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form (2.8) which these vertices possess, the uniform
orientation guarantees that at least one of the vertices
in each infrared, loop is proportional to an infrared
momentum.

We conclude this section by repeating Weinberg's
calculation of 8 in the nonrelativistic limit and correct-
ing a minor mistake in his result. The quantity e„ is
6rst expand, ed in the form

fourth order in the velocities. This expression can be
greatly simplified with the aid of the energy-momentum
conservation laws

P g„m.(1+-,'v„'+-,'v.'+ ) =0,

g rt„m„v„(1+-,'v„'+ )=0,

e „'=(v„—v )'—v 'v '+2(v„'+v ')v„v
—3(v„v„)'+ ~ . , (8.9)

where v„=p„/E„. This expansion is then inserted into

and one 6nally obtains the compact formula

8= (4G/5x) tr(ad'Q/dP)', (8.11)

1+&nm rtertmmnmm 1+&em
ln

(1—r „„')'" ~ 1—v„„

where Ad'Q/dP is the d.yadic previously de6ned by
Eqs. (4.11) and (4.12), having the explicit traceless
form39

11 63
=2rt rt„m m

i 1+—v„'+—e„„'+
i

(8.10)
40

hd'Q/dP=Q rt m (v„v„—xelv '). (8.12)

39 By inadvertently dropping a term Weinberg obtains a
to obtain a lengthy expression for 8 correct to the dyadicwhichisnot traceless.
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The statistical properties of systems of coupled quantum-mechanical harmonic oscillators are analyzed.
The Hamiltonian for the system is assumed to be an inhomogeneous quadratic form in the creation and
annihilation operators, and is allowed to have an explicit time dependence. The relationship to classical
theory is emphasized by expressing pure states in terms Of the coherent-state vectors, and density operators
by means of the P representation and an analogous representation involving the Wigner function. The
state which evolves from an initially coherent state of the system is found, and equations governing the time
evolution of the Wigner function and the weight function for the P representation are derived, in differential
and integral form, for arbitrary initial states of the system. The results remain valid for couplings which do
not preserve the vacuum state, and for cases in which the time dependence of the coupling parameters gives
rise to large-scale amplification of the initial field intensities. The analysis is performed by first treating
general linear inhomogeneous canonical transformations on the oscillator variables, and then specializing to
the case in which these transformations represent the solutions for the Heisenberg operators in terms of their
initial values. The results are illustrated within the context of a model of parametric amplification.

I. IÃTRODUCTIOÃ
' 'N a wide variety of physical processes, all of the dy-
- e namical elements which enter into the description
of the state of the system may be treated formally as
quantum-mechanical harmonic-oscillator modes. The
coupling between the modes typically takes the form of
a quadratic expression in the annihilation and creation
operators a, (t) and a,1(t), in which the coupling param-
eters are time-dependent in the general case. In addition,
driving terms linear in the oscillator variables may be
present. The operators a, (t) and a,t(t) then obey linear
inhomogeneous equations of motion, and the solutions
to these equations. take the same form as the solutions
for the c-number complex amplitudes in the analogous

~ National Science Foundation postdoctoral fellow.

classical system. The time-dependent expectation values
of dynamical operators for a given initial state of the
system may be evaluated straightforwardly with the
aid of the solutions to the Heisenberg equations of mo-
tion and the commutation relations for u; and u;~, and
some indication is thereby provided of the way in which

quantum fluctuations inhuence the time development of
the oscillator system. '—'

'R. Serber and C. H. Townes, in Quantum E/ectronics —A
Symposium, edited by C. H. Townes (Columbia University Press,
New York, 1960), p. 233.' W. H. Louisell, A. Yariv, and A. E. Siegman, Phys. Rev. 124,
1646 (1961).

3 H. A. Haus and J. A. Mullen, Phys. Rev. 128, 2407 (1962).
4 J. P. Gordon, W. H. Louisell, and L. R. Walker, Phys. Rev.

129, 481 (1963).
~ J. P. Gordon, L. R. Walker, and W. H. Louisell, Phys. Rev.

130, 806 (1963).
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It is convenient for many purposes to be able to find
the probability that a physical measurement will yield
a particular value, rather than to be able mere]y to
evaluate the moments of dynamical operators. In such
cases it is d.esirable to describe the state of the system
in the Schrodinger picture, i.e., in terms of a time-
dependent state vector or density operator. The most
con@non basis for the description of the quantum states
of harmonic oscillators is the set of occupation-number
eigenstates or e-quantum states, which are the eigen-
states of the free Hamiltonian. In cases in which the
eBect of the coupling is small during the time interval
in question, a perturbation-theory calculation may be
used to evaluate the transition probabilities between
states of the unperturbed system, which must be taken
to be stationary, i.e., diagonal in the e-quantum repre-
sentation. The m-quantum states do not, however, pro-
vide a very convenient basis for describing the state of
coupled oscillator systems in cases in which the coupling
gives rise to large-scale coherent changes in the oscil-
lator amplitudes. The equations governing the time
evolution of the matrix elements p„(t) of the density
operator are rather difficult to solve exactly, especially
when the coupling parameters are allowed to have an
arbitrary time dependence. A more serious drawback is
that the n-quantum states are not appropriate for de-
scribing states in which one has sorn. e information about
the phase of oscillation of the complex amplitudes, and
are therefore not suitable for making comparisons be-
tween quantum and classical theory.

A formulation of the quantum mechanics of harmonic
oscillators has been constructed' in terms which allow
quantum-mechanical calculations to be made along lines
analogous to classical ones. It is based on the coherent
states, which are eigenstates of the. annihilation opera-
tors a;. The coherent states form a complete though
nonorthogonal, set in terms of which arbitrary state
vectors and operators may be expressed. It is found that
a broad class of density operators may be written in the
I' representation, ' which is a diagonal mixture of pure
coherent states. The weight function P(a) for the P rep-
resentation plays a role in the calculation of certain
statistical averages analogous to that played by the
phase-space distribution function in classical theory. In
this respect, the E function is similar to the Wigner func-
tion W(rr), a quantum-mechanical distribution function
which may be shown to be the expansion function for
the density operator in terms of a certain complete set
of Hermitian operators. ~' The coherent states and the
quasiprobability functions P(a) and W(n) provide a
natural basis for the description of the time-dependent
state of coupled oscillator systems. We Gnd that the
solution to Schrodinger s equation may be simply ex-
pressed within this framework, in terms of the c-number

s R. J. Glauber, Phys. Rev. 131, 2766 (1963).
r E. C. G. Sudarshan, Phys. Rev. Letters 10, 2/7 (1963).' U. Pano, Rev. Mod. Phys. 29, 74 (1957), Sec. 9.
9 B.R. Mollow, thesis, Harvard University, 1966 (unpublished)."K.Cahill and R. J. Glauber (to be published).

functions of time which delne the solutions to the
Heisenberg equations of motion for the oscillator vari-
ables, and which therefore de6ne the solutions for the
oscillator amplitudes in the analogous classical system.
The time-dependent state of the oscillator system may
thus be expressed in terms of functions which bear the
strongest possible resemblance to the functions which
arise in classical theory. ""

The simplest case we treat is the one in which the
quadratic part of the Hamiltonian has the form
g ~,s(t)a,t(t) as(1), where the coupling parameters co/s(t)
may be allowed to have an arbitrary time dependence.
If driving terms linear in a/(t) and a/t(t) are also present,
the solution to the Heisenberg equations of motion takes
the form

where e;s(t) and 8 (t) are c-number functions of time,
and a;—=a;(0). Solutions of this form correspond. to a
particularly simple behavior of the state of the system
in the Schrodinger picture: An initially coherent state
remains coherent at all times, ""' and the time-depend-
ent functions P({tr/},t) and W({rr;},t) corresponding to
an arbitrary Schrodinger density operator p(t), obey
Liouville's equation.

The solution to Schrodinger's equation is somewhat
more complicated when the Hamiltonian contains terms
of the form P o;s(t)a;t(t)alt(1)+H. c., which are neces-
sary for the description of such phenomena as Raman
arid Brillouin scattering, and. which appear in a simple
linear model of the parametric amplider. ' When cou-
plings of this kind are present, the Heisenberg operators
may be expressed in terms of their initial values in the
form

a;(1)=Q (I/s(/)as+v;p(1)as j+n (t). (1.2)

We 6nd that when the solutions to the equations of
motion take this form, an initially coherent Schrodinger
state vector does not remain coherent at later times.
The Wigner function W({o/},t), however, may be shown
to obey Liouville's equation even in this more general
case. The function P({a,},t), on the other hand, obeys
an equation containing, in addition to the usual Liou-
ville terms, certain second derivatives with respect to
the variables n; and o.;*.

The unitary time translation operator U(t) which de-
dnes the solution to Schrodinger's equation may also be

» D. Holliday and A. E. Glassgold LPhys. Rev. 139, A1717
(1965)j have employed methods similar to those used in this paper
to solve for the reduced density operator which describes a single
mode of the radiation Geld coupled to a system of two-level
molecule s.

