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This paper assesses some possibilities inherent in precise laser ranging to the moon for testing Einstein’s
theory of gravitation. The anticipated accuracy of the determination of the light transit time for a laser pulse
returned by an optical corner reflector on the lunar surface is about two parts in 10%. Such high precision
opens the possibility of detecting general relativistic effects in both the light propagation itself and in the
lunar motion. The detailed analysis presented here indicates that, although the effects on light propagation
are probably not detectable, there are general relativistic effects in the lunar motion which appear to be ob-
servationally accessible with the expected laser-ranging data. Observation of the dominant effect would
provide a significant test of the correctness of the geodesic equation, to O(1/¢%) beyond the Newtonian
approximation, for describing the motion of bodies in a gravitational field.

I. INTRODUCTION

HE aim of this paper is an assessment of some
possibilities inherent in precise laser ranging to
the moon for testing Einstein’s general theory of rela-
tivity. With present techniques, laser ranging from an
earth-based station to an optical corner reflector located
on the lunar surface is capable of determining a transit
time to an accuracy of somewhat better than a nano-
second, or about 2 parts in 10%. This would correspond
to a precision of some 10 cm in distance if the speed of
light were well enough known.! Although general
relativistic effects are notoriously small, this unprece-
dented accuracy opens the possibility of detecting such
effects both in the light propagation itself and in the
lunar motion. To gain the full benefit of the anticipated
two parts in 10 precision one need only structure the
confrontation between theory and observation in such
a way that the uncertainty in the local speed of light is
unimportant.

The idea of using the moon to test relativity theory
is an old one. In a paper published in 1916, the same
year in which Einstein’s definitive paper appeared,
de Sitter? calculated the expected general relativistic
contributions to the secular motion of the lunar perigee
and node. They are of the order of two seconds of arc
per century. The difference between the observed
values and the Newtonian theoretical values calculated
by Brown, as well as the uncertainties in both these
quantities, were of the same order of magnitude. No
test was possible.

Following the theoretical discovery in 1918 of the
Lense-Thirring effect, namely that the rotation of a
massive body makes a characteristic contribution to the
gravitational field. Einstein and Thirring apparently?
considered the possibility of detecting this effect in the
- *This work was begun while the author was a National
Academy of Sciences—National Research Council Associate at
the Smithsonian Astrophysical Observatory, Cambridge, Massa-
chusetts.
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lunar motion. They concluded that the contributions
to the secular motions were too small to be detected, at
least over any reasonable time span.

The theoretical situation appears to have remained
largely where de Sitter left it until 1958, when Brum-
berg? published a calculation of relativistic corrections
to the lunar motion based on the Hill-Brown method.
The relativistic corrections to the secular motion of the
node and perigee were carried to a higher order of
approximation than in de Sitter’s work, but Brumberg
concluded that the then-contemporary observational
accuracy did not permit a test of the theory. More
recently Eckert’ has made a detailed comparison of
theory and observation for the lunar perigee and node.
An inference to be drawn from his work is that these
secular motions are indeed unlikely to provide a test of
general relativity in the near future.

The scope and content of this paper are most easily
summarized in a section-by-section fashion. In Sec. II
we outline the derivation of the approximate metric for
the earth-moon-sun system as an expansion in powers
of 1/c. The calculation is done within the context of
Einstein’s theory (without the cosmological constant),
but we assign labels (to be regarded as having the
numerical value 1) to various terms in the final metric.
These coefficients, introduced in the spirit of Edding-
ton’s analysis, serve as markers throughout the remain-
ing calculations and indicate how the various parts of
the metric contribute to the final results. Thus they
give a partial answer to the necessary question: What
part of the total theoretical package could a particular
observation test?

This prepares the ground for Sec. III, in which we
calculate the round-trip proper time for the laser pulse
through relativistic corrections of order 1/¢ This
expression is then analyzed for those portions which
may be expected to show a periodic behavior dependent
on the relative positions and velocities of the earth,
moon, and sun. This is essential if one hopes to separate
relativistic effects from uncertainties in parameters such

4V. A. Brumberg, Bull. Inst. Theoret. Astron. (U.S.S.R.) 6,
733 (1958).
5 W. J. Eckert, Astron. J. 70, 787 (1965).
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as the masses, the orbital elements, and the local speed
of light in vacuum. We find that when the labeling
coefficients are explicitly given their values from the
Einstein theory, namely unity, the theoretical expres-
sion indicates that there is no realistic expectation of
detecting gravitational effects on the light propagation
itself with the laser-ranging data. At this point there
remains open, however, the possibility of observa-
tionally significant relativistic effects in the lunar
motion.

Hence we turn in Sec. IV to a detailed calculation of
the earth-moon separation. In Sec. IV A we describe the
procedure employed to set up the equations of motion
for the relative earth-moon separation in a Lagrangian
form with relativistic corrections through O(1/¢?).
Section IV B is concerned with the rotation of the three
bodies involved. Rotation could affect the end result in
two distinct ways. First, the rotation of a body makes
a contribution to the metric. Second, the equations of
motion for a spinning body in relativity theory are
qualitatively different from those of the usual non-
spinning point particle. However, we conclude that to
our desired accuracy both of these effects unfortunately
make negligible contributions. There is no hope of
testing these aspects of the theory with the anticipated
laser-ranging data and so they are neglected in the
calculation. In Sec. IV C we outline the procedure
involved in setting up a Hill-Brown calculation of the
relative separation. Our calculation extends Brumberg’s
treatment by including the eccentricity of the earth’s
orbit (to first order). Thus we can assess the relativistic
corrections associated with both the lunar and earth
eccentricities. The final expression for the major rela-
tivistic corrections to the earth-moon separation is given
in Sec. IV D, and there we discuss their observational
significance. It appears that the general relativistic
contribution to at least one of the periodic terms is
observationally accessible with the laser-ranging data
and that a significant test of the theory is possible.

Section V summarizes the conclusions.

In an appendix we discuss briefly the general rela-
tivistic contributions to precession effects, meaning by
this both the secular motions of the lunar perigee and
node and the general precession. The primary aim here
is to clear up a misunderstanding about the distinction
between them which has arisen in the literature.

II. THE APPROXIMATE METRIC

The calculation of an approximate metric as a power
series in 1/¢ is by now rather standard.® We will merely
outline the steps and indicate the points at which one
must exercise some care.

The exact metric may be written as

guv=7hu+huv ’ (2.1)

6 S. Chandrasekhar, Astrophys. J. 142, 1488 (1965); V. Fock,
The Theory of Space, Time, and Gravitation (The Macmillan
Company, New York, 1964).
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where 7,, is the Minkowski metric of special relativity.”
The requirement that the metric g, reduce asymp-
totically to the flat-space Cartesian-coordinate expres-
sion 7,, as one approaches spatial infinity supplies the
essential boundary condition. For our purposes we will
need the 1/¢ expansion of A, to the following orders:

ko to O(1/c),
h(!i to 0(1/03) ’
h"j to 0(1/62) .

Before one can calculate explicit expressions for the
hyuy from the Einstein equations (here taken with zero
cosmological constant), one must decide upon the form
of the stress-energy tensor T*” for the extended bodies.
This problem does not have an unambiguous solution.
However, the stress-energy tensor for a perfect fluid
does provide both a tractable solution and a physically
reasonable one:

(2.2)

Tor=c2(e+p)uu+pg*, (2.3a)
e=pc*(1+11/¢?), (2.3b)
w=dx*/dr with wu,=—c. (2.3¢)

Here »* is the 4-velocity of the fluid with the indicated
normalization, 7 being proper time. The quantities e, p,
and plI represent the energy, mass, and internal energy
density, respectively, of the fluid; p is the isotropic
pressure.® For our case of several isolated bodies the
mass density p is nonzero only within each of the ex-
tended bodies.

