(Fiv(t)+Fp" (t)). (13b) Following Weisberger, i a consideration of Eq. (16a)
to zeroth order in v yields the Adler self-consistency
condition if C1,=0. Since we shall take a derivative of

' We use the metric and y matrices of Bjorken and Drell. Also
Q=—& Q.

v'A i'+4vA ii'+4v'Bip'

we obtain the two relations =Ci+Di& (2v/M„)F p, (Basis II)
v'Bi —4MvA ii+2vA4

Li+ (v, t,q', q') = Ci+ (t)+Di+ (v, t,q', q') =C&+Dp&2(Fi+F,), (Basis I) (16b)
v'B ' 4M 4 '+2vA '+4M 8„—'

=Cp+D2a2(Fi+Fp). (Basis II)
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Eq. (16a), we need only Cz ——constant (i.e. independent
of v). We neglect C2.'

Keeping the neutron and proton masses unequal
M„&M„ it is reasonable to assume no poles in the A' s
and 8's at v=0. We then obtain the low-energy
theorems

4A»+(0) =
Dg+ 2F2~

v=0 ~y
(17a)

—4A»+(0) =Du+(0) 2 (Fgv+FP)
(Basis V) (17b)

M 3f

and two similar equations, with A»(0) ~ A~&'(0), for
Basis II. We have suppressed the arguments t=q'=0.

Finally, we state our results in a form independent of
the basis

ai.&+ ~Dc+

Lm+=Du++2(Fi +F2 ). (18b)

In the next section we will restrict our discussion to
the minus amplitudes (L~ and L2 ), extract the neutron
pole terms, and make the identification between the
D's and the s.p scattering amplitudes.

III. THE POLE TERMS

I.et us continue to leave M „/M„. This will facilitate
taking the limit q&'=q22=q =f= v=0.

The one-neutron pole terms of Dg, D2 and A~~—,
as defined in (10) and (14), are obtained by noting that

&p' (p ~
A,+(&)

~
I)= g~&vv, y&;I B'~"'*

or~„(p~ 8 A„+(*)(~)
=igg(Mv+M„)uvysu„e'&v n&'. (19)

We obtain

where the tilde denotes the continuum contribution,
and we have used PCAC (hypothesis of partially
conserved axial-vector current) in the form

vugg
8&A„+=f m 'P+ f = (22)

giving the identification

fr 'B&r

M -. f'M
(~ 2 g2)2 q2~

(23)

Here M— is the usual ~ -p scattering amplitude
[M=I(A+BQ p)gj In E. q. (17b), the cancellation is
incomplete, and the equation becomes

g~' & (o) 2(Fi'(0)+F2'(o))—4Z&& (0)= +f.'
M~ M„ M„

(21b)
Similar results are obtained in the other basis.

If we add the two Eqs. (21) together, A»(0) cancels
and we obtain the Adler-Weisberger relation

8 1
1=g~'+2f.'M, + 8-

i

8 M )„0
Assuming that 8X /8v and 8 satisfy unsubtracted
dispersion relations, and using the s.p crossing relations
gives

1=g~'+2f 23IIv

1 ImA& ~(v,0,0,0)+(v/M„)ImB& ~(v,0,0,0)
X—

vX pQ

1 " ImA & '(v, 0,0,0)
Fmv(0) = —f 'M — dv

pQ

(25)
where A& &=~(A —A+).

Using the crossing relations converts Eq. (21a) into
the sum rule quoted in the Introduction:

g'g(M„+Mv)2(M„Mv)—
D —Born(& 0 0 0)— +2MpE»(0, 0,0,0). (1)

M„'—M '+2v IV. RESONANCE CONTRIBUTIONS
TO THE SUM RULE

g '(M„'+M„)
D —Born (v 0 0 0)

M '—M '+2v

2gg'(M„+M v)
4A» B' (v,0,0,0)=

Mv' —M„'+2r
(2o)

It is then easy to see that the Born parts of the left-
and right-hand sides of Eq. (17a) cancel, leaving

82 2Fmv(0)
4E»—

(0)=f„' +, (21a)
Bv p 0 My

Q One-argument for this is that C seems to have the structure of
a scalar form factor, and hence contains no Q term.

