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Contrary to the situation which holds for the canonical theory described in the first paper of this series,
there exists at present no tractable pure operator language on which to base a manifestly covariant quantum
theory of gravity. One must construct the theory by analogy with conventional S-matrix theory, using
the c-number language of Feynman amplitudes when nothing else is available. The present paper undertakes
this construction. It begins at an elementary level with a treatment of the propagation of small disturbances
on a classical background. The classical background plays a fundamental role throughout, both as a technical
instrument for probing the vacuum (i.e., analyzing virtual processes) and as an arbitrary fiducial point for
the quantum fluctuations. The problem of the quantized light cone is discussed in a preliminary way, and
the formal structure of the invariance group is displayed. A condensed notation is adopted which permits
the Yang-Mills field to be studied simultaneously with the gravitational field. Generally covariant Green’s
functions are introduced through the imposition of covariant supplementary conditions on small dis-
turbances. The transition from the classical to the quantum theory is made via the Poisson bracket of
Peierls. Commutation relations for the asymptotic fields are obtained and used to define the incoming
and outgoing states. Because of the non-Abelian character of the coordinate transformation group, the
separation of propagated disturbances into physical and nonphysical components requires much greater
care than in electrodynamics. With the aid of a canonical form for the commutator function, two distinct
Feynman propagators relative to an arbitrary background are defined. One of these is manifestly co-
variant, but propagates nonphysical as well as physical quanta; the other propagates physical quanta only,
but lacks manifest covariance. The latter is used to define external-line wave functions and non-radiatively-
corrected amplitudes for scattering, pair production, and pair annihilation by the background field. The
group invariance of these amplitudes is proved. A fully covariant generalization of the complete S matrix
is next proposed, and Feynman’s iree theorem on the group invariance of non-radiatively-corrected #-particle
amplitudes is derived. The big problem of radiative corrections is then confronted. The resolution of this
problem is carried out in steps. The single-loop contribution to the vacuum-to-vacuum amplitude is first
computed with the aid of the formal theory of continuous determinants. This contribution is then func-
tionally differentiated to obtain the lowest-order radiative corrections to the #-quantum amplitudes.
These amplitudes split automatically into Feynman baskets, i.e., sums over tree amplitudes (bare scattering
amplitudes) in which all external lines are on the mass shell. This guarantees their group invariance. The
invariance can be made partially manifest by converting from the noncovariant Feynman propagator to
the covariant one, and this leads to the formal appearance of fictitious quanta which compensate the
nonphysical modes carried by the covariant propagator. Although avoidable in principle, these quanta
necessarily appear whenever manifestly covariant expressions are employed, e.g., in renormalization theory.
The fictitious quanta, however, appear only in closed loops and are coupled to real quanta through vertices
which vanish when the invariance group is Abelian. The vertices are nonsymmetric and always occur with
a uniform orientation around any fictitious quantum loop. The problem of splitting radiative corrections
into Feynman baskets becomes more difficult in higher orders, when overlapping loops occur. This problem
is approached with the aid of the Feynman functional integral. It is shown that the “measure” or “volume
element” for the functional integration plays a fundamental role in the decomposition into Feynman
baskets and in guaranteeing the invariance of radiative corrections under arbitrary changes in the choice
of basic field variables. The “measure” has two effects. Firstly, it removes from all closed loops the zon-
causal chains of cyclically connected advanced (or retarded) Green’s functions, thereby breaking them
open and ensuring that at least one segment of every loop is on the mass shell. Secondly it adds certain non-
local corrections to the operator field equations, which vanish in the classical limit #— 0. The question
arises why these removals and corrections are always neglected in conventional field theory without apparent
harm. It is argued that the usual procedures of renormalization theory automatically take care of them.
In practice the criteria of locality and unitarity are replaced by analyticity statements and Cutkosky rules.
It is virtually certain that the “measure” may be similarly ignored (set equal to unity) in gravity theory,
and that attention may therefore be confined to primary diagrams, i.e., diagrams which contain Feynman
propagators only, with no noncausal chains removed. A general algorithm is given for obtaining the
primary diagrams of arbitrarily high order, including all fictitious quantum loops, and the group invariance
of the amplitudes thereby defined is proved. Essential to all these derivations is the use of a background
field satisfying the classical “free” field equations. It is never necessary to employ external sources, and
hence the well-known difficulties arising with sources in a non-Abelian context are avoided.

25 OCTOBER 1967

1. INTRODUCTION

N the first paper of this series! an attempt was made
to show what happens when canonical Hamiltonian
quantization methods are applied to the gravitational
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field. Attention was focused on some of the bizarre
features of the resulting formalism which arise in the
case of finite worlds, and which are of possible cos-
mological and even metaphysical significance. Such

1 Permanent address.
1B. S. DeWitt, Phys. Rev. 160, 1113 (1967). This paper will
be referred to as L.
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prosaic questions as the scattering, production, absorp-
tion, and decay of individual quanta were left un-
touched. The main reason for this was that the canonical
theory does not lend itself easily to the study of these
questions when physical conditions are such that the
effects of vacuum processes must be taken into account.
A manifestly covariant formalism is needed instead.
It is the task of the present paper to provide such a
formalism.

We must begin by making clear precisely what is
meant by “manifest covariance.” In conventional
S-matrix theory (whether based on a conventional
field theory or not) ‘“manifest covariance” means
“manifest Lorentz covariance.” In the context of a
theory of gravity the question arises whether it should
mean more than this, since the classical theory from
which one starts has ‘“manifest general covariance.”
Here one must be careful. There is an important
difference between general covariance and ordinary
Lorentz covariance, and neither one implies the other.
Lorentz covariance is the expression of a geometrical
symmetry possessed by a system. In gravity theory
it has relevance at most to the asymptotic state of
the field. As has been emphasized by Fock,? the word
“relativity” in the name ‘“‘general relativity” has con-
notations of symmetry which are misleading. Far from
being more relativistic than special relativity, general
relativity is in fact less relativistic. For as soon as space-
time acquires bumps (i.e., curvature) it becomes
absolute in the sense that one may be able to specify
position or velocity with respect to these bumps, pro-
vided they are sufficiently pronounced and distin-
guishable from one another. Only when the bumps
coalesce into regions of uniform curvature does space-
time regain its relativistic properties. It never becomes
more relativistic than flat space-time, which is char-
acterized by the 10-parameter Poincaré group.

The technical method of distinguishing between the
Poincaré group and the general coordinate transforma-
tion group is to confine the operations of the latter
group to a finite (but arbitrary) region of space-time.
The asymptotic coordinates are then left undisturbed
by general coordinate transformations, and only the
operations of the Poincaré group (if that is indeed the
asymptotic symmetry group of the problem) are
allowed to change them. The general coordinate
transformation group thus becomes a gauge group
which, although historically an offspring of the Poin-
caré group and the equivalence principle, plays techni-
cally the rather obscure role of providing the analytic
means by which the Einstein equations can be ob-
tained from a variational principle and their essential
locality displayed.?

2V. Fock, The Theory of Space-Time and Gravitation (Pergam-
mon Press, New York, 1959).

8 The content of the Einstein equations can be expressed in an
intrinsic coordinate-independent form only at the cost of introduc-
ing nonlocal structures. (See, for example, Ref. 32). It can be
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This, however, is not the whole story, for the general
coordinate transformation group still has, even as a
gauge group, profound physical implications. Some of
these we have already encountered in I, and some we
shall encounter in the present paper. Others will appear
in the final paper of this series, which is to be devoted
to applications of the covariant theory. If it were not
for these implications there would be little interest in
pushing our investigations further, for there is no
likelihood that such “prosaic” processes as graviton-
graviton scattering or curvature induced vacuum
polarization will ever be experimentally observed.* The
real reason for studying the quantum theory of gravity
is that by uniting quantum theory and general relativity
one may discover, at no cost in the way of new axioms
of physics, some previously unknown consequences of
general coordinate invariance, which suggest new in-
teresting things that can be done with quantum field
theory as a whole.

Our problem will be to develop a formalism which
makes manifest the extent to which general covariance
permeates the theory. This will be accomplished by
introducing, instead of a flat background, an adjust-
able c¢-number background metric. Use of such a
metric has the following fundamental technical advan-
tages: (1) It facilitates the introduction of particle
propagators which are generally covariant rather than
merely Lorentz-covariant. (2) It reduces the study of
radiative corrections to the study of the vacuum. (3) It
makes possible the generally covariant isolation of
divergences, which is essential to any renormalization
program. (4) It renders theorems analogous to the
Ward identity almost trivial. (5) It makes possible,
in principle, the extension of the theory of radiative
corrections to worlds for which space-time is not
asymptotically flat and which may even be closed
and finite. These advantages are typical of what we
shall mean by the phrase “manifest covariance.” Use
of the phrase, however, is not to be understood as
implying that the simple trick of introducing a variable
background metric makes everything obvious. The
generally covariant propagators will not be unique
but will be choosable in various ways, analogous to
the gauge choices in quantum electrodynamics, and
we shall have to undertake a separate investigation,
just as in quantum electrodynamics, to verify that
the choice is irrelevant. This investigation turns out
to be much more complicated than in the case of
quantum electrodynamics.

Of the five advantages listed above as stemming
from the use of a variable background metric only
the first two will appear in the present paper. The third

argued [see S. Weinberg, Phys. Rev. 138, B988 (1965)7] that the
general coordinate transformation group is simply a consequence
of the zero rest mass of the gravitational field and its long-range
character.

4 Although one might hope for some very indirect cosmological
evidence for such processes.
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and fourth will be demonstrated in the following paper
of this series, while the fifth remains a program for
the future. It is not out of place here, however, to
speculate briefly on this ultimate program. As long
as the conventional .S matrix is our chief concern it is
appropriate to choose a background metric which is
asymptotically flat. We shall see that Lorentz invari-
ance of the .S matrix then follows almost trivially from
the formalism, in the limit in which the background
metric becomes everywhere Minkowskian. Now it is
obvious that scattering processes are also possible in
an infinite world which is not asymptotically flat. In
such a world it should be possible to construct a
generalized .S matrix in which the conventional plane-
wave momentum eigenfunctions are replaced by wave
functions appropriate to the altered asymptotic
geometry. The asymptotic geometry itself would be
fixed by choosing the background metric appropriately.

In a closed world no rigorous S matrix exists. The
continuum of scattering states is replaced by a regime
of discrete quantization, and, as we have seen in I,
the wave function of the universe may even be unique.
It may be conjectured that the formalism most ap-
propriate to this case is obtained by choosing the back-
ground metric to be zof a ¢ number but rather an
operator depending on a small number (e.g., one) of
quantum variables similar to the operator R represent-
ing the radius of the Friedmann universe studied in I.
These variables would be quantized by the canonical
method, while the full g-number metric would continue
to be treated by manifestly covariant methods. (Con-
ditions of constraint would, of course, have to be im-
posed on the latter metric to take into account the fact
that some of its degrees of freedom have been trans-
ferred to the background metric.) The resulting
simultaneous use of both the canonical and covariant
theories might help to reveal the relationship between
them.

As has been remarked in I, no rigorous mathematical
link has thus far been established between the canonical
and covariant theories. In the case of infinite worlds
it is believed that the two theories are merely two
versions of the same theory, expressed in different
languages, but no one knows for sure. The analysis of
radiative corrections has turned out to be of such
intricacy that the covariant theory has had to be
developed completely within its own framework and
independently of the canonical theory. Although the
structure of the covariant theory is suggested by the
formalism of field operators, and hence maintains a few
points of contact with conventional field theory, the
language of operators is dropped at a certain key stage
and c-number criteria are thenceforth exclusively em-
ployed to maintain internal consistency. It turns out
that the language of operators is a peculiarly unwieldy
one in which to discuss questions of consistency when
the invariance group of the theory is non-Abelian.
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The language of graphs and the .S matrix is much more
direct.

The latter language, embracing as it does many dif-
ferent particle theories at once, is also much less
dependent on the detailed Lagrangian structure of the
field theory on which it is based. It assumes that virtual
processes may be described by an infinite set of basic
diagrams, the combinatorial properties of which are the
same for all field theories. In working out the details
of how this language is to be extended to the non-
Abelian case, we have attempted to develop it within
as broad a framework as possible. Every theorem in
this paper will therefore apply not only to the gravita-
tional field but also to the Yang-Mills field® which,
like the gravitational field, possesses a non-Abelian
invariance group.®

Section 2 begins with the introduction of a notation
which is sufficiently general to embrace all boson field
theories and at the same time condensed enough to
reduce the highly complex analysis of subsequent sec-
tions to manageable proportions. A table is included
to facilitate comparison of the condensed notation with
the detailed forms which the various symbols take in
the case of the Yang-Mills and gravitational fields.
The notation is particularly useful in dealing with the
second functional derivative of the action, which plays
the role of the differential operator governing the prop-
agation of infinitesimal disturbances on an arbitrary
background field. It is also useful in dealing with the
higher functional derivatives, which are the bare vertex
functions of the theory. The problem of the quantized
light cone is discussed in a preliminary way in Sec. 3,
and its relationship to the ‘“nonrenormalizability” of
the theory is noted. Attention is called to the various
roles of the background metric, one of which is to define
the concepts of “past” and “future.” Green’s theorem
for an arbitrary differential operator is then derived,

Section 4 introduces a notation for the basic struc-
tures governing the action of the invariance group on
the field variables. The relationship between manifest
covariance and linearity of the group transformation
laws is emphasized. In Sec. 5 it is pointed out that the
infinitesimal disturbances themselves are determined
only modulo an Abelian transformation group. This
group, which is the tangent group of the full group,
affects only the field variables but not physical ob-
servables. The latter are necessarily group-invariant.
Infinitesimal disturbances satisfying retarded or ad-

5 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

¢ The term “invariance group,” as used in this paper, will
always refer to the infinite dimensional “gauge” group of the
theory, and not to the finite dimensional (<10) asymptotic
isometry group, which is undetermined @ priorz. It is not hard to
show that the Yang-Mills field and its “gauge” group can be
given a metrical interpretation which suggests a physical kinship
between the Yang-Mills and gravitational fields which is closer
than the formal mathematical similarities between them alone
indicate. [See B. S. DeWitt, Dynamical Theory of Groups and
Fields (Gordon and Breach Science Publishers, Inc., New York,
1965), problem 77, p. 139.]



1198 BRYCE S.
vanced boundary conditions can be computed with the
aid of corresponding Green’s functions provided sup-
plementary conditions are imposed. For convenience
these supplementary conditions are chosen in a mani-
festly covariant way, but their essential arbitrariness
is emphasized.

Use of the covariant Green’s functions in connection
with Cauchy data for infinitesimal disturbances is
discussed in Sec. 6, and the fundamental reciprocity
relations of propagator theory are established. Transi-
tion from the classical to the quantum theory is made
via the Poisson bracket of Peierls (see Ref. 20), which
is determined solely by the behavior of infinitesimal
disturbances. The reciprocity relations are used to show
that Peierls’ Poisson bracket satisfies all the usual
identities. Section 7 introduces the important concept
of the asymptotic fields, which obey the field equations
of the linearized theory. From the asymptotic fields
one can construct asymptotic invariants, which may
be used to characterize completely the physical state
of the field. The asymptotic invariants are conditional
invariants, i.e., invariants modulo the field equations.
It is emphasized that their commutators (i.e., Poisson
brackets) are nonetheless well defined. A direct proof is
given that the asymptotic invariants satisfy the com-
mutation relations of the linearized theory, a result
which is nontrivial when a group is present. This result
is used in Sec. 8 to construct the creation and annihila-
tion operators for real (i.e., physical) quanta in the
remote past and future. The detailed structures of the
asymptotic Yang-Mills and gravitational fields must
be investigated separately, but a condensed notation
(for the asymptotic wave functions) is again introduced,
which embraces both fields at once and emphasizes
their similarities. A table is included to facilitate the
comparison. The quanta of both fields are transverse
and differ only in spin. States are labeled by helicity,
which is readily shown to be Lorentz-invariant.