We anticipate taking the limit wherein the extended
bodies shrink to points. For a set {4} of point particles
of nominal mass m4 the stress-energy tensor has the
following thoroughly-covariant form:

Tw=3 | mac(—g)
4

- X o[#*—x4%(ra) Juatunrdra, (2.4)

where x* represents the space-time field point and
x4%(74), the position of particle 4 as a function of its
proper time 4. The § function is really a product of
four 6 functions, one for each value of @, and the integral
extends over the entire world line of each particle.

The integral is readily done, giving

Tw(x,0)= § ma(c/us®)(—g)~12
Xo[x—xa(74)Jabus”, (2.5)

with 74 such that ct=x"=x,%(r4). A comparison of this
expression with the explicitly p-dependent part of the
perfect fluid stress-energy tensor suggests that we can

7 Greek letters run from 0 to 3; Latin, from 1 to 3. Summation
over repeated indices is to be understood. The coordinates have
an essentially “spatial” meaning, with x°=cf. The Minkowski
metric has the diagonal form (—1, 1, 1, 1). The determinant of
gw is written as g.

8 More specifically, the mass density p is defined such that the
covariant divergence of pu* is zero.
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facilitate the passage to the point-particle limit by
introducing a function f(x,!) defined in the perfect fluid
context by the relation

p=(c/u")(—g)"f. (2.6)

As defined, f differs from the mass density p only by
terms of order 1/¢% and higher. Thus they are identical
at the Newtonian level. The point-particle limit then
corresponds to

J&x)— ; mad[x—x4()], @.7)
whenever this introduces no disastrous singularities.
Here x4(¢) is merely a more explicit manner of specify-
ing the position of particle 4 at time &

Additional constraints must be imposed before we
can consider the coordinate system as specified. A
particularly convenient choice of four coordinate
conditions for this problem is the following set:

Ohot 19t
—_————=0, (2.8a)
It 2 920
onit 10k
—_— =0- (2.8b)
oxt 2 oxd

(The indices on k,, have been raised with 7,,.) These
coordinate conditions have the great virtue that the
Einstein field equations in the approximation we need
reduce to coupled equations of the Poisson form rather
than to inhomogeneous wave equations. Thus one can
immediately infer that the approximate metric has only
an implicit time dependence, this through the time
dependence of the positions and velocities of the bodies.
In the solution to be presented for the perfect fluid the
three equations (2.8b) are identically satisfied to appro-
priate order in 1/c. To satisfy the single equation (2.8a)
we require nothing more than mass conservation at the
Newtonian level, a property of the fluid which we must
certainly impose.

To economize in the expressions for the perfect-fluid
metric we introduce the standard auxiliary functions
U, U;, X, and ¥, defined as follows®:

Ux)=G / &y’ —llzf(x’,t),

1
i) =G [ ),
2.9
. ) (2.9)
X(x,l)‘:‘——G/dsx’ —U®X'1),
2 A

1
B(x,)=3G / P~ [Go+T— D) 439

9 These differ somewhat from Chandrasekhar’s expressions
because we use f rather than p. Because the difference between
these densities is O (1/¢?), this really affects only ®, an O(1/¢%) part
of the metric.
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The symbol A is | x— x| and v*is defined by v’=u¢(c/u°),
corresponding to the ordinary coordinate velocity
dx‘/dt. The symbol G is of course the Newtonian
gravitational constant.

To desired order in 1/¢ the perfect-fluid metric is then
simply this:

gii="08:;(1+2vyU/A)+0(c ™), (2.10a)

1 9 0
gos=—*(‘"4TIUi+%77'_ -—‘.X>+O(c"’) » (2.10b)
3 at ox*

c

2U 1
goo=—1+——F'—2U?—48)+0(c™*)-
c ct
(2.10c)

We have introduced the labeling coefficients v, 8’. n, and
7’ as a means of keeping track, in the calculations to
come, of the influence of the respective parts of the
total metric. This follows a tradition initiated by
Eddington! and now enjoying considerable popularity.
(We omit the customary coefficient « of the isolated U
in geo. Agreement with Newtonian physics requires it
to be unity to high precision. A prime is appended to g’
because the 1/¢* term it multiplies is quite different from
the usual spherically-symmetric solar term of the
planetary problem.) If the Einstein theory is correct,
the metric for our physical situation (to appropriate
order in 1/c) is properly represented when the labeling
coefficients all have the value 1. Since we are looking for
effects predicted by the Einstein theory, we regard
these coefficients merely as labels whose numerical value
of unity we can explicitly invoke when desirable.

We now consider the passage to the point-particle
limit. This requires some care and entails a definite loss
of physical attributes. To avoid infinities we should
pass to the limit only in the case of field points (x,f)
which do not lie on the world line of the center of mass
(c.m.) of any of the extended bodies. In the process we
also lose certain contributions which might arise in the
extended-structure case. In particular, quadrupole and
higher moments of the mass distribution disappear from
the potential U. Any rotation of the extended body,
which would give a contribution to the fluid velocity
v(x,?), ceases to contribute in the limit.

If we are willing to accept these restrictions and
losses, we must then face the question of how to handle
the internal energy fII and pressure p in the ® part of
hoo. Within the perfect-fluid context we can eliminate
the internal energy fII by means of the approximate
thermodynamic relation holding within each non-
rotating body 4 :

pa=(Uas—T14)fa, (2.11)

where the subscript 4 means that the quantities refer

10 A, S. Eddington, The Mathematical Theory of Relativity
(Cambridge University Press, Cambridge, England, 1960), p. 105.
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to body 4. In particular, Uy is solely the potential
produced by body A. This relation follows at the
Newtonian level if we demand internal equilibrium and
neglect the “tidal forces” produced by the gravitational
fields of the other bodies.! This leaves us with only a
single awkward term of 2p in the integrand of ®. This,
too, may be simplified. As we approach the point limit
we may approximate the integral over a single body 4
as

1 1
/d“’x’ —2pa=—- /d"x’ 2p4, (2.12)
A Ay

where A= |x—x4(£)|, with x4(f) being the position of
the c.m. of body 4. Within the assumed context of
internal equilibrium, no rotation, and neglect of tidal
forces we have
9pa oU4
-= fa——,
dox® dax*

(2.13)

within the body 4. Multiplication by =%, followed by
integration over the body 4 and use of the properties

of Uy, imply
/dax 2pA=%/d3x fAUA'

The latter integral may, to our order of approximation,
be regarded as a constant. When the point limit is taken,
it contributes to goo in eactly the same manner as
ma= [d®c fa(x,f) in the isolated U of geo, namely as a
coefficient of 1/A4. (The expression defining my4 is
rigorously constant provided we require that the
covariant divergence of p#* be zero, a property which
is part of the definition of p.) Hence we may regard it as
a “‘mass renormalization” of the nominal mass m4. We
define the “gravitationally renormalized” mass m4’ as

(2.14)

mA'EmA-I—-%,B'c_zfd% faUxa (2.15)

To our order in powers of 1/¢ this is actually the mass
of body 4 which would be measured by a Newtonian
experiment in the asymptotic region (if 4 is at rest). If
we substitute the renormalized mass m,4' for the
nominal mass 74 in the isolated U of goo, we have taken
care of the awkward parts of ®. Moreover, we may now
replace m4 wherever it appears by my4’ since the
renormalization is formally of order 1/¢*> and will not
affect other results to our order in 1/c.

Thus in the point limit we may write the following as
the expressions which should be substituted into Egs.