If All(0) =0, Eq. (21a) becomes the low energy
theorem proposed by Raman' and Eq. (21b) is related
to the consistency condition proposed by Fuchs. '
Raman's equation was obtained by using a set of
invariants which essentially substituted L„=r„„„P"Q&ho
for y„as an independent vector. We show in Appendix
A that the set proposed by Raman has kinematic
singularities at 1=0, so as to make his limits at t=0
invalid. In fact, any basis that eliminates 8„„"produces
kinematic singularities in the associated invariant
amplitudes, and hence it is not possible to eliminate the
explicit appearance of the weak amplitude in Eq. (1)
by a diGerent choice of basis.
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To test Eq. (1) we need some model to evaluate
A tt(0). We have two methods at our disposal. We could
treat the known m-E resonances as elementary particles,
and calculate their contributions using perturbation
theoretic I'eynman rules. This approach leads to
numerous difficulties, not the least of which is the
ambiguity in the definition of the oG-mass-shell spin ~

propagator which is arbitrary up to factors propor)ional
to M*'—s. These factors are not negligible.

We therefore follow the second procedure, which is to
assume that A~~ satisfies an unsubtracted dispersion
relation. We could not have assumed that BI.t/Bv
satisfies an unsubtracted dispersion relation, since
examination of the sum rule (18a) shows that

at& '(v, 0,0,0)dv=Fsv(0). (30)

We have made use of the crossing relation

t (v) =—&t+(—v)

and the de6nition

(31)

&t' '(v)=sl:&t (v) —&t'(v)]. (32)

However, the pv-symmetric covariants are common
to both bases. Hence, A t= A t', and Eqs. (28) and (29)
can both be true only if lim mB&3'=0, i.e., 8»' is super-
convergent. "If this is so, both equations reduce to

:2Fs/Mv/0.
V

v-+to
(26)

Calculation of 2Att(0) using the dispersion pole model
with PCAC described below gives for the same
resonance

2MA „(0)= —1.39.

The contributions from the Ptt(1400), Dts(1525),
Fts(1688), and F37(1920) are small. Because of this
large cancellation in Eq. (1), there is little merit in
retaining the separation of the model-dependent term
2MAtt(0) and the experimental term sf ' MBA /Bv.
Instead, we cast our sum rule into the original I'ubigi'
form by the following procedure:

Eqs. (16) hold for all v. In the limit v —& eo, Eq.
(16a) becomes

lim„„vAt(v, 0,0,0) =2Fsv(0)/M, (28)

with the assumption A»~&Cv as v —& . Similarly, if
Agg'&C'u ' as v —+ ~, then

(We assume that BDt/Bv= f ' BA/Bv-+ 0 as v-+ eo.)
However, since

BI.t/Bv =4S„-tr2vÃt, (27)

it is possible to assume that the A; (and in particular
2tt or Art') are unsubtracted. From this viewpoint, the
decomposition of T„„into a covariant basis is a device
for obtaining unsubtracted amplitudes.

An evaluation of 2MA tt(0) Lor 2MZtt'(0) j via a pole
model dispersion approach shows immediately that this
term is comparable to —',f,' M(BA/Bv) Num. erical
integration of the Roper Pss(1236) phase shift to

700 MeV gives

BA
',f 'M —-=+2.05.

~=o

(I+M*)—
P„„(K)=

M*
1

gv"+ 3 rvV"

2
+ (y„K„—7„K„)+ K„K„, (34)

3M* 33'*'

where K= pt+qt P+Q is the 4 m——omentum of the 6,
and the axial-vector —nucleon —6 coupling

EaXv(belA„-l p)= (Q ts)gssu„g„ (35)

The result for d is

M»+M (Msss —Ms
at& &(v,0,0,0) = ——gss' 5l

——v l, (36)
2 i'

Lower case letters denote the absorptive parts of the
corresponding upper case amplitudes.

The form (30) of the sum rule for Fsv suffers from the
disadvantage that direct reference to experimental
s-p data has been eliminated, so that evaluation of the
sum rule is completely model-dependent. We wish to
emphasize that this appears to be the essential nature
of the sum rule for F2~, the model-dependent term
Att(0) is so large, that a model must inevitably play a
central role in any examination of the sum rule. The
advantage of (30) is that the two terms 2MAtt(0) and
st f 'MBA /Bv are treated in the same fashion, and.
hence inconsistencies are avoided. To see this, observe
that (30) can be obtained if one calculates the absorp-
tive part of A from Eq. (16a)

f,'a( ,v,0,0)0= v'at(v, 0,0,0)+4vtttt(v, 0,0,0) (33)

assumes unsubtracted dispersion relations for A~~ and
BA/Bv, and substitutes (33) into (21a).