» The time evolution of the density operator for the two-mode
parametric amplifier has-been found by the author and R. J.
Glauber /Phys. Rev. 160, 1076 (196/); 160, 1097 (1967)$."R.J. Glauber, Phys. Letters 21, 650 (I966)."C.L. Mehta and E. C. G. Sudarshan, Phys. Rev. Letters 22,
5'74 (1966).
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used to generate the solution to the Heisenberg equa-
tions of motion, by means of the relation a(i) = U '(t)
&&a,U(t). The operator U(t) is in fact determined to
within a (time-dependent) phase factor by the solution
(1.2) for a, (t) Th. e behavior of the state of the system
in the Schrodinger picture may therefore be found by
investigating the behavior of state vectors and density
operators under canonical transformations dined by
a unitary operator U which generates the linear inhomo-
geneous transformation

U a&U=Q (Qzsas+vzsas )+ (X/,
k

(1.3)

and then identifying the quantities I;&, v;I„and 8; with
the functions u, s(t), s:„s(t), and Q, (t), evaluated at some
time i. When the analysis is performed in this way, the
results may also be used to carry out transformations of
variables at a given time, which may be useful for the
purpose of simplifying the Hamiltonian in systems with
more general couplings. "

The second section of this paper contains an outline
of the basic properties of the coherent states and the
quasiprobability functions lV(n) and E(n). It is shown
how the function W(n) may be used to expand the den-
sity operator in terms of an appropriate set of Hermitian
operators. In Sec. III canonical transformations of the
form (1.3) are introduced, and the behavior of state vec-
tors and density operators under such transformations
is discussed in Secs. IV and V, respectively. These re-
sults are then used in Sec. VI to solve Schrodinger's
equation for systems of coupled oscill.ators. DiQerential
equations governing the time evolution of the functions
W((n;), t) and P((n;), i) for such systems are derived.
The behavior of these functions when the Hamiltonian
is taken to have the form characteristic of parametric
interactions is discussed in Sec. VII.

tors and operators may be expressed in terms of the
coherent-state vectors by means of the completeness
relation" '

d20. n n =i, (2.3)

where d'n= d(Ren)d(Imn). The coherent states are not
orthogonal, however. The inner product of two coherent
states with complex eigenvalues n and P is

Q l n) = s—ilPI ~kl ~l'+P*~ (24)
The coherent states may be expressed in terms of the

unitary displacement operator'

in the form

D(n) —=exp(atn —n*a) (2.5)

ln)=D(n) lo&. (2 6)

The operator D(n) ma.y be shown to generate the
displacement

D-'(n) aD(n) =a+n, (2 7)

and to obey the multiplication rule

(2.8)

(2.9)

The displacement operators form a complete set
in the sense that an arbitrary operator Ii has the
representation'~

F=x ' d'g trriDg D—'g, (2.10)

It follows from this identity and Eq. (2.6) that the pro-
duct of a displacement operator and a coherent state is
a phase factor times a coherent state with a displaced
complex amplitude,

II. qUANTUM STATES FOR HARMONIC
OSCILLATORS

The comparison of the quantum and classical me-
chanics of harmonic oscillators has been greatly facili-
tated by the introduction of the coherent states' for the
oscillator system. A coherent state with complex eigen-
value o, is dered to be an eigenstate of the annihilation
operator a

p=x—' d2gXgD 'g, (2.12)

the uniqueness of which follows from the identity

't
l D(n)D '(~') j=~l:«(~—~')l&l:Im(n —~')j-=&'"(n- n') . (2.11)

The density operator for a single harmonic oscillator
may thus be written in the form

and is given by the expression

ln)=e &l~l' Q (I!)—'(nat)" l0), (2.2)

where the characteristic function x(ri) is defined for
arbitrary complex g as"

where l 0) is the ground state or vacuum state. The co-
herent states form a complete set; arbitrary state vec-

5 See, for ezample N. Bogolubov, J. Phys. U.S.S.R. 11, 28
(I947); reprinted in The Marzy-Body Problem, edited by D. Pines,
(W. A. Benjamin, Inc. , New York, 1962), p. 292.

X(r))—= trl pD(ri) j. (2.13)

"J.R. Kiauder, Ann. Phys. (N. Y.) 11, 123 ($96O).
'~H. Weyl, The Theory of Grolps arz4 Qua~ztlm Mechanics

(Dover Publications, Inc. , New York, 1953), p. 272—276."R. .J. Glauber, in QNaetum Optics and Electronics, edited by
C. DeWitt, A. Biandin, and C. Cohen-Tannondji (Gordon and
Breach Science Publishers, Inc. , New York, 1965), Lecture XIII.
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In many cases of physical interest the density opera-
tor for harmonic-oscillator systems may be expressed as
a statistical mixture of coherent states'

(2.14)

v hich Glauber has called the P representation. The use-
fulness of the P representation derives from its role in
evaluating normally ordered products. The expectation
value of ut"u in the P representation is given by the
expression

tr[pa& "a"]=fs'a a*" "s( ) (2 15)

= ezzlslzX(rt) (2.17)

possesses a (two-dimensional) Fourier transform, then
a P representation exists, and the weight function P(n)
is given by the Fourier integral2'

s( )= -'fd'ye" -"x~(z). (2.18)

For a wide class of density operators, this integral con-
verges to a positive, square-integrable function P(n),
and the representation of such quantum states by means
of the expansion (2.14) is correspondingly straight-
forward. The function P(n) defined by Kq. (2.18) may,
however, take on negative values for perfectly well-
behaved quantum states, and may contain singularities
at least as strong as those of a 8 function and its
derivatives.

A number of authors'~" have shown that if one
allows the function P(n) to be even more singular than
the tempered distributions, then in an abstract sense it
may be said that a diagonal representation of the form
(2.14) exists for all density operators. The mathematical

"L.Mandel, Phys. Rev. 138, B753 (1965).
ze G. Lachs, Phys. Rev. 138, B1012 (1965)."U. M. Titulaer and R. J. Glauber, Phys. Rev. 140, B676

(1965)."R.J. Glauber in Physics of Qzzazztztm Etectrozzzcs, edited by
P. L. Kelley et al. (McGraw-Hill Book Company, Inc., New York,
1966), p. 788."C.L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, B274
(1965).

'4 J.R. Klauder, J.McKenna, and D. G. Currie, J.Math. Phys.
6, '/34 (1965)."J.R. Klauder, Phys. Rev. Letters 16, 534 (1966).

the classical form of which permits one to investigate
the coherence properties of electromagnetic 6elds
in terms closely approximating those of classical
theory. ' '8 "

The P representation is far more general than its
diagonal form would suggest. It may be shown that
whenever the normally ordered characteristic function

Xtv(zt)=trkp exp(+trt) exp( st*a)3 (2 16)

W(zr) —=~-s d'g es" ~'sX(q) . (2.19)

Let us define the syrttrttetrzsed product (zt™zt"),s as the
sum of every possible ordering of e factors of at and m

factors of tt, divided by the total number ~of such
tt+tts'l

trt

orderings. Then it is easily shown" that the expectation
value of such a product is

tr[p{at g ). ]=fd'a '" w(n). (2.2O)

We may note that if a P representation exists, the
Wigner function is given by the relation"

W(n) =2zr ' d'n' e s~" «'~'P(n'). (2.21)

The functions W(zr) and P(zr), which Glauber has called
quasiprobability functions, become equal to each other
in the classical limit, and in that limit may be identi6ed
with the probability density for ending the oscillator
with complex amplitude o..

~6 K. Cahill, Phys. Rev. 138, B1566 (1965).
~~ It should be borne in mind, however, that even the class of

tempered distributions contains functions rather more singular
than those which can be simply interpreted as analogs to the
classical distribution function. In this connection, see R. Bonifacio,
L. M. Narducci, and E. Montaldi, Phys. Rev. Letters 16, 1125
(1966).

~8 E. Wigner, Phys. Rev. 40, 749 (1932)."J.E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1948).

operations one is allowed to perform on the weight func-
tion P(rr) in such singular cases, however, are rather
circumscribed, .

"and in many applications it is not pos-
sible to proceed without Grst ascertaining to which class
of distribution P(n) belongs. In particular, in certain
of the dynamical examples we shall discuss in this paper,
the di6erentiai equation governing the time evolution
of the P function for coupled oscillator systems leads to
ambiguous results if it is construed as applying for times
after the times at which singularities typically arise.
Partly for this reason, and partly because the represen-
tation of density operators by highly singular weight
functions is so very far from providing a means of under-
standing the classical aspects of quantum states, we
shall say that a P representation exists only when the
function X~(zt) Pand hence P(zr) j belongs to the class of
tempered distributions. "

In more singular cases it is convenient to work with
the Wigner function, "a species of quantum phase-space
distribution which exists as a square-integrable,
bounded function" for arbitrary density operators. The
Wigner function may be dered for arbitrary complex
argument n as the Fourier transform of the (ordinary)
characteristic function" "
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[a;,ap']= 8;I„

[a,,aA,]=0. (3.1)

We wish to consider a linear inhomogeneous trans-
formation on the annihilation and creation operators of

(2 22) the system. The most general such transformation may
be written in the form

T(n) =v-' d'g e&' '&D(g) .