Continuing the uniform treatment of the two fields,
Sec. 9 shows that the asymptotic commutator functions
of both can be expressed in a standard canonical form.
A special notation is introduced for the projection of
the canonical form into the physical subspace. With
the aid of this projection two distinct Feynman prop-
agators are defined relative to an arbitrary back-
ground field. Both serve to describe the propagation of
field quanta in nonasymptotic regions as well as at
infinity. One is manifestly covariant but propagates
nonphysical as well as physical quanta; the other prop-
agates physical quanta only but lacks manifest
covariance. The latter is used in Sec. 10 to define the
external line wave functions which enter into the ulti-
mate definition of the .S matrix. These functions serve
to generalize the asymptotic wave functions to the
case in which an arbitrary background field is present.
They satisfy a number of important relations following
from a fundamental lemma which is proved in this

DEWITT 162

section. The lemma is used again in Sec. 11 to prove
that the non-radiatively-corrected amplitudes for scat-
tering, pair production and pair annihilation by the
background field are group-invariant. ‘“Group in-
variance” here implies invariance under group trans-
formations of the background field, under gauge changes
of the propagators, and under radiation gauge changes
in the asymptotic wave functions. The amplitudes are
also shown to satisfy a set of relations which are the
relativistic generalizations of the well known optical
theorem for nonrelativistic scattering.

Construction of the full S matrix of the theory is
begun in Sec. 12. The field operators are separated into
two parts, a classical background satisfying the classical
field equations, and a quantum remainder. Vacuum
states associated with the remote past and future are
defined relative to the background field. Vacuum matrix
elements of chronological products are constructed by
varying the vacuum-to-vacuum amplitude with re-
spect to the background field. It turns out that all
physical amplitudes can be obtained in this way
despite the fact that the variations in the background
field are subject to the constraint that the classical
field equations never be violated. The well-known
difficulties arising with the use of external sources in
a non-Abelian context are thus avoided. When no in-
variance group is present the vacuum matrix elements
of chronological products are expressible in terms of
functions having the combinatorial structure of tree
diagrams. Use of these functions constitutes an essential
part of the program for constructing the S matrix as
given in this paper. Since these functions are initially
defined only in the absence of an invariance group,
however, we are at this point forced to abandon the
strict operator formalism. Section 13 displays the struc-
ture of the S matrix and its unitarity conditions when
no invariance group is present. Section 14 then begins
the long and intricate task of generalizing this struc-
ture to the case in which a group is present. Aside
from an invariance lemma which is used to suggest the
desired generalization, the important proof of this sec-
tion is the tree theorem. The tree theorem says that the
lowest-order (i.e., non-radiatively corrected) contribu-
tions to any scattering process can always be calculated
by elementary methods, using any choice of gauge for
the propagators of the internal lines and any choice of
gauge for the external-line wave functions. The result
will be independent of the gauge choices provided all
the tree diagrams contributing to the given process
are summed together.

There remains only the question of the vacuum-to-
vacuum amplitude itself. Since all radiative correc-
tions can be obtained by functionally differentiating
this amplitude with respect to the background field,
a proof of its group invariance would complete the
proof of the invariance of the entire S matrix. The real
problem, however, is to construct the amplitude, and the
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invariance criterion must therefore be used as a guide
rather than as an a posieriori consistency check.
Section 15 pauses briefly to review the question of
Lorentz invariance, to point out that the theory should
also be invariant under changes in the specific variables
with which one works, and to comment upon the utility
of using c¢-number language exclusively. Section 16
then plunges into the main problem. The single-loop
contribution to the vacuum-to-vacuum amplitude is
computed with the aid of the formal theory of con-
tinuous determinants, and various alternative forms for
it are given. There is no ambiguity about this contribu-
tion, and its group invariance is readily demonstrated.
This contribution is functionally differentiated in
Sec. 17 to yield the lowest-order contribution to
single quantum production by the background field.
The latter splits into two parts, one involving the
covariant propagator for normal quanta and the other
involving the covariant propagator for a set of fictitious
quanta which compensate the nonphysical quanta that
the first propagator also carries. The fictitious quanta
are coupled to real quanta through asymmetric vertices
which vanish when the invariance group is Abelian.
With the aid of the fundamental lemma of Sec. 10 and
a collection of new identities it is shown that the
fictitious quanta can be formally avoided by replacing
the covariant propagator by the noncovariant one
which carries physical quanta only. The covariant
propagators, however, are needed for the practical
implementation of any renormalization program.

The lowest-order radiative corrections to the
n-quantum amplitudes are analyzed in Sec. 18. These
amplitudes split automatically into Feynman baskets,
i.e., sums over tree amplitudes (lowest-order scattering
amplitudes) in which all external lines are on the mass
shell. The tree theorem then guarantees their group
invariance. This invariance can be made partially
manifest by converting from the noncovariant prop-
agator to the covariant one, and the fictitious quanta
again make their appearance.

The problem of splitting the radiative corrections
into Feynman baskets becomes more difficult in higher
orders, when overlapping loops occur. This problem
is'approached in Sec. 19 with the aid of the Feynman
functional integral. When no invariance group is present
it is shown that the “measure” or “volume element” for
the functional integration plays a fundamental role in
the decomposition into Feynman baskets and in
guaranteeing the invariance of the vacuum-to-vacuum
amplitude under arbitrary changes in the choice of
basic field variables. The “measure” has two effects.
Firstly, it removes from all closed loops the noncausal
chains of cyclically connected advanced (or retarded)
Green’s functions, thereby breaking them open and in-
suring that at least one segment of every loop is on
the mass shell. Secondly, it adds certain nonlocal cor-
rections to the operator field equations, which vanish
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in the classical limit #— 0. The question arises why
these removals and corrections are always neglected in
conventional field theory without apparent harm. It is
argued that the usual procedures of renormalization
theory automatically take care of them and that in
practice the criteria of locality and unitarity are re-
placed by analyticity statements and Cutkosky rules
(see Ref. 52). A detailed investigation of these cor-
rections when a group is present is undertaken in Sec.
20. The two-loop Feynman-basket decomposition of
the preceding section is appropriately generalized and the
result is reexpressed in terms of covariant propagators,
including the fictitious quanta. It turns out that the total
two-loop amplitude is obtainable from a set of covariant
primary diagrams (containing Feynman propagators
only, and hence off-mass-shell contributions in all
lines) by a process of removing noncausal chains and
adding nonlocal corrections, which is completely
analogous to that of the no-group case. Moreover, the
primary diagrams, taken together, are group-invariant
as they stand, independently of the tree theorem. This
suggests that even when a group is present the non-
causal chains and nonlocal corrections may be neglected
as in conventional field theory. The problem therefore
becomes one of finding a general algorithm for obtain-
ing the primary diagrams of arbitrarily high order, in-
cluding all fictitious quantum loops. The remainder of
Sec. 20 is devoted to the construction of such an algo-
rithm. The generator for the algorithm is a Feynman
functional integral for the vacuum-to-vacuum ampli-
tude, which includes fields representing the fictitious
quanta. The group invariance of this integral is explicitly
demonstrated, and the fictitious quanta are shown
formally to obey Fermi statistics despite their integral
spin. No physical criteria are violated, however, since
the fictitious quanta never occur outside of closed loops.
Finally, the rules for inserting external lines into the
primary vacuum diagrams are given, and the asym-
metric vertices contained in the fictitious quantum
loops are shown to have a uniform orientation around
each loop.

2. NOTATION. INFINITESIMAL DISTURBANCES.
BARE VERTEX FUNCTIONS

A quantum field theory begins with the selection of
an action functional S. If the theory is local this func-
tional is expressible in the form

S= / Ldr, dr=dx’dx'dx?dx?, (2.1)

where £—the Lagrangian (density)—is a function of
the dynamical variables and a finite number of their
space-time derivatives at a single point. Various criteria
such as covariance, self-consistency of the field equa-
tions, the existence of the vacuum as a state of lowest
energy, and positive definiteness of the quantum-
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mechanical Hilbert space in practice drastically limit
the possible choices for £. However, many different
choices exist for the Lagrangian of a given field. Thus
it is always possible to add a trivial divergence to the
Lagrangian without changing the field equations at all.
Moreover, the field variables may be replaced by
arbitrary functions of themselves; this replaces the field
equations by linear combinations of themselves. Finally,
even the number of field variables is not unique; for
example, alternative Lagrangians may be found leading
to field equations which express some of the variables in
terms of derivatives of others. What is important is that
the choice of Lagrangian is basically irrelevant to the
development of the theory of a given field and should
be determined only by convenience. The quantum
theory of a given field must be constructed in such a
way that it is invariant under changes in the mode of
description of the field.

It will prove convenient in what follows to adopt a
highly condensed notation. The field variables (assumed
here to be real) will be denoted by ¢%7 and commas
followed by indices from the middle of the Greek
alphabet will be used to denote differentiation with re-
spect to the space-time coordinates. The first part of
the Greek alphabet will be reserved for group indices,
to be introduced presently. Primes will be used to
distinguish different points of space-time; they will also
appear on associated indices, or on field symbols them-
selves, when it is desired to avoid cumbersome explicit
appearances of the 2’s. In most cases, however, the
primes will be simply omitted. This corresponds to
making the indices 1, 7, etc. do double duty as discrete
labels for field components and as continuous labels over
the points of space-time. That is, an index such as ¢ will
really stand for the quintuple (i, % 2, 4%, «%) and the
summation convention for repeated indices will be
extended to include integrations over the «’s. The
significance of the indices thus becomes almost purely
combinatorial. When this notation is employed it is
necessary to remember that expressions such as M; are
really elements of continuous matrices and that the
symbol &% involves a 4-dimensional § function.

For most purposes the form of the field equations is
more important than the value of the action functional.
Therefore, the domain of integration in (2.1) is un-
important; when otherwise unspecified it is to be under-
stood as being large enough to embrace all points at
which it may be desired to perform functional dif-
ferentiations. Functional differentiation with respect to
the field variables will be denoted by a comma followed
by one or more Latin indices. Thus the field equations
will be expressed in the symbolic form

S,=0. 2.2)

7 In this paper no restriction is imposed on the range of Latin
indices. Other conventions, to the extent they overlap, are the
same as in L.

BRYCE S.

DEWITT 162

Suppose the form of the action functional suffers the
following change:

S— S+ed, (2.3)

where e is an infinitesimal constant. Such a change may
be thought of as being brought about by weak coupling
to some external agent. The coupling produces an in-
finitesimal disturbance 8¢ in the field, which satisfies
the linear inhomogeneous equation

S,i0p7=—¢ed ;. (24)
That is, ¢*+06¢° satisfies the field equations of the
system S-ed if ¢* satisfies those of the system .S. The
undisturbed field ¢* may be regarded as a background
field upon which the disturbance §¢’ propagates. The
concept of the background field proves to be a useful
one in the covariant theory, and will occur repeatedly
in what follows.

For local theories the quantity .S ;; has the form of a
linear combination of § functions and derivatives of &
functions, with functions of the field variables and their
derivatives as coefficients. In Eq. (2.4) S,;; therefore
plays the role of a linear differential operator with
variable coefficients. The reader will find it useful to
consult Table I, which lists the explicit forms which this
and various other abstract symbols of the general
formalism take in the cases of the Yang-Mills field and
the gravitational field, respectively.

In the case of linear theories .S,;; corresponds to a
linear differential operator with constant coefficients,
and the higher functional derivatives .S, i, etc., vanish.
In nonlinear theories the higher functional derivatives
are known as bare verlex functions. They describe the
basic interactions between finite disturbances, the prop-
agation of which, as will be seen later, provides a direct
classical model for the quantum S matrix.

It is frequently convenient to introduce a further con-
densation of notation, namely to make the replacement

(2.5)

S,il---i”—é S»

and to drop the indices altogether. Equations (2.2)
and (2.4) are then replaced by

S1=0 . (2.6)

and

Sedp=—ed1, 2.7

respectively. If the basic field variables are properly
chosen the number of nonvanishing bare vertex func-
tions is finite in the case of both the Yang-Mills and
gravitational fields. Thus, for the Yang-Mills field we
have S,=0 for #>4 when the field variables are chosen
as in Table I, while for the gravitational field we have
S,=0 for #>9 if the quantities @#w=gt/18gw—n» are
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TaBiE I. Expressions for the Yang-Mills and gravitational fields corresponding to quantities appearing in the abstract formalism.

Abstract
symbol or
equation Corresponding expression for the Yang-Mills field Corresponding expression for the gravitational field
¢ A% n=0,123;a=1---n Pw=guw—nw; Ky =0,1,23; op= oy
S S=—1 / FowFerdz, S= [ gM2 DRz,
Fep=A4%,— A%+, AB,AM,. g=—det(gw), “WR=R. Ru=Rou°,
. . . Rpw —Pva B F‘w ,D+on'prupr"‘ruo'prupf,
The indices p, v are raised and lowered by means of the Lue= fg“"(gm v 8, u— guv, 7
Minkowski metric n,=diag(—1,1,1,1) and its inverse The indices g, », p, o, 7 are raised and lowered by means
7. The indices «, B, v are raised and lowered by means of the metric tensor g,, and its inverse g#.
of the Cartan metric, In the remaining entries of this table the symbol R is
Yap=—C" 20705008y replaced simply by R.
and its inverse y*8. The ¢’s are the structure constants
of a compact #-dimensional semi-simple Lie group, and
the constant ¢2 is chosen so that det(yag)=1.
0=S; 0=58S/8A4%,=—F ;. 0=55/8 o= —g'*(R»—%g"R).
8% 8%, =06%0,78 (x,x) 8,7 " =3(8,26,7+5,8,7) 8 (x,x").
S, 825 /64 SAP i =8abp" 10" —8a"p”" FatCour F1Hs8 75 825 /8 Qud porrr = _guz(g"mg")"l'g")‘g”_g‘wg”)‘)g“
X n)\”yl ur+5u(’ n)\_spg A '—6)\:(0,1-’;;7;)
___glIQ(Ruv_l “"R)(S po'r!
+gl/2(Rpp5pmt‘r’+Rvﬂ5pur’r’_%R5uvv’r'
_%gan)\ap)\v’r’)
3¢ The infinitesimal group parameters are functions 8£(x) The infinitesimal group parameters are the functions
which assign to each point « a corresponding 5¢#(x) appearing in the infinitesimal coordinate
infinitesimal transformation of the generating Lie transformation &#=x#-+5¢*. Under inner automorphisms
group. Under inner automorphisms they transform they transform as contravariant vectors. Note that
according to the adjoint representation of the full group. group and coordinate indices coincide in the case of the
general coordinate transformation group.
Riq Reygr=—8%:,, 8% =08%0(x,x") Ryvor=—8usri—80ripy Ouor=guod(2,%")
8¢t =Ri 0> . 6A"‘,,.= —éﬁa:u=‘_5£a.At‘—cavﬂAyu&gp Oow= —=8&uy—8E = —-gy,,",ﬁg’—'-g,.,ﬁﬁ",r—gwﬁé”,,
Semicolons denote invariant differentiation. A field Semicolons denote covariant differentiation. A field
quantity ¢ which has the group transformation law quantity ¢ which has the group transformation law
5¢’=Gatp§£“, . o= — Btr+G bkt , = _¢:u8£“+G:’u‘P6$“:v
where the G, are the generators of a matrix representa- where the G*, are the generators of a matrix representa-
tion of the generating Lie group, is defined to have the tion of the linear group, is defined to have the covariant
invariant derivative derivative
) . Pu=e, wt+Ged % . . =0, ,+G"%T .
Invariant differentiation leaves transformation properties =~ Covariant dlfferentxatlon adds one covariant index. It
intact. It has the commutation law has the commutation law
P ™ Pvp™= "'GaFaw‘P- P ™ Pvp= —G'rRuvv1¢-
S,:Ri.=0 Few, =0 —2[g'2(R»—%g»R)].,=0.
This identity is a consequence of the antisymmetry of This identity results from contracting the Bianchi
F2,, and of the structure constants ¢.g. F%,, transforms identity
according to the adjoint representation of the group and o Rype it Rpus” p=0
also satisfies the cyclic identity which can be verlﬁed by stralghtforward computation
Feyyiot-Foyeut Fooy=0. using the fact that the Riemann tensor R,,," trans-
forms as a mixed tensor of the fourth rank.
Rig; 5Rauﬂ’/5A Y= C%y8,78 (x,x')a(x,x”) =0%8%0 ¢y’ ORyyor [8pprrrr=—08,"""" 28 e — 81" 8 e T Gl L
%y COpryrr =% (2,67) 8 (x,5"") CHyrgrr =18, o (2,%")8 (2,8"") — 5448, , (2,%"") 3 (%,2)
=y ;707 grr — g1 707y
Yij ’Ya“ﬁ'y’E —Ba“ﬁ'"' ,ypva’r'E __._%glm(&uvv"r’_%guvappd"r’)
Faﬁ Faﬁ'EanB’;aq Fuy'Egl(2(5yv';a'+Ruv6w‘)
Yap Yap=—8ap V= —gH% s
,y—laﬂ ,‘;'ll!ﬂ'__—: — 5B’ .?—luv’:__— ._5uv'g’—ll2
Fij Fa“ﬂ’ylEam“ﬂ’y,;¢v+2CGQ7F7"V6¢,B'V' Fuwe't' = %g"“(g“"g""+g“"g""——g‘"’g"")