We have evaluated the contributions to u~& & for the
A=P33(1236) and D=Dts(1525). We use the spin-33

projection operator

lim„„v(At'+its') = 2F3"(0)/M.

rs S. Fubini, Nuovo Cimento 4BA, 475 (1966).

(29) "The superconvergence of 8»' may be obtained in another way
by integrating q&&T„„by parts and making the unsubtracted
assumption for the invariant amplitude which multiplies Py„,Q1
in the tensor decomposition of the amplitude 8"„+p-+ ~ +p.
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which contributes Hence we obtain

M (Ms,+M)
ai& '(v, 0,0,0)dv= — gsss.

9 M332
(37)

pp

g332 gi32
b'ts( &(v,0,0,0)dv= ——,

'
24 3f33 3Egg

For the D~3 we tak.e the interaction to be

Jt tnWv(D! A'„- & p) =igism„p'I,

and obtain

(38)

ip0

(Mts —t!d')
ai& &(v,0,0,0)dv= eM gtss. (40)

~i32

The coupling constant g» is estimated. by two
different methods in Appendix B. The erst involves

applying PCAC to the coupling (36), which is then
related to the width of the &7*. Using this method we
obtain

g33'—2.0 (B.6)

The second method requires that a dispersion relation
pole model of the E* reproduce the P33 contribution to
A( ) which is obtained by direct integration over the
phase shifts. This gives

g33'—2.69 (8.9)

This uncertainty in g» is probably primarily a reQection
of the unreliability of the simple pole model. The values
of g33 obtained here are similar to those obtained by
Schnitzer, " who obtained g» by fitting a pole to the
Adler-Keisberger relation. In a similar manner, g~32 can
be estimated

gi3 =3 2 ~ (8.6')

Combining these results (using gsss =2.0) gives us
6nally

F v(0)=0.24+0.13=0.37. (41)

3Ej3—M 3fg32 —3P
g.,t—&(,,0,0,0)=—', 3„' 3 —

) . (39)
Mg32 2

This contributes

—(1/24) (1.01—1.94) = —0.04 (43)

The model does not quite satisfy the superconvergence
condition, but the numerical signihcance of the extra
terms contributed by bts' to Eq. (28) is negligible.

a& &(v,0,0,0) aii( )(v,0,0,0)
ai&-& (v,0,0,0) =f.'

p2 P
(44)

If we assume (i) that A it (v,0,0,0) 9 0 at least as
fast as v ' as v-+ 0o and (as we did in the last section)
(ii) that the asvmptotic behavior of A& &(v,0,0,0) is
dominated by a p Regge pole, then the erst term on the
right-hand side of Eq. (44) will dominate as v-9 m.
The Regge form for A & '(v, t,0,0) is"

i9rap(3) ( v )ap (t)

A& ) (v, t,0,0) =P(t)
sin~n, (t) 5vP

(43)

where ttp(t) is the p Regge trajectory, v, is a scale factor
chosen to be M X (1 GeV), and P(t) is a residue function
determined by fitting 9r p charge exchange scattering.

With these two assumptions, Eq. (44) becomes

V. HIGH-ENERGY CONTRIBUTIONS
TO THE SUM RULE

From the analysis of the last section we are forced to
one of two conclusions. (i) Either the sum rule (1) or
(30) is invalid or (ii) there exist large continuum
contributions to ai' & in Eq. (30). In this section we
examine the latter possibility.

To estimate the high-v behavior of a~( &, we rewrite
Eq. (33)

~(0)
ai& '(v 000) = f '

P~x' p 2
V

~f'tt(o)
9rvs(1 —ttp(0)) v&)

In addition to this, there will be contributions from
the F»(1688) and the F37(1920). It turns out that the
F»(1400) will not contribute to ai& &. Although the
final results should be somewhat larger than (41), it Substituting into (30), we obtain
does not appear that the sum rule is anywhere near
satisfied (recall that Fs" 1.85!). ——

Before we conclude this section, we examine the
7I gpg

validity of the superconvergence condition on 8»'
mentioned above. The contributions to 8~3' come from
the d and D. We have

(46)

(47)

~gsss cVsss —cV'
b'is& &(v,0,0,0)=+ b —v

~
for

36M ss 2

vrgts' (M is' —M'
b ls(v 000) b~ v

~

for Dls ~

243Its E 2
(42)

~ H. J. Schnitzer, Phys. Rev. 158, 1471 (1967).