The identity (2.12) which expresses the density mutation relat. ions
operator in terms of the characteristic function enables
us to express it equally well in terms of the Wigner func-
tion. Let us de6ne a Hermitian operator T(n) as the
I'ourier transform of the displacement operator

Then it follows from Eqs. (2.19) and (2.13) that the
signer function is given by

ag = Z (N~7aI+v~~a~ )+@~, (3.2)

W(n)=v ' tr[pT(n)], (2 23) where I;&, v;z, and. Q, are c-numbers. We require that

and from Eq. (2.12) that the density operator has the the transformation (3.2) be canonical; the oPerators a
ns yp and a t must therefore satisfy the commutation

relations

p= d'n W(n) T(n) . (2.24)
[ai ~aI ]=~if ~

[a/, aI,']=0. (3.3)

Ii=m ' d'n tr IiTn Tn . (2.25)

The latter relation is a consequence of the completeness
of the set of operators T(n): It follows from Eq. (2.10)
that any operator Ii may be written in the form

Let us substitute Eq. (3.2) and its adjoint into these
relations, and then make use of the commutation rela-
tions (3.1). If we consider the quantities u;q and v;~ to
be the matrix elements of the n)&e matrices I and v,

respectively, then the resulting equations take the form
of the matrix conditions

The operator T(n) may be shown to obey the
identities

en~ —vvt = l,
Nv —M=O,

(3.4a)

(3.4b)

tr[{atnana} T(n)] n*nnsa where 9 and v are the transposes of the matrices e and
and. Nt and vt are the corresponding Hermitian con-

jugates, i.e.,

(2.27)

We may note that the operator T(n) is simply expres-
sible in terms of a unitary reQection operator I, which

may be defined by the relation

I in)= [( n))

or equivalently (to within a sign) by the relations
a'=Na+vat+ 8'.

2.29a
The Hermitian conjugate of this expression is

a't =I*at+v*a+ CL'*.

(3.5a)IaI= —a )

I'= 1.
(3.5b)

It may be verified by direct evaluation of its coherent-
state matrix elements that the operator T(n) is given
in terms of the reQection operator I by the expression

These equations may be inverted without de.culty.
%e find that a and at are given in terms of a' and a'~ by
the relations

T(n) =2D(n)ID '(n). (2.30) (3.6a)

(3.6b)

a= Nta' —va't+ 8,
a'= Na' vta'+ 8*, —III. LINEAR TRANSFORMATIONS OH

n-OSCILLATOR SYSTEMS
where the c-number quantity 8 is defined as

It is convenient to think of the quantities a, a;, and
8 as the jth components of the column vectors a', a,

(2.2g) and 8', respectively. The transformation (3.2) may then
be written in matrix notation in the form

Let us consider a system consisting of e harmonic-
oscillator modes; we denote by a; and a,t the annihila-
tion and creation operators, respectively, for the jth
mode. These operators must satisfy the canonical com-

8=——(Nt 8'—vG'*) . (3.7)

The solutions (3.6) may be veri&ed by substituting
them directly into Eqs. (3.5) and. making use of the
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matrix conditions (3.4). They have the same linear in-

homogeneous form as the original transformation (3.5),
but with the substitutions

i.e., we have

d2fLQf d20Q (3.16)

Q~ Q~)

v~ —8)

8' —+ 8.

(38a) The quantity

(3.8b)

(3.9)

O, = Qj
j~1

(3.17)

It follows that if we reverse the steps which led to Eqs.
(3.4), i.e., if we begin with the commutation relations
(3.3) for a' and. a' t, and then use Kqs. (3.6) to evaluate
the commutators which appear in Eqs. (3.1), we must
find the relations

QtQ —Gv*= 1 )

Qtv —GQ*= 0

(3.10a)

(3.10b)

which are related to the conditions (3.4) through the
substitutions (3.8). The conditions (3.10) on the ma-
trices Q and v follow from the canonical nature of the
transformation we are considering, and hence from the
matrix conditions (3.4).

It is worth noting that, according to Eq. (3.4a), the
matrix QQt —1=vvt is positive definite, and hence the
(real) eigenvalues of the Hermitian matrix NNt must
be at least as great as unity. It follows that Q is non-

singular. The same is not true of v, however. Indeed, a
case of some interest is specified by the condition v=0,
which corresponds to the transformation

a'=la+6'. (3.11)

The matrix conditions (3.4) then reduce to the single

relation
QQ =1, (3.12)

which is the statement that the matrix I is unitary.
It is instructive to consider a system of e classical

harmonic oscillators described by the c-number com-

plex amplitudes Ot;, and to subject these amplitudes to
a transformation formally analogous to the operator
transformation (3.5). The transformed. amplitudes a/
may then be expressed in terms of the original ampli-

tudes in matrix notation as

cK =slx+va +8 (3.13)

and. o: may be expressed in terms of n', 0.'*, and the
vector 8 defined. by Eq. (3.7) in the form

n=ltn' —vu'*+8, (3.14)

which is the c-number analog of Eq. (3.6a).
It is not difBcult to show that the element of phase-

space volume

d'"n= gJ d'n;—=g—d(Rem~)d(lmn;) (3.15)

XV. TRANSFORMATIOHS 03% STATE VECTORS

The can6nical transformation of Eq. (3.5a) may be
generated by a unitary operator U via the relation

U-1av= ~'

=Na+vat+6, '.
(4.1)

(4.2)

The operator U is determined, apart from a phase fac-
tor, by Eq. (4.2); its unitary character is guaranteed. by
the matrix conditions (3.4). The inverse relation to Kq.
(4.2), which follows directly from Eq. (3.6a), is

UaU —'=Nta —vat+8. (4.3)

%e define a transformation on the state vectors of
the system by the relation

l4'&= ~IV). (4.4)

The mean value of any operator function F(a,at) in the
state lf'& is then

(~'l~(,")ls') =8 l~(","') l~& (4.5)

%e shall gain some insight into the transformation
properties of the state vectors by first considering the
e6ect of'the transformation on the displacement opera-
tor appropriate to an n-mode system. This operator is
defined as a function of e complex arguments o,j by the
expression

D({n;})=g exp(a;tn; —n; a;). (4.6)

In matrix notation we may write

on the other hand, is not in general preserved, even
under the homogeneous part of the transformation
(3.13). The difference ln'l' —iv)' is easily evaluated
with the aid of the identity (3.10a). If we denote by
cx and n* the row vectors with jth components n, and
n;', respectively, then we may express the result (for
the homogeneous case) in the form

lun+vn+lm —lnl2=2cx*vv*a+n*etva*+&vteu, (3.18)

which vanishes identically only if v=—0.

is preserved, "under the canonicaltransformation(3. 13), D(a) =exp(i' —a*a). (4 7)
' See, for example, H. C. Corben and P. Stehle, Classical'

Sfechaeics (John Wiley 8z Sons, Inc. , New York, 1950), 2nd ed. ,
Chap. 13.

Here we are thinlang of ut as a row vector with jth com-
ponent ujt. We may note that the row vectors c' and
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a't are given, according to Eqs. (3.5), by the relations"

a'= au+a~v+ 8'r,
a't =a~ut+ aet+ 8'*r.

(4.8a)

(4.8b)

I.et us now define the transformed displacement opera-
tor D'(a'), for arbitrary n', by the relation

D'(u') =—U 'D(n') U

= exp(a'tn' —n'*a') .
(4.9)

(4.10)

0,=S~n —Vo, (4.12)

which is thus defined in terms of o.' by the homogeneous
part of the (inverse) transformation (3.14). The quan-
tity n' may therefore be expressed in terms of 0,, as in
Eq. (3.13), by means of the relation

n =ua+'va (4.13)

If we express the identity (4.11) in terms of n rather
than n', we find, for arbitrary 0,,

D(n) =D'(un+vs*) exp(Q, *ra—n*S), (4.14)

where 8 is defined by Eq. (3.7). We may note that Eq.
(4.14) may be deduced more directly from Eq. (4.11)
simply by interchanging D and D' in the latter equation,
and making the substitutions (3.8) and (3.9) appropri-
ate to the inverse transformation (3.6).

The phase factors which appear in Eqs. (4.11) and
(4.14) are a simple consequence of the relationship be-
tween the homogeneous and inhomogeneous parts of
the transformation (4.2). Let us suppose that the uni-

tary operator Uh, generates the transformation

Uh. 'aUh. =ua+vat. (4.15)

Then it follows from the relation (2.7) that the trans-
formation (4.2) is generated by the unitary operator

If we substitute Eqs. (4.8b) and (3.5a) into Eq. (4.10),
we find the identity

D'(n') = exp {Ca"(utn' —en'*)+ 8'~ra'j —H.c.}
= D(utn' —vn'*) exp(Ct'*rn' —a'~8, ') . (4.11)

The transformed displacement operator D'(n') is thus
equal to a phase factor times the original displacement
operator D, evaluated at the argument

l~}=D(a)Io), (4.19)

where D(n) is defined. by Eq. (4.'7). Arbitrary state vec-
tors and operators may be expressed in terms of the
states la) by means of the identity

d2 a
I a)(a

I

= 1 (4.20)

which is the generalization of the completeness relation
(2.3) appropriate to an u-mode system. It is clear that
if we know how U operates on the coherent states, then
we can find out how it operates on an arbitrary state.
The operator U may be expressed in terms of the co-
herent-state vectors in the form

U=~-'" d'-~Z -P IP)(PIUla}(al, (4.21)

and is therefore uniquely determined by its coherent-
state matrix elements (p I U la}.

To obtain some insight into the transformation prop-
erties of the coherent states, let us begin by evaluating
the incan value of a in the state Ul n). We have, accord-
ing to Eq. (4.2),

u =—(nlU 'aUla)
=un+en*+ 8'. (4.22)

The sum of the variances ((ajt n;*)(a; n;)—) in the st—ate
U ln} may be evaluated straightforwardly with the aid
of Eq. (4.2) -and the commutation relations for a and at.
We find"

the transformation (4.4). It follows from Eq. (4.14) and
the definition (4.9) of D' that we may write, for an
arbitrary state vector lg),

UCD(a) I W}3=D(~+~a*)CUI 4H
X.exp(O', *ru—n*e), (4.18)

so. that the result of applying U to a displaced form of
IP} is a displaced form of UIQ}.