X (au)\o'r'Mx._.szmﬁua'r‘ ._.Rp)\sxxv"r'
+2Rpx§x>\a'r’ _gp)‘Rma l.xv"r’_R(;p)‘v’r’
+3gR8,")

The last five terms inside the parentheses may be omitted

when the field equations are satisfied.
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chosen as the basic field variables.® With the conven-
tional choice of Table I the number of nonvanishing
gravitational vertex functions is infinite.

For a local theory a typical term in S, involves the
product of z—1 é functions or derivatives of § functions.
In momentum space with a constant (e.g., flat) back-
ground field these reduce to a single § function, which
expresses the conservation of momentum of the # field
quanta taking part in the elementary process described
by the vertex in question. The calculation of specific
processes is usually most conveniently performed in mo-
mentum space; the development of the general theory,
however—in particular, the demonstration of the
covariance of renormalization procedures—is best done
in coordinate space.

Because of the commutativity of functional differen-
tiation the bare vertex functions S ;... are completely
symmetric in their indices, and .S,; corresponds to a
self-adjoint linear operator. When employing the nota-
tion (2.5) we may regard the symbol S, as actually
representing this operator. Note: The abstract notation
must be used with a measure of caution because the
associative law of matrix multiplication does not always
hold. If ¢ and ¥? are two functions which do not vanish
rapidly at infinity, the value of the expression %S ;;¥?
may depend on which implicit integration is performed
first. This ambiguity may be removed_»by using arrows
to distinguish the two possibilities: ®~So¥ and ®7S,¥.°

The present discussion will be limited to boson fields.
For the extension of the formalism to the case of
fermion fields, which involves anticommutative dif-
ferentiation and antisymmetric vertex functions, the
reader may consult the reference given in Ref. 6.
This reference contains detailed proofs of some of the
important theorems to be stated in what follows. We
shall therefore restrict ourselves here to sketch-proofs
or simple statements of these theorems but will take the
occasion to improve their presentation.

3. THE QUANTIZED LIGHT CONE AND THE
DEFINITION OF TIME. GREEN’S THEOREM

In a standard hyperbolic wave theory the operator
S. defines a class of characteristic hypersurfaces which
separate spacelike from timelike directions. To this
operator therefore falls the task of providing the
definition of time. Since S; generally depends on the
background field it is evident that the background field
may play a role in this definition. For most field theories,

8 An alternative choice of basic variables is g75/22g,, —1,,, which
yields S, =0 for »>11. Neither choice, however, can in general
avoid an infinity of nonvanishing bare vertex functions if other
fields, necessarily coupled to the gravitational field, are present.
Peres has proposed to treat the latter case by a method which
makes use of an additional constraint. [See A. Peres, Nuovo
Cimento 28, 865 (1963).] It should be remarked, however, that
the presence of an infinity of bare vertices does not pose an
essential difficulty for the theory, as we shall see.

9 The symbol ~ denotes transposition,
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the characteristic surfaces are in fact unaffected by the
fields themselves; only in the case of general relativity
does the background field exert an influence.

In the quantum theory S, is not only a differential
operator but also a quantum-mechanical operator. In
gravity theory the position of the light cone thus be-
comes a g number. Critics of the program to quantize
gravity frequency ask “What can this mean?” A good
answer to this question does not yet exist. However,
there are some indications where the answer may lie.
We have seen in I that the canonical formalism can be
developed to a considerable degree without the question
arising. This is particularly true when the discussion is
carried out in the “metric representation,” in which
the metric appears as a ¢ number. It is also true in
Leutwyler’s analysis’® of transition amplitudes as
Feynman sums over classical histories. Where do these
analyses break down, or rather, where must they be
supplemented by more sophisticated reasoning? They
must be modified at precisely the point at which it be-
comes necessary to account for radiative corrections
and field renormalization.

In the covariant theory we shall not make use of a ¢
number Sp. Our approach will be that of perturbation
theory, with all its limitations. We thereby gain, how-
ever, the possibility of working exclusively with ¢ num-
bers. The background field will play two roles simul-
taneously. Firstly it will serve as a classical reference
point about which the quantum fluctuations may be
assumed to take place. Secondly it will serve as a useful
technical instrument. By varying the background field
we can reproduce the effect which individual field
quanta have on a variety of fundamental processes,
including the laws of propagation (i.e., on the light cone).
By allowing these effects to superpose nonlinearly we
achieve the full S-matrix expansion, including all radia-
tive corrections.!! The only limitation is that we never
consider more than a finite number of quanta at once.
The total perturbation series is never summed, and
thus we never determine the answer to Pauli’s specu-
lation!? that quantization of gravity may yield an
intrinsic cutoff by “smearing out” the light cone, which
would at the same time be the definitive answer to the
question of the meaning of a ¢ number S,.

A clue to the eventual answer may perhaps be found
in the fact that quantum gravidynamics is not, by
standard criteria, a renormalizable theory. It is not
difficult to see that the strongest divergences (which,
from a perturbation point of view, are responsible for
the nonrenormalizability) are precisely those which
arise from the fluctuations of the light cone. It may be
hoped that these divergences will some day prove to be
summable to a finite correction embodying Pauli’s

10 H. Leutwyler, Phys. Rev. 134, B1155 (1964).

11 Hence the present formalism takes into account all nonlinear
effects, classical as well as quantum, and is not merely the theory
of a linearized field on an arbitrary background.

2 W, Pauli, Helv. Phys. Acta Suppl. 4, 69 (1956).
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cutoff. Present evidence on this matter, as well as the
significance of the Planck length, will be discussed
briefly in the final paper of this series.

We assume, then, that S, defines two classes of time-
like directions, one of which will be arbitrarily called
the past and the other the future. We assume furthermore
that the classical background possesses no geometrical
singularities and that both time and space are infinite
in extent. The work of Brill'® gives us confidence that
nontrivial backgrounds (i.e., other than flat space-time)
having these properties exist. We note that such back-
grounds are absolutely classical, not only from a mathe-
matical but also from a physical point of view. A space
of infinite volume has the capacity for an infinite
amount of action' and hence can serve as the classical
bedrock for setting boundary conditions. At the same
time we note that the real world, even if it is finite, is so
huge that it is effectively classical. For example, by re-
nouncing only slightly the infinite precision usually
ascribed to the energy and momentum labels of S-matrix
elements, and by using the terms remofe past and remote
future in a relative sense, we can have an effective
S-matrix theory which is extremely precise, based on a
background which becomes asymptotically flat at the
boundaries of a finite but large region.

The remote past and remote future will be denoted
by — and «, respectively. If the space-time point
which is associated with an index 7 lies to the future of
a spacelike hypersurface £ we shall write ¢ > 2. If
it lies to the past of = we write = > 1. If, relative to two
points associated with indices ¢ and 7, respectively, a
space-like hypersurface can be found such that > 2
and 2 > j then we write 7 > j. It is possible to have
both 7 > j and 7 > 7 simultaneously. In this case the
associated points are separated by a spacelike interval.
Evidently > ¢> —o and 0> 2 > — for all ¢
and 2.

Consider now the following expression:

/ (®%S,i5 07 — 7S i ¥P)dy’

in which, owing to the &-function character of .S .,
only those points «" in the immediate neighborhood of
make any contribution to the integral. By symmetry
the integral of this expression over all x vanishes, pro-
vided the functions ®¢ and ¥* vanish sufficiently rapidly
at infinity so that the integral exists. Since S, is a
differential operator this implies that the expression
itself must be expressible as a divergence, of the form

/(@is,,'j/‘l/j’ - EI>J"S'J., ,'\I’i)dx’

= / dx’ / da’! (D545 ")y, (3.1)

B D, Brill, Ann. Phys. (N. Y.) 7, 466 (1959); State University
of Towa Report No. SUI 61-4, 1961 (unpublished).
14Tt is for this reason that it is impossible to quantize a Fried-
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where s#;;» is a certain homogeneous quadratic com-
bination of delta functions and their derivatives. It is
not hard to show that the self-adjointness of S, implies

3.2)

s“;"j’/—=— —s“j”i’ .

More generally we have

/(q}iFﬁ-,\Ilf'— <I>"’F,-».-\Il‘)dx’

= / da’ / ! (B friryr¥7) o (3.3)

for any differential operator F;; regardless of whether
it is self-adjoint or not, and for any pair of functions
®i Wi regardless of their behavior at infinity. The
differential operator f#;;, however, has the symmetry
(3.2) only in the self-adjoint case.

If 2 is the boundary of a finite domain Q then (3.3)
implies

/ dx/dx’((I)"F,r,v\Ilj'—@f'Fj»,-\Ili)
Q

=/ dz“/ dx'f 05D fo V03, , (3.4)
z

where dZ, is the directed surface element of Z. If &*
and ¥¢ vanish sufficiently rapidly at spatial infinity we
obtain, on letting @ expand without limit,

<1>~F\11—<1>"F\11=( f - [ )«r‘fu\pdz,‘. (3.5)

Here the condensed notation has been employed, and
the double arrow <> has been placed above f* to em-
phasize that as a differential operator it has components
which act to the right as well as components which
act to the left. In a similar manner we write

@“32\1'—<1>~‘S"2\11=( / — f )cb*?iwz,‘.

4. THE INVARIANCE GROUP, PHYSICAL
OBSERVABLES, AND MANIFEST
COVARIANCE

(3.6)

The invariance groups of both the Yang-Mills and
gravitational fields are infinite dimensional and non-
Abelian. In the abstract notation the change produced
in the field by an infinitesimal group transformation
will be expressed in the form

Soi=Ri8¢* or, more simply, do=Ré¢. (4.1)

mann universe of negative curvature for which no periodic
identification of points is assumed and which is therefore “open”
(i.e., infinite).
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Here the £~ are the infinitesimal group parameters and
the R, are certain linear combinations of the é function
and its derivatives, with coefficients depending on the
¢’s (see Table I). As functions of the x’s the &~ are
assumed to be differentiable and to vanish outside a
finite domain of space-time but to be otherwise arbitrary.
The group property is expressed in the form of a func-
tional differential condition on the R?,:

Riq,iRig— R ;RIa=RiyC7ag,

where the ¢7q5 are the structure constants of the group,
which in turn satisfy

(4.2)

P ael®ayt et yatcyetas=0. (4.3)

A functional 4 of the ¢’s is regarded as a physical
observable if it is a group invariant. The condition for
this is

A Ri=0. (44)
The action functional in particular is a group invariant:
S,iR%=0. (4.5)

By functionally differentiating the latter identity we
learn that under a group transformation the field equa-
tions are replaced by linear combinations of themselves:

BS,iES,ijB(ijS_injaasaE—S,,'Rja‘iaga, (46)

and hence that solutions go into solutions. We also
learn that S, is a singular operator, at least when the
field equations are satisfied, for it then possesses the
R:, as zero-eigenvalue eigenvectors of compact support;

SsR=0. (4.7)

With the conventional choice of field variables given
in Table I the dependence of the R?, on the ¢’s is linear
inhomogeneous, so that R? ; vanishes. This has im-
portant consequences for the manifest covariance of
the formalism. For example, by repeatedly differentiat-
ing (4.5) we find for the transformation law of the nth
vertex function

5S.i1'--in= - (S,jiz"'inRja.i1+ e
+S,i1...,'n_1jRja,in)6$“ .
Similatly, from (4.2) we find
0R? = (R?%,;R7— R’,c754)0£5. (4.9)

These simple linear laws permit the transformation
character of many quantities appearing in the formalism
to be inferred at once from the positions of the field and
group indices attached to them. In general, when in-
troducing new quantities, we shall be careful to insure
that they obey the following transformation laws, of
which (4.8) and (4.9) are special cases: A quantity
bearing several indices will transform according to the
direct product of a corresponding number of (con-
tinuous) matrix representations of the group. A field
index in the upper position will correspond to the

(4.8)
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representation generated by the matrices R, ;, while
a field index in the lower position will correspond to the
contragredient representation. Similarly a group index
in the upper position will correspond to the adjoint
representation of the group, while one in the lower posi-
tion will correspond to the contragredient representa-
tion. The adjoint representation of the Yang-Mills
group is the infinite direct sum of the adjoint representa-
tion of the generating Lie group taken repeatedly over
the points of space-time; the adjoint representation of
the coordinate transformation group of general relativity
is that of a contravariant vector field.

Both the R?, ; and the structure constants ¢?qs are
homogeneous quadratic combinations of the § function
and its derivatives, independent of the ¢’s. In the
theory of radiative corrections we encounter the ex-
pressions Ri,; and cf,s which are mathematically
meaningless, involving the § function and its deriva-
tives at x’=x. We shall find it necessary to assign
vanishing values to these expressions in order to main-
tain internal consistency of the theory;

Ry i=0, cPoup=0. (4.10)

The reasonableness of these assignments may be
made apparent by noting the transformation laws of
the quantities in question. Both transform contragredi-
ently to the adjoint representation of the group. In the
case of general relativity they are therefore covariant
vector densities of unit weight!® and may be presumed
to vanish by virtue of the fact that space-time has no
metric-independent preferred directions. In the case of
the Yang-Mills group they may be presumed to vanish
by virtue of the fact that the corresponding quantities
vanish for the generating Lie group which, for physical
reasons is necessarily compact.

