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Kinetic Equation for Drifted Electron Plasma
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The kinetic equation for a plasma consisting of ions and drifted electrons under the inRuence of an electric
Geld is derived, neglecting electron-electron correlations. The high-frequency resistivity is calculated and
its dependence on the drift velocity vD is obtained. Resistive instability was found to occur for vD—1.4v&h,

where e&l, is the steady-state electron thermal velocity.

I. INTRODUCTION
' 'N recent years, calculation of the conductivity for
i . electron-ion plasmas has been performed by many
authors. The low-frequency conductivity, i.e., the case
co(&v, where v is the collision frequency, has been cal-
culated using the Fokker-Planck equation. ' For the
high-frequency conductivity, i.e., co))v, an elementary
model has been developed' which takes into account the
self-consistent field of the electrons but neglects elec-
tron-electron correlations. A more rigorous treatment for
calculating the high-frequency conductivity has been
given using the BBKGV hierarchy' or Kubo's formula-
tion and the Green's-function technique of the many-
body theory. 4 It follows from these calculations that
one should treat the correlation functions on the same
time scale as the one-particle distribution function, and
that for massive ions the electron-electron correlations
do not aGect the high-frequency, long-wavelength
conductivity. For small but 6nite wave number, one
cannot neglect the electron-electron correlation in cal-
culating the conductivity. However, assuming that for
small but Qnite wavelength the effects of electron-
electron correlation as well as electron-ion collision are
small, we may hopefully treat each of them separately.

We discuss here a model of an electron-ion system,
following Berk, ' in which electron-electron correla-
tion has been omitted. However, we consider in the
zeroth order an electron gas having a Boltzman dis-
tribution but drifting relatively to massive ions (ran-
domly distributed) which are embedded in the system.
The purpose of this work is to calculate the conductivity
for a system in steady state but not necessarily in
equilibrium; i.e., when the electrons are drifting relative
to the ions. A treatment of this problem starting with
the Fokker-Planck equation is described by Musha and
Voshida. ' This treatment cannot in principle describe
the conductivity for frequencies co, in the vicinity of the

~ Many references may be found in I. B. Bernstein and S. K,
Trehan, Nucl. Fusion 1, 3 (1960). See also H. Margeneau, Phys.
Rev. 109, 6 (1958).

s J. Dawson and C. Oberman, Phys. Fluids 5, 517 (1962); 6, 394
(1963).' C. Oberman, A. Ron, and J. Dawson, Phys. Fluids 5, 1517
(1962).

4 V. I. Perel and G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz.
41, 886 (1961) (English transL: Sov. Phys. —JETP 14, 633(1962)7;
A. Ron and N. Tzoar, Phys. Rev. 131, 12 (1963).' H. L. Berk, Phys. Fluids 7, 257 (1964) .

'T. Musha and F. Yoshida, Phys. Rev. 133, A1303 (1964).
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plasma frequency co„. Our method of solution is similar
to that given by Kohn and Luttinger. We write coupled
kinetic equations for the coherent (with the external
fteld) and incoherent "one-particle distribution func-
tions. " These distribution functions are treated as
changing on the same time scale. Following H.ef. 5, both
the coherent and incoherent distribution functions are
driven by the external field. We assume that the ampli-
tude of the incoherent distribution function is small and
can be solved in terms of the coherent distribution func-
tion and the field. Then we substitute it in the kinetic
equation for the coherent distribution function, and

therefore reduce the problem to an integral equation for
the coherent distribution function.

II. DERIVATION OF THE
TRANSPORT EQUATION

We consider a system of drifted electrons relative to
fixed ions in the rest frame. The Vlasov equation in

the rest frame reads

BF BF e BF e 8F
yV +—VC —E,„'e"~+' 's=0, (1)

83 BX Sg BV m BV

where C, the potential arising from the charged particles
themselves, obeys

Vs@=47re ms Jidv Zp b(x—R~)—

Here E,„ is the external field of wave number q and
frequency co; —e, m, and eo are, respectively, the elec-
tron charge, mass, and density, Z is the ion valence and

R~ is the position of the 1th ion.
We assume that the electric field E,„is small in the

sense that we are interested in the linear response to
the 6eld; i.e., the field-independent conductivity. The
only small parameter in our system is r, = 1/eXD', the
number of particles in the Debye sphere. We are es-
sentially looking for a correction to order r, in the
conductivity. We next write the kinetic equation for f,
which describes the linear response to the external field,

7 W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957);
109, 1892 (1958).
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Vzq = 4zreno fdv.

of the unperturbed electron-ion system.