1V, Fock, The Theory of Space, Time, and Gravitation (The
Macmillan Company, New York, 1964).
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(2.10) for the metric:

GmA' .
U=y , (2.162)
. A AA
GmA’ . .
U= 14°, (216b)
A AA
Jd 9 8 AgtALY .
—_ '——jX———-Z GmA’vA’<——— ) , (2.16C)
at dx* 4 As Ayl
Gma' Gmz'
=1y (%11,42— > ) . (2.16d)
A AA B#A ABA

The additional symbols have the obvious definitions
Agi=x'—x,% and Apa=|xp—x4/|. Needless to say, the
field points should not be on the world line of any of the
point particles.

III. ROUND-TRIP PROPER TIME FOR
THE LASER PULSE

For the purpose of determining the general relativistic
effects in the round-trip proper time for the laser pulse
we may neglect the motion of the earth during the brief
time interval between emission and reception of the
pulse. (A nonrelativistic correction must certainly be
made for the change in station coordinates due to the
earth’s rotation and center-of-mass motion during this
approximately 2.5-sec interval.) Thus we may take the
earth-station coordinates as instantaneously fixed in
space.

This level of approximation brings the added benefit
that the metric may be regarded as unchanging (in
time) during the pulse transit time despite its implicit
dependence on time through the positions and velocities
of the earth, moon, and sun.

We first compute the round-trip coordinate time X©,
that is, the coordinate time interval between the two
events of pulse emission and reception. This quantity
is distinctly dependent on the particular choice of
coordinate system. Later we will apply the factor
required to convert this to proper time for an earth-
based observer and hence to the observer’s atomic time.

We make the usual assumption that the light pulse
travels along a null geodesic, a property actually
derivable for electromagnetic wave fronts from the
combined Einstein-Maxwell equations. The null prop-
erty implies

0= gudw*da’ = (nu+hy)dxda’ . (3.1)

As a quadratic in da?, this has the approximate solution

14-2yU /2
x°-<————

1/2 . hoida?
) (isdidaT) 24

+0(c™9),
(3.2)

1 — ]Zoo — 00
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where we have inserted the form for kg from Eq.
(2.10a).

In principle this should be integrated along the
spatial projection of one null geodesic from the earth to
the moon and then back along that of another null
geodesic. In practice, to O(1/c?) in the relativistic
corrections, it is sufficient to integrate along a straight
line from the earth station to the lunar station and then
back along the same line. The spatial projection of each
of the two distinct null geodesics deviates little from a
straight line. For fixed end points the difference in
integrated arc length is O(1/¢*) and may be neglected.
The coefficients #,, are already at least O(1/¢?). Thus
differences in the spatial location of the paths of inte-
gration could lead only to effects of order (1/¢%)X (1/¢%
and hence may be neglected.

The second term, proportional to kgda?, introduces
an asymmetry in the out-versus-back pulse times.
However, in the integration along a straight line to the
lunar station and back the contributions cancel. In any
case, this is an O(1/¢®) term; as such, it would make a
negligible contribution even in a more precise treatment
in which the out and back integrals did not exactly
cancel.

In consequence of these simplifications the round-trip
coordinate time to O(1/¢?) is given (after further ex-
pansion of the first term above) by the integration over
a straight connecting line of the following simple
expression :

X0= / [l () U/ G (3.3)
round trip

At this point a diagram (Fig. 1) is a helpful means of
introducing the notation we will need. The centers are
the respective centers of mass, with » being the earth-
to-moon separation. The magnitudes R, and R, with
their associated unit vectors, are the center-to-station
distances for the earth and moon, respectively. The
vector R’ denotes the position of the Newtonian earth-
moon c.m. relative to the sun. The masses Mo, Mo,
and M¢ designate the masses of the sun, earth, and
moon, respectively, and correspond in the theory to the
“renormalized” masses of Eq. (2.15). Within our
approximation the pulse travels out and back along S,
the station-to-station straight-line separation.

Since only the Newtonian potential U is involved and
since we may safely neglect multipole moments, the
integral may be done exactly. However, the result is
anything but transparent. So we expand and retain
terms which are significant at the 5-cm level.

The solar contribution then reduces to a term of some
1.6 X10% cm,

25(14v)GM /R’ (3.4)
with a term in S? of order 2 cm being the largest of the

discarded terms. (In more detail, the primary discarded
term is given by —S-R’/2R’? times the term retained.
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F1c. 1. Sketch to illustrate
the notation used in describing
the propagation of the laser
pulse within the earth-moon-
sun system.

The other discarded terms are orders of magnitude
smaller than this one.)

The earth’s contribution simplifies in part because of
the experimental context, in which |S-2.—1] is small
relative to unity. (One would observe when the moon
is near the meridian in order to minimize effects in the
earth’s atmosphere.) Thus the earth contributes a
constant term of some 7 cm,

GMg 70— Rm
ln( ),

c? R,
with 7, being some mean earth-moon center-to-center
distance. The discarded variable parts are of order 1 cm
or less. (We have neglected the multipole structure of
the earth’s potential here. The quadrupole part would
give a contribution considerably smaller than the
earth’s “gravitational radius” GMe/c*~0.4 cm. Hence
the neglect is amply justified.)

The lunar contribution has a structure similar to that
of the earth’s (with |S-#,+1|<K1, again for experi-
mental reasons) but reduced by the ratio of the respec-
tive masses; hence it is utterly negligible.

Thus, to 5-cm accuracy, we get

X°=254+25(14+v)GMo/’R'+2(1+7)

GM@ ro-Rm
X ln( = ) (3.6)

c2

2(1+7)

3.5)

e

We must now convert X° to the elapsed proper time
T of a fixed observer on the moving earth. This is given
by an integral taken along the world line of the observer
between the events of transmission and reception of the

laser pulse:

dr dr
— dad=—X0.
dx® ax®

7= (3.7

Here we have evaluated the integrand at some point
along the small section of world line and extracted it
from the integral. This involves nothing more than
neglect of changes in the velocity and gravitational
potential of the observer during the brief time interval
between emission and reception of the pulse. In this
approximation, which is consistent with our calculation
of the elapsed coordinate time, the conversion appears
as an over-all factor.
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With v%ms= (cdx?/dx)ons being the coordinate velocity
of the earth-bound observer, we have

dT 1 ‘v‘.obs
—= —<—‘ goo—2go;
dx® ¢

(3.8)

viobsvjobs 1/2
— g'. .

]
c c?

To 0(1/¢%) in the expansion of the expression in paren-
theses we get

dr 1
(S S
X c

(3.9

The neglected parts, as O(1/¢*) terms, are O(10-6)
relative to unity. Thus they are negligible in the short
run. However, in a long term comparison of lunar
motion with a detailed calculation done in coordinate
time one may need to retain them.

From the experimental point of view it is highly
desirable to split the result for the elapsed proper time
into those terms which are constant and those which do
vary with the periodic change in relative orientation
and motion of the earth, moon, and sun. To this end we
express some of the quantities in terms of the variables
describing the relative motion of the earth-moon c.m.
and the sun. Although we shall later need to describe a
calculation of the lunar motion from the astronomer’s
conventional geocentric stance, the present computation
is more easily visualized from the over-all barycentric
frame (which corresponds more nearly to the helio-
centric view). So we retain the latter view for the
moment. Since we are working with terms which are
already O(1/¢), we may regard the earth-moon c.m. as
moving about the sun in a fixed Keplerian ellipse.