5. BOUNDARY CONDITIONS, SUPPLEMENTARY
CONDITIONS, AND GREEN’S FUNCTIONS

Suppose the infinitesimal change (2.3) in the action
functional corresponds to alterations in the structure
of the physical system which are limited to a finite
region of space-time. The functional 4 will then be
constructed out of field variables evaluated at points
within this region, and its functional derivative 4 ; will
vanish at points outside. Under these circumstances we
may distinguish two particular solutions of Eq. (2.4)
which are of special importance, the reterded and
advanced, denoted by 84~ ¢° and d4t¢? respectively,
characterized by the boundary conditions

lim 8,4%¢i=0. 5.1)

t>400
Because of the singularity of the operator .S, the

15 The & functions in Table I are to be regarded as densities of
zero weight at their first argument and unit weight at their
second.
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conditions (5.1) do not determine the §4%¢* completely,
but only modulo transformations of the form

04t i=04F "+ RisbE. (5.2)

Since such transformations can be additively super-
imposed, they constitute an Abelian “gauge” group for
infinitesimal disturbances. Unlike the situation which
holds for the familiar gauge group of electrodynamics,
the scale of these transformations varies from point to
point owing to the dependence of R?, on the background
field. This fact is responsible for all of the formal com-
plications which arise in the quantum theory of non-
Abelian gauge fields.

Although Egs. (5.1) do not suffice to determine the
84%¢* completely they provide unique physical bound-
ary conditions. Because of the invariance condition
BRi,=0 the disturbance produced in any physical
observable B is unaffected by the transformation (5.2):

84*B'=B 34 ¢"i=B S, oi=8,%B.  (5.3)

Nevertheless, in practice it is a convenience to restrict
the 64%¢® by adding further conditions known as
supplementary conditions.

As the standard form for supplementary conditions
we shall choose

Riabatei=0,

Rie= ’Yinja ,

(5.4)
(5.5)

wherey;; is a matrix which may be used to lower field
indices!® and which is arbitrary except for a single
essential requirement, namely that it be such that the
operator corresponding to the matrix

A

FaﬁERiaRiﬂ (56)

shall be nonsingular and have unique advanced and
retarded Green’s functions G**f satisfying

FGxve=—5,8,

lim G*ef= lim G*«B=(,

a—>Z40 B—>=xc0

(5.7)
(5.8)

If the supplementary conditions (5.4) are not initially
satisfied they may be made to hold by carrying out a
transformation of the form (5.2), with

dga=G*bR 58 4% 0" (5.9)

and the §4%¢? thus restricted will generally be unique.

Although the arbitrariness of v, in the general
formalism must be stressed, it is nevertheless a great
convenience in practice to impose the following three
additional conditions: (1) that v,; shall be symmetric in
its indices; (2) that it shall have the group transforma-
tion law suggested by the position of its indices; and (3)
that it shall be such as to make F,g correspond to a local

16 If i; has a unique inverse this inverse may be used to raise
field indices, but this is not -essential.

QUANTUM THEORY OF GRAVITY. II

1205

(i.e., differential) operator. Condition (1) insures that #
will be self-adjoint. Condition (2) maintains the manifest
covariance of the formalism by insuring that F,s will
transform according to the law suggested by the position
of its indices. Condition (3) enables (5.8) to be replaced
by the stricter relations

Gta8=0 for a>pB, G-¥=0 for B >a. (5.10)

In addition to the matrix v;; we shall also introduce a
matrix j.g for the purpose of lowering group indices.
Like v;; it may be chosen in a completely arbitrary way
except for a single essential requirement. The require-
ment in this case is that ¥.g shall be nonsingular and
possess a unique inverse 7%, which may be used to
raise group indices.!? It is then not difficult to show that
the matrix

Fii=S8 i+ Ria¥ 1*PRjg (5.11)

is nonsingular, provided (as is true in the cases of
interest) the R?, constitute a complete set of zero-
eigenvalue eigenvectors of S,;; having compact support.

Although the arbitrariness of .5, like that of v,
must be stressed in the general formalism, it is again a
practical convenience (and for the same reasons) to im-
pose three additional conditions, similar to those im-
posed on v;;: (1) that §.s shall be symmetric in its
indices; (2) that it shall have the group-transformation
law suggested by the position of its indices; (3) that it
shall be such as to make F;; correspond to a local
(differential) operator.

In the case of the Yang-Mills and gravitational fields
it turns out that if all of the above conditions are
satisfied then only one additional requirement, namely
that the Green’s functions of # and F shall have the
weakest possible singularities on the light cone, leads
to choices for v;; and .5 which are unique up to a con-
stant factor. These are the choices shown in Table I.
They are the generalizations, to the case of arbitrary
background fields, of the well-known Lorentz and
DeDonder conditions of the corresponding linearized
theories. Any other choices lead to more singular Green’s
functions.

We note that the supplementary conditions are here
imposed on the infinitesimal disturbances rather than
on the fields themselves. The differences between this
approach and that of more familiar formulations of
gauge theory will become apparent as the discussion
progresses.

When the supplementary conditions (5.4) are satis-
fied, Eq. (2.4) may be replaced by

Fijdpi=—¢ed ;, (5.12)
which has the unique advanced and retarded solutions

datoi=eGT4 ;, (5.13)

17 The Cartan metric vas=—c46%sy cannot be defined for an
infinite dimensional group, and hence cannot be employed here.
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the G*% being the Green’s functions of F, satisfying

F.'kGikj= bl 5.'j (514)
and [in virtue of condition (3) above]
G+i=0 for i>j, G =0 for j>i. (5.15)

6. CAUCHY DATA AND RECIPROCITY RELA-
TIONS. THE POISSON BRACKET

Instead of studying disturbances which are produced
by physical alterations in the system it is frequently of
interest to consider disturbances which originate at
infinity and which satisfy the homogeneous equation

Sadp=0. 6.1)

(We here employ the supercondensed notation.) If the
supplementary condition

R™y6p=0 6.2)
is imposed [ cf. (5.4)] then these disturbances also satisfy
Fép=0, F=SytyRy~'Ry, 6.3)

and the value of 8¢ is determined throughout space-
time if it and its derivatives are known over any space-
like hypersurface 2. With the aid of Eq. (3.5) it is not
difficult to derive the following integral realization of
these facts:

do= / GPuspdZ,, (6.4)
2

where

G=G+—G~ 6.5)

One has only to make use of the kinematics of the G*
and to assume that they are left inverses of —F8:

GtF=—1, GF=0. (6.6)
Erom (6.3) and the arbitrariness of the Cauchy data
f*8¢ it then follows that they are right inverses as well:
FG==—1, FG=0. 6.7)

Equations (6.4) to (6.7) hold regardless of the sym-
metry of F. If its self-adjointness is taken into account,
the following additional laws are obtained:

G+ =G-, (6.8)
G =-G. (6.9)

Combining these laws with Egs. (5.3) and (5.13), one
obtains the important reciprocity relations

04EB=¢€B:"G*A1=€41"G™B,= 0574, (610)
which may be loosely expressed in the words, the

18 Kronecker &’s and 8 functions are replaced by the unit symbol
1 in the supercondensed notation.
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retarded effect of A on B equals the advanced effect of B
on A, and vice versa. Although the use of (6.8), which
holds when v and ¥ are symmetric, is the easiest way to
prove these relations, it is to be emphasized that since
they involve physical observables (invariants) only,
these relations are independent of such conditions. In
particular it can be shown explicitly that §,%B and
8ptA remain invariant under arbitrary changes in the
~’s, including changes which destroy the symmetry and
group-transformation properties of the 4’s.

Another important relation which can be obtained
is the following:

RG+5=G*yR, (6.11)

which is proved by making use of (4.7), (5.6), (5.11), and
the kinematic structure of the Green’s functions. Since
(4.7) generally holds only when the background field
satisfies the field equations, it is important to remember
that Eq. (6.11) holds only in this case. The transpose
of Eq. (6.11) may be used in a straightforward way in
combination with (4.4) to show that the solutions (5.13)
of the equation for infinitesimal disturbances are con-
sistent with the supplementary conditions which were
used to get them in the first place. Equation (6.11) also
finds repeated use in the theory of radiative corrections.

The above results provide the starting point for a
covariant theory of the Poisson bracket. In the canonical
theory equal-time Poisson brackets are defined for
arbitrary functions of the g,, and their conjugate mo-
menta, and the physical Hilbert space of the quantum
theory is determined by constraints imposed on the
state vectors. In the manifestly covariant theory
Poisson brackets are defined only for observables, and
hence it is possible in principle to work within the
physical Hilbert space from the very beginning.'® More-
over, the covariant theory makes no distinction between
equal-time Poisson brackets and others.

The definition, which is due to Peierls,? is

(A,B)EDAB'—DBA, (612)
where
D;B=lim ¢%,°B. (6.13)

With the aid of (6.5) and (6.10) this may be converted to
(4,B)=A,"GB.. (6.14)

Peierls’ definition makes immediately manifest the
fundamental role played by the Poisson bracket in the
theory of mutual disturbances in measurement pro-
cesses, and provides the most natural bridge to the
quantum commutator and the uncertainty principle.
In its quantum form,

[AB]=i(DsB—DsA)=iA,"GB;,  (6.15)

9 Since a complete operator formalism does not yet exist for
the covariant theory this idea will not be fully developed here.
2 R. E. Peierls, Proc. Roy. Soc.: (London) A214, 143 (1952).
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it allows one to derive in a straightforward manner the
variational formula

5(A’|B')=3i(A’|5S|B’), (6.16)

which, in Schwinger’s hands, has been used to derive all
of quantum electrodynamics. Here, and in the future,
we use boldface to distinguish quantum operators from
the corresponding functionals of the classical back-
ground field. In Eq. (6.16), |A’) and |B’) are eigen-
vectors of A and B, respectively; the field variables out
of which A is constructed are assumed to be taken at
points all of which lie to the future of the points at
which the variables making up B are taken; and 3S,
which represents a change in the functional form of the
action, is assumed to be constructed from field variables
taken at intermediate points.

We shall make no use of Eq. (6.16) in this paper,
firstly because in the absence of a complete operator
theory we cannot be sure how to order the factors
occurring in A, B, etc., and secondly because it is
necessary in a generally covariant theory, to handle the
problem of the relative temporal location of the opera-
tors A, B, and §S in a completely intrinsic way. Instead
of attempting to alter the form of the action functional
we shall develop alternative techniques based on varia-
tions of the background field.

It is worthy of note that the Poisson bracket is deter-
mined solely by the behavior of infinitesimal disturb-
ances. Since the commutators of the quantum theory
completely determine the physical Hilbert space, this
suggests that the quantum theory is obtained merely
by appending a theory of infinitesimal disturbances to
the classical theory. Such a view is defective in that it
ignores (a) the factor ordering problems arising in the
definition of the quantum operators (which like their
classical counterparts are involved in nonlinear field
equations) and (b) the existence, in the quantum
theory, of nonclassical phase effects which manifest
themselves in virtual processes and radiative correc-
tions. Nevertheless, if the word “infinitesimal” is
modified to “finite but small” we shall see that this view
accords quite well with the perturbation theoretic ap-
proach to quantum field theory. Moreover, because of
the uniqueness of the formalism which emerges, it will
appear that the exact theory is already completely
determined by the behavior of infinitesimal disturbances.

Peierls’ Poisson bracket satisfies all of the usual
identities. The only one which is not immediately
evident is the Poisson-Jacobi identity. For any three
observables 4, B, C, we have

4,(B,C)+(B,(C,4))+(C,(4,B)) :
=4 ,:GHBG*C x) i+ B ,GHCAGHA 3)
+C,kGH(A ,,‘GijB'j) N
=A,uB ,;C 1(GiGF+GG*)+ A ;B ;71C x
X (ijG'il_i_@leij)_l_ A,:B,Cr l(@ki@'l_l,Gitéjk)
44 B C (G G* +-GIGH -GG ). 6.17)
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The first three terms of the expanded form vanish on
account of (6.9) and the commutativity of functional
differentiation. In order to show that the fourth term
likewise vanishes an expression for the functional
derivative of G must be obtained.

The desired expression is a special case of a general
relation obtained by varying Eq. (5.14). Under an
arbitrary infinitesimal variation 8F in the operator F
the G* suffer variations satisfying

FéG*=—08FG*, (6.18)

which, taking into account kinematics, has the solution?!
0GE=G*OFG*. (6.19)
Therefore,

GEii ;= GEiaF ,, GEb7
= G:Ha(S.ubc+Raa.oRbu+RuaRba,c)Gﬂ:bj
=GE0S 4 GEVIf-Gie Raa,GEBRIg
+RigGHP Ry, GEY | (6.20)

in which (5.11) and (6.11) have been used.

Breaking G up into its advanced and retarded parts
and inserting (6.20) into (6.17), we see that in virtue
of the group invariance of 4, B, and C, only the terms
involving the third functional derivative of the action
survive. These terms, however, cancel among them-
selves, as may be seen by writing them out in the form

A , iB '].C JI: (G+ ta__ G—ia,) (G+be—Icc__ G—be+ kc)
+ (G—i—jb__ G——jb) (G+ ka—ia.__ G—kcG+ia)
+ (G+kc_ G—kc) (G-H'aG—jb__ G——iaG+jb)]S, abey

in which use has been made of (6.8).

We finally remark that Peierls’ Poisson bracket, being
defined for pairs of invariants, is itself a group invariant.
More precisely, it remains unchanged not only when a
group transformation is performed on the background
field but also when a transformation of the form (5.2) is
performed on the infinitesimal disturbances, cor-
responding to an arbitrary change in the 4’s and
hence in the supplementary conditions. The demon-
stration is straightforward and will be left to the reader.

(6.21)

7. CONDITIONAL INVARIANTS AND
ASYMPTOTIC FIELDS

The functional 4 appearing in (2.3) must be a group
invariant. Otherwise the equation (2.4) for infinitesimal
disturbances will not be consistent with the singularity
condition (4.7). The invariance condition (4.4), how-
ever, need not hold as an-identity but may hold in
consequence of the field equations. That is, (4.4) may
be replaced by an identity of the form

A Ri=S :a. (7.1)

2t Kinematics assure the associatiativity of the matrix product
in (6.19).
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When the o’s are nonvanishing 4 will be called a
conditional invariant.

Poisson brackets are as unique and well-defined for
conditional invarjants as they are for exact invariants.
Therefore any invariant, whether conditional or exact,
is an observable. The chief tool for proving these state-
ments is the lemma

S:G=—yR(G*—G)R", (1.2)
which is a corollary of (6.6), (6.7), and (6.11). With its
aid it is straightforward to show that the Poisson
bracket of two conditional invariants is itself a condi-
tional invariant and that transformations of the form
A — A4S,;0*, B— B+S ;b leave the Poisson bracket
unaffected. Evidently observables are defined only
modulo the field equations.

An important class of conditional invariants are those
which can be constructed out of the asymplotic fields.
The asymptotic fields are defined by

oEi= o' —G*(S ;=S oF)
= @' — GG oo+ - ), (7.3)

the notation here being based on the formal expansion
of the action

1 1
==S5,"0' o'+ =Sl pipipt+- . (14)
2! 31

The index 0, in either the upper or lower position, in-
dicates that the quantity to which it is affixed is to be
evaluated at the zero point ¢*=0, which, with the con-
ventions of Table I, corresponds to flat empty space-
time. In Eq. (7.4) terms linear in the ¢’s are absent
since ¢’=0 is a solution of the field equations, and
constant terms are irrelevant.