B Bf e Bp' e Bf—+V —+—vy +—vC'—
Bt Bx m Bv m

=0,

, ,t m This should not disturb s sinlaboratory sys .
'

b elf. lf we averageC ' is not a measurable quantity
over aall possible ion positions m q .

llour theory it wi
s l.ater that our result will depend oe obvious ater a

the electrostaticwhich is a real quantity and represents t e
screening of the ions by the electrons.

E . 3

respectively:

H F' and C' are, respective y, y1 the s stem static dis-ere an
ction and its potentia, i.e., hwhen the ex-

d b 't t thheldiszero. In or er to ec
f E' h 1our assumption of r,«, we solve or o

order in the electron-ion collision process.
Ke define

e BFO

( Nd+ zq ' v+ 7J)fz ezz —'—
e

q gk.
m k

Bpz g Bfg
+C', ,(q—k), (14)

Bv BV

ps p0+p

C'=0+4"

where E' and C' obey

BE' e
V +—vC'.

Bx m
and

=0,

where
(5)

(6)
e,„=E,„—zqq„

Bp'p, e Bf,+i—C'g, (k—q) .
m Bv

and
e BFO

( i(a+i—k v+g) fj,+i ya-
m Bv

(16)

VzC"=4zre nz F'dv Zg 8(x— i)—
l

where F'is t e ri eh d 'ft d Maxwell-Boltzmann distribution
for the electrons given by

e
—(v—vo) 2I»th

(2zrv zi,z) '"

= —i—Q yak' +C'g j, (k—') =0.
m k'~q Bv

d I, re resent the coherent and incoherent
parts of the self-consistent potential, and a
from Eq. (4),

—q'p, =4zreno f,dv,

rmal velocity of the electrons in theHere nzh is the the ou
stea y sta e.
(8) are straightforwaru an are given

'

Fourier components Fk an

4zreZ 1
C '= — e '"'R' (kWO)

k'Dg V i
(10)

Cg' (kWO) .
nz kv ig—

where
k Bp'/Bv

QR~= dv
zo—k v+zzz

D is corn lexherebecauseof theWe point out that the I, o p
drift which imposes a Doppler frequency s i in

h l 't of the dielectric function Dk„Here Dk is tne imi o
when co~0. Dk„ is dehned by

My
2

D~ =1+ Q~,
k2

—k'yR=4zreno fj,dv

E . ,16) the right-hand side is of higher order in

y
~ ~

es the wave num er o e e
from q to k', and the second one brings it a

hand side of Eq. ( g'16 ives no contribution for
his is obviously theE' 0 and O'I, 0 are zero. This is o vioussince

ur s stem.eecoct f charge neutrality for our sys
nt with our pertur a-We therefore obtain, consistent wi

tion approac, t e o oh, h following equation governing t e
noncoherent distribution function

ie Bp' e BPz, ~
( uu+zk v+g) f—g+ Cgk ——e-,„

e Bf,+i—C'R, (k—q) =0. (18)
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Equations (14), (17), and (18) now constitute a closed, approach, and obtain f~ and 4» in terms of the Geld and
set which we solve in the following way: We 6rst assume fs I.n turn we substitute f~ and C» in Eq. (14) to obtain

fs to be larger than f&, in accord with our perturbation an integral equation for f, which reads

ie 8P' 4xe'Zo)„' B -(k q—) Bf,./Bv -( to,' )
((» q—v+ir)) f, —e = dk+s, x (q—k)—

m Bv m(2s.)' Bv ce—k.v+ir) Ek'Da &

BF.s/Bv cl k BF'/Bv (k q) Bf—,/Bv e
(q—k) —— —k- Zv —i—(q—k)—

Bv co kv—+irl Bv k v ir)— ~ k—v+ir) m Bv

1 f B (k BF'/Bv) (ie ca B k BF'/Bv
x -I'—

i . I +I —, (q —k)—
a&
—k v+ir)E Bv k k v—ir) ) km O'D~„Bv co k—v+iri

B k BF'/Bv—k-
Bv k v ir)—

B k BF'/Bv
go

dv- k'v srs—
(a—k v+ir)

(19)