To required accuracy the solar gravitational potential
at the earth station then enters dr/dx® as GMo/c*R’,
with terms of O(107'%) relative to unity dropped. The
contribution of the earth’s potential we write as GMg/
R, and we may drop the lunar contribution, for it is
0(107%),

Any difference between the coordinate velocity %,
of the observer and some more nearly ‘“‘proper” or
observational velocity must involve an additional factor
of 1/¢* and hence is negligible. Introducing the velocity
Av of the observer relative to the earth’s c.m., we write

v}Av, (3.10)

Vobs =Y/ ————
Mo+M¢

with V’ being the motion of the earth-moon c.m. relative
to the sun and v being the motion of the moon relative
to the earth. (The motion of the sun in the over-all
barycentric system is surely negligible in 1/¢? terms.)
To adequate accuracy we get

ops V2 2V-Av

¢ ¢

, (3.11)
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with terms of order 5)X10~2 dropped. The result of
combining the contributions is then

dr 1 GMy GMg Ve 2v'.A
£ S
dx® ¢ R’ 2R, ¢ ¢

We may now apply this as a factor to X° The result
takes on a more useful form if we employ a relation
valid for elliptic motion, namely,

17 GM@_GM@
2 )
R’ 2a’

(3.13)

with @’ being the semimajor axis for the motion of the
earth-moon c.m. relative to the sun.

The final expression for the elapsed proper time is
then

GMGIGMO GMg V”AV:I

T
R’ 2¢%’ R, c?

28
T=—[1+(7— 1)

[4

2(y+1) GMg  /ro—Rn
4 ln< 2 ) (3.14)

€ c?

in seconds of proper time to an accuracy corresponding
to S cm.

If the Einstein theory is correct, then v is unity and
the term in 1/R’, which would vary primarily with a
period of one year, vanishes. In the experimental
context the term (V’:Av)/c? has essentially the lunar
period but is on the verge of insignificance, having a
maximum magnitude of the order of 1.5X 1071,

The logarithmic term is so small that we can consider
multiplying it by S/ro without affecting the accuracy of
Eq. (3.14). The entire right-hand side would then be
proportional to S/c. With y—1 equal to zero and the
velocity term virtually insignificant, the proportionality
factor with the relativistic terms would be constant and
hence experimentally indistinguishable from a correc-
tion to the speed of light. The value of ¢ is known to no
better than parts 107, whereas the factor would be
14+0(107%).

We must conclude that within the framework of the
Einstein theory there is no realistic expectation of
detecting gravitational effects on the propagation of
light with the laser-ranging data. The only hope for a
relativistic correction which varies with time and has
an experimentally significant amplitude lies in the lunar
motion as it appears in the station-to-station coordinate
separation S.

By virtue of its definition, S has the following
form in terms of  and the earth- and lunar-station
coordinates:

S?=1+2r(Ruf - B— ReF-4,)

4+ (R?+R3E3—2R.Ruflefm). (3.15)
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The determination of the variation of S due to variation
of the scalar products is a quite difficult but tractable
Newtonian problem. (There are also small variations in
R, and R, arising from deformations of a tidal nature.)
In looking for a test of the Einstein theory we must
concentrate on the general relativistic effects in 7, the
earth-moon center-to-center separation. We turn now
to an analysis of this problem.

IV. RELATIVISTIC CORRECTIONS TO THE
EARTH-MOON SEPARATION

Lunar calculations are always approximate calcu-
lations. So at the outset we must establish the order of
approximation necessary for our specific purpose. The
mean earth-moon separation is some 4X10° cm. The
laser ranging really provides an observational time
rather - than a distance. Modulo the important un-
certainty in the speed of light, the anticipated timing
precision corresponds to some 10 cm in distance. So the
experimental precision sets a goal of two parts in 10
for the accuracy of the theoretical calculation of the
earth-moon center-to-center separation 7.

In the freshman physics view the equation one must
solve approximately is simply:

GMep+M() Newtonian Relativistic
i= —————————-—r-i—( solar +< . .
73 corrections corrections

(4.1)

In the same spirit one would say that to determine 7 to
two parts in 10" one need not worry about correction
terms which are smaller than O(10~%) times the basic
Newtonian term. This is certainly too naive. It totally
neglects the resonant behavior of certain terms. None-
theless, it gives an estimate of significance. A term of
order 1072, say, should be negligible, and if dropping it
helps to simplify this very complex problem, it is
reasonable to do so. Certainly we see immediately that
one needs the relativistic corrections through O(1/¢?)
only, for they are characterized by GMo/c*R'~1078,

A. Equations of Motion

Within the strict context of the Einstein theory one
can derive the equations of motion for an extended body
to O(1/c?) without additional assumptions of a char-
acteristically relativistic nature (such as the geodesic
postulate).* The derivation requires merely the state-
ment that the covariant divergence of the stress-energy
tensor is zero, and this follows directly from the field
equations. The derivation goes through even for the
relevant case of rigidly rotating bodies. No embarrassing
infinities arise, and indeed the resulting point-limit
equations for nonrotating bodies are exactly those which
one would get by invoking the geodesic motion postu-
late, expanding to O(1/¢?), and discarding the apparent
infinities which arise from the action of a body on itself.
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Our introduction of the coefficients v, 8/, 5, and %’
makes the situation a bit awkward. However, if we
regard the coefficients merely as labels, with each having
the numerical value 1, then the metric is still a solution
of the Einstein field equations. A 0 value for the co-
variant divergence of the stress-energy tensor follows
immediately, and one can derive from this the equations
of motion for fluid matter. When one applies this pro-
cedure with the labeled metric to the case of well-
separated, nonrotating ideal fluid spheres in internal
equilibrium and passes to the point limit, one derives
the appropriate geodesic equation (without embarrass-
ing infinities). Only in removing a single unwanted term
need one explicitly invoke the numerical value of the
labels. This term has the form of a mass renormalization
term for the particular fluid sphere whose equation of
motion is being determined. Thus, to O(1/¢?) and with
the specifically physical assumptions about the fluid,
we may regard the resultant geodesic equation with
labels in place as a deduction from the Einstein field
equations (rather than as a separate postulate).

In restricting the derivation of the equations of
motion with the labeled metric to the case of non-
rotating spheres, we have explicitly dropped all effects
which could arise from the known rotation of the three
bodies involved and from multipole moments. In Sec.
IV B we justify the neglect of general relativistic
rotational effects. The multipole moments are certainly
important at the Newtonian level but not at the O(1/¢?)
relativistic level. Since we are looking for only the major
relativistic corrections to the Newtonian results, we
may safely neglect the multipole moments. Thus we
may reasonably reduce the problem to that of inter-
acting point particles.

For a Hill-Brown calculation of the relative earth-
moon separation one would like the equations of motion
in a Lagrangian form. So one is confronted with the task
of constructing a Lagrangian in the earth-moon relative
position and velocity variables which gives the same
equations of motion as does direct application of the
geodesic equation to the moon and earth separately,
with the difference then to be taken. Both of these are
to go to O(1/¢?) beyond the Newtonian equations.

For a body 4 which does contribute to the metric,
one may get the geodesic equation from the Lagrangian
integrand

dr'a

m AC* EmAcz[:-—g’oo-—- zglo,"l}Ai/C—g’;j‘Z)Ai‘Z)Af/Cz:l”z ,

(4.2)

provided g’,, is g, without the contributions of m,
except for the “interior” summation in the ® of Eq.
(2.16d) and provided the partial differentiations for the
actual equations of motion are made with respect to the
“field point” x of g',,, later set equal to x4. The square
root may be expanded in powers of 1/¢ to our desired
order of approximation, that is, O(1/¢%) beyond that
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necessary for the Newtonian equations. If one chooses
the particle 4 to be the moon, this provides a starting
point for the desired Lagrangian. One must now add
further terms (which come essentially from a similar
Lagrangian for the earth) and then re-express the result
in terms of the relative position r and relative velocity
v. We recapitulate the test which the proposed Lagran-
gian must pass: When the Lagrangian is treated as a
function of r and v, the equation for dv/dt which arises
from the standard Lagrange procedure must coincide
with the result obtained by taking the difference of the
moon and earth equations of motion derived directly
from the respective geodesic equations, all to O(1/c?)
beyond the Newtonian equations.