If the amount of “energy” contained in the field is
finite, e.g., if the field has the form of one or more
essentially finite wave packets?? (which inevitably
spread in both past and future), then the fields ¢+ and
¢~ will coincide with ¢ in the remote future and past,
respectively. The quadratic dependence of the leading
term in the expansion of S;—S:°¢ ensures that the
difference between ¢ and ¢* will behave like the
potential due to a distribution of charge which becomes
more and more diffuse in the remote past and future.
Because of the spreading of the field the effect of non-
linearities diminishes with time, and we anticipate that
the asymptotic fields will satisfy the linear equation
S2¢*t=0. The formal proof is immediate. Making use

2In the quantum theory one speaks of matrix elements be-
tween analogous ‘““wave-packet’ states, and then the same argu-
ments apply. In this case, however, a wave function renormaliza-
tion constant ZV2 should be attached to ¢* in Eq. (7.3). For
simplicity we shall omit such constants both here and in our later
discussion of the S matrix. The reader should supply the missing
Z’s when needed.
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of (4.7), (5.11), (6.11), and (7.3), we have
S220t=5220— (Fo—voRo70 R0 v0)Got(S1— S22 )

= (14+70RGs=Ry ™) S1=0. (7.5)

It is to be noted that this equation holds regardless
of the choice of the ¥’s. In fact it can be shown that the
only effect of a change in the 4’s is to produce a gauge
transformation of the asymptotic fields, having the
form

8¢i=R08§i. (76)

A group transformation (4.1) of the field ¢ has a similar
effect. Thus

dpt=08¢0—Go*[8S1— (Fo—veRo¥s 'Ro ™ v0)d¢]

= —RoGoiRo~705¢, (77)
which takes the form (7.6) with??
8= —Go=Ry yoROE. (7.8)

For this reason the asymptotic fields can be used to
construct group invariants by the dozen. One has only
to introduce a set of field-independent quantities
IA.', Ip;... satisfying

IAR()-_— 0 )
and then define
AE=I40%,

IBR():O' *cy (7.9)

Bi=Jppt---. (7.10)

Since (7.7) holds only when the field equations are
satisfied the latter quantities, as well as all functionals
of these quantities, are conditional invariants.

In practice it is very easy to find differential co-
efficients 74, I - - with the desired properties, and sets
of quantum invariants A% B#... forming complete
commuting sets in the physical Hilbert space are readily
constructed. In this way the quantum states may be
uniquely defined by the asymptotic behavior of the
field.

Poisson brackets for the invariants A%+, B*--- are
determined in a straightforward manner with the aid
of the easily verified identity

GOE (I—Gin)G(l""UGo*) , (711)

where

U=F—F,. (7.12)
Thus, substituting (7.3) into (7.10) and using (6.8)
and (6.14), we find

(4%,B*)=14[1—G¢*(S2— 5]

XG[I — (82— 89Go™]I5~. (7.13)

% The set of transformations (7.6) forms an Abelian group for
the asymptotic fields. It is to be emphasized that the relation
(7.8) between the parameters 8{* and 8¢ raises no issue of attempt-
ing to map an Abelian group on a non-Abelian group, for the
6¢%, unlike 8¢, depend on ¢ through the presence of the factor R.
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If S2—S5° were the same as F—F, then (7.11) would be
immediately applicable. The difference between the two
quantities involves R’s and Ry’s. With the aid of (6.11)
the R¢’s can be brought to bear on the I’s, yielding
terms which vanish on account of (7.9). The R’s on the
other hand must be moved in the opposite direction.
Using (4.7), (6.11), and —S°G¢*Ig"=Ip" it is not
difficult to see that this leads to a set of terms which
mutually cancel. Hence, finally

(A%,BX)=1,4G5". (7.14)
8. THE LINEARIZED THEORY. ASYMPTOTIC
WAVE FUNCTIONS. HELICITY AND
LORENTZ INVARIANCE

The asymptotic fields satisfy the field equations and
Poisson bracket relations of the so-called linearized
theory derived from an action functional of the form
15.:;;%0% o9, Since the linearized theory is well under-
stood we may at this point confidently pass to the
quantum theory in order to get our bearings on the
ultimate goal; a covariant S-matrix theory. Our first
task is to comstruct, from appropriate asymptotic in-
variants, creation and annihilation operators for in-
coming and outgoing field quanta.

In the case of the Yang-Mills and gravitational fields
the simplest and most important invariants are, re-
spectively, the asymptotic curl and the double curl
(Riemann tensor):

Fte,= A+e, ,— A,

8.1)
(8.2)

Both of these quantities have the linear structure (7.10)
with differential coefficients satisfying (7.9). Using
the well-known cyclic differential identities satisfied
by these invariants (see Table I), as well as the prop-
agation equations

Ri“,,,E—%(cp‘—’:“,,,,-F ¢iw.ud— Purve ™ (0:’:”,#7) .

oF#e,,=0,

oR%,,,,=0,

(8.3)
(8.4)

it is straightforward to derive the following Fourier
decompositions:

Fia‘wEi(zﬂ-)—iilz Z /Epn(air+e+v+air—3—y)

— pa*, e, tat, e ) X % =(2E)~ 2%dp

+Hermitian conjugate, (8.5)

Ri—#w‘rE _%(27")_”2/[P"P‘r(ai+e+#e+v+ai—e—ue—v)

+pupo(atierertate e )
—prpo(atiesestate e )
—pup-(atiep e tat e e o) e =E~%dp

~+Hermitian conjugate. (8.6)
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Here the a’s and e’s are functions of the 3-vector p,
and the 4-vector p, satisfies

(p)=(Ep), p?=0, E=|p|. 8.7)

The e’s themselves are the usual complex helicity
polarization vectors satisfying

er¥=ex,, er-ex=0, ep-ex=1,
p-es=0, n-e.=0, (8.8)

where #, is an arbitrary timelike unit vector;
ni=—1, (8.9)

The 3-vectors Re ey, Ime,, and p, in that order, are
required to form a right-handed system. In the case of
the Yang-Mills field the X, are eigenvectors of an ap-
propriate complete set of commuting matrices within
the adjoint representation of the generating Lie group,
and the index r labels the corresponding internal states.?
The X’s may be chosen real and independent of p,
satisfying

XX sa= 0rs y xraxrﬁ:: 'Yaﬁ ’ (810)

where v2# is the Cartan metric of the generating group.
If the quantum version of Eq. (7.14) is now used to
compute commutators of the asymptotic invariants
F+£e,, and R%,,,, at different space-time points, and if
the function Gy, which is determined by the zero-field
forms of the operators F defined in Table I, is subjected
to a Fourier decomposition, then it is straightforward
to show that the a’s and their Hermitian conjugates?
satisfy the following unique commutation laws:

[a%s,ap]=0, [a*4,a*p*]=04s,

which identify them as annihilation and creation opera-
tors, respectively. Here the capital Latin indices are
used as schematic labels for the states of the cor-
responding quanta. The symbol 845 is to be understood
as the product of a § function of the 3-momenta and a
Kronecker delta in the helicity and internal states.

If the quanta of the Yang-Mills or gravitational field
are able, through field nonlinearities and exchange of
additional quanta, to bind each other into stable com-
posite structures, then additional creation and annihila-
tion operators for these structures will have to be intro-
duced. Although nothing is presently known about such
possibilities, we do know that the complete set of all
such operators will determine the physical Hilbert
space. No other operators are needed for constructing
observables. In fact, if group arbitrariness is made
explicit the creation and annihilation operators suffice
for the field variables ¢* themselves. Comparing (8.1)

8.11)

% The internal states are # in number, where » is the dimen-
sionality of the generating group.

25 Hermitian conjugation is here denoted by *. The symbol {
will be reserved as an abbreviation for ~* where ~ denotes an
additional matrix transposition in a vector space other than the
quantum-mechanijcal Hilbert space.
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TasLE II. Expressions for the linearized Yang-Mills and gravitational fields corresponding to quantities
appearing in the abstract formalism.
Abstract Corresponding expression for the
symbol Yang-Mills field Corresponding expression for the gravitational field
eip'z eip'z
u M““ri(x,l)) = (27")_“2 raeiu u#l’&;(xyp) = (21!‘)—3123:!:“33:;«
v (2E)
Ro —iﬁuﬂﬁ,‘ —'i("luupv'i'ﬂlmpy)
Ro —1:5'!‘9}7“ _i(ﬂuupv'l""lwﬁ#— nMVpV)
eip'z £iPz
2 2%, (x,p) = (2m) ~3/2, @ a(x,p))=(Q2m)"%2(es+ e pr P¥)
v/ (2E) v/ (2E)
bP 0 0 0
N 8rsp- D3 (0,0) 0 pp 0 0 3(p,p")
0 0 0 (2-p)*
0 0 2(p-p)* 0
10 O 0
01 0 0
M 8r:d(D,0") 00 0 pp| 8pp)
00 pp O
G Gy aIJB,n' E’Yaﬁﬂvao(+) (JC,JC/) Go(+)uvv’7' = (nwﬂw‘*"?ur'ﬂw— 7luv7701)GO(+) (x:x/)
Go™® Gohas' =BGy (,17) GoHw' = g Gy™ (x,2)

GO(+) (x;x’) =

1 £iP* (z—z')
f dp, dp=dp’dp'dp’dp?
@2m)t J ¢ p2

The hypercontour C? runs along the real axes in the p!, p?, p* planes and forms a closed loop in the °
plane surrounding the pole at 4-E.

and (8.2) with (8.5) and (8.6) we see, in particular, that
the most general form for the asymptotic fields ¢** is

?ii:uiAa:‘:A"*‘uiA*aiA*—}‘Roia{ia,
or (8.12)
pr=nattu*aF* Ro(*,

where the #’s are the functions indicated in Table II
and the {¥’s are completely arbitrary Hermitian func-
tionals of the creation and annihilation operators.

The #’s appearing in Eq. (8.12) may be regarded as
wave functions for the asymptotic states. Using the
explicit forms given in Table II, one may verify by
direct computation that they satisfy the following
important orthonormality relations:

—i/ ™ SoudZ,=0,

]

—i f Wt SyudZ,=1, (8.13)
z

—i / w”SPRAZ,=0, —i / Ry SyudZ,=0, (8.14)
)] z

where the hypersurface 2 is completely arbitrary except
that it must be asymptotically spacelike, and where 1
is the super-abbreviation for é45. The 2 independence
of these relations follows immediately from (3.4) to-
gether with

So%%=0 (8.15)

and
S29Re=0. (8.16)

The latter relation, combined with the locality of R,
in fact permits one to infer, without computation, the
vanishing of the integrals (8.14) as well as of

‘—’L/ Ro~a“Rod2#=0 (817)
z

Equations (8.14) and (8.17) imply that, as representa-
tives of the asymptotic states, the #’s need be defined
only up to a gauge transformation % — u-Rfo, which
leaves Eqgs. (8.13) unaffected. In actual practice the #’s
are restricted by a supplementary condition, namely
the zero-field analog of (6.2):

Ry"you=0. (8.18)
When this condition holds, the #’s satisfy
Fou=0 (8.19)

in addition to (8.15), and Eqs. (8.13) may be replaced
by

—i / w foudZ,=0, —i f W forudZ,=1.  (8.20)

The validity of the latter orthonormality relations
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follows from the easily verified identity

fe—Sr=y X+ Ry—yRyX*™y,  (8.21)
where the matrix (X*)?, has the form
(X7)upr=— %8, (8.22)
for the Yang-Mills field and
(X Vo =—0840:8,""— 8,68,™" (8.23)

for the gravitational field.

The supplementary condition (8.18) does not yet
completely determine the #’s. Equations (8.18) to
(8.20) remain unaffected by gauge transformations
#— u+Rofo for which Fofo=0. To obtain the #’s of
Table IT a further condition must be imposed, of the
form

Ro™you=0. (8.24)

Many different choices for B, can be made which lead
to the same #’s. It will turn out to be a convenience to
choose R, in the particular way indicated in Table IT
where its momentum-space forms, as well as those of
Ry, are given. The 4-vector §, appearing in the ex-
pressions for R is defined by

D= put 20,0 p, (8.25)
where 7, is the timelike unit vector of Egs. (8.8)
and (8.9). It is easy to see that f,, like p,, is null. In
analogy with the terminology employed for null hyper-
surfaces p, may be called a characteristic vector and
D the bicharacteristic of p, relative to n,.

The presence of 7, introduces a nonrelativistic ele-
ment into the formalism, the effect of which must be
determined by asking for the changes in the #’s and a’s
produced by changing #,. It suffices to consider in-
finitesimal changes 6&n, leaving (8.9) invariant. If
Egs. (8.8) are to remain invariant in form, one readily
finds that the ¢’s must suffer the corresponding changes

Syt =TFidpe t— (n-p)~lpr(er-on),  (8.26)
where 8¢ is an arbitrary infinitesimal angle. If, in
addition, the form of the decomposition (8.12) is to
remain invariant the a’s must be multiplied by phase
factors eisd¢ where s, the spin, is 1 for the Yang-Mills
field and 2 for the gravitational field, the + sign or —
sign being chosen according as the helicity is positive
or negative. The first term on the right of (8.26) pro-
duces inverse phase changes in the #’s while the second
term,produces a gauge transformation which may be
absorbed into the last term on the right of (8.12). The
phase changes produce corresponding changes in the
elements of the S matrix but leave transition probahili-
ties unaffected. Observationally; therefore, the classifica-
tion of states according to helicity is Lorentz-invariant.
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9. THE CANONICAL FORM OF THE COM-
MUTATOR FUNCTION. THE FEYNMAN
PROPAGATOR

Although the #'s, in virtue of Egs. (8.13), (8.14),
and (8.17), may be regarded as forming a complete
orthonormal wave basis for the operator .Sy% they do
not form such a basis for the operator Fo. o possesses
additional, nonphysical wave functions having ortho-
normality properties more general than (8.20). The #’s
define only the physical subspace of such functions.

In the case of the Yang-Mills and gravitational fields
it turns out that a complete basis for Fy is obtained
simply by adjoining to the #’s the functions R¢%av%,
and Ry',v%,,% where the v’s constitute any complete
basis for the auxiliary operator Fj:

Fp=0, (9.1)

whence also

FoRw=0, FoRw=0. 9.2)

By straightforward computation one may verify that
in addition to (8.20) we now have relations of the form

—i / o' Ry foPRwdZ,= NV,

2

——i/ ‘ZJTR0~?:)“R0'I)dEM= N7, (9.3)

z

with all other similar “inner products” of the functions
#, Rew, Rw and their complex conjugates vanishing.

Since the matrix

10 0

[o 0 N~J

0N O
is symmetric, an orthogonal basis for F, can be found if
desired. However, since (9.4) turns out to be a non-
positive-definite matrix, the positive normalization
(8.20) cannot be extended to the entire basis. It proves
convenient not to insist on complete orthogonality but
to leave the basis as given. In this form it will be called
a canonical basis.

A particular choice of v’s for the Yang-Mills and
gravitational fields is given in Table II, along with the
corresponding matrices N. Using the table it is straight-
forward to verify that the function Gy, which appears
in the commutator of asymptotic invariants, may be
given the following canonical decomposition:

9.4)

Go=GoyD+G,, (9.5)
Go*=Go™, Gy ™= —G,o, (9.6)
1Go™P =un'+ RN Ry +RwN-1v'Ry™. (9.7)

% In the case of massless fields having spins greater than 2
these functions do not suffice to compléte the basis.
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The function G, is called the positive energy function.
In a theory with no gauge group iG,™", regarded as an
Hermitian matrix, must be positive semidefinite if a
state of lowest energy—the vacuum—is to exist. In the
present case 1Go") need be positive semidefinite only
in the physical subspace. Since the physical subspace is
represented by the functions # and #' we see that this
requirement holds. It will be convenient to introduce a
special symbol for the projection of Gy into the physical
subspace:

Ge=GH+6,,
G *=GO, G =—GO,

i@o("')Euu*.