where v~ is some lower bound on the integration. The
recent fit of Arbab and Chiu" to tr p charge exchange

'3 S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys.
Rev. 126, 2204 (1962).Ne neglect any eGects of the extrapolation
of the pion mass to zero."F. Arbab and C. B. Chiu, Phys. Rev. 147, 1045 (1966). We
have neglected the negligible exponential t dependence oi t) (tl used
by these authors.
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scattering gives rr, (0)=0.56 and

P(~) =——I:5 9( .(s)+1)+992,(1)(,(~)+1)1

GeV—' (48)

so that P(0)= —54.7 GeV '. Making the most opti-
mistic choice p)= pp, the high-energy continuum con-
tribution to Fsv(0) becomes 0.72. The sum rule so far
then reads

Fv 0 37+0 72 1 09 (49)

where we have used the fact n, ( m') = 1.
However, the usual expression for the p pole, supple-

mented by universality" gives

A& &(v, t,o,o)
t~mp2, y~x

2F'(0) fvs v

(»)
t—1S 2

p

where f, is the universal constant describing the cou-
pling of the p to the isospin current. Since rr, '(m, '))0,
we see that P(m, ') (0.This agrees with the assignment
of signs made in Eq. (48).

It is interesting that there is also good numerical
agreement between P(m, ') obtained from (48) and the
value obtained by equating Eqs. (50) and (51). With
the choice

~, (m, ')—~, (O) 0.44
a, '(m, ') =

fop
2

and f '/4sr~2. 4 rs we obtain from (50) and (51)

(52)

p(m ') = —Fsv(0) f,' rus, '( m') (vp/N') = —132 GeV—'

(53)
From (48)

P(m ') = —149 GeV-'. (54)

» J. J. Sakurai, Ann. Phys. (N.Y.) 11, 1 (1960);M. Gell-Mann
and F. Zachariasen, Phys. Rev. 124, 953 (1961).

"J.J. Sakurai, Phys. Rev. Letters 17, 1021 (1966).

The sum rule (30) is still far from satisfied. However,
the size of the high-energy continuum contribution
indicates that detailed knowledge of the higher-
resonance contributions and low- and high-energy
continuum will be necessary before the validity of the
sum rule can be judged.

The sign of the residue P used in Eq. (47) was not
determined by the Gt given Arbab and Chiu. "We have
so far chosen P(0 so as to give a positive contribution
to Fs (0). We now justify this choice.

The expression (45) for A & & may be expanded near
t=mp' as follows:

2P(m, s)
A ( ) (v, t,0,0) = —,(50)

srn, '(m, ') ve t—m, '

VL SUMMARY AND CONCLUSIONS

Our paper may be summarized as follows:

(i) When the derivation of the Adler-Weisberger
relation is extended to the nonforward direction (by
means of a tensor decomposition), Eqs. (13a and 13b)
involving Fs (/) and Fr (s)+Fs (t) are obtained. We
have examined one of these equations in the limit
1=grs=ps' ——0 (Eq. 1). A seParate evaluation of these
two sum rules requires a knowledge of one of the weak
amplitudes A ~i at v=0. This observation is contrary to
the results of previous work by other authors. ' ' When
Art(0) is eliminated from the two sum rules, the Adler-
Weisberger relation is obta, ned. .

(ii) One's first inclination on obtaining sum rule (1)
is to hope that 2MA ii(0) is a small correction to a sum
rule relating Fsv(0) to a srlV scattering amplitude.
However, this is not the case, as we showed in Sec. IV.
Because of the near equality of 2%Air(0) and the srlV

term, it is important then to make use of the constraint
in Eq. (33), and reexpress the right-hand side of Eq. (1)
in terms of the absorptive part aj.& ~. This gave us Kq.
(30).

(iii} An evaluation of the integral in Eq. (30) by
means of a dispersion pole model for the resonance
contributions gave the result Fsv(0)=0.37 (Eq. 41).
The smallness of this result. led to a consideration of the
high-energy contribu tions.

(iv) Using a p Regge-pole fi for sr p~ srsss scattering
and assuming that Ait&0(v ') as v —+ ee, we could
estimate the high-energy contribution to a&& &. This,
combined with the resonance contributions, gave
Fsv(0) 1.

Ke make two final remarks.

(i) Gilman and Schnitzer's have emphasized recently
that neglect of low-energy. continuum contributions
will often lead to large errors in the evaluation of sum
rules; it is known that the F33 contribution to the
Cabibbo-Radicati sum rule is even of the "wrong" sign,
and the sum rule is satisfied only when continuum
contributions are included. This investigation suggests
that, in certain cases, high-energy continuum con-
tributions may also be important.

