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The kinetic equation for a plasma consisting of ions and drifted electrons under the influence of an electric
field is derived, neglecting electron-electron correlations. The high-frequency resistivity is calculated and
its dependence on the drift velocity vp is obtained. Resistive instability was found to occur for 9p=21.4ven,

where vy, is the steady-state electron thermal velocity.

I. INTRODUCTION

N recent years, calculation of the conductivity for
electron-ion plasmas has been performed by many
authors. The low-frequency conductivity, i.e., the case
w<, where v is the collision frequency, has been cal-
culated using the Fokker-Planck equation.! For the
high-frequency conductivity, i.e., «>>v, an elementary
model has been developed? which takes into account the
self-consistent field of the electrons but neglects elec-
tron-electron correlations. A more rigorous treatment for
calculating the high-frequency conductivity has been
given using the BBKGY hierarchy?® or Kubo’s formula-
tion and the Green’s-function technique of the many-
body theory.* It follows from these calculations that
one should treat the correlation functions on the same
time scale as the one-particle distribution function, and
that for massive ions the electron-electron correlations
do not affect the high-frequency, long-wavelength
conductivity. For small but finite wave number, one
cannot neglect the electron-electron correlation in cal-
culating the conductivity. However, assuming that for
small but finite wavelength the effects of electron-
electron correlation as well as electron-ion collision are
small, we may hopefully treat each of them separately.
We discuss here a model of an electron-ion system,
following Berk,5 in which electron-electron correla-
tion has been omitted. However, we consider in the
zeroth order an electron gas having a Boltzman dis-
tribution but drifting relatively to massive ions (ran-
domly distributed) which are embedded in the system.
The purpose of this work is to calculate the conductivity
for a system in steady state but not necessarily in
equilibrium; i.e., when the electrons are drifting relative
to the ions. A treatment of this problem starting with
the Fokker-Planck equation is described by Musha and
Yoshida.b This treatment cannot in principle describe
the conductivity for frequencies w, in the vicinity of the

1 Many references may be found in I. B. Bernstein and S. K.
Trehan, Nucl. Fusion 1, 3 (1960). See also H. Margeneau, Phys.
Rev. 109, 6 (1958).

( 2 J.)Dawson and C. Oberman, Phys. Fluids 5, 517 (1962); 6, 394
1963).
( 3 C.) Oberman, A. Ron, and J. Dawson, Phys. Fluids 5, 1517
1962).

4V. 1. Perel and G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz.
41, 886 (1961) [English transl.: Sov. Phys.—JETP 14, 633(1962)];
A. Ron and N. Tzoar, Phys. Rev. 131, 12 (1963).

5 H. L. Berk, Phys. Fluids 7, 257 (1964) .

8 T. Musha and F. Yoshida, Phys. Rev. 133, A1303 (1964).
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plasma frequency w,. Our method of solution is similar
to that given by Kohn and Luttinger.” We write coupled
kinetic equations for the coherent (with the external
field) and incoherent “one-particle distribution func-
tions.” These distribution functions are treated as
changing on the same time scale. Following Ref. 5, both
the coherent and incoherent distribution functions are
driven by the external field. We assume’ that the ampli-
tude of the incoherent distribution function is small and
can be solved in terms of the coherent distribution func-
tion and the field. Then we substitute it in the kinetic
equation for the coherent distribution function, and
therefore reduce the problem to an integral equation for
the coherent distribution function.

II. DERIVATION OF THE
TRANSPORT EQUATION

We consider a system of drifted electrons relative to
fixed ions in the rest frame. The Vlasov equation in
the rest frame reads

oF oF ¢ oF

e ~_OF
+V—t—ve- E ootttk —=0, (1)
a¢ x m v m av

where &, the potential arising from the charged particles
themselves, obeys

V2<I>=47re[no / Fav—2% B(X—Rl):l )

Here E,, is the external field of wave number ¢ and
frequency w; —e, m, and ny are, respectively, the elec-
tron charge, mass, and density, Z is the ion valence and
R, is the position of the Ith jon.

We assume that the electric field E,, is small in the
sense that we are interested in the linear response to
the field; i.e., the field-independent conductivity. The
only small parameter in our system is 7,=1/#\p?, the
number of particles in the Debye sphere. We are es-
sentially looking for a correction to order 7, in the
conductivity. We next write the kinetic equation for f,
which describes the linear response to the external field,

7”W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957);
109, 1892 (1958).
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of the unperturbed electron-ion system.

of of e oF¢ e of
—+V-—+—Ve- | —v&Hs.—
ot ox m o m av
€ _ Jid
_‘___Eqwe——iwt-i-wq‘x. =0, (3)
m av
and
V2p=4ren, / fav. 4

Here F* and ®° are, respectively, the system static dis-
tribution function and its potential, i.e., when the ex-
ternal electric field is zero. In order to be consistent with
our assumption of 7,K1, we solve for F* to the lowest
order in the electron-ion collision process.