(9.8)
9.9)
9.10)

The importance of the canonical form for G, lies in
the presence of the Ry’s. It is easy to see, for example,
that in virtue of (7.9) the quantum version of (7.14)
immediately reduces to

[A%,B+]=il,Gol5",

which is obviously consistent with the decomposition
(8.12). Other more important uses of the canonical form
will be encountered later.

For completeness we record the following additional
relations satisfied by the quantities thus far introduced:

(9.11)

Fi=Rq™voRo=Ro™voRR0, (9.12)
'70‘1R0~70R0v =oMIN~ , (9.13)
iGo =M1t (9.14)
—i / v fondZ,=0, —i / ot fordZ, =M, (9.15)
b z
M= € pfy 10—y
+ (P ' f’)_l(j’#ﬁv‘l‘ﬂfju) . (9-16)

Here Go™ is the positive energy part of the function
Go¢*— Gy, and Eq. (9.13) assures consistency of (6.11)
with the decompositions (9.7) and (9.14). The explicit
form of the matrix M appearing in (9.13), (9.14) and
(9.15) is given in Table II for the particular v’s which are

adopted there. The operator f¢* is related to Fo in the
same way that fo# is related to Fo. The identity (9.16),
which follows from Egs. (8.8) and (8.25), is used re-
peatedly in the verification of the decompositions (9.7)
and (9.14).

In the classical theory a dominant role is played by
the Green’s functions G+. In the quantum theory this
role is usurped by the Feynman propagator. For zero

fields the latter is defined by
GoE Goi:FGO(i) y (917)

the equivalence of the two forms following from (6.5)
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and (9.5), which lead to the boundary conditions
Goii=—Gy ™%, > j,
=Gy, j>1. (9.18)

These conditions may be generalized so as to be appli-
cable to nonzero background fields. In the general case
the Feynman propagator is defined as that Green’s
function which, as a function of its first argument, has
only positive energy components in the remote future
and only negative energy components in the remote
past. These boundary conditions suffice to yield the
variational law

6G=G oF G, 9.19)

and the expansions
G=Go(1— UG '=G+GoXGo, (9.20)
X=(01-UGy) "\ U=U+UGU+---. (9.21)

The variational law (9.19) has exactly the same form
as Eq. (6.19) for the advanced and retarded Green’s
functions. The Feynman propagator has, in addition, a
symmetry not possessed by G+, namely

Go~=Go, G~=G, (922)

which follows from (6.8), (9.6), (9.16), and the (assumed)
self-adjointness of F. The Feynman propagator and
its complex conjugate may therefore be characterized
as the only Green’s functions which, when regarded as
continuous matrices, obey all the rules of finite matrix
theory—a characterization which may serve to define
them uniquely even when the condition of asymptotic
flatness does not hold and S-matrix theory ceases to
exist. In a flat Euclidean 4-space F has only one unique
inverse (Green’s function) which vanishes asymptotic-
ally, and the Feynman propagator is obtainable from
this inverse by analytic continuation to Minkowski
space-time, the “direction” of the continuation being
correlated with the direction in which time is chosen to
“flow”. In this sense the Feynman propagator may be
regarded as the inverse of —F, its complex conjugate
being obtained by analytic continuation in the alterna-
tive direction.

We now record for later use a number of identities
involving the various Green’s functions, which are
derivable by straightforward algebraic manipulation of
previous equations:

Gt=Gt(1— UGe*) 1= Gt+GeEX G, (9.23)

Xt=(1—UG#*)U=U+UGU, (9.24)

X = (1 X2G, D) 1X*, (9.25)

1EXGe® = (1 X2G, @)1, (9.26)
X P +7 (£))—1 +( +

14+ XGo= (1= X*Gy™®) (14 X*G%) 027

=(1-UGy),
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1-UGE=(1-UG)(1FXG®P)
=(1—=UGo)(1£X*G,®)1,
G=G+FGW®,

CBH = (14GeX )Gy ® (1 XEG @)
X (1+X*Go) (9.30a)

= (14 GoX)Go® (1 FXGo@®) 1

(9.28)

(9.29)

X (1+XGo), (9.30b)

—Go*=—(GoP—GO), (9.31)

X—X*=—X(Go™®—Gy™)X*, (9.32)
G—G*=—(1+GoX)(Goe®'—Go™)

X (1+X*Ge*). (9.33)

Equations identical in form with these are satisfied by
the corresponding functions Got, G, G, G, G'o(=E>
G®, X* X, and U associated with the operator F.

In the theory of the S matrix the function G plays
the role of the propagator of field quanta. When an
invariance group is present this function suffers from
a fundamental defect, namely, it propagates non-
physical as well as physical quanta. For purposes of
defining “external-line wave functions” (see Sec. 10)
and checking the unitarity of the S matrix (which is
defined only between real physical states) it is con-
venient to introduce alternative functions which prop-
agate real quanta only:

@iE Gi:F® &) ,

OB =(14+GEXE)Gy P (1 XEG,®)-1
X(1+X*G). (9.35)

The use of these functions, however, destroys manifest
covariance and, when divergences are present, is
limited to formal arguments. In actual calculations the
functions G, G*, G, G* must be employed to assure
consistency of renormahzatlon procedures. One of our
tasks will be to show how to pass formally from one set
of functions to the other.

The functions @, @), etc. satisfy a list of identities
similar to those satisfied by G, G, et al.:

(9.34)

Oo=GEF G, (9.36)
Or=o.(1— UGt

— Gt GosksGs, ©31)

xiE (1 - U@oi)—lU= U+ U@i.U s (9383-)

= (1£ X @) -1X, (9.38b)

1FX.80®D = (1£XGy®)-1, (9.39)

1+ XG0y = (1 X=G D)1 (14 X£Got)
(1= UGy, (9.40)
1-UGet=(1—U®o) 1FX. Gy ®)
=1—-U0)(1£XzG D)1, 9.41)
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Od = (1+@oi%i)@o‘i> (1 ;in@jo(:!:))—l

X(A+%.80y), (942)

Gop— Gop*=— (G —G), (9.43)

Ei—X ==X (O =G )XL*, (9.44)
O~ O *=— (141X (G — )

X(1+X.¥Gor*). (9.49)

The only difference is that oy, @, X4, unlike G, G,
X, are nonsymmetric, which accounts for the == signs
attached to them. From (6.8) and (9.9) it follows that

O =0, O, =0_, % =%_. (9.46)

We must evidently ask what difference it makes if we
use @_ instead of ®, as a replacement for G. In order
to show that it in fact makes no difference we must
first develop the formalism somewhat further.

10. EXTERNAL-LINE WAVE FUNCTIONS.
FUNDAMENTAL LEMMA

Consider the following functions:

fr=| Gféudz,. (10.1)
oo
In virtue of Eq. (6.4) these functions satisfy
Fft=0 (10.2)

and reduce to the asymptotic wave functions # in the
remote future and past, respectively. If (as is always
assumed) G is based on a choice of 4’s which cor-
responds to the same supplementary conditions (6.2)
as those which are imposed on the #’s [Eq. (8.18)]
then the f+’s will also satisfy the equations

VfE=0, Soft= (10.3)
By making use of the combination law
G= / G*Gdz,, (10.4)
p)

which is a special case of (6.4), and taking note of the
symmetries (6.9) and f"=— fi[cf. Eq. (3.2)] as well
as the fact that f* reduces to f¢* in the remote past
and future (because the background field is then dis-
persed to a state of infinite weakness), one may show
that the f*’s constitute two distinct complete ortho-
normal bases for infinitesimal disturbances on a non-
vanishing background:

~i[ s [ iz,
> z (10.5)
—i| fEfrpras,=—i | pEefEgs,=1.
i /, iAoy i / farses
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The f*’s are basis functions for “classical’”” waves.
In the quantum theory a different basis, satisfying
boundary conditions which take pair production into
account, must be employed. The method of construct-
ing the latter basis will be most clear if we first obtain
an alternative form for the f*’s. Taking note of the
kinematic structure of G we may rewrite Eq. -(10.1)

(- Yo

S Gi(ﬁo—‘F_o)u_—‘ —Giﬁou

=(14+GEXDu, (10.6)

and, in view of the supplementary condition (8.18), also
fE=—G£5%u. (10.7)

These forms suggest that the modified functions which
we seek are

=—GS%u=—GFu=1+GX)u, (10.8)

in which the Green’s functions G* are replaced by the
Feynman propagator. However, such functions are
inappropriate for the following reason: In the remote
past they possess not only components from the physical
basis # but also nonphysical components which have
been “scattered backwards in time” and which appear
because the quantity X has nonvanishing matrix ele-
ments between physical and nonphysical states.

The desired functions are obtained from (10.8) by
substituting &, for G:

fiE —@i§2°u= - @iﬁou= (1+@oixi)u (109&)
=(14+GEXE)(1FO DX u, (10.9b)

the final form being obtained through use of (9.39) and
(9.40). In virtue of the decomposition (9:10) it is ap-
parent that these functions can be expressed as linear
combinations of the functions f* and their complex
conjugates. They therefore satisfy

Fi,=0, R™yf.=0, S:f.=0.  (10.10)

The f.’s are called external-line wave functions. It can
be shown that they differ from the f’s of Eq. (10.8)
by an amount which cannot be expressed as a gauge
transformation. The difference between f; and f.,
however, can be so expressed, and the == signs are
therefore. physically irrelevant. For the proof of this
we now derive a fundamental lemma.

We first introduce the functions

gt=(14GtX%)o, (10.11)

which are related to the v’s of Table IT in the same way
that the f*’s are related to the #’s. That is, they coin-
cide with the o’s in the remote future or past, and
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satisfy S R
Fg=0. (10.12)
From this it follows that
FRg+=0. (10.13)

Since the functions Rg* coincide with Rov in the remote
future and past, respectively, we may write

RgE=(14-GoEX*)Rp. (10.14)
From (10.11) we may also write
Rogt=Ro(1+G =X %)o. (10.15)

Subtracting (10.15) from (10.14) and making use of
the zero-field form of (6.11), we obtain

(R—Ro)g*=Go*(X£Ro—voRe75 X *)v. (10.16)

The desired lemma then follows on applying the opera-
tor Fy:

X*Rpw= ’YOR()’)—/'O—IX':*:'U— FU(R—"RU)gi . (1017)

The quantity (R—Ro)g* appearing in the last term
of (10.17) vanishes at infinity rapidly enough so that
integrations by parts may be performed when it appears
as part of a larger expression. This means that the
operator F attached to it may act in either direction.
Therefore, making use of the supplementary condition
(8.18), as well as v Ry yoRo=1v"Fo=0, we immediately
obtain the corollaries

" XERw=0, v Ry X#*#Rw=0, (10.18)

which hold also when the #’s and/or v’s are replaced by
their complex conjugates. Referring to Egs. (9.10)
and (9.38b) we see that these corollaries in turn imply

uw X Rw=0, v Ry X Rw=0, (10.19)

Next, by algebraic manipulation of Egs. (9.36), (9.37),
and (9.38) we find

etc.

X—X =%, (O — o)X, (10.20)
O~ O_= 1+ %) G —Co)
X(1+%-0®.), (10.21)
Oop—Gp—= Go"‘@o (10.22a)
=— iRo‘Z)Z\T_ IWTR0~— iRovA7_1~7)TR0~
+iRw*N—10 Ry +iRw*N—1"v"R,~, (10.22b)

in which use has been made of the canonical decomposi-
tion (9.7). These results may finally be combined with
(9.40), (10.14), and (10.19) to yield

f+"7 f—— = (1 +@0+%+) (@04_— @o_)%_u
=(14GHXH)(1+G, & X+)1
X Ro(—ioN-1'+iv*N-10 )Ry ¥_u

=R(—igtN-1t+igt*N-1 )Ry X u, (10.23)
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showing that the two fuinctions indeed differ from one
another only by a gauge transformation.

11. AMPLITUDES FOR SCATTERING, PAIR PRO-
DUCTION, AND PAIR ANNIHILATION BY THE
BACKGROUND FIELD. THE OPTICAL
THEOREMS WHICH THEY SATISFY.
PROOF OF THEIR GROUP
INVARIANCE

Another important relation may be obtained by in-
serting (10.22b) into (10.20) and using (10.19):

w (X —X)u=0, o' (¥, —%)u=0. (11.1)
From this it follows that the quéntities
I=u'%,u, (11.2)
V=u'X, u*, (11.3)
A=u"%,u, (11.4)

are independent of the = signs, showing once again the
irrelevance of the signs.

I, V, and A are, respectively, the amplitudes for
scattering, pair production, and pair annihilation of field
quanta by the background field. More precisely, they
are the amplitudes for these processes when it is assumed
that the quanta themselves do not interact with one
another but behave as the quanta of a model field
theory with action functional £.5 ;;6°¢’.

By making use of (9.46), as well as (9.44) and its
transpose, one easily verifies that these amplitudes
satisfy the following relations:

V=V, A"=A, (11.5)
I—I'=i(II'+VVY=i(I'+A™),  (11.6)
A—VI=i(AT'+I"VN=i(VII+I*A), (11.7)
V—At=i(IAT+ VI*) =i(I'VHATY).  (11.8)

Equations (11.5) express the Bose statistics satisfied by
the field quanta; Egs. (11.6), (11.7), and (11.8) are
relativistic generalizations of the well known optical
theorem for nonrelativistic scattering. The latter equa-
tions play an important role in the verification of the
unitarity of the S matrix, as will be demonstrated later.

The amplitudes I, V, and A are not only independent
of the == signs but are group-invariant as well. In the
present formalism group invariance has three distinct
aspects: (1) invariance under group transformations of
the background field; (2) invariance under changes in
the Green’s functions, as well as in the asymptotic
wave functions #, resulting from changes in the 4’s; and
(3) invariance under gauge transformations of the #’s
for which the gauge parameters {0 satisfy Fofo=0.2

Since the parameters 8:* of Eq. (4.1) are required

27 Changes of types (2) and (3) togethef yield the most general
gauge transformation of the #’s.
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to vanish at infinity, the asymptotic wave functions
and the zero-point field remain unaffected by group
transformations of the background field. Only the
Green’s functions G%, G, etc. change. Owing to the care
which has been taken to construct these functions in a
manifestly covariant manner we may write at once

8GEii= (Ria,kGikj-i—Rja,kGiik)ﬁf“ , (1 1 ‘9)
which may be inserted into
X *+=Fo3G*F,. (11.10)

This in turn may be inserted into

OB = GoigX:t@o(i)(1+Xi@0(i))—1(1_|_XiGoi)
FA+GEXE)F P (1 XEG D)1 X Y, &
X (1= XEGy®) 11+ X2Go*)+ (14 Go=X %)
XGo® (1 XEG @) 18X +Gox, (11.11)

which follows from (9.35). Owing to the boundary
conditions on the §¢ the arrow on one or the other of
the Fy’s in (11.10) may always be reversed. As a result
the second term of (11.11) vanishes, while the first and
third terms together yield

I ®ii= (R, & (i)kj_i_Rja’k@(d:)ik)aéa , (11.12)

which shows that @& and @4 have the same trans-
formation law as G* and G. Inserting this transforma-
tion law into

3% =Fod®,F, (11.13)

and noting that one or the other of the arrows is again
reversible, we immediately get the desired result:

0I=0, V=0, 6A=0. (11.14)

With the aid of (10.92) we also get, in a similar manner,

8f.17=Ra,f170¢%, (11.15)

which will prove useful later.