The construction process is simplified by some
additional approximations. In the over-all barycentric
system the motion of the sun is very small. In the
0(1/¢?) terms one may set it to zero, although, of course,
it remains relevant at the Newtonain level. The second
additional approximation is the neglect of the lunar
mass relative to the earth mass in the O(1/¢?) terms. A
careful look at these approximations shows that neither
is likely to affect the result to the accuracy we desire.
Where the neglect of M¢ entains the loss of a particular
form of term in the equation of motion, the term is
typically of order 10~? times the basic Newtonian term.
When the term is retained but a factor like 1+M /Mg
is set to unity, the error in the equations of motion may
be as large as O(107%). However, we will see that the
final relativistic corrections to 7 are so small that this is
distinctly an acceptable approximation in the present
context.

The resulting Lagrangian is long and awkward in
appearance; we will refrain from writing it down here.
Suffice it to say that, with the explicitly stated approxi-
mations given above, one can construct the appropriate
Lagrangian with the labeling coefficients in place.

The next step in the conventional procedure involves
a change of stance. One adopts the point of view that
it is in fact the sun which moves around the earth-moon
c.m., rather than vice versa. The vector R is defined to
point from the Newtonian earth-moon c.m. to the
position of the sun. It is the negative of the vector R’
introduced in Sec. ITI. Likewise, V is defined as (— V).

One can then proceed to replace the solar mass Mo
by its equivalent in terms of the solar orbital param-
eters, with the orbit generally assumed to be a Keplerian
ellipse. This serves also to introduce into the Lagrangian
the mean solar motion #’ as a parameter. The presence
of relativistic effects complicates this process, but it can
be carried through in a satisfactory order of approxi-
mation. By taking appropriate mass-weighted sums
and differences of the geodesic equations for the earth,
moon, and sun, one arrives at an equation for dV/d¢
which includes the O(1/¢?) corrections. From the
approximate solution of this equation we are to derive
a substitute for GM o involving the solar mean motion.
The Newtonian solar term in the equation for the
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relative earth-moon motion is O(1072) relative ‘to the
direct earth-moon interaction. So we need the dV/dt
equation good only to two orders of magnitude less than
the goal we set for the terms in dv/dt.

We would like to approximate: the solution of .the
dV/dt equation by a Keplerian ellipse. This implies the
neglect of certain small Newtonian correction terms. In
his lunar theory Brown did include some of these, but
only as perturbations after solving the so-called main
problem within the elliptic motion approximation. In
any case, the deviations from elliptic motion due to the
Newtonian corrections and the relativistic corrections
to an assumed elliptic motion should be independent to
first order. This is all we really need. Furthermore,
inspection shows that we may safely neglect the
eccentricity (which is' approximately 0.017) in the
relativistic terms. The result is a delightfully simple
modification of the standard elliptic motion relation:

n"%a"3=G(Mo+Mo+M()
GMo

47(n'a')2]] . (43)

c a

1
X { 1—“—2[2 (y+8")
where o’ is the semimajor axis and #’ is the mean solar
motion. Introducing the ratio &= Me+M)/ (Mg
+Me+M)=3X10~%, we may solve for GMgo to
oQ/e):

GMo= (1—Ena"[14(26'+) (W'’ )?/*].

General relativistic effects are present both in the ob-
vious sense of the term in 1/¢* and in the more subtle
sense that @’ and #' refer to coordinate lengths and
times, respectively. Their connection with observational
quantities is by no means direct. In fact, the appearance
of the over-all expression is distinctly dependent on the
choice of coordinate conditions made earlier. To under-
line this, we point out that the corresponding planetary
problem, when done with the coordinate condition
choice which corresponds to the standard polar form of
the Schwarzschild metric, contains no obvious rela-
tivistic corrections in the limit of a circular orbit. When
the same problem is handled in a Cartesian frame with
all axes treated equally in the metric, a correction term
of the above form does arise.

(4.4)

B. Rotation Effects

Rotation effects arise in two distinct ways. First, the
rotation of a body makes a direct contribution to the
metric since the fluid velocity over which one integrates
in Egs. (2.9) is not merely the body’s c.m. motion but
a combination of that plus the rotational motion about
the c.m. Moreover, there will be differences in the
conditions for internal equilibrium, with the result that
the mass distribution will not be spherically symmetric.
This will lead to multipole moments in even the New-
tonian potential. The multipole structure is' certainly a
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major effect, but it is primarily a Newtonian effect. To
estimate the relativistic corrections to the metric it
suffices to look at those terms which involve the fluid
velocity explicitly.

Second, within the general relativistic context the
rotation of a body moving through a prescribed metric
leads to deviations from purely geodesic motion. One
might expect this, for a classical rotating body is
necessarily an extended body; as such, it samples the
gravitational field not merely along a world line but
throughout a world tube. Hence even at the Newtonian
level additional forces arise from a conjunction of the
variation of the Newtonian gravitational field over the
region together with the aspherical mass distribution
produced by the rotation itself. However, the effect in
question is really more subtle than this. The correction
terms in the relativistic equations of motion depend on
the angular-momentum four-vector of the spinning
body and appear even in a derivation which explicitly
drops the usual quadrupole moments as negligibly
small.?

Within the context of our 1/¢? approximation for the
equations of motion the influence of these two distinct
rotational effects can be directly computed to an
accuracy commensurate with the expected observational
precision. However, dimensional arguments alone
suffice to show that the effects are unfortunately
negligible at our level of relevance.

We look first at the influences on the metric. The
metric coefficients go; of Eq. (2.10b) involve the velocity
linearly. (This is clear for the U; term from its definition
and is true for the X term after the indicated differ-
entiations have been performed.) For a mass B which
rotates uniformly the first nonzero additional terms are
of the dimensional form

1 Gmp Rp wpRp

2 Ap Ap ¢

(4.5)

Here Ap=|x—xp| is the distance between the field
point and the c.m. of body B; wg is the angular velocity
about the c.m.; and R is a typical size dimension of the
rotating body. The derivation of this involves nothing
more than the standard expansion of the denominator
in the integrals for field points far from the rotating
body.

The geodesic equation specifies that go; contributes
to the acceleration of a point particle through two types
of terms:

cX (velocity of theX (spatial derivative
point particle of gos ’

¢X (time derivative of go;). (4.6)

2 F, A. E. Pirani, Acta Phys. Polon. 15, 389 (1956) ; A. H. Taub,
J. Math. Phys. 5, 112 (1964).

TESTING GENERAL

RELATIVITY 1283
In both cases the resultant contribution to the accel-
eration has the form

Gmp  Rp wpRp (some velocity)

A32 Ap 4 c

, (4.7)

where “some velocity” is either the velocity of the point
particle or the c.m. velocity of the rotating body. It is
now simply a matter of inserting values of the param-
eters for earth, moon, and sun into the second bracket.
Typically this has a value of O(10~%2) or less. Since the
first bracket has the magnitude of the acceleration
produced by the direct Newtonian interaction, the
expression as a whole is negligible.

This disposes of rotational effects in go;, but there
remains the 9* term in ®/c* of gy. The contribution of
©* to ®/c* from a single rotating body is of this form

GmB '032 RB OJBRB B ‘A’B2-RB2
oo ool o). s
®Ap ¢ B C ¢ c?