Let us delne the state
I a} as the state of the system

in which each of the oscillators is in a coherent state,
with complex eigenvalue 0.; for the jth oscillator. The
state In) may then be expressed in terms of the ground
state

I 0) by means of the relation

U =D(e') Uh. e'&

= Uh. D(—e)e'&

(4.16)

(4.17).
I& I'—= ( IU-'(a —-*')(a—~)UI }

= tr(ntv), (4.23)
where q is an arbitrary real c-number. Either of these
relations may be used, along with the identity (2.8), to
deduce Eq. (4.11) from its form for 8'= 0.

The identity (4.14) relating the displacement opera-
tors D and D' permits us to prove a useful theorem about
the behavior of the state vectors of the system under

which is greater than zero unless the matrix v is identi-
cally zero. It follows that if e does not vanish identi-
cally, the state U la} is not coherent.

If u is identically equal to zero, on the other hand,
then Eq. (4.23) implies that the state Ul n) is an eigen-
state of a with eigenvalue u- un+ 0,", so that we must
have

"For typographical reasons, we denote the trinsposes of 8, X,
and-n by 8~, X~, and n~-.' Ula)= Iun+o,"}e'«' 'i (4,24)
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where y(a,a*) is a real c-number function of a and a*.A
coherent state thus remains coherent under the trans-
formations we are considering if e—=0.

The function rp(a, a*) in Eq. (4.24) may be deter-
mined to within an additive constant by the identity
(4.18).Let us write q (0,0)= ye, so that

Ulo)= l
~') '" (4.25)

Let us next evaluate Eq. (4.18) for the case ltit)= l0).
Since we are assuming v= 0, it follows from Eqs. (3.12)
and (3.7) that ut =u—' and (I= —u—'O'. If we make use
of these identities and the relations (4.19) and (4.25) in

Kq. (4.18), we 6nd

U
l a) =D(ua) l

8') exp(a*u—'(f,'—8"qua+i q p)

= lua+ 8') expL:', (a*u—'e' —(1,"*ua)+iyoj, (4.26)

where the N-mod. e generalization of the identity (2.9)
was used to reach the latter expression. By comparing
Kqs. (4.24) and (4.26), we see that the function y(a,a*)
is given by

y(a,a*)= ,'i(8,'-*rua a*u—'(t')+ q e (.4.27)

The quantity po remains undetermined, since the trans-
formations we are considering determine U only to
within a phase factor.

It is worth noting that Eq. (4.27) is a simple conse-
quence of unitarity. According to Eq. (4.24) we must
have, for arbitrary a and p,

(pla)=(up+8'lu +e')
&«xp{il ~(a,a*)—v (P P') j& (4 28)

The form of p(a,a*) given by Eq. (4.27) is easily de-
duced from this relation and Eq. (2.4).

Let us now return to the general transformation of
Kq. (4.2), for which the matrix v does not vanish identi-
cally. It is not diKcult in this case to solve for the func-
tion (p l

U
l a) directly. To this end we 6rst introduce the

states" '

lla), then by making use of Eq. (4.31) we 6nd that
the function 'll(pa, a) satis6es the partial di6erential
equation

8
P*—u*—vaa —8'a 'tt(P*,a) =0.

BG'
(4.34)

Similarly, by multiplying Eq. (4.3) on the left by (pll
and on the right by Ulla), we 6nd

8
a—ut +vP*—8 %l,(P*,a) =0.

gp Q
(4.35)

d2~p c—iPI'—I~i'l~(p* a) l

2= 1 (4. 37)

Equations (4.34) and (4.35) are suKcient to deter-
mine the function lt(P*,a) to within a complex factor
which is independent of p* and a. Let us write this fac-
tor as Ne", where N and 0 are real. If we make use of
Eqs. (3.4b) and (3.10b) to deduce the identities

u 'e=8u —'
and

su* '=ut 'v,

which are the statements that the matrices u 'm and
au* ' are both symmetric, then by direct differentiation
we may verify that the solution to Eqs. (4.34) and
(4.35) is

'11(P*,a) =X exp[j3*ut 'a+~P*vu* 'P* ~au*—'v*a
—P*ut '8—au* '0,'*+iej. (4.36)

The (constant) phase 0 which appears in this expression
is undetermined. The constant N, on the other hand, is
determined by the normalization condition

lla) —=exp(uta)
l 0)

—c@ai2la)

(4.29)

(4.30)
V. TRAHSFORMATIONS ON DENSITY

OPERATORS

which have the convenient property

8

BQ
(4.31)

We next de6ne the function

~(p*,-)=—(pllUII-& (4.32)

(433)

which is an entire function of P* and. a. If we take the
Hermitian conjugate of Eq. (4.2) and multiply the re-
sulting equation on the left by (pll U and on the right by

Let us riow suppose that the state of the system of e
oscillators is mixed, i.e., that it is speci6ed by a density
operator rather than by a state vector. The density
operator for an e-mode system may be described by
means of characteristic functions and quasiprobability
functions, just as in the case of a single-mode system.
We shall devote the present section to establishing the
behavior of these functions under the transformation of
Eq. (4.2).

Let us de6ne the ordinary characteristic function, for
n complex arguments q;, by the e-mode generalization
of Eq. (2.13),

x(tl) =tr+D(r)) j, (5.1)
~ V. Bargmann, Commun. Pure Appl. Math. 14, 18'/ (1961);

Proc. Natl. Acad. Sci. U. S. 48, 199 (1962). where D is de6ned by Eq. (4.7). The Wigner function,
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according to Eq. (2.19), is defined by the relation

(5.2)

The transformation rule for the signer function is
most easily found by making use of its expression in
terms of the Herrnitian operator T(n). The function W',
according to Eqs. (5.11) and (5.7), may be expressed in
terms of the original density operator p as

T( ) w =fd "ve'x"p(ij a—a"g)D(n), (5.3)

then the Wigner function associated with the density
operator p is given by

which has the form of a 2n-dimensional I'ourier trans-
form. If we now define the Hermitian operator T(n), as
as in Eq. (2.22), as the Fourier transform of D(rl),

W'(n') = v "t-rt pT'(o. ')g, (s.14)

where the operator T'(n') is defined for arbitrary n' by
the similarity transformation

T'(n')=U 'T(n')U. (s.1s)

To obtain a functional identity relating T' to T, let
us first note that the operator T(n') may be expressed,
as in Eq. (2.30), in the form

The density operator then has the representations

(s.4) T(n') = 2~D(n')ID '(n') (5.16)

where the reQection operator I is defined by the relations

p=~ " d'"g X(g)D-'(q) (5.5)
for g —1 ~ ~ s, and

Iu I=—u

I2=1.

(5.17)

(5.18)
d'"o, 8'n T e, (s.6)

which are the e-mode'generalizations of Eqs. (2.12) and
(2.24), respectively.

I et us define a transformation on the density operator
by the expression

By substituting Eq. (5.16) for T(n') into Eq. (5.15) and
making use of the definition (4.9) of D' and the relation
(4.11), we find

Tl( I) 2gDI( l)IIDi—i( i)

=2"D(u'n' —vn'*)I'D '(I'n' —vn'*), (5.19)

so that the relation
p'=UpU ', where the transformed refiection operator I' is defined

by the equation

trfp'F(a, ut) j= tr(tpF((J', a')$ (5.8) I'=—U 'IV, (5.20)

is satisfied for any function Ii of the annihilation and
creation operators. We define the functions X' and W'
as the characteristic function and the signer function,
respectively, corresponding to the transformed density
operator p'. The functions X'(q') and W'(n') are then de-
fined for arbitrary g' and n' as

(5.9)
and

and is therefore determined by the relations

(5.21)

(5.22)

It is not diQicult to show with the aid of Eq. (3.5a) for
a' and the relation (2.7) that the operator which satis-
fies Eqs. (5.21) and (5.22) is

I'= D(6)ID '(8) (5.23)
W&(~&)—~ 2n $2n~—i exp(~w'~~ ~it~~)gi(~~) (5 10)

=v —"tr[jo'T(n')]. (5.11)

Let us substitute Eq. (5.7) for p' into Eq. (5.9). If we
then make use of the cyclical symmetry of the traces of
products, we find the relation

X'(g') = trLpD'(g')g, (5.12)

which expresses X' in terms of the original density opera-
tor p and the transformed displacement operator D' de-
fined by Eq. (4.9). It follows from Eqs. (5.1) and (5.12)
that the functional relationship (4.11) between D' and
D must also exist between X' and X. We have therefore

X'(g') =X(Ntg' —vg'*) exp(n'*vg' —g'*6') . (5.13)

where 8 is defined by Eq. (3.7).
Let us substitute Eq. (5.23) for I' into Eq. (5.19). If

we then make use of the identity (2.8) and the expres-
sion (5.16) for T, we find that T' may be expressed in
terms of T in the form

T'(n') = T(N"n' —vn'*+ e). (5.24)

It is clear from this equation and Eqs. (5.4) and (5.14)
that 8"may be expressed in terms of lV by means of the
similar relation

W'(n') =W(Ntn' —vn'*+ 0',) . (5.25)

The transformed signer function W', for arbitrary
argument o,', is thus equal to the original Wigner func-
tion S' evaluated at an argument related to n' through
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the (inverse) transformation (3.14) on the complex am-
plitudes of a classical system. It follows then from Eq.
(3.13) that we may also write for arbitrary a,

W'(un+va*+ e') = W(n) . (5.26)

Thus the eRect of the transformation on the Wigner
function may be expressed by transforming its argu-
ments by the c-number analog of the operator transfor-
mation (3.5). We may note that the Wigner function,
under the linear transformations of variables we are
considering, behaves exactly like the probability density
f(n) for 6nding a system of I classical oscillators with
complex amplitudes n;. The classical function f, under
a change of variables e —+ e', must be replaced by the
function f' de6ned by the relation f'(n')=f(n) It.
should be emphasized, however, that the quantum-
mechanical relation W'(n')= W(a) is valid only for
linear (inhomogeneous) transformations.