We define

Fs=F'+F, (5)
=049, (6)

where F’ and ¥’ obey
OF e OF0

Vo—t+—Vv¥-—=0, )

x m av

and

V2<I>’=4qre[ng / Fldv—Z ZI: o(x— Rz)} R (8)

where F° is the drifted Maxwell-Boltzmann distribution
for the electrons given by

1

Fo=—
(zﬂth2)3/2

e~ (V—v0)%/2vtn?

9

Here vy, is the thermal velocity of the electrons in the
steady state. The solution of F/ and ® in Egs. (7) and
(8) are straightforward and are given in terms of their
Fourier components Fy’ and @y’ as

4reZ 1
P/ = — > e kR (B3£0), (10)
k2Dk V l
and
e k-9F°/ov
y=————3%®' (k#0). (11)
m k-v—iy

Here Dy is the limit of the dielectric function Dy,
when o — 0. Dy, is defined by

wp?
Dsz 1+;ka ) (12)
where
/d k-3F%/ v 13)
o= | dvV—--—.
Ox w—k-v+in

We point out that the D; is complex here because of the
drift which imposes a Doppler frequency shift in the
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laboratory system. This should not disturb us since
®,’ is not a measurable quantity by itself. If we average
over all possible ion positions in Eq. (10) we obtain
(®') — 0. However, upon developing our theory it will
be obvious later that our result will depend on |®y'|?
which is a real quantity and represents the electrostatic
screening of the ions by the electrons.

We next consider the Fourier transform of Eq. (3)
and obtain the kinetic equation for the coherent and
noncoherent distribution functions, f, and fi (k#¢),
respectively:

o e OF0
(“W‘*‘W'V'f"’?)fq_‘“eqw'_‘

m av

€ aF/q_k afk
—_ily [¢kk- +<I>'q_k(q~k>——], (14)
av v

m k
where
€go™= Eqw_iQW ) (15)
and
e oF°
(—iwtik-v+n) fit-i—oik-—
m av
€ aF’k_ f
——tge- “+z—<r> ea(b—) — (16)
m av av
e 6F' 0 fir
="‘1_ Z I:gokkl' +¢ k—k'(k k/) ——] 0
m k' q av av

Here, ¢, and ¢; represent the coherent and incoherent
parts of the self-consistent potential, and are obtained
from Eq. (4),

—q2pq=4men, / Jfa@v,
17)
—k2<pk=47ren0/fkdv.

In Eq. (16) the right-hand side is of higher order in
the plasma parameter 7,, since it formally includes two
collisions with ions. In the zeroth order, the electrons
oscillate coherently with the field with wave number ¢.
One collision changes the wave number of the electron
from ¢ to £/, and the second one brings it back to wave
number %. It should be pointed out here that the right-
hand side of Eq. (16) gives no contribution for k'=k,
since F'p—o and $'x—o are zero. This is obviously the
effect of charge neutrality for our system.

We therefore obtain, consistent with our perturba-
tion approach, the following equation governing the
noncoherent distribution function

ie OFY ¢  9F'y 4
(_iw',"ik'v+77)fk+_¢kk'-a"'—""£qw
m

v m v

+1—<1> eq(k— q)—é= 0.

(18)
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Equations (14), (17), and (18) now constitute a closed
set which we solve in the following way: We first assume
fq to be larger than fy, in accord with our perturbation

. ie OF°
(0—q-v+in) fy——e-—=

m OV

4dme?Zw,y®

m(2m)3
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approach, and obtain fi and ®y in terms of the field and
fq In turn we substitute fi and & in Eq. (14) to obtain
an integral equation for fq which reads

(g—k)-—
av

X[ a{k-aF"/av}_k a{kaF"/avH d‘(k—q)af,/av e

w—kv+4in ov

Here we have already averaged over the ion posi-
tions, and ¥y is given by

1 2 2
W= — > gk RiRi) = ’ Ne. (20)
k*Dyl N w «
For randomly distributed ions one obtains
Np=N"1 Z expzk(Rl— Rzr) =1. (21)

w

The integral equation, given by Eq. (19), is exact to
the first order in 7,, our expansion parameter. Although
this equation is very complicated, we shall extract
useful information concerning the high-frequency
conductivity.?