The demonstration of invariance under changes
in the 4’s is more complicated. We first note that
in- order to preserve the supplementary condition
(8.18) under a change in the 4’s, the #’s must suffer
the gauge transformation?®

du=RoGoRo dyou=Go*v,Ry75 Ry dyqu
FRGo PRy dyom. (11.16)
From this, together with (9.9) and (9.10), it follows that
8&e®) = GotyoRo7o 'Ry ™8y &
+ B 8yoR 76 1Ry "y oGt TF RoGo™ Ry ™8y (S
FO® dyoRGo Ry (11.17)

%' The #’s may also suffer an additional change &u= R,
where Fd¢o=0. See Eq. (11.30) f.
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With the aid of (6.19), (8.18), and (9.36) this yields

5@05: = ©0i6F0®0:};_ Ro@o(+)Ro~ayo®o(i)
- @o(i)a’)/oRoG‘o(-)Ro~ N (1 1 18)

where

8F = 8voRo¥o R0 yo+voRe675 R0 ™v0

FvoRo¥o Ro " yo. (11.19)
Equation (11.18) may be used with (9.37) to obtain

00, =0L0F &1+ O LU,
F(1—G0sU) ReGo® Ry 87 & 1+ UG.,)
F (1~ o U) 1 Ge® 8RGO R (14 UG ), (11.20)

where

8U=8F—68F,,

8F = 6yRy~ 'R y+vR87 'R y+yRy 'R "8y.

(11.21)
(11.22)

Equation (11.20) may in turn be used with (9.38a) to
obtain
5%3:: (1+%i®oi)5F(1+@oi%i)—- 5F0— 6F0®0¢%i
— %:00:8FF XL (RGD Ry "8y ®
+ @B 8yRGo DR )Xy, (11.23)

We now note that in virtue of (8.18) Eq. (11.16) may
be reexpressed in the form

ou= @oiBFo‘uq:RoGo Ry "dyou. (1124)

We also note that % 8Fg=0 and, in virtue of (10.10),
f+"8Ff.=0. Therefore,

oA=0u"Xutu"dX utu"¥X, 0u
=Fu (XL RGo P Ry 8y S %,
+ X80 870RGo O Ry ¥ 1+ SvoRGo B Ry X,
+%.RGo® Ry Syo)u, (11.25)

which vanishes by (9.14) and (10.19). Similarly, V=0
and 67/=0.

As a byproduct of this demonstration we again get a
transformation law for the fi’s. Thus, using (10.9a)
and the fact that 8S;=0 as well as 5:%%=0, we find

5fd:= - 5@5 lu=— 5@:1:F o
=©40Ff 1= (14 G0 X1) (RGO Ry ™8v¢S 0@
+ 0B 8yoRGo DRy 1+ X1 0) Fou
=@ YRy R0y foF 1+ G X1)
XRGo® Ry vo®e % 0, (11.26)

the final expression resulting from use of (9.2), (9.14),
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and (10.19). By making use also of the identities
®yR=RG:y, (11.27)
(14+®osX1)Rw=R(1+G=X %),  (11.28)

which are proved, respectively, with the aid of (6.11),
(9.35), (10.3), (10.6), and (9.40), (10.14), (10.18), we
may recast expression (11.26) in the form

8fs=R[G*R" 6y f.F (1+GpX )
XGoeRo"Sy®o ¥ u]. (11.29)

There remains only to show the invariance of I, V,
and A under gauge transformations

where 8¢, satisfies F48¢o=0. This, however, is an almost
immediate consequence of Egs. (9.38b) and (10.18)
and will be left to the reader. An explicit form for the
change in the f,’s can be obtained by first decomposing
d0¢o into the v’s of Eq. (9.1);

0So=10\, (11.31)

where the 8\’s are certain coefficients. Use of (10.9b)
and (10.14) then yields

8f.=Rg*o\. (11.32)

We note that Egs. (11.29) and (11.32) both leave the
validity of Egs. (10.10) undisturbed.

12. VACUUM STATES RELATIVE TO THE BACK-
GROUND FIELD. ABANDONMENT OF THE
STRICT OPERATOR FORMALISM.
CHRONOLOGICAL PRODUCTS
AND TREES

In order to build up the S matrix we begin with the
vacuum. The vacuum state is customarily defined by
the condition

a*|0)=0, (12.1)

where the a*’s are the annihilation operators of the
decomposition (8.12). In this state no field quanta are
present, and the background field itself vanishes (flat,
empty space-time). It will be noted that no = signs
have been affixed to the symbol |0), thus implying that

e L F1. 1. Graphical repre-
sentation of the bare #-
FULN ++P3)—< point functions for #=3,

4, 5, 6. The symbol P in-
dicates that the indices
associated with the ex-
ternal lines are to be
permuted just sufficiently
to yield complete sym-
metry. The numerical sub-
script indicates the number
of permutations required in
each case.

gitme S +pg M- +P,°\rkr
+Peo \ﬁ< +Pes

+Pg°_2_$_+Plﬁgr
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if no quanta are initially present none will be produced
in the course of time.2?

Instead of working with |0) we shall find it convenient
to work with relative vacua |0,2= ), defined by

e]0,£0)=0, (12.2)

where the annihilation operators e* are based on a
separation of the total field ¢ into a classical back-
ground ¢, satisfying the classical field equations (2.2),
and a quantum part ¢ satisfying the same commuta-
tion relations as ¢. The classical background is always
assumed to contain a finite amount of “energy’” and
hence it not only superposes linearly with ¢ in the
remote past and future, where both satisfy the asympto-
tic field equations (7.5), but it also disperses ultimately
to a state of infinite weakness. We may therefore write®

e=¢t0, (12.3)
pr= o+ ¢*, (12.4)
pt= uai_l_u*ai*_l_Rog-i , (12_5)
F=uat+u*et*+ Ro((x—{%), (12.6)
at=gttat, @12.7)

2 When dealing with massless bare (i.e., unrenormalized) quanta
one must be cautious in asserting that the vacuum is stable. For
example, the Lagrangian £=—3}¢ 0 —uet— (1/24)N¢* A >0)
appears to describe a self-coupled massless scalar field satisfy-
ing the usual condition (p)=0 in the vacuum. However, one
finds in fact (@)= —3u/N. The Lagrangian should be rewritten
L= —3(d,u00.#+m?0?) +3up?— (1/24)N¢*, where ¢=p—{p) and
m?=3u?/2\, to display the fact that as long as 50 the actual
quanta carry mass. This result shows up in another way if one
attempts to compute the self-decay rate of the quanta on the as-
sumption that they are massless. Because of the possibility of
having the momenta of massless quanta all parallel, conservation
arguments cannot be invoked to exclude the decay, and, contrary
to a widespread impression, phase-space arguments do not suffice
but must be investigated in detail. It turns out that the decay rate
into softer quanta is infinite. The infinity arises from diagrams
with internal lines. Such lines, when not in closed loops, are neces-
sarily on the mass shell. Nevertheless, it is the ¢® term of the
Lagrangian which gives the trouble and nof the ¢* term. When
=0 phase-space limitations prevent the dangerous diagrams from
contributing, and the decay rate then vanishes.

In the case of the gravitational field the work of Brill (see
Ref. 13) and others shows that flat space-time really is the state
of lowest energy, i.e., that bounded asymptotically vanishing
deviations from flatness correspond to an inmcrease in energy.
Similarly the condition (4,%)=0 (modulo a gauge transformation)
holds in the ground state of the Yang-Mills field, as follows from
the positiveness of the term {Fq;;F*7 (i, j=1,2,3) in the Hamil-
tonian when the generating group is compact. As for the stability
of the quanta themselves, it turns out that in the graviton case
the relevant matrix elements all vanish when the quanta have
parallel momenta. The reason is that the coupling is always of
the derivative type, which introduces momentum vectors having
vanishing contractions with the polarization tensors. In the Yang-
Mills case the cubic term in the Lagrangian yields a matrix
element which likewise vanishes on account of derivative coup-
ing. The matrix element of the quartic term does not vanish,
but in this case phase space limitations prevent the decay.
Gravitons and Yang-Mills quanta are therefore both stable.

® Because of the linearity of the group transformation law (4.1)
¢ transforms according to the homogeneous law 6¢*=Ri,, jp?6¢2.
From (7.7) it follows that the asymptotic fields transform ac-

cording to dpE= —Roéo*Ro"‘Yo&b.
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The states |0,2=) are functionals of the classical
background. Because the background is capable of pro-
ducing and absorbing pairs, triplets, quadruplets, etc.
in individual elementary processes, any number of
quanta may eventually be produced, and hence the two
states are not identical. Our chief concern will be to
study the response of the vacuum-to-vacuum amplitude
(0,0 |0,— ) to variations in the background field.
Schwinger®! has used external sources for this purpose
and has shown that all physical processes can be com-
puted once the vacuum response itself is known. There
is a well-known difficulty, however, in using sources
when anon-Abelian invariance group is present, namely,
group invariance requires the source to depend on the
field. By working with a “free” background field we
avoid this difficulty.

Suppose now the background field suffers an in-
finitesimal change 8¢ which satisfies (6.1) so that the
field equations are maintained. Since the total field
operator ¢ does not depend on which classical field is
chosen as the background the operator ¢ must suffer
(modulo an irrelevant group transformation) an opposite
change:

0¢=—0¢p, Oat=—{da*, (12.8)
This produces changes in the vacuum states satisfying
(et—8a%)(|0,2 0 )+8|0,2 % ))=0  (12.9)

or
e£5| 0,2 ® )=08a%| 0,4 ). (12.10)

By making use of the orthonormality relations (8.13),
(8.14) and the decompositions (12.5), (12.6), it is easy
to see that the unitary transformation which yields
(12.10) is

"5 00%dZ, |0, ). (12.11)

5|0,k 0 )=—i /
oo

Hence, remembering that ¢t=¢ and ¢t=¢ in the

remote future, that ¢—=¢ and ¢ = ¢ in the remote

past, and that S¢*= ¥* in both regions, we have

3(0,0 |0,— 0 )=14(0, ](fw—/_)qrs #§pdZ,]0,— o)

=4(0,% | $~(S2—S2)8¢]0,— )

= —i8¢'S,:;(0,%0 |$7]|0,— ).  (12.12)

We have now reached a critical point. From here on
the description of the quantized Yang-Mills and gravita-
tional fields in terms of operators must be dropped. No
one knows (or at any rate no one has yet shown) how
to develop a consistent operator language for these

 J. Schwinger, Proc. Nat. Acad. Sci. U. S. 37, 452 (1951).
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fields which is at the same time manifestly covariant
and useful for calculations.?? }

What we shall do is to retain the operator language
only for fields which possess no invariance groups.
After developing the theory of such fields to the point
at which all statements can be made in c¢c-number
language we shall then modify these statements in
such a way as to become applicable to the Yang-Mills
and gravitational fields.

To achieve maximum simplicity we shall assume not
only that the field ¢ possesses no invariance group but
also that its components all commute with one another at
the same space-time point. In practice this limits us to
scalar fields possessing vertex functions S ;... which
involve no derivative couplings. However, it in no way
limits the number of scalar fields embraced by the
symbol ¢* nor the algebraic complexity of their mutual
couplings. Hence the abstract notation is still appro-
priate, and the combinatorial (i.e., diagrammatic)
aspects of the theory are identical with what they will
be for the fields of actual interest. It is by studying the
combinatorics that we shall be led to a self-consistent
general theory.

The chief advantages of the restriction to scalar
fields and nonderivative couplings are that the ordering
of factors in the field equations becomes immaterial,
chronological products can be defined unambiguously,

and the operator G+ which appears in the commutator

[ 471G

reduces to the ¢c-number function G# of the background
field when the space-time point associated with the
index 4 is in the immediate vicinity of that associated
with j. The latter simplification has the consequence
that

(12.13)

—1 / [6%,67]5 0 dZ, =8¢,  (12.14)
Z; .

where Z; is any spacelike hypersurface containing the
space-time point associated with 1. -
With these simplifications we are ready to obtain

32 The most beautiful attempt at such a language is that of
S. Mandelstam [Ann. Phys. (N.Y.) 19, 25 (1962)]. By propagat-
ing local frames from infinity along intrinsically defined paths,
Mandelstam is able to deal exclusively with operators which are
coordinate-invariant and hence possessed of unique commutation
relations. Mandelstam’s formalism is on the borderline of being
practical, but unfortunately becomes excessively complicated
beyond all but the simplest calculations. A choice of paths is
ulfimately equivalent to construction of an explicit gauge, and
the freedom to work with local (differential) rather than nonlocal
(integral) gauge conditions, is to be preferred if at all attainable.

3 Under these restrictions the usual practice of ‘‘normal
ordering” is unnecessary as far as the formal theory is con-
cerned. The residue obtained on converting from ordinary to
normal ordering can always be lumped with vertices of lower

order.
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further variational formulas. We first compute
6<0)°° | ‘biloy_.— ® >= <O:°° [54’110!_ °°>

+2(5(0,0 [ 97))¢"4(9"|0,— =)
| (0, | )88 0,— ). (12.15)
Here the |¢’) are eigenvectors of the complete set of
commuting operators ¢/, including j=1, taken over a
hypersurface Z;, and the summation is to be extended

over all the eigenvalues. If the variation (12.15) is due
to a change in the background field we have

(¥'—809)([¢")+8] ) =¢"(|¢")+5[9")),
(¢'— 98] ¢")=08¢71¢),

where ¢7is restricted to Z; .In view of (12.14), the unitary
transformation which yields this is

(12.16)
or

(12.17)

8] ¢")= ~i/ 0" THedZ,| ¢y, (12.18)
2

Making use also of (12.8) and (12.11) we therefore get
5(0,0 | 7]0,— @ )= — 860, |0, 2 )— i8S,
X<O7°O [ T((I)l(i)k)[(),—' ® > ’

where 7" denotes the chronological product.

Since the field ¢’ now has no invariance group the
operator Sy is nonsingular, and Egs. (12.12) and (12.19)
may be rewritten in the forms

(0,0 [¢7]0,— = )=G*(5/i6¢7)
X<0: ® IO,— °°)’

(12.19)

(12.20)

’ ) 8
(0, !T<¢f¢f>lo,—w>=(—inf+cik G# )
8p% 184!

X<O7°° |Or_' 00), (1221)

the Feynman propagator being used because of the
boundary conditions specified by the relative vacua.
Continuing in this way we obtain an infinite set of
equations, all of which are comprehended in the
generating-functional formula

0 n

Z Ny '>‘in<0)°° IT(‘b" : ¢M) IO,_ °°>

n=0 7]

w 1
= exp<1: Z _—Ail. . )\ZnGuzn>

n=2 7!

0
><0:°° IO:" °°>: (12-22)

X exp()\iGif
8¢’

where the \’s are arbitrary variables and the G#***i are
defined by

6
G’il“'inEGiljl__.‘.. . .Giu—!fn*l__j_Gin—lin. (12_23)
6(,0]1 6(P'7"—2
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It is easy to verify that the operators G%§/d¢7
commute with each other, and from this it follows that
the G’ are completely symmetric in their indices.
These functions, which are known as the bare n-point
functions, have a well-known graphical representation
which is illustrated in Fig. 1 for the cases n=3, 4, 5, 6.
Feynman propagators are represented by lines and bare
vertex functions S, by vertices or forks with m prongs.
The lines are joined together at vertices in the same
ways that the propagators in the explicit expressions
for the G ’s are coupled to vertex functions by
dummy indices. It is easy to see that the diagrams
making up G "% are obtained from those for G- -1
by inserting an additional external line in all possible
ways. G is therefore expressible as the sum of all
distinct trees having #» branches, the indices attached
to the latter being permuted just sufficiently to yield
complete symmetry.

A tree is any diagram which has no disconnected parts
but which is divided into two disconnected parts by
cutting any line. A tree therefore possesses no closed
loops. We shall see that the first factor on the right-
hand side of (12.22) describes all the lowest-order or
bare scattering processes. The radiative corrections,
which involve closed loops, are all contained in the
remaining factors.