Let us now consider the P representation. We shall

say that the density operator p has a P representation if
it can be expressed in the form

d2n&~ d2n& (5.37)

By substituting Eq. (5.34) into Eq. (5.32) and carrying
out the indicated change of variables, we Gnd

from the identity (5.13) relating X' to X, and from Eqs.
(5.29) and (5.33), which relate X))) to X and X)))' to &',

respectively. By combining Eqs. (5.33), (5.13), and
(5.29) we obtain

X„'(g')=e~t e'* g' —g'*e'
+-'(( n'I '—

I
I'n' —~n'*I ')j

~ x~(u'i)' —v)i'*). (5.34)

Let us now substitute this expression for X))i'()t') into
the integral in Eq. (5.32), and then change the variables
of integration from g' to

(5.35)

Then g' is given in terms of the new variables q by the
relation

(5.36)

and we have, as in Eq. (3.16),

p= d'"ePe e e . (5.27) P'(a') = (p(Nta' —vn'~+ 0',), (5.38)

If a P representation for p exists, then the normally
ordered characteristic function, which is deined for the
e-mode case as

X))i()i)—= trLp exp(at+)i) exp( —Pa)1 (5.28)

= goal pl'x(g) (5.29)

has the Fourier transform

pia)=x '"fd»"e exp(i)»a —»e)X»(e), (5.30)

which is the e-mode generalization of Eq. (2.18).
We shall say that p' has a P representation if it can

be written in terms of some weight function P' in the
form

where the function 5'(n) is de6ned as

tp( )—= '"fd'"e exp(e» —a»e)

X(expC2 I
~n+sn*l' —k [ ~l')&~(V) &

Equations (5.38) and (5.39) express the weight func-
tion P' for the P representation of the transformed den-

sity operator p' in terms of the normally ordered charac-
teristic function XN associated with the original density
operator p. The existence of a P representation for p'

depends upon the convergence of the integral in Eq.
(5.39), which defines the function (P(n). That integral is

just the 2e-dimensional Fourier transform of the pro-
duct of X))i(g) and the exponential of a quadratic form
in ii and ii*, which according to Eq. (3.18) is given by

p'= d'"e' P' e' e' e' (5.31) -', (f Nii+i))i*) '—
) rp

/
')
= ii*f)i)*ii+-',putv)i*+-', )ii)tN)i. (5.40)

where we have used the symbol e' for the variables of
integration to facilitate later work. If a P representation
exists for p', then we must have

P'(n') = pr '" d'")i' e p(x~pai' a'~ii')X~—'(pi'), (5.32)

x~'(n') =~')'~'x'(n') (5.33)

The relationship between X)ii' and X)i follows directly

where X~' is the normally ordered characteristic func-
tion associated with p', and may therefore be expressed
in terms of X' in the form

Let us now suppose that the density operator p has
a P representation, so that the function X))i()i) has a well-

defined Fourier transform. If the expression evaluated in

Eq. (5.40) were a negative semide6nite quadratic form
in )i and ii~, then the integral in Eq. (5.39) would neces-
sarily converge. The existence of a P representation for
p' would then follow from the existence of a P represen-
tation for p. It is not dBGcult to show, however, that the
expression evaluated in Eq. (5.40) can not in general be
negative semidefinite. Indeed, if we express the right-
hand side of Eq. (5.40) as a quadratic form in the real
and imaginary parts of q, then we can show from the
canonical nature of the transformations we are consider-
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ing that the 2eX2e real symmetric matrix which de-
fines this quadratic form must have positive eigenvalues
if it has negative ones. The existence of a P representa-
tion for p therefore does not guarantee the existence of
a P representation for p', and indeed there are many
density operators which do not retain their P representa-
tion under the transformation of Eq. (4.2).

The unique exception to this rule is speciGed by the
condition v= 0, for which the quadratic form evaluated
in Eq. (5.40) vanishes identically. In that case the func-
tion 6'(n) defined by Eq. (5.39) is equal to P(n), the
weight function for the P representation of p given by
Eq. (5.30). It follows then from Eqs. (5.38) and (3.12)
that P' and P are related. by the expression

P'(n') =P(u 'n'+ e—) . (5 41)

For the case e=O, then, the weight function for the
P representation has the same classical-type transforma-
tion property as the Wigner function. The identity
(5.41) may easily be derived from the results of the pre-
ceding section, in which it was shown that a coherent
state remains coherent under the transformation speci-
fied by v=o. If we substitute Eq. (5.27) for p into Eq.
(5.7) and make use of Eq. (4.24), we find

nent vector X(t) are c-number functions of time. The
hermiticity of H(t) leads to the requirements

ca(t) = (at(t)

0(t) =0(t).

(6.2a)

(6.2b)

These are the only conditions we need impose on the
Hamiltonian (6.1).No assumption need be made about
the way the functions ra(t), o(t), and x(t) depend on
time, and the Hamiltonian may be allowed to take on
negative values as well as positive ones.

The term involving co(t) in Eq. (6.1) contains the free
Hamiltonian for a system of uncoupled oscillators, but
may also contain part of the coupling, e.g., in systems
such as the frequency converter. ' The terms involving
o(t) are characteristic of parametric amplification proc-
esses; they will be discussed in some detail in the next
section. The linear terms involving X(t) in Eq. (6.1)
represent externally applied forces which drive the oscil-
lators; if the oscillators are modes of oscillation of the
electromagnetic Geld, terms of this kind arise from the
presence of classical currents.

The Heisenberg equation of motion for a(t) which fol-
lows from the Hamiltonian (6.1 )is

p'= d'" P( ) i +n')( +6'i, (5.42)

and if we then change the variables of integration from
e to n'=un+6', we find

=~(t)a(t)+ (t)a'(t)+X(t) (6 3)

The solution to this equation may be expressed in terms
of the initial operator

' '+~)l ')('I (5.43)
in the form

a(0) =—a (64)

(6.6)

d
i—v(t) =cv(t)v(t)+0 (t)u*(t),
dt

(6.7)

VI. DYNAMICALLY COUPLED OSCILLATOR
SYSTEMS corresponding to the initial conditions

a(t) =u(t)a+v(t)at+ e'(t), (6.5)
so that p' has a P representation, with the weight func-
tion p'(n') given by Eq. (5.41).The transformation rule where the matrices u(t) and v(t) are defined as the solu-

(5.41) for the P function is thus a simple reflection of the tions to the differential equations
fact that a coherent state is transformed into a coherent
state, if v=o. The transformation rule (5.25) for the i—u(t) =~(t)u(t)+~(t)v*(t),
Wigner function, on the other hand, is valid even when dt
~NO, and thus even for transformations under which a
coherent state does not retain its coherent character.

A particularly important application of the results of
the preceding sections is to dynamical problems for
which the Heisenberg operators a(t) and at(t) are related
to their initial values u and a~ by linear inhomogeneous
expressions. Let us assume that the Hamiltonian for the
system of n oscillators is given by a quadratic form in
at(t) and a(t),

a(t) =A(a~(t)~(t)a(t)y~a~(t)~(t) at(t)
+-,'a(t)~*(t)a(t)+ a~(t)X(t)+ a(t)X'(t)1, (6.1)

where the n&& n matrices ~(t) and 0 (t) and the n-compo-

u(0) =1,
v(0) =0,

(6.8)

(6.9)

o.'(0) =o, (6.11)

and the vector 8,'(t) is defined as the solution to the
di6erential equation

i—e'(t) =~(t) 0.'(t)+~(t) e'*(t)+x(t) (6.10)
dt

corresponding to the initial condition
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The canonical transformation (6.5) relating the
Heisenberg operator a(t) to the Schrodinger operators
a and at has the same form as the linear inhomogeneous
transformation of Eq. (3.5a): If we let the quantities
u, o, and 8' which appear in Eq. (3.5a) be the functions

u(t), o(t), and 8'(t) defined by Eqs. (6.6)-(6.11) for
some time t, then the operator a' is the Heisenberg
operator a(t). The unitary operator U(t) which generates
the transformation (6.5) by means of the relation

U—'(t)aU(t) = a(t) (6.12a)

=u(t)a+a(t)at+ 0,"(t) (6.12b)

is then the time translation operator which connects the
Heisenberg and Schrodinger pictures of the motion. It
may be defined by the equations

at(t) —+ n*(t) in Eq. (6;3); the amplitudes at time t cor-

responding to the initial amplitudes n0 are therefore
given by the relation

n, (np, np*, t) =u(t) np+ o(t)np*+ 6,'(t) . (6.20)

Before proceeding further, it is convenient to investi-
gate the effect of the driving terms in the Hamiltonian
(6.1).Let us define the operator Uh, (t) as the unitary
time translation operator in the absence of driving
terms, i.e., by the equations

i—Uh. (t)
dt

= Pa~op(t)a+-'ato (t)at+ 'ao*(t)a—jUh, (t) (6.21)

zA U(t) =—He(t) U(t)
dt

U(0) =1,

(6.13)