k-v—in

e w,y? o ( k-9F/av
foafe)
m k2Dy,, v lw—k-v+in

X[;:(.lm("%)(%gﬂ*(

l¢]
v —(q—k)-—
w—k-v+iy 1m(q v

3 k-aFO/av]
ed k-v—in (19)
w—k-v+in

d (k-9F°/9v
I
vl k-v—iy

III. THE HIGH-FREQUENCY LONG-
WAVELENGTH CONDUCTIVITY

We shall consider long wavelength in the following
sense: The wave number ¢ is chosen to be small enough
so that

qUth qvp

L1; —<1

w (&)

(22)

for any frequency w and drift velocity vp in our problem.
We therefore expand the right-hand side in Eq. (19) in a
power series of g, and take only the dominant term
when ¢— 0. It is clear that in the contribution of the
electron-ion collision to the conductivity, we have
neglected finite-wavelength effects.

This approximation will not change the qualitative

behavior of the result. However, it will simplify the procedure. We therefore obtain, from Eq. (19),

oF°

ie & dF°/dv Are®Zw ,? ar k-af,/av wp? 9 1 1
L = 1 Kokt Lo b ol (- (o) Enrmrragrmremrd
mw—q- v+ mw(2m)3 IvLw—k-v+in k2Dy,, ov/Lk-v—in w—k-v+iy av

k-0f,/ov ey 0 1 d\ /k-0F/9 ie/ wy d
o et ) P G ey i (e el
w—k-v+in m\ 9v/Lo—k-v+in\ 9v/\ k-v—iy m \k2Dy,, v,

1 1

([
k-v—in w—k-v+iy

]k~(—9{?—0>‘/'dvs‘ d/0v[ (k- 9F°/3v)/k-v—in]
av

. (23
w—k-v+ig } (23)

Now, to obtain the high-frequency conductivity, i.e., «w>>», » being the collision frequency, we assume that the
zeroth-order solution for f; (in power of 7,) can be treated as the dominant part of the coherent distribution func-
tion. We therefore substitute in the right-hand side of Eq. (23) the approximate £, given by

fa@=—
m

ie Equ- 9F/0v

w

8 It should be noted that, in the integral Eq. (23), the dominant (divergent) contribution from large %’s is given by the first term on
the right-hand side. For frequencies w different from the plasma frequency w,, it is sufficient to retain only this term in the integral Eq.
(23) in order to derive the dominant contribution to the collision term valid also at low frequencies (w<») (5). However, the appear-
ance of an additional vector vp in the integrand makes the integration difficult.
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in accord with our previous approximation. Then we operate on both sides of Eq. (23) with — /" enovdv and obtain

our solution for the current density:

(k-3/v)(e- dF°/dv)

de(v 8/8v)[(k-8F°/av)/k-v+in] 29)

. D.
i=job—— / dk k¥, {
mw3(2m)3 Dy,

Here we have made use of Egs. (12) and (13).
In Eq. (24) jo represents the current due to the system

of free electrons and is given by

. Qe k-9F%/av

Jo=-1 av

— (25)
q 4r ¢

w—q-vtig

The velocity integration in the right-hand side of
Eq. (24) is straightforward. We obtain after some
algebra the longitudinal conductivity, using the fact
that j, Jo, E4e, and q are all parallel to each other:

iwp2
oqm=—{ 1+

47w

3q27)f,h2 w? kD w
—i/(w/ 2)~— —

w? q qVth
4re?Z .
- / dk(k~ Q)2

mw?(2m)?

(@it o

The conductivity given by Eq. (26) was calculated using
the restriction given by Eq. (22). It represents the
response of the free-electron gas and takes into account
approximately the electron-ion contribution to the re-
sponse, in the sense that the small but finite ¢ effect
in the collision integral can be neglected.

We next check the limit of vp=0. In this case, using
Eqgs. (9), (12), and (13), we obtain Dy, — 8., where

wp? k-af°/av
Bro= 14— / dv /
k2 w—k-v+in

and 0= (2mv24) %2 exp(—22/20%;) is the Maxwell-
Boltzmann distribution function. We also deduce by ob-
servation that

Xexp(—w?/2¢%m?)+

(27)

Dk,w= gk.w—-k-vn- (28)

It is therefore clear that for vp=0 our result given by
Eq. (26) reduces to the well-known expression for the
conductivity.?
We next define the resistivity R, as the real part of
(0q0)~! and obtain
wa=wa(l)+wa(2) (29)
where

w® kp?
RO (n/ 21— = expl—®/24va?) (30
qVth

4 2
wp~ g

w—k-v+ip

w—k-v+iy

is the contribution of Landau damping to the resistivity
and

or” / dk(k-g)*
mww2(2m)3 ?