Here v is the velocity of the c.m. of body B.

We must bear in mind that ®/¢* enters the geodesic
equation with a factor of ¢? arising from a product of the
time components of the point particle’s four-velocity
and with a spatial derivative applied. Hence we keep
the first term in the bracket. The second is then of the
same structure as the go; contributions and may be
neglected in the geodesic equation for analogous
reasons. The third term in the bracket is small, O (10—1)
or less, and could be neglected for that reason alone.
However, there is an additional justification for drop-
ping it: This term is indistinguishable from a change in
the mass #mp. It acts like a further renormalization of
the nominal mass. Since the masses must be determined
empirically, there is no point in keeping this as a
separate term. Thus we may conclude that the rotation
effects arising from the metric itself may be neglected
in our order of approximation.

Finally, we examine the extent to which a body fails
to follow a geodesic because of its rotation. Once again
the detailed equations are unnecessary for a demon-
stration that we may neglect corrections from this
source. It suffices to say that the leading correction to
the acceleration goes as the angular momentum per unit
mass, involves the Riemann tensor, and is of course a
1/¢* effect. With the angular momentum per unit mass
of the moving body A written as waR 42, the correction
to the acceleration of body 4 must have the general
form

Gmp Ry waR4 (some velocity)

AB2 AB c c

4.9
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for a mass mp which contributes to the metric. This is
the same type of expression we have met before and
agreed to neglect. To our order the specifically general
relativistic effects due to rotation are, unfortunately,
negligible.

C. The Hill-Brown Calculation

Once one has arrived at the approximate Lagrangian
for the earth-moon relative motion, the application of
the Hill-Brown technique is a straightforward (though
tedious) matter. The general method is carefully
presented in Brown’s Treatise®® and the procedure with
velocity-dependent terms is handled very nicely by
Brumberg in his paper. However, a few words about the
expansion procedures and further approximations are
in order.

The elimination of the solar mass from the Lagrangian
by the use of Eq. (4.4) introduces the parameters #’ and
&'. Since the sun is assumed in our approximation to
follow an ellipse, one may regard R and V as known
functions of #’, @', the solar eccentricity ¢’ the longitude
of the solar perigee, and the solar mean anomaly. We
expand the Lagrangian in powers of ¢/, retaining the
zeroth- and first-order terms, and in powers of 1/a’.

The relativistic corrections contain the common
factor 1/¢%. Since the subsequent calculations are to be
done to first order in 1/¢%, it is convenient to follow
Brumberg and to introduce a dimensionless parameter
u which characterizes the relativistic terms. We define

p=wad)2/e. (4.10)

Thus u is tantamount to GMo/c*a’, the difference being
of order 1/¢* and hence negligible. The numerical value
of u is very closely 1078, After the introduction of u the
relativistic terms can be arranged according to powers
of ¢ and 1/d’.

Tt is now a matter of bringing the formidable appara-
tus of the Hill-Brown procedure to bear on the trun-
cated Lagrangian. Brumberg has shown that an inter-
mediate orbit in Hill’s sense does exist even when the
1/¢? relativistic corrections are included _in the pro.blem.
So one may compute the Hill-Brown series here with as
much confidence as in the purely Newtonian case.

In general everything goes through as in the_: Neyvton-
ian problem. A single prominen‘t exception arises in the
computation of the secular motion of the lunar perigee.
The presence of velocity~dep_endent terms in the
relativistic part of the Lagrangian appears to prevent
the reduction of the problem to a form of Hill’s equa-
tion. Brumberg avoided this difficulty _by a ]:uc%mous
change of variables at the start which ehmlna-ted
velocities from the relevant part of the Lagrangian.
With our desire to retain the coefficients v, 8/, 1, and »’

13 Ernest W. Brown, An Introductory Treatise on the Lunar
Theor; (Dover Publica{ions, Inc., New York, 1960).
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as distinct labels, this stratagem is precluded for us.
Consequently we have been forced to calculate the
relativistic corrections to the perigee motion simul-
taneously with the determination of the corrections to
the relative position which depend on the lunar eccen-
tricity. This results in a rather awkward scheme of
consistent successive approximations. So we have
carried it through to second order only in the ratio
w=n'/(n—n'), where » is the lunar mean motion. In
an appendix we discuss the relativistic corrections to
the secular motion of both the lunar perigee and node
and their connection with the general precession.

D. The Expression for the Relative Separation

Once the Hill-Brown coefficients have been deter-
mined in the auxiliary coordinate system rotating with
angular frequency equal to the mean solar motion #’,
the determination of the magnitude of the relative
separation is reasonably straightforward. It is really a
matter of transforming from Cartesian coordinates in
the rotating frame to polar coordinates in the geocentric
frame.

In expressing r we use a notation involving the
Delaunay angular variables and the Hill-Brown orbit
parameters. The angular variables are differences in
mean longitudes, as follows:

!=moon minus lunar perigee,
!'=sun minus solar perigee,

D=moon minus sun,

with “mean longitude of” understood. To avoid
ambiguity we give approximate numerical values with
the listing of the Hill-Brown parameters!®:

€~0.1095, constant of lunar eccentricity

¢’ =~0.0168, solar eccentricity
3~3.8X10"° cm, Hill’s scale factor (of the order
of the mean solar distance)
a=ad/d ratio of Hill’s scale factor to the
solar semimajor axis (Ref. 14)
=0.0025,

where 7’ is the mean solar motion
and # the mean lunar motion.

w=n'/(n—n'),

With these definitions established, we can write down
the theoretical expression for the O(1/¢?) relativistic
corrections to 7/d.

132 The quantities &, &, # correspond to e, a, m in Brown’s no-
tation (Ref. 13).

4 This differs from the usual definition in that the factor
(Me—M()/(Mo-+M() has been set to unity, which is appropriate
since we are neglecting the lunar mass in the relativistic correc-
tions.
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2
= rrowmt] —H o rior—r+ D@ Dk /- |
m2

+{%wﬁﬂ[(1+v—2n>%+%<9v—4ﬁ'—lon—n'+12>§—%a]} cosD
m m

H{—m+u[ G5 1=+ (7/18) A —")rii+ (17/4)* ]} cos2D+{O () +p[5577*]} cos4D

+5[{—%+M[(1/24) (y+-66+ 167—1+2) — (233/28)T} cosl

+{— 5 +u[E+ (13/3X2%) (1—2")]} cos(2D+1)

1
+{—a~%m+u[§%(1—n'>%+(—i%+ (85/3% 27)<1—n'))+(165/64)m]] cos(2D—1)

{— (255/ 29 u[ (45/ 27T} cos <4D—z>]

+e¢' [{3m2+p[5 (—8y+16n—1"—10) 1} cosl’+ {372+ u[—§4# ]} cos(2D+-1')

For the distinct harmonics we have included the
leading Newtonian term or indicated its magnitude. In
writing out the relativistic terms we have at some point
in the series in ascending powers of 7% given the labeling
coefficients v, 8, 7, and o’ the explicit numerical value
of unity. The expressions would otherwise be even more
cumbersome. For terms involving & and ¢/, the points
were O(#) ; for o, O(1); for the constant term, O(##2).
In all cases higher-order terms were neglected, even
where this meant the loss of a particular harmonic.