(ii) Schnitzer" has recently determined sr %scatter--
ing lengths using a related approach. He obtains the
four P-wave scattering lengths (see h!s Tables I and II).
Two of these do not depend on the current commutation
relations, and the good agreement he obtains is a
reQection (in our language) of the near equality of
2&A» and ,'f '11fBA/Bv. Of t.he oth—er two, only one
depends significant. ly on the current algebras, and its
agreement is less convincing .This difference in approach
partially reconciles the contrary conclusions we obtain.

A'ote added sss proof. We also learned after this work
was completed that K. Raman has published a corrected

~7 F. Gilman and H. J. Schnitzer, Phys. Rev. 150, 1362 (1966).
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and expanded version of his Ref. 3 [Phys. Rev. 159,
1501 (1967)].

APPENDIX A. CONSTRUCTION OF A TENSOR
BASIS FREE OF KINEMATIC SINGULARITIES

In this Appendix we sketch the ar~ments that show
that the tensor bases presented in Table I are the only
ones free of kinematic singularities. To show this it is
sufhcient to prove that any nonsingular second-rank
tensor Q,„„can be expanded

17 1$

e„,=g aP„„'+P a8„„', (A.1)

where none of the u; or a; have singularities in v, t, or q
for any values of v, t or q'. We must show this for both
bases.

To facilitate the discussion we deGne L„=e„„q.P"Q"d',
and construct the 15 tensors

(P„L„+P„L„)iy'v
(Q„L„+Q„I„)iy',
(h„L„+A„I„)iy~,

L„L„, L„L.Q,

(P„L„+P„L„)iQy',
(Q.L,~Q,L.) Q~',
(Z„L„+S„L„)iQ~',

and (Q„g,—QA„)Q. (A.2)

It is understood that these are to be sandwiched be-
tween nucleon spinors u(p~) and u(pq).

It seems clear that the basis containing all of the
33 8's in Table I, plus the 15 tensors introduced above
is sufficiently large to be free of kinematic singularities.
This basis contains 48 tensors.

There are of course many more nonsingular tensors
which can be constructed, but by successive use of the
Dirac equation these can be reduced to one of the 48
given above without introducing extra singularities. As
an example'

g(p2)QLN(pi) =u(p2)iy'C — +Qv'P'] (piN), (A.3)

where we have used the identity

vru~v+x —guv+x+tvvx+u gux+v i+S~vkp+ (A 4)
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The basis we have considered so far is over complete.
There are only 32 independent tensors, so the next step
is to eliminate 16 of the 48 in such a way that no poles
are introduced.

The tensors involving L„can be eliminated by means
of equations like the following (with d= P'Q' —v'):

4L„L„=(td)g„„(t—Q')P P —(tpm)Q Q
+ (tu) (P.Q +Q.P.) (tQ'—)~u~. ,

(P.L.—P.L.)'v'= (kt)(Cv„Q]p.—b„,Q]P,)—(v) (P„h„P„A„—)+ M (P„LL„—P„h„)Q,
(P„L„P„L„)—i Qy'= d (P„y„P„y„)—

—(P') (P.Q.—P Q.)Q

+(M )(P.Q.-P.Q.) (A.5)

Similarly, none of the other relations which eliminate
the L„ tensors will introduce extra poles.

A basis which eliminates y„ in favor of L„ is not free
of kinematic poles. As a relevant example, we express
the tensor 8„,"—=Cy„,y„] in terms of the "L„"basis.

fy„,y„]=A (P„L„P„L„)iy'—+B(P„L„P„L„)jQ—p
+C(Q„I.„Q„L„)iy—'+D(Q„L. Q„L„)i—Qy'
+E(&„L, &„L„)iQy'+—F(P„A„P„h„)—
+G(p„~„P„~„)Q+—II(Q„~„Q„Z„)—
+I(Q„A„—Q„h„)Q, (A.6)

where

A =Sv/td, F=8 (u'+2t)/td,
B=—2MQ'/d', G= SMv/td, —
C= 8P'/td, — II= (Sup2+2t„)—/td
D= 2Mu/d', I=SMP'/td,
E= SM/td, —d =P2Q2 „2—

This tensor Cy»y„] appears explicitly in the decom-
position of the nucleon, P33(1236) and the other baryon
pole contributions to T„„.Furthermore, these contri-
butions do not vanish at t =0, so that their reexpression
in terms of the "L„"basis via Eq. (A.6) will introduce
poles at t=0. These poles give a fmite contribution in
the limit I,=O to

qpCF(P„A„P„h„)+G(P„a„p—„g„)Qq&, (A 8)—

which is precisely equal to qpfy„, y„]q,"=4u 4MQ
(The equalities hoM between nucleon spinors N(p, )
~(pi) )

If one had neglected the singularities in E and G, the
expression (A.S) would vanish at t= 0.