(6.14)

Uh, (0)=1, (6.22)

so that Uh. (t) generates the homogeneous transforma-
tion

Ui,. -'(t)aUg, (t)=u(t)a+m(t)a'. (6.23)

where the Schrodinger Hamiltonian He(t) is related to
the Heisenberg Hamiltonian H(t) by means of the
identity

The generator of the inhomogeneous transformation
(6.12b) may then be expressed, as in Eq. (4.16), in the
form

H, (t) = U(t)H(t) U-'(t), (6.15) U(t) =D(e'(t))Ug. (t)e'«'), (6.24)

and is therefore given by the expression

He(t) = A/a'pp(t)a+ ,'a~o (t)a'+ ,'a-o*(t)a-
+atX(t)+aX*(t)J. (6.16)

The work of Secs. IV and V may now be used to find
the time evolution of the state of the system in the
Schrodinger picture. If we let if) represent the 6xed.
Heisenberg state vector for the system, then the trans-
formed state vector if') de6ned by Kq. (4.4) is

l4(t))= U(t) I4) (6.17)

which is the Schrodinger state vector at time t. Similarly,
if we let p represent the fixed Heisenberg density opera-
tor, then the operator p' defined by Eq. (5.7) is

p(t) = U(t) pU
—'(t), (6.18)

which is the Schrodinger density operator at time t. The
solution to Schrodinger's equation corresponding to the
Hamiltonian (6.16) may therefore be expressed in terms
of the functions u(t), e(t), and 6,'(t) defined. by Eqs.
(6.6)-(6.11).We may note that these functions also de-
fine the solutions to the equations of motion for a system
of e classical oscillators with complex amplitudes 0,;,
governed by the Hamiltonian

H, i.(t) =A/n*co(t)n+-, 'a~a(t)n*+-,'no*(t)n
+n*X(t)+nX*(t)1, (6.19)

which is the classical analog of the Hamiltonian (6.1).
The equations of motion for the classical amplitudes
n;(t) which follow from the Hamiltonian (6.19) may be
obtained by making the substitutions a(t) ~ n(t),

where y(t) is a real function of time. The function q(t)
may be evaluated by substituting Eq. (6.24) for U(t)
into Kq. (6.13), and making use of Eq. (6.21) and the
identity

—~(t) =—'Le'"(t)x(t)+x"(t) o,'(t)]. (6.26)
dt

The function y(t) is then given by

1
q(t) = —— dt' L8"r(t')X(t')+X'r(t') 0,"(t')), (6.27)

2 0

since y(0) =0.
As a simple illustration of the way the results of the

preceding sections may be used to solve dynamical
problems, let us consider the case o(t)=0, so that the
Hamiltonian (6.1) takes the form

H(t) =ALa~(t)~(t) a(t)+a~(t) x(t)+a(t) X*(t)g, (6.28)

and the solution to the Heisenberg equations of motion
ls

a(t) =u(t)a+ e'(t), (6.29)

—D(Q, '(t)) = Lat ——',8'*r(t)j—e'(t) —H.C.
dt dt

XD(C'(t)) . (6.25)

If we then make use of Eq. (6.10) and the property of
the displacement operators expressed in Eq. (2.7), we
6nd that Eq. (6.13) reduces to the relation"
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where N(t) and 8'(t) are defined by the differential
equations

s—u(t) = rp(t) N(t),
ct

(6.30)

s—e'(t) =~(t) e'(t)+x(t),
dt

(6.31)

and the initial conditions (6.8) and (6.11).The solution
to the corresponding classical equations of motion is
then

n, (n„t) = ss(t)np+ O,"(t) . (6.32)

Let us now suppose that the initial state of the system
is the pure coherent state ~np). Since ti(t) =0, we may
use the result found in Eq. (4.24) to evaluate the
Schrodinger state vector at time t. If we make use of Eq.
(6.32), we find

U(t) lnp)= In (no, t))e'« o o*'& (6.33)

which is the integral of (—1/2A) times the linear part
of the classical analog of the Hamiltonian (6.28), evalu-
ated along a classical trajectory beginning at uo and
ending at n, (np, t).

Let us now return to the general case, o(t)40. The
matrix p(t) is then not identically zero, and it follows
from the work of Sec. IV that a Schrodinger state vec-
tor which is initially coherent does not retain its coherent
character at later times. We have seen in Sec. V that
even in this more general case, the transformation prop-
erties of the Wigner function are particularly simple. Let
us define the function W(n, t) as the Wigner function
corresponding to the time-dependent Schrodinger den-

sity operator p(t) given by Eq. (6.18). If we similarly
define the function X(rt, t) as the ordinary characteristic
function corresponding to p(t), i.e., by the relation

(6.38)

then W(n, t) is the Fourier transform of X(r),t),

where the real function p(np, np*, t) is determined by Eq.
(4.27) to have the form

W(n, t) —=pr '" ds"rt exp(rien —n*r))X(r),t) . (6.39)

p (np, np*, t)
=-,'iL(t, '*'(t)u(t)np —np*tt-'(t) n'(t) j+ p p(t). (6.34)

Equation (6.33) states that if the Hamiltonian for a
system of ts oscillators has the form given by Eq. (6.28),
then an initially coherent state vector retains its co-
herent character at aQ times, and its complex eigen-
values obey the equations of motion for the analogous
classical system "'4'

The function qp(t) in Eq. (6.34) is easily evaluated
with the aid of Eqs. (6.24) and (6.27). Let us first note
that if o(t) and X(t) both vanish identically, the
Schrodinger Hamiltonian is just a~&p(t)a, so that the
vacuum state remains invariant, and we have

(6.35)

Let us use this result in Eq. (6.24) to evaluate the state
which evolves from the vacuum when the driving terms
are present, i.e., when the Hamiltonian is given by Eq.
(6.28). We have then

If we compare this equation to the form Eq. (6.33) takes
for np ——0, we see that happ(t)= pp(t), and the function
y(np, np*, t) may therefore be evaluated by replacing the
function happ(t) in Eq. (6.34) by the expression for &p(t)

given by Eq. (6.27). It is interesting to observe that the
result may be expressed, with the aid of the relations
(6.30) and (6.31), in the form

It is clear that the functions X(r), t) and W(n, t), respec-
tively, are to be identified with the functions X'(r)) and
W'(n) of Sec. V, when the quantities I, p, and 8' which
define the operator transformation (4.2) are taken to be
equal to the functions N(t), p(t), and 6'(t) defined for
some particular time by Eqs. (6.6)—(6.11). It follows
then from Eq. (5.26) that the time-dependent signer
function obeys the functional identity

W(n, (np, np*, t),t)=W(np, o), (6.40)

where the function n. (np, np*, t) is defined by Eq. (6.20)
as the (n-component) complex amplitude at time t,
corresponding to the initial value no, for a classical sys-
tem governed by the Hamiltonian (6.19). Equation
(6.40) therefore states that the Wigner function for a
system of quantum-mechanical oscillators governed by
a Hamiltonian at most quadratic in the creation and
annihilation operators is constant along the classical
trajectories for the corresponding classical system. "'
This is a property which the Wigner function shares
with the probability density f(n, t) for finding a system
of classical oscillators with the complex amplitudes n;
at time t. The classical function f(n, t), however, satis-
fies the relation f(n, (t),t)= f(n, (0),0) even when the
equations of motion for the classical amplitudes n, (t)
are not linear.

We may note that the function W(n, t) may be ex-
pressed for arbitrary n, as in Eq. (5.25), in the form

t

y(np np* t) = —— dt'
W(n, t) =W(np, (n,n*,t),0), (6.41)

Xpn.*(n„t')X(t')+X"(t')n, (np, t') j, (6.37)

"This result has also been obtained by W. H. Wells LAnn.
Phys. (N. Y.) 12, 1 (1961)j and by R. P. Feynman and F. L.
Vernon, Jr. (iMd 24, 118 (1963).j.
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no. (n,n', t) —=ot'(t)n —i7(t)n*+ e(t), (642)

and is therefore the initial (n-component) complex am-

plitude for a classical system governed by the Hamil-
tonian (6.19), corresponding to the amplitude n at time
t. We may verify by direct di6erentiation of either Eq.
(6.40) or Eq. (6.41) that W(u, t) satisfies Liouville's
equation

—W(n, t) =0,
dt

(6.43)

where the function np. (n, no, t) is defined in terms of the
function

e(t)—= —
I I'(t) e'(t) —f(t) e'*(t)g

by the relation

—np, (n,u*,t) =0,
dt

(6.50)

which follows directly from the definitions (6.44) and
(6.42) of d/dt and up. (u,u*,t), respectively. The total
time derivative of P(n, t) is then, according to Eq.
(6.49),

implies that P(a, t) has an explicit time dependence, in
addition to the implicit time dependence involved in the
definition of no, (n,n*,t). Unlike the Wigner function,
the function P(n, t) is then not constant along classical
trajectories.