Before we inquire into the observational significance
of this result a few points require discussion. First, in
the process of transforming from the Hill-Brown
representation to this polar form, contributions with the
coefficients 22, &¢/, (¢')?, &, and €'« appear in 7. They
arise as the result of the multiplication and division of
the original series. On the grounds of consistency we
have not included them here. The reason is that terms
with these coefficients would also appear in the original
Hill-Brown series were we to carry the calculation
through at a higher level of approximation. Since we
have computed none of these terms directly, we cannot
justify inclusion of merely some terms of their generic
form in the expression for 7. There is no reason to expect
that terms of this form will make significant relativistic
contributions. Certainly when those terms which arise
through manipulation of the series are given the
Einstein values of the labeling coefficients, the contri-
butions from &2 and &’ are down at the 10-cm level, with
the others considerably smaller. However, their general
insignificance could be asserted positively only after a
much more elaborate calculation, one which seemed
unwarranted at this exploratory stage.

The same line of reasoning applies to contributions

H{ =3 +u[G+HE(1—2"))+$ ]} cos(2D-1)].

(4.11)

to r dependent on the inclination of the lunar orbit to
the ecliptic. The contributions will appear in lowest
order as proportional to the square of the constant of
inclination. This means that one can expect the rela-
tivistic parts to be of order 5X 10~ or less relative to
the mean lunar distance and hence negligible at the
10-cm level of relevance. Calculation of some of these
contributions bears out this analysis,

Another point pertains to the relativistic corrections
hidden in the angle /. This variable involves the secular
motion of the lunar perigee, and the theoretical ex-
pression for the secular motion contains small rela-
tivistic corrections. Consequently, what appears to be a
purely Newtonian term in /@ may actually have a time
dependence involving relativistic effects. However, this
is largely a point of principle. In practice the relativistic
effect is masked by the uncertainties in the Newtonian
contributions to the secular motion, the primary
difficulty arising from the unknown mass distribution
within the moon.

A final point involves the definition of the scale
parameter @. A Hill-Brown calculation with relativistic
corrections is most conveniently done with its own
characteristic linear scale parameter. The connection
between Hill’s scale parameter for the purely Newtonian
problem and the convenient scale parameter for the
relativistic problem can be established at the end by
relating both to the parameter ¢ defined by n%a?
=G(Mo+M(). The transformation from the relativistic
linear scale parameter of the actual calculation to the
Hill scale parameter has been performed for the r/@
expression given in Eq. (4.11). Thus the 7/a expression
is couched, to appropriate order, in terms of the
standard Hill scale factor of the Newtonian main
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problem of the lunar theory. Hence one can be sure that
no spurious effects due to linear scale factors with
different definitions have crept in.

To assess the magnitude of the corrections to r/@
arising from the Einstein theory we must give all the
coefficients v, 8, 7, and 7’ the value unity. This leads to
a striking number of cancellations. For example, in the
coefficient of cosD the leading relativistic terms,
proportional to pa/#7? and pa/#i, vanish.

With the coefficients given their values from the
Einstein theory, the dominant relativistic correction in
a periodic term is in the cos2D term:

{—2+- - - Fu[3+(17/4)72]} cos2D.

The contribution fu amounts to a nominal amplitude
of some 100 cm.

In potential significance the cos2D term is followed
by the cosl term. The cos(2D=1) and cos/’ terms are
next in line; these, however, are down at the 10-cm
level.

Although there is a sizeable general relativistic
contribution to the constant term in #/a, this is experi-
mentally inaccessible because the lunar radius (as well
as the earth radius) contributes a constant term to the
round trip laser pulse time. One cannot with the laser
experiment distinguish the relativistic part in the con-
stant term of 7 from a very small correction to the
distance of the corner reflector from the lunar c.m.

The relativistic contributions in the periodic terms
cannot be brushed aside with the argument that they
are artifacts arising from a particular choice of the
a priori arbitrary coordinates used in the general
relativistic calculation. In Sec. IIT we showed that the
conversion from elapsed coordinate time for the laser
pulse to proper time was, to sufficient accuracy, merely
multiplication by a constant factor. So the periodic
terms in 7 are tantamount to periodic terms in the
elapsed proper time. The ratio of two such terms is both
coordinate-invariant and independent of precise knowl-
edge of the local speed of light. (The frequencies them-
selves are coordinate-dependent, but for the lunar case
no ambiguity can arise at the observational level
because the important frequencies are well separated.)
Inspection of Eq. (4.11) is then sufficient to show that
the ratios of the periodic terms are different from the
corresponding ratios in the purely Newtonian case.

To give a particularly clear example, we look at the
ratio of the cos(2D-1) amplitude to the cos(2D—1)
amplitude. This ratio is independent of both the scale
parameter & and the lunar eccentricity constant & The
leading terms in the ratio go as follows:

(4.12)

(17/30) i+ - .+u(_sim+. . )

- (17/30)%[1-]—;1(—5(;—2)] . (413)
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This ratio departs by a (relativistically speaking)
considerable factor, of order 1.5X10~7, from the cor-
responding ratio of the Newtonian theory. (The
presence of 77 cannot vitiate this conclusion, for 77 is a
ratio of observed frequencies and hence is insensitive to
changes in the time coordinate used.)

To extricate the coefficient of the cos2D term in the
lunar motion from the round-trip proper time data for
comparison with Eq. (4.12) requires a comprehensive
analysis. In particular, improved values of the orbital
parameters and of the parameters for the physical
libration of the moon must be determined simultane-
ously. The coefficient must be extracted effectively as
part of a ratio in which the speed of light cancels, as
well as the linear scale factor @. Yet it appears to be
possible with the laser-ranging experiment to determine
the coefficient of the cos2D term with sufficient accuracy
to be of interest.!s

In view of this possibility of measurement it is un-
fortunate that the non-Newtonian parts of the metric
play so small a role in determining the relativistic part
of the cos2D coefficient. The bulk of the relativistic
contribution is independent of those parts of the metric
labeled by v, 8, 1, and »’. This means that one is check-
ing on the correctness of the geodesic equation, to
O(1/¢?), as the equation of motion for bodies in a
gravitational field of simple Newtonian structure. This
is more than another test of special relativistic dynam-
ics, for special relativity theory fails to provide an
unambiguous prescription for the incorporation of even
a Newtonian potential (—U) into the equations of
motion.

V. CONCLUSION

The foregoing calculations provide an assessment of
some possibilities opened by laser ranging for testing
Einstein’s gravitational theory. On the question of
general relativistic effects in the light propagation itself
we conclude that there is no significant hope of ob-
serving such effects with the round-trip proper time
data. General relativistic effects in the lunar motion are
quite a different matter. There is a realistic possibility
of detecting the relativistic contribution to the cos2D
term in the earth-moon separation. Observation of this
would provide a significant test of the correctness of the
geodesic equation, to O(1/c?), for describing the motion
of bodies in a gravitational field.

The promising results of this exploratory calculation
indicate that a more extensive treatment is desirable.
This should be commensurate with the increased
precision of the Newtonian solution for the three-body
problem provided by the work of Eckert and Smith.1
In part this means a calculation to higher order in the
orbital parameters. For comparison with a rival gravi-

18 P. Bender (private communication). .

18 W. J. Eckert and H. F. Smith, in Infernational Astronomical

Union Symposium No. 25, edited by G. Contopoulos (Academic
Press Inc., New York, 1966), p. 242.
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tational theory such as the scalar-tensor theory of
Brans and Dicke, the metric used in the orbit calcu-
lation should be generalized to include the terms from
both theories with distinguishing coefficients. Work
toward this end is in progress.
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APPENDIX

This Appendix deals with the connection between the
relativistic corrections to the lunar secular motions and
to the general precession. First we present the general
relativistic contributions to the secular motion of the
lunar node and perigee as they emerge from our Hill-
Brown calculation.

aQ
@ —gnmi+- - +np{—31(1—")
0 2v+1)—F(—9) In— (117/64)m+-- - -},
dmr
= +inmi+-- - - +np[3 (2v+1)m+0(m?)