After the 14 terms involving L„have been eliminate
by expressions like those given in (A.S), two conditions
can be found which relate the remaining 34 invariants.
These are

with e'"'=+1.
We use the Lorentz metric (1, —1, —1, —1} and the Dirac

matrices with y Hermitian, y'(i=1, 2, 3} anti-Hermitian anQ
y5(—=jy0y 72y }Hermitian.

(Qu~.—Q.~ )Q =Z~l vu, v.]+Z2Cv„v,]Q
+Za(p„hv —Pvh„)+Z4(P„A„—P„h„)Q
+z (Cv.,Q]Q.—Cv. ,Q]Q,)+z,(Q.~,—Q,,~„)
+Z7(Q.v.—Q.v.)+Z (~„v.—&,q„), (A.9)
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L~ Q7P.—I ~.,Q7P =Z L~.,~.7+Z oLv.,v.7Q
+Zrs(P„B„—P„D„)Q+Z, s(Q„y„—Q„y„)

+Zss(~„&„—a„&„),

yielding

(8.6)

Owing to the negative parity, the analog of Eqs. (8.1),
(A 10) (8.2), (8.3), and (8.4) are

Zs ———tQ'/8M

Z2= gP 1 Mi'
Zs= —Q'/M,

Z4= v/M

Zs= t/8M-,

Zs ——v/M',

Zs ——vt/4ilP )

Zs = —(Q' —vs/M')

Z9 = P)

Zse =Ps/Ms,

Zrr ———2/M,

Zrs ——2Ps/M,

Zss= 2v/M. (A.11)

Ers V„(Dss I A„ I p) =grsu„ysu,

gss= f.frs/ass. ,

(8 1')

(8.2')

13

p„ps', 8vy++H. c. , (8.3')

(8.4')

(8 5')

frss 2 P~* M—
p A+3

4x 3 m~'3fg3

Takjpg I', ) ——0.65 1"t.g——68 MeV20 we And

fs '=3 64

(8.6')gy3 =3.2.

We can also evaluate fss' by requiring that the Ess*
pole model give the experimental F33 contribution to
-', el' ~

—'/elvI, =s
APPENDIX B. EVALUATION OF g33' AND g~3'

Both of these exPansions are free of kinematic Poles, a„d from (8 2~)
and the only other possible choice is to invert the second
equation into an expansion for (P„A„P„h„)Q b—y
dividing by E».

Applying PCAC to the matrix element

XgXv(h++
I
A„+

I p) = gssu„u,
we obtain

gss =f.fss/sn. ,

(8 1)

(8.2)

erE& & 1 "u& &(v,0,0,0)dv
1
2

go 7r vp
p'

= —0.35m (8.7)

where f. is the charged pion decay constant (=0.935m )
and fss is defined through the effective Lagrangian

33

~err = 0'v 0'vs"Q +H c.
m~

describing the decay of the doubly charged F33.
Bv standard methods (see, e.g. , Brudnoy"), the full

width of the P» is given in terms of f» by

fsss 2 E~*+M
p /st 3 (8 4)

4x 3 m„'3I33

where EN*= energy of decay proton in the c.m. system,
A~=decay momentum in the c.m. system, 3I» ——mass
of Pss(1236). and M =mass of proton.

Using 1 =120 MeV, we obtain from (8.4)

Hence

1 "a& &(v,0,0,0)dv

yp

2 fsss M Ms

9 m '3l 3f33—3II 23533'

= —0.113fsssm (8.8)

Then fsss=3. 1 and, from (8.2)

v ) v——(M+M„)I 1+
~ 2~9' Msssf Ms,

Msss Ms~-
&&8 v—

2

fss'= 2.3 g33' ——2.69. (89)"D. Brudnoy, Phys. Rev. 145, 1229 (1966),
and

~ Parameters for the resonances were obtained from A. H.
Rosenfeld et ul. , Rev. Mod. Phys. 39, 1 (1967).