Here we have already averaged over the ion posi-
tions, and 4k is given by

III. THE HIGH-FREQUENCY LONG-
WAVELENGTH CONDUCTIVITY

1 '1
k

M elk. (R~—Rgr)

g tt~

1 2

k'Dk,

We shall consider long wavelength in the following
Aq. (20) sense: The wave number q is chosen to be small enough

so that

For randomly distributed ions one obtains

Ns=N 'g expik(R~ —Rp)=1. (21)

The integral equation, given by Eq. (19), is exact to
the first order in r„our expansion parameter. Although
this equation is very complicated, we shall extract
useful information concerning the high-frequency
conductivity. '

@Vga gled (~ (22)

for any frequency ~ and drift velocity v D in our problem.
We therefore expand the right-hand side in Eq. (19) in a
power series of q, and take only the dominant term
when q ~ 0. It is clear that in the contribution of the
electron-ion collision to the conductivity, we have
neglected finite-wavelength eGects.

This approximation will not change the qualitative

behavior of the result. However, it will simplify the procedure. We therefore obtain, from Eq. (19),

ie e, BF'/Bv 4rre'Zco ' k Bf,/Bv / ~„s l/' B) — 1
dk~.x k — —

I I~k —
I +

m ~—q v+ir) ma&(2s.)s Bv re kv+ir) kk'—D~„/ k Bv/ k v i' .co —k.v+irl—
k Bf&/Bv e t' B 1 f B) (k BF /Bv) ie( co~' B)

X A' i /k — —/—e —
// / +—

/

k —
/

ro kv+i—r) m & Bv a& kv+i—r)K Bv/ ( k v irl l m—&ksDq„Bv)

1 1 BF
x] +

k-k v irf co——k v+iri Bv )
e B/Bv/(k BF'/Bv)/k v ir)5. —

0)—k v+srl
(23)

Now, to obtain the high-frequency conductivity, i.e., co&)s, v being the collision frequency, we assume that the
zeroth-order solution for fs (in power of r,) can be treated as the dominant part of the coherent distribution func-
tion. We therefore substitute in the right-hand side of Eq. (23) the approximate fs&" given by

ie E,„BF'/Bv
S (0)-

J%

It should be noted that, in the integral Eq. (23), the dominant (divergent) contribution from large k s is given by the 6rst term on
the right-hand side. For frequencies eu different from the plasma frequency co~, it is sufBcient to retain only this term in the integral Eq.
(23) in order to derive the dominant contribution to the collision term valid also at low frequencies (a&(v) (5). However, the appear-
ance of an additional vector v~ in the integrand makes the integration dif5cult.
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in accord with our previous approximation. Then we operate on both sides of Eq. (23) with —J' enovdv and obtain
our solution for the current density:

ie2Zco„4
J=Jo+

m&d'(2v. ) '
Dg

dk krak
Deco

(k 8/Bv)(s BFo/Bv)
dV

&d
—k.v+ig

(e.8/Bv)$(k BF'/Bv)/k v+ir&$
de

Cd
—k v+'L'g

~ (24)

16m'e'Z
dk(k. q)'Rq-(') =-

m&d&d„'(2v ) '
&I &dv' &d k BFo/Bv

jo=—4 — d V-

q 4v. q' &d qv+ir&—
(2S)

'Sk,—k vg& f
XIm

k,-k vg& ~ISk, w-k vgp

(31)The velocity integration in the right-hand side of
Eq. (24) is straightforward. We obtain after some
algebra the longitudinal conductivity, using the fact
that j, jo, E,„,and q are all. paralld to each other:

ISk,—k vv~—

is the part of the resistivity that arises from the electron-
ion collisions. Our calculations for the collisional re-
sistivity, Eq. (31), are valid for &d)v, where v is the
collision frequency.

The conductivity E,„(2& is a tensor, depending
on whether q and E„respectively, are parallel or
perpendicular to v~. In both cases using the relations
ReBI, , =Re8 k „and Im81, „=—Im8 ~ „ it is easy
to see that the second term in Eq. (31) vanishes after
integration. Our result for the resistivity is therefore
reduced to

3g 8th GO PD CO

1+ ig—(v./2)
GO +@2 g2 g&th

47'-e2Z

dk(k q)'Xexp( —&d'/2q'vtk')+
m&d'(2v)'

/Dk)- 1
X! !