+(o/m?) (24 27—B)+ -+ ]

For clarity we have inserted the leading Newtonian
term. Here m is defined as m=#'/n. In both expressions
the coefficients labeling parts of the metric have been
given their Einstein values of unity in the terms of
order m? and higher. The term in o?/m? in the perigee
motion was calculated separately by a variation of
orbital elements procedure. Because of the difficulties
in our calculation of the perigee motion, alluded to
earlier, we have not carried it through to O(m?).

If we give the remaining labels their Einstein values
and drop the Newtonian terms, the expressions reduce
to the following:

o
=nu[3m— (117/64)m3+-- -],
t

dr
—=np[ m— (1245/64)m3+3c?/m2+-- - - -
dt
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The O(m?) term in the perigee we have adopted from
Brumberg’s paper.!?

We focus our attention on the second set of equations.
In both the # and Q equations the (identical) leading
terms with the factor nm=7n’ are independent of % and
thus of the details of the lunar motion. These strictly
solar effects of some 1.91 in./century are often referred
to as the geodesic precession effects. The terms in 3 are
combined luni-solar effects. The o? term in # is an effect
due to the earth alone. (The over-all factor of ue?/m?
is independent of the solar parameters.) No comparable
term appears in  because even the relativistic correc-
tions to the direct earth-moon interaction produce no
acceleration perpendicular to the instantaneous orbital
plane.

The combination of these small relativistic correc-
tions with the manifold Newtonian effects then gives a
theoretical secular motion relative to some fixed inertial
system. This is to be compared with the observational
results reduced to the corresponding inertial system. In
practice this means that the observations of #+ and
relative to the moving equinox must be corrected with
the observed general precession of the equinox. As
described here, the confrontation for either # or Q is
between a single theoretical value and the appropriate
difference of two observational values.

In the literature'® a question has arisen over whether
one should exclude the “geodesic precession” terms
from the theoretical expressions for # and Q. The con-
fusion arises because relativity theory does predict a
contribution to a theoretical calculation of the general
precession with the same numerical value as the leading
terms above. It bears the same name, geodesic preces-
sion, and the numerical agreement is by no means
coincidental. Nonetheless, one is dealing with two
distinct phenomena.

In the case of the general precession the Einstein
theory predicts that the angular momentum of the
earth undergoes a characteristically relativistic preces-
sion as the earth moves in its orbit about the sun.
Mathematically, the angular-momentum four-vector
of the earth is Fermi-Walker propagated along the
earth’s world line. The essential net result is that the
component of angular momentum lying in the plane of
the orbit precesses with a frequency given (to lowest
order) by 3#'u rad/sec relative to some fixed inertial
system. The appropriate inertial system is the asymp-
totically flat space at spatial infinity, here tantamount
to the frame of the fixed stars. The sense of this preces-
sion is the same as that of the orbital motion of the
earth about the sun. Thus, if one were concerned with a
theoretical calculation of the general precession, one would
have a relativistic contribution of 1.91 in./century to the
direct motion of the zero of longitude along the ecliptic.

17 The O(m?) term in the nodal motion agrees with Brumberg’s
when a transcription error in his paper is corrected, one involved
in the passage from his Eqs. (48) to (48').

18 W. J. Eckert, Astron. J. 70, 787 (1965).
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The numerical agreement between the general pre-
cession contribution and the leading terms in # and ©
should now not be surprising. If one wanted a quick
result for the major relativistic solar contribution to the
lunar secular motions, one would regard the earth-moon
system as a composite spinning body whose center of
mass moves in a circular orbit around the sun. The
angular momentum of this composite system must
precess just as does that of the spinning earth. Thus the
leading terms in # and © would appear directly.

This stratagem, however, would give only part of the
relativistic contributions to the lunar secular motions.
As the results quoted above show, application of the
Hill-Brown procedure produces the primary terms plus
additional (smaller) terms in both # and Q. Moreover,
these additional contributions are different for the two
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secular motions. At most, the solar parts of one of # or
€ could be numerically equal to the geodesic precession
result for the earth’s axis. In point of fact, neither is.
Within the context of the approximations made in our
Hill-Brown calculations of the lunar secular motions,
notably neglect of the lunar mass in O(1/¢?) terms, the
equations for calculating the relativistic contribution
to the general precession are independent of the moon.
This means that no term with a coefficient like num?® can
appear; so the final expressions must be different.

This discussion has been presented largely for the
sake of clarifying a matter of principle. It remains true
that the lunar secular motions are unlikely to provide a
test of relativity theory. Certainly they will not until
we know a good deal more about the mass distribution
within the moon.

PHYSICAL REVIEW

VOLUME 162,

NUMBER 5 25 OCTOBER 1967

Physical Consequences of Fock’s Conformal Hypothesis

PeTER D. NOERDLINGER
Department of Physics and Astronomy, University of Towa, Iowa City, Iowa
(Received 19 December 1966; revised manuscript received 1 May 1967)

It is shown that, when taken literally, Fock’s method of reinterpreting the spatial metric in Einstein’s
general theory of relativity leads to the result that clocks do not measure proper time, and consequently to

disagreement with gravitational red-shift experiments.

OR static spaces, Fock has suggested! that in the
metric?

ds?=Vdr— g, dxrdx”, (Ref. 3) 1

where ¢2V2= gq, one should interpret the spatial metric
to be

do*=h,,dxrdx? )
where
buy=—V"gys
instead of the more usual—®
dP= —g,,dx*dx’. 3)

1V. Fock, Zh. Eksperim. i Teor. Fiz. 38, 1476 (1960) [English
transl.: Soviet Phys.—JETP 11, 1067 (1960)]; Recent Develop-
menis in General Relativity (Pergamon Press, Inc., New York,
1962).

2The term ‘‘a space’’ will denote a space-time manifold. The
term ‘‘spatial” will be used to designate the splitting off of a
three-dimensional metric.

3 Greek indices are summed 1-3, Roman 0-3. We do not follow
Fock’s practice of writing dx; for the controvariant vector dxs.
See, e.g., his book, T'%e Theory of Space, Time, and Gravitation
(The Macmillan Company, New York, 1964), p. 122.

4 A. Einstein, in The Principle of Relativity (Dover Publications,
Inc., New York), p. 129.

8 C. Mgller, The Theory of Relativity (Oxford University Press,
New York, 1952), p. 238.

8L. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison Wesley Publishing Company, Inc., Reading, Massa-
chusetts, 1962), 2nd ed., p. 273.

He offers a generalization to nonstatic spaces that re-
duces to (2) whenever the metric is time-orthogonal.
We shall therefore feel free to consider his assumption
in all spaces admitting time-orthogonal metrics, al-
though the results in the static case are startling enough.
Note that

ds= VL — V-2do? 4)
and

do?=V2dP= godi/c?. (5

[Fock’s Eqgs. (2.03) and (2.08)7].

At first glance, definition (2) might seem to lead to
no new physical results. For example, since all the
geodesics remain the same, planetary motions, the
deflection of light by a gravitational field, and many
other results come out the same as under definition (3).
Indeed, Fock does not state that his theory leads to any
results different from those of general relativity. It will
here be shown that, taken at face value, Fock’s theory
has different physical consequences than the general
theory of relativity, and that these consequences are
in contradiction with experiment. It is possible, of
course, to consider Fock’s redefinition as a purely
mathematical device, in which case it has no physical
consequences. His later work (Ref. 3) has more of this
flavor. To the author, Ref. 1 seems to make an ex-
plicitly physical redefinition. The most serious result in