To obtain a differential equation governing the time
evolution of P(n, t), let us first note the identity

where the total time derivative d/dt is defined as B
P(n, t) =——6'(no, t) I, „(,~,g) .

dt Bt
(6.51)

B
+ iI a*&a(t)+ao*(t)+x'~(t)) +c c . . (6.44)

Bn*

Let us now consider the time evolution of the I' func-
tion. Let us assume that the normally ordered charac-
teristic function

x~(g, t) = trI p(t) exp(n'rt) exp( —it*a)j, (6.45)

corresponding to the Schrodinger density operator p(t),
has the Fourier transform

Let us introduce the function

n„g(itp, gp*,t)—=N(t) go+a(t) go*, (6.52)

vrhich is thus dined as the homogeneous part of the
classical. solution (6.20), corresponding to the initial
value go. The quantity In, .p(gp, qpo, t) I', which is the
classical analog of the total number of quanta in the
system, may be shown with the aid of Eqs. (6.6) and
(6.7) to have the time derivative

B—In. ,o(go, no*,t) I'
Bt

= iu, ,o(go, rtp*, t)o*(t)n, ,o(gp, gp*,t)+c.c. , (6.53)

P(u, t) =& '" d "rt exp(it u —u V)&N(V t) (646) which vanishes only if 0(t) =0. We note the relations

during some interval of time including the initial time
t=0. Then p(t) has the P representation

B—
I ito*np, (n,n*,t) —c.c.]=n„o*(gp,rto*,t), (6.54a)

BQ

p(t) = d'"n P(n, t) Iu)(nI . (6.47) Litp*np. (n,u*,t) —c.c.j=—n. ,o(go, itp*, t). (6.54b)
BQ

The function P(n, t) may be expressed in terms of

quantities de6ned in terms of the initial state of the sys-
tem, with the aid of Eqs. (5.38) and. (5.39).Let us define

the function (P(up, t), for e complex arguments np;, as the
Fourier integral

(P(np, t) —=~ '" d'"gp exp(porno —ap~gp)

&& expLo I pt(t)go+5(t)rtp*I —
o I rtp

I
p)XN(gp 0) . (6.48)

Then P(n, t) is given, as in Eq. (5.38), by the expression

P(n, t) =6'(np. (n,n', t),t), (6.49)

where np, (n,n*,t) is defined by Eq. (6.42). The time de-
pendence of the function 6'(up, t) given by Eq. (6.48)

If we substitute Eq. (6.48) for (P(np, t) into Eq. (6.51) and
make use of the definition (6.52) and the identities
(6.53) and (6.54), we find that P(n, t) obeys the partial
di8erential equation

B B B B—+;i ~(t) —u'(t) —P(n, t) =0, (6.55)
dt BQ, Bo, Bu* Bo,*

in which d/dt is defined by Eq. (6 44). The weight func-
tion P(n, t) for the P representation of p(t) then does not
satisfy Liouville's equation. The terms involving o (t) in
Eq. (6.55), however, vanish in the classical limit, since
in that limit the function P(n, t) varies by very small
amounts over unit distances in the o; planes. We may
note that if o (t) =0, P(u, t) satisfies Liouville's equation
exactly. This result also follows from Eq. (6.33), which
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states that a coherent state remains coherent when the
Hamiltonian takes the form given by Eq. (6.28).

VII. PARAMETRIC COUPLINGS

In nearly all cases of physical interest, the dominant
term in the Hamiltonian for coupled oscillator systems
is the free Hamiltonian

Let.us assume, then, that the system of e oscillators
is governed by the Hamiltonian

B(t)=A(a~(t)~a(t)

+P(zt(t) e—'"'0e—'"'(zt(t)+ H.c.]), (7.4)

where the matrix elements of the time-independent
diagonal matrix ~ are

H0(t)=A P (0;a (t)a, (t),
j~1

(7.1)

(7.5)G)~'/|t, = 5&'It;M& .
It will somewhat simplify our calculations if we assume
that a is real,

~. (t) —~ s i (ru/+(ui) t. — (7.2)

where co, is the natural frequency of oscillation of the
jth oscillator. The remaining terms in the Hamiltonian
(6.1) are typically small compared to B0(t), and give
rise to appreciable changes in the oscillator amplitudes
only after many periods of oscillation.

A situation in which the effect of the coupling between
the modes is particularly pronounced is the one in which
the average value of the interaction part of the Hamil-
tonian is nearly constant during a small number of
oscillations. The interaction Hamiltonian in this case
has an explicit time dependence which cancels the time
dependence due to the free Hamiltonian Ilo. The ma-
trix o; /, (t), for .example, is given in terms of its initial
value 0;q(0) =0;/, by the relation

UI(t) —~iHp(0) t/ 0U(t) (7.7)

where U(t) is defined by Eqs. (6.13) and (6.14). Let us
define His(t) as the interaction part of the Hamiltonian
(7.4), evaluated in the Schrodinger picture, i.e., by the
expression

Vis(t) = ,'Aa e '"-'oe i"'at+H. c. (7 8)

Then it follows from Eqs. (6.13) and (6.14) that U'(t)
satisGes the equations

(7.6)

The time dependence of the various quantities which
describe the state of the system takes an especially
simple form in the interaction picture. The interaction-
picture unitary time translation operator is defined as

o;/, /z;t(t)/z/t(t)e '("+"»'+H.c. (7.3)

and the terms involving o;/, (t) in the Hamiltonian (6.1)
take the form iA—U'(t) =a»(t) U'(t),

dt
(7.9)

Couplings of this kind characterize a number of
physical processes, including the coherent Raman and
Brillouin effects, and the frequency splitting of light
beams in media with nonlinear dielectric susceptibili-
ties. 34 Louisell, Yariv, and Siegman' have proposed a
theoretical. model of the parametric ampliGer consisting
of two electromagnetic cavity modes coupled by an in-
teraction of the form (7.3). The coupling between the
modes of frequency co; and ~& is produced by an intense
pump 6eld oscillating at the frequency (0=0),+(0/, within
a cavity Glled with a nonlinear dielectric substance.
References 12 are devoted to an analysis of this model
within the context of the coherent states and the repre-
sentation of quantum states by means of quasiprobabil-
ity functions. In this section we shall generalize the
treatment of Ref. 12 to include the case in which more
than two modes are coupled by terms of the form (7.3);
our analysis will therefore be adequate to describe the
case in which some of the modes are degenerate, or in
which the pump Geld has more than one Fourier compo-
nent of oscillation. The results obtained provide an in-
structive illustration of the analysis of the preceding
section.

U'(0) = 1, (7.10)

where Biz(t), the interaction Hamiltonian in the inter-
action picture, is deGned as

(t) ~/Hp(0) t//)+ ( )gtiHp(0) t/ 0 —
(7 1 1)

The special form we have assumed for the explicit time
dependence of the coupling implies that Biz(t) is inde-
pendent of time. If we substitute Eq. (7.8) for His(t)
into Eq. (7.11) and then make use of the identity

(7.12)

we Gnd

B»(t)=B»(0)= ',A(a~oa'+a-ou) (7.13)

The solution to Eqs. (7.9) and (7.10) is therefore

U'(t) = expr —,'i (a~o at+ao a)t]. — (7.14)

Let us deGne the interaction-picture density opera-
tor p'(t) in terms of the Heisenberg density operator p by
the equation

p'(t) —= U'(t) pU' —'(t) . (7.1S)

Then p'(t) may be expressed in terms of the Schrodinger
density operator p(t) as

"See, for example, N. Bloembergen, Nonlinear Optics (W. A.
Benjam~~, lac., New York, 1965),. Chap. IV. p&(t) ~iHp(0) i/ Ap(t)& iHp(0)i//)— (7.16)
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a'(t) =e'"'a(t) . (7.19)

It is important to distinguish between the operator
a'(t) and the interaction-picture operator e '"'a. The
time dependence of a'(t) is governed completely by the
interaction part of the Haniiltonian, and a'(t) therefore
reduces to the Schrodinger operator a when the cou-
pling between the modes vanishes. It follows from Eqs.
(7.18) and (7.14) that u'(t) satisfies the differential
equation

i—a'(t) = oa't(t) .
d$

(7.20)

The solution to this equation is, by virtue of Eq. (7.6),

a'(t) =u'(t) a+ii'(t) a', (7.21)

It follows from this equation and the identity (7.12) that
the mean value of any operator function F(a,at) at time
f' ls

trgp(t)F(a a') j= tr[p'(t)F(e '"'a,e'"'a')] (7 17)

so that the variables appropriate to the interaction pic-
ture are the uncoupled operators e '"'u.

It is useful to consider the behavior of the operators
a, under the similarity transformation generated by
U'(t). Let us define the operator a'(t) in terms of the
Schrodinger operator u by the relation

a'(t) =—U'—'(t)aU'(t) . (7.18)

It follows from this definition and. from Eqs. (7.7),
(7.12), and (6.12a) that u'(t) may be expressed in terms
of the Heisenberg operator a(t) as

(p(no, t) =~ 2" d'"go exp(jp*no —np*it0)

)&exp[~ i(coshat)iso —i(sinhot)ito*l' —l Irtol'j

~ x~(rto, o) . (7.30)

The function P'(n', t) satisfies the partial differential

equation

(d)' — a a a a—
gZ 0 gZ

Edtl au' an' au'* au'*
P'(~', t) =o, (7.31)

where the differential operator (d/dt)' is de6ned as

weight functions P'(a', t) and P(a, t) may be expressed

by subjecting the arguments of P to the complex rota-
tions associated with uncoupled oscillators.