F 1 1
XIm[ o ( >] (31)
8*k,—k-vp\gk,w—k-v1) gk.—k-vp

is the part of the resistivity that arises from the electron-
ion collisions. Our calculations for the collisional re-
sistivity, Eq. (31), are valid for w>», where v is the
collision frequency.

The conductivity Rg,® is a tensor, depending
on whether q and E,, respectively, are parallel or
perpendicular to vp. In both cases using the relations
Re8y,o=Re8_i,_, and Imé&y,,=—Imé_,, it is easy
to see that the second term in Eq. (31) vanishes after
integration. Our result for the resistivity is therefore
reduced to

Rp®=—

1672¢%Z .
Ruo=——— [aih-gy
Mmaw2(2m)?

8k —kwy 1
x1m< il ) (32)
g*k,—k-vp gk,w—k-v

To calculate exactly the integral in Eq. (32) a computer
solution is required.

However, in order to obtain an analytical result we
observe that the dominant contribution to the integral
comes from large %’s. We therefore limit the integration
over k from kp to kmax= (kT /e?) (see a discussion of this
point in Ref. 9). The cutoff at kmax Was introduced to
prevent the nonphysical divergence of the integral,
since our theory does not properly treat large angle
collisions. One can immediately observe that the
singular term of the integrand comes from Imé&s,o—i-vy-
Therefore, we approximate our result for the resistivity
by taking &k, x.vp, — 1. which for £>kp is a good ap-
proximation. We also choose to calculate the case
E||q||vp, in which the effect of the drift on the resistivity
will be most noticeable, and obtain

1672e%s Fmax
j k2dk / dnn?
T mwye(2m)? -

XImgk.w—k‘uD'q .

wal 1 <2)

(33)

9 L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience
Publishers, Inc., New York, 1956), p. 76.
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F16. 1. Dependence of resistivity on drift velocity. G(x) is the
ratio of resistivity at finite drift velocity vp to its value for vp=0.
The cr?ssover from positive to negative resistivity occurs at
x.=1.87.

-04l

Here 7= cosé, and 0 is the angle between & and 9p. In
Eq. (33) we have omitted completely the screening
effect, which indicates that this expression is only valid
for wZw,. We next substitute for Imé&x,,

Wpw
0?2k 20,2
3,3

Ime,o=+/(7/2) (34)

kv

and we obtain after integration (retaining only dominant
terms in the integral) the result

2
Roun®= (2,,.)3’_8 _.1_F<E)_z> 1n<.zﬁll_kfliz) , (35)
wWp 20/T \ven? w?

where 7,= (1/#\p?) is the small parameter of the plasma
and F(x) is given by

S S

dx dx?
The function F(x) is given by the uniformly convergent

(36)
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series,
o (=D /2n—1
P(x)=3 1 w1
@ [H nz-:22"‘2(n—1)!\2n+1>x ]
=3G(x). (37

We immediately obtain the ratio of the resistivity with
and without drift for the case of w>w, to be

Ry ®(v
pm e 20)_ .
Ryou®(0)

(38)

In the limit of very small drift velocity we obtain

9 ‘1)1)2
p= (1 - —) .
10 vghz
The numerical evaluation of G(x) indicates the ex-
pected result, namely that the resistivity decreases
when the drift velocity increases. Numerical evaluation
of G(x) shows (see Fig. 1) a negative resistance for
x#>1.87. This corresponds to a critical drift velocity
(vD)¢=21.36vy, which is approximately 209, higher than
previous estimates.5:1® It should be noted that this
critical drift velocity can be of the same order as that
for excitation of ion waves or phonons.

In conclusion, we have derived the kinetic equation
for drifted electron-ion system, where the ions are
assumed to be randomly distributed. We have utilized
our equation to derive the high-frequency conductivity,
which cannot be obtained using the diagrammatic tech-
nique as given in Ref. 4, since our system is not in
thermal equilibrium. Finally, we have estimated the
resistivity for w2 w, and did find a resistive instability
of our system, however, for critical drift velocity higher
than previously predicted.®10

(39)

10D. E. McCumber and A. G. Chynoweth, Phys. Rev. Letters
22, 651 (1964).