—. (26)
(Dk J Dk ~ Dk-

Here we have made use of Eqs. (12) and (13). is the contribution of Landau damping to the resistivity
In Eq. (24) jo represents the current due to the system and

of free electrons and is given by

The conductivity given by Eq. (26) was calculated using
the restriction given by Eq. (22). It represents the
response of the free-electron gas and takes into account
approximately the electron-ion contribution to the re-
sponse, in the sense that the small but hnite q effect
in the collision integral can be neglected.

We next check the limit of vD=O. In this case, using
Eqs. (9), (12), and (13), we obtain D& „~IS&,„, where

k. Byo/gv07~2

ISk„=1+ dv
k' &d

—k v+ig
(27)

and f'= (2v.v'~k) 'I' exp( —v'/2v'&k) is the Maxwell-
Soltzmann distribution function. We also deduce by ob-
servation that

Dk, co @k,oo—& vD ~ (28)

It is therefore clear that for v&=0 our result given by
Eq. (26) reduces to the well-known expression for the
conductivity '

We next de6ne the resistivity J',„as the real part of
(o,„) ' and obtain

16m 2e'Z
(2)—

m&d&d „o(27r) '
dk(k q)'

XIm! ! . (32)
(IS k,—k'vj) ISlc, N—k'vJ)l

To calculate exactly the integral in Eq. (32) a computer
solution is required.

However, in order to obtain an analytical result we
observe that the dominant contribution to the integral
comes from large 4's. We therefore limit the integration
over k from ko to k = (kT/e') (see a discussion of this
point in Ref. 9). The cutoR at k was introduced to
prevent the nonphysical divergence of the integral,
since our theory does not properly treat large angle
collisions. One can immediately observe that the
singular term of the integrand comes from ImBA„„~.
Therefore, we approximate our result for the resistivity
by taking 8A„&. ~ —+ 1. which for k))kD is a good ap-
proximation. We also choose to calculate the case

EI!q!!v~, in which the eRect of the drift on the resistivity
will be most noticeable, and obtain

where

Ro =R,„&"+Ro„&'~,
1.6m2e2s

(29) R &2)~

m&dv &d(27I )
k2dk dgg2

&d' kn'( &d )
Ro„&'&=4vg(v/2) ! !exp( —&d'/2q'v&k') (30)

&d v q kqvtk)

XImhk, k„,. (33)

1'L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience
Publishers, Inc., New York, 1956), p. 76.
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In the limit of very small drift velocity vre obtain

(3g)

We immediately obtain the ratio of the resistivity with
and vrithout drift for the case of au) ~~ to be

FIG. 1. Dependence of resistivity on drift velocity. G(x) is the
ratio of resistivity at finite drift velocity ez to its value for o&=0.
The crossover from positive to negative resistivity occurs at
s,= 1.87.

t' 9 vn')

10v„s&
'

Here r)= cos8, and 8 is the angle between k and 8n. In
Eq. (33) we have omitted completely the screening
eBect, which indicates that this expression is only valid
for ot&otv. We next substitute for Im8» „

COy 0)2

Ime», „=g(v./2) e
—"'Is»"'»'

k'vth'
(34)

where r, = (1/whats) is the small parameter of the plasma
and F(x) is given by

-
r) as —(erfh/(x/2) j)

F(*)= —4 —+2*
~

-
~

. (36)
Bx Bxs 4 Q(x/2)

and we obtain af ter integration (retaining only dominant
terms in the integral) the result

r, 1 (vnP (2v»ask
R,„„'= (2v)s— F~

~
in~ ~, (35)

Mv 2/v 5v ) k (d )

The numerical evaluation of G(x) indicates the ex-
pected result, namely that the resistivity decreases
vrhen the drift velocity increases. Numerical evaluation
of G(x) shows (see Fig. 1) a negative resists, nce for
x&1.87. This corresponds to a critical drift velocity
(vn),—1.36v&h which is approximately 20/0 higher than
previous estimates. " It should be noted that this
critical drift velocity can be of the same order as that
for excitation of ion waves or phonons.

In conclusion, we have derived the kinetic equation
for drifted electron-ion system, where the ions are
assumed to be randomly distributed. We have utilized
our equation to derive the high-frequency conductivity,
vrhich cannot be obtained using the diagrammatic tech-
nique as given in Ref. 4, since our system is not in
thermal equilibrium. Finally, vre have estimated the
resistivity for co&or„and did find a resistive instability
of our system, however, for critical drift velocity higher
than previously predicted. "

D. E. McCumber and A. G. Chynoweth, Phys. Rev. Letters
The function F(x) is given by the uniformly convergent 22, 651 (1964).