The value of P'(n', t) at some time t may be found
either by making use of Eq. (7.27) in Eqs. (6.48) and

(6.49), or alternatively by noting that the operator
U'(t) which defines p'(t) in terms of p generates the
transformation

U'—'(t)aU'(t) = I'(t) a+a'(t) at, (7.28)

and then making use of Eqs. (5.38) and (5.39). It fol-

lows then from the solutions (7.22) and (7.23) for e'(t)
and ii'(t) that P'(n', t) is given by the relation

P'(n', t) = (P([(cosha t)Q.'+i(sinhot)n'*g, t), (7.29)

v here the function 6'(iso, t) is delned as the Fourier
integral

where
I'(t) = cosho t,
n'(t) = i sinh—o t.

(7.22)

(7.23)

t'd)' a a a
Z~ 0 —ZA 0'

ddt J at an'* an'
(7.32)

The Heisenberg operator a(t) is then given, according to
Eq. (7.19), by

a(t) = e '"'[(coshot)u —i(sinho t)at). (7.24)

I et us now suppose that the interaction-picture den-

sity operator p'(t) has a P representation, i.e., that it can
be written in terms of some weight function P'(n', t) in
the form

0'= 7 KT) (7.33)

where K is a real diagonal matrix with eigenvalues K;,

The time dependence of P'(a', t) takes a somewhat
simpler form when P' is expressed in terms of variab1es
which obey decoupled equations of motion. Since the
matrix 0- is real and symmetric, it can be diagonalized by
means of a real orthogonal transformation. Ke may
therefore write

p'(t) = d'"n' P'(n', t) in')(a'i .

It then follows from Eq. (7.16) and the identity

(7.25) K&p= K&It;
=

u&lt, K& )

and v is a real orthogonal matrix,

(7.34)

(7.35)
exp[—i&0(0)t/Aj in') =

i
e '"'n') (7.26)

that the Schrodinger density operator p(t) has a P repre-
sentation as given by Eq. (6.47), in which the weight
function P(n, t) satisffes the relation

P'(n', t) =P (e-'"'n', t) . (7.27)

Let us define the operator b(t) by the expression

b(t) =—e—'~14ra'(t) . (7.36)

The operators b, (t) and b;t(t) then satisfy the canonical
commutation relations

Thus the operator p'(t) has a P representation if and
only if p(t) does, and the relationship between the

[b;(t),bi (t)]=b;i,

[b;(t),b, (t)$ =o.
(7.37)
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It follows from the definition p.36) of b(&) and Fqs.
(7.21)-(7.23) and (7.33) that the operators b, (t) are
given in terms of their initial values by the decoupled
relations

b;(t) = (cosh» t)b (0)—(sinh« /)b t(0). (7.38)

We have introduced the phase factor e ' I4 into the
definition (7.36) of b(/) so that the Hermitian operators

variables q and p:

a ( a a l 1 a a—+E» Ip —
q

a/ i i ( ap& aq~/ 2 apj' aq/ /—

XP'(q, P,~) =0. (7.45)

This equation has solutions of the form

q;(~)=—2-"'[b (~)+b;(~)),

p (/) =—~2 "'[»'(/) -»(/)],

(7.39a)

P.39b)

P'(q, p, t) =Q f;(q;,t)g;(p;, t),

where f;(q;,t) and g; (p;,t) obey the differential equations

have the simple exponential time dependence

q/(&) =e ""q (0),

p;(t) =e"'p, (0).

p.4Oa)

(7.40b)

Let us now d.efine real variables q and p in terms of
the arguments n' of P(n', t) by the c-number analogs of
Eqs. (7.36) and (7.39), i.e., by the relations

q
—2 1/or[ok—r/4~&o+o im/4~& j-
='2-/ [ '/ 'o —-'/ 'j

(7.41a)

(7.41b)

P'(q, p, t)= (p(e"'q e "'p, t), —(7.43)

where the function (P(qo, po, /) is defined for arbitrary real

arguments qo; and po&' as

6'(qo, po, /) = (2~')—" g [dxo;dyo; e'&*o/i o/
—oo/oo/& j

j~l

Xe~(& [l(~-'"'-1)*.'+-.'(""-1)y.o]}

xx(&o,yo, o) . (7 44)

It is not diTicult to see that this integral will not in
general converge for all times t. The coeKcient of xp in
the exponential function becomes infinite as t —+ —~
if ~,&0, or as t —+ ~ if f(j&0. Similarly, the coefIicient
of yp becomes infinite as t —+ ~ if ~;&0, or as t —+ —~
if «;(0. It is therefore clear that unless X//(~/o, o) ap-
proaches zero as

~ go~
—+ Oo more rapidly than the ex-

ponential of any (negative-definite) quadratic form in

gp and pp*, a P representation can exist during a 6nite
time interval at most.

This is also clear from the form the diGerential equa-
tion (7.31) takes when it is expressed in terms of the real

If we similarly de6ne real variables xp and pp in terms
of the arguments gp of X~,

go ——2 /orgy'~/4r/o*+o '~/ r/o] (7.42a)

yo=i2 '/ r[e'~/ r/o* e'~/ goJ,— (7.42b)

then we find from Eqs. (7.29) and (7.30) that P'(n', t)
may be expressed in terms of the real variables q and p
in the form

-a ( a 1 a')q——,I q,
—

~ f;(q;,/)=0, (7.46 )
a/ '& 'aq; 2 aq/o&

-a ( a 1 a')-—+,~ p, —
~ g;(p;, /) =0, (7.46b)

at '4 ap; 2ap/'&

X/, (Z„O)=s-& &~oo~'

=exp[—', (m) P (x„+y„)~. (7.4g)
j~l

If we substitute this expression into Eq. (7.44) and per-
form the indicated integrations, we 6nd, by virtue of

Eq. (7.43),

P'(q, p, ~) =II ([ '»(~)»(-~) j-'"
j~l

Xem[ —lq'/»( —
&)

—kP'/»(/) j&, P 49)
where

7 (&)
—=k[(1+2(~))o'""—13. (7.50)

The Fourier integral which leads to Eq. (7.49) converges

only when the conditions

»(t)) 0,

»(—t))0,

(7.51a)

(7.51b)

each of which resembles a Fokk.er-planck equation in

one variable. It is not dificult to show that for reason-

ably well-behaved initial functions f;(q, ,o) and g;(p;,0),
these equations lead as t —+ ~ to highly singular func-

tions f;(q;,t) if «,)0, and to highly singular functions

g;(p;, t) if »/(0.
As an example of some interest, let us consider the

case in which the initial state of the system is the pro-
duct of chaotic mixtures for each mode. To simplify
calculations, let us assume that the mean quantum
numbers for all of the modes in this initial state are

equal. The initia) density operator then has a I' repre-
sentation, ' and the weight function is

P(no, o)=(m(m)) "exp[—[no['/(m)j, (7.47)

where (m) is the initial mean quantum number for each

mode. The normally ordered characteristic function at
t=O is then
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are satisfied for j=1, , e, and thus only within the
time interval &p,'(t)=2" d"qd"p p —p t

—tg&t&tg, (7.52)

where the time t&&0 is defined by the equation

exp(2
~
K;

~
ti) = 1+2(m). (7.53)

For ) t ~ & ti, the integral which results from the substitu-
tion of Eq. (7.48) into Eq. (7.44) is strongly divergent,
and no E representation exists in the sense we have
defined.

It is interesting to observe that the Wigner function
remains well behaved at all times. When the Wigner
function W'(n', t) corresponding to the interaction-
picture density operator p'(t) is expressed in terms of the
real variables q and p defined by Eqs. (7.41), it may be
shown to obey the functional identity

W'(q, p, t) =W(e "q e "'p 0) (7 54)

which is easily deduced. from Eq. (6.41) and the expres-
sions (7.40) for q(t) and p(t). For the initial state (7.47),
the Wigner function is given by

which follow simply from the formula (2.20) for sym-

metrized products. The relation (2.15) for normally

ordered products implies that the corresponding expres-

sions in the E representation are

gq, 2(t) 2—n dnqdnp

x Lq;
—(q;(t))j'~'(q, p, t)+k, (7 5»)

gp.2(t) —2
—e deqdnp

aq;&(t) &-,',
ap, 2(t) &-;,

(7.60a)

(7.60b)

Xpp; —(p;(t))j'~'(q, p,t)+l. (7»b)

It is clear from these relations that a positive E repre-
sentation can exist only when the conditions

w'(q, p, t) = II (L '(q'(t))(p, '(t))j-'"
j'=1 are satisfied for j=1, -, n. That these conditions can

all be satisfied during a finite time interval at most is
XexpL 2'6 /(qP(t}) lpga/(p~' (t)H) ~ ( 55) implied by the relations

in which (qt2(t)) and (pp(t)) are the second moments of
the operators q;(t) and p;(t), and are given by the
relations

gq .2(t) &-2sg t6q
.2(0)

gp 2(t) s2ajtgp, 2(0) (7.61b)

(V(t))=4(—t)+-.

(Pt2(t) }= li (t)+-'

(7.56a)

(7.56b)

~qP(t) =2 " ~"q~"p Lqt
—(q~(t))3'W'(q p, t), (7»a)

It may be noted that for an arbitrary initial density
operator, the variances

~q 2(t) —= tr( pLa(t) —(q (t))l'), (7 57a)

~p '(t) —=«(t P»(t) —(p (t))3'} (7 57b)

may be expressed in terms of the signer function by
means of the relations

which follow from Eqs. (7.40). If a E representation
were to exist outside the time interval defined by Eqs.
(7.60), the weight function would have to have negative
variances. In the example we have discussed, the E
representation ceases to exist, in the sense we have de-

fined, at the instant when one of the inequalities (7.60)
fails to be satisfied.
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