13. DEFINITION OF THE S MATRIX.
ITS STRUCTURE IN THE ABSENCE
OF AN INVARIANCE GROUP

The S matrix, like the vacuum states, may be defined
relative to the background field. It then has as elements
the amplitudes

(Ay Ay o |Ay- e Ap—

@),
where

|A1- - Ao )=ats* ety ¥|0,0). (13.1)

If the possibility of stable composite structures is
ignored, the above states form two complete orthogonal
bases in the physical Hilbert space, and the scattering
amplitudes may be regarded as the matrix elements,
with respect to either basis, of the unitary operator

® 1
S= X IA1-~-An,—°o>—'<A1-~An,oo|. (13.2)
n=0 n!

Here an implicit summation-integration is to be under-
stood over the repeated A4’s. It is easily verified that

S satisfies
Bt=S$-1B-§, (13.3)
where the B’s are any asymptotic invariants [cf. (7.10)7;
Bi=TIs¢*. (13.4)

By the standard Lehmann-Symanzik-Zimmermann
(LSZ) method one can show that the scattering ampli-
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tudes are given by

<A1I' ' 'A,",)w lAl' * 'Am)_ °°>’

]
=Z P(m.n: n0ara; 04y
1=0

XAy - 4d/ 0 [Arye - Ay — o), (13.5)
where®*
(A Ay, 0| Ay Amy— o)
= (—d)mhngdtg ¥ agging *S 0.8 0
X<O;°° ! T(¢ll' * 'd’ln‘bkl' ' 'd)km)lo;— °°>
XS kit oS i WAyt y (13.6)
and where the symbol P in (13.5) indicates that the

expression following it is to be summed over all distinct
permutations of the 4’s and 4"’s, the subscript

m?

minl

~ =D 01 (13.7)

(m,n; D)

denoting the number of permutations required in each
case. It is important to realize that the LSZ method is
formally applicable even when an invariance group is
present, and hence Egs. (13.5) and (13.6) hold in the
general case. This is because the creation and annihila-
tion operators, in virtue of (8.13), (8.14), and (12.6),
are unambiguously defined by

atF=; / WSS, at=—i / W 5HedZ,. (13.8)
oo 40

The only difficulty is that we do not yet know, inthe
general case, how to calculate the chronological pro-
ducts appearing in (13.6). S

In the restricted case of scalar fields with nonderiva-
tive couplings Egs. (12.22), (13.5), and (13.6) permit
us to write the following compact expressions for the
scattering operator:

“ (=) - .
S= ;Z ¢:bu. . 'd’i’”S,iljlo' S inin
n=2 7!
X{0,0 | T($7- - 7)|0,— w0 ): (13.9a)
o D e
=:exp|i X ' G L. gEinS L o .S’injnoGn...j,‘>
n=2 pl

R P
X exr><-— ¢i‘S,,~,-"Gf’°;> (0,00 |0,— 0 ):. (13.9b)
(4

#In Eq. (13.6) the reader should remember to insert a re-
normalization factor Z71/2 with each wave function . (See
Ref. 22). An alternative procedure is to choose for the action
functional S the “pre-renormalized”’ action, in which all “counter
terms” have been inserted in advance. The operators S,;;% and
wave functions # will then automatically contain the necessary
Z factors in (13.6) without the need for making them explicit.
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The colons indicate that the creation and annihilation
operators making up the ¢*’s are to be normal-ordered.
An alternative and very useful version of (13.9b) is

(Al" . .A"”w IAI' . .A"’_w)
8 ) 5 )

[6aA1'* dag,* 0as, Oaga,

w 1
XexP(%iXij%oidJoo"'f*i 2 —'fn---i,.¢0“' : '¢oi")

n=3 ©!

)

)(0, w [0,— o >La*=o, (13.10)

X exp<¢0i -
St

where the #’s, which will be called tree functions, are the
bare z-point functions with their external lines removed:

it = (= 1)S iy - S0, G in, (13.11)

and where
Goo=na-t+u*a*, (13.12)
$o= (1+GoX)dpoo= fa+ fa*, (13.13)

the f’s being the functions defined by (10.8) and the
f’s the corresponding functions with # replaced by #*.

The above expressions can also be used to obtain the
hierarchy of conditions on the scattering amplitudes
which follow from the unitarity of the .S matrix. Thus,
inserting (13.9a) into STS=1 and reordering operators
into normal products, one finds
v 1
> _<¢i1. .o ¢in>*ciu.l. . .C':njn<¢fl. .. ¢j1.>
n=0 7!

= g—i1(W—W*) ,

(13.14)

o 1 m
2 =X (D) P (it - - dingFr- - - §F)*

n=0 72! 1=0
XCaji* Cinin{@7L- - - IngEIHL. . .¢km)=0 ,

m=1,2,--+, (13.15)

where the permutation sum Py is over the (m;l)
=m!/(m—1I)!! distinct arrangements of the &’s, and
where

(0,0 [ T(§7- - - )| 0,— )

... piny= , (13.16)
<¢ ¢ ) <0:°°|0)_°°>

c=S50uutSy, (13.17)

== —11n(0,0 |0,— ). (13.18)

The equation SST=1 leads to identical conditions.

We may note that Egs. (13.15) are not independent of
(13.14) but can be obtained from it by functional dif-
ferentiation. For this reason it suffices to verify (13.14)
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alone in order to check that the formalism yields an S
matrix which is unitary. This is one of the important

advantages of working with an arbitrary background
field.

14. THE S MATRIX IN THE PRESENCE OF AN
INVARIANCE GROUP. THE TREE THEOREM

Consider the operator exp($o’d/d¢?) appearing in
Eq. (13.10). By taking into account the fact that ¢’
depends on the background field through its dependence
on the f’s of Eq. (13.13), it is not difficult to show that
the effect of this operator, when acting on any functional
of the background field ¢, is to replace ¢ by o+¢
where ¢ is obtained by iteration of

© 1
F=Ge G T S s

n=2

(14.1)

Equation (14.1) has three remarkable properties.
First, its iterated solution yields, as coefficients, all of
the tree functions:

w 1
¢i= ¢oi+Gii Z _'tjil"'in¢0il' . .¢0in.

n=2 1!

(14.2)

Second, if ¢ satisfies the classical field equations then
so does ¢+¢. Third, and most important, the second
property holds even in the presence of an invariance
group, provided the definition (13.13) is generalized to

$o=fra+fs Pa*+ RS, (14.3)

where the fy are the functions (10.9), the f.® are
obtained from these by replacing # by #* and ¢ is
arbitrary.3®

The first property may be verified by straightforward
iteration and term-by-term comparison. The second
property is obvious; the third, however, requires special
discussion.

We first rewrite Eq. (14.1) in the form

¢=¢ot+G[ o] (SiLot+o]—S:[0]¢),

in which the functional dependence of the various
factors is made explicit. Then we note that the relations

(14.4)

0=S2[ ¢J¢o, (14.5)
0=S:L ¢1R[¢], (14.6)
0=RTTe]S1[e], (14.7)
0=RTe+¢1SiLet+¢]

(14.8)

=R Te]+R9)SiLete],

35 Since f,. and f{ differ from one another by a gauge transforma-
tion [Eq. (10.23)] we do not bother to put = signs on ¢o. The
difference can always be absorbed into the term Rg.
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permit us to write

0=3S:L e J{¢—do—GL o 1(SiL o+ 1—S:[ ¢ 18)}
=Sl oJo— (FLel—vLeIRLe v LeIR [evle])
XGLe](SiLe+¢]—S:Lele)
=SiLe+o]+v[e]R[eJGLeIR [ 1S [ e+¢]
=(1—v[eJR[¢1GL IR "$)S1Le+4], (14.9)

in which the analog of (6.11), with G* replaced by G,
has been used. The factor in parentheses in the final
expression is generally nonsingular. Hence it may be
removed, yielding the desired result

SiLe+¢]=0. (14.10)

It is to be emphasized that this result depends in no
way on the choice of 4’s used in the definition of the
Green’s function G. In fact we can show that a change
in the 4’s produces only a group transformation of the
¢’s, of the form

3¢=R[ p+¢]5¢. (14.11)

We first take the variation of Eq. (14.4) and rearrange
the result in the form

d¢po=0¢—6G[ ¢ 1(S1L o+ ]—S2[ o)
—GLe](SeL o+ ]—S:Lo])ép. (14.12)

We then insert (11.21) into (9.19) and make use of the
analog of (6.11) to obtain

8G=GoyRGR™—RG7GR™+RGR™/G. (14.13)
Next we remember that

S o+ IR[o+¢]=0, (14.14)

which results from functional differentiation of (14.8)
and use of (14.10). Finally we note that the operator in
the final parentheses in (14.12) can act in either direc-
tion. This is because of the fundamental assumption
which is always implicit in the use of decompositions of
the form (14.3), namely that the o’s are such as to give
¢o the character of a wave packet. The difference be-
tween S o+¢] and Sy ¢ ] therefore vanishes suf-
ficiently rapidly at infinity to make reversal possible.

Writing R[ ¢+ ¢ 1= R+ R:1¢, and making use of (14.4),
(14.6), (14.11), (14.13), and (14.14), we now have

So=3¢— RGR™6YG(S1[ o+ ¢1—S:0)
—G(§2[¢+¢]_§2)5¢
= R8t+ Ripdt— RGR ™3y (p— o)
+G(F—yRy'R™y)Rigdt

=R(1—GR™yR:¢$)dt— RGR 6y (d— o). (14.15)
But from (11.29) and (14.3) we have
d¢po=R(GEGD)R 5y(po— R¢)+ R8¢, (14.16a)

8= 8 F (14+-G =X H)[Go ™ Ry~ 870G ¥ Lo |
+Go O Ry Sy @M X *u*a*], (14.16b)
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where 6 is any change in { which one may wish to in-
clude along with the change in . Equating the right-
hand sides of (14.15) and (14.16) we therefore get

8t=(1—GR yR:1¢)"(GR 5yp=GH R "dyeo
—G=R™SyR{+6¢").  (14.17)

It is straightforward to show in a similar manner that
the gauge transformation (11.30) in the #’s also pro-
duces a change in ¢ of the form (14.11), with 8¢ given
in this case by

8¢=(1—GR yR:p)~(gxoha+ g=*o\*a*) . (14.18)
In both cases we can rewrite (14.11) in the form

8(et+¢)=RLe+918%, (14.19)

since the background field remains unaffected.

We may ask what happens if the background field
itself suffers a group transformation. Here it is con-
venient to assume that the ¢ of (14.3) transforms ac-
cording to the adjoint representation of the group; any
portion of it which does not transform in this way can
be lumped with the & of (14.17). It then follows from
(4.9) and (11.15) that ¢, suffers the transformation

8¢Oi=Ria,J¢0‘ia£a. (14.20)

The tree functions, on the other hand, transform in a
contragredient fashion, i.e., in precisely the manner
indicated by the downward position of their indices.
This is because they are built from Feynman prop-
agators and bare vertex functions by simple contrac-
tions of indices, and because we have taken care to
construct the propagators in a manifestly covariant
way. From this and Eq. (14.2) it follows that ¢ trans-
forms like ¢o:

d¢i=Ri, piote. (14.21)

Hence
8(p+ %)= Riabt*+R's 985 =Ri[ o+¢ 16, (14.22)
which has again the form (14.19).

We now have the following lemma: If A[¢] is any
invariant functional of the background field then A[ o+ ]
remains completely unchanged under all the invariance
transformations of the theory.

The above results suggest that when an invariance

group is present Eq. (13.10) for the S-matrix ampli-
tudes may be generalized to

8 é

(Al’...An”w lAl...Am’—oo);:[

O g,r* 60‘An’*

) é . . . o 1
X eXP(%lxiij¢oo’¢oo’+i > —

daa, dag, =3 1|

B,

a=a* =0

KiigeeeinPotle « ¢o'"+1W[¢+¢])] (14.23)
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where W is defined by (13.18) and where
$oo=rua-~+u*a*4Rofo,

{o being an arbitrary gauge parameter satisfying
Fofo=0.

The demonstration that this is indeed the case is a
task which falls into two parts. First, we must obtain
an explicit form for W[ ¢] which, because the vacuum-
to-vacuum amplitude is a physical observable, must be
invariant under changes in the 4’s as well as under
group transformations of ¢. Second, we must verify the
group invariance of (14.23) itself. The first of these
tasks is the most difficult and will be carried out in sub-
sequent sections. Here we accomplish the second.

In view of the lemma stated above, group invariance
of the term W[ o+¢] in (14.23) follows from the in-
variance of W[ ¢] itself. Invariance of the term in ¥,
follows from the invariance of the amplitudes 7, V, and
A, which has been proved earlier. Only the terms in-
volving the tree functions require further investigation.

These terms are manifestly invariant under group
transformations of the background field. We may re-
mark that because the tree functions are obtained by
iteration of Eq. (14.1), which involves the ordinary
Feynman propagator, it is the ordinary Feynman prop-
agator which is used for the internal lines of the tree
diagrams. However, because of the transformation law
(11.12) the invariance of the tree terms would not be
spoiled if the functions &, were substituted for G. As
a matter of fact, it can be shown that this substitution
leaves the tree terms unaffected, and that although the
propagator G is the most convenient one to use in
practical calculations, the propagator &, could be used
for the internal lines instead.36

In order to show that the tree terms are also invariant
under changes in ¢ and ¢, of the form (14.11), (14.16),
etc., we observe that in virtue of (14.2) and (14.4) we
may write

(14.24)

® 1 —
> ————diyein®0’t ot = — o F(p— o)
n=3 (%— 1)!

=60 (Si[ 61— S5:9).
(14.25)

The variation of the right-hand side of this equation
has the form

8bo” (S o+ 1—Sep)+ b0~ (SeL o+ 1—S2)d e ,

in which use has once again been made of the rever-
sibility of the operator Ss[ ¢+¢1—Sa[ ¢ . Using Eqgs.
(14.10) and (14.14), as well as the equations ¢~ .S.=0

36 Since the functions @ . are not symmetric there is a problem
of relative orientation of the internal lines. The orientation must
be that which results from the iteration of (14.1) with G re-
placed by ©.. (See Ref. 46).

BRYCE S.

DEWITT 162
and 8¢o"S2=0, the latter of which holds under (11.25)
and (11.29), we see that this variation vanishes. Since
the o’s in the decomposition (14.3) are completely
arbitrary it follows the every term in the sum on the left
of (14.25) is fully group-invariant:

5(!1'1...1;” oh' . d)o“‘):o

This result is known as the éree theorem.®

The tree theorem provides a very useful check on the
accuracy of lowest-order scattering calculations. One
simply replaces any one of the external-line wave func-
tions by R and looks to see if the resulting amplitude
vanishes. Since scattering calculations involve lengthy
algebraic expressions, mistakes are often discovered in
this way. In applying the test it is important to remem-
ber that all the diagrams which go to make up a given
tree amplitude must be added together. They are not
individually invariant.8

(14.26)

15. LORENTZ INVARIANCE. INVARIANCE UNDER
CHANGE OF VARIABLES. QUANTUM VERSUS
CLASSICAL SCATTERING

Space-time in S-matrix theory is assumed to be
asymptotically flat. A flat space-time has group-
theoretical properties not possessed by a general mani-
fold, namely Lorentz invariance. In S-matrix theory the
Poincaré group must appear as an asymptotic invariance
group.3?

If the zero point of the gravitational field were chosen
differently in this paper—corresponding to a manifold
with some other group of isometries—then the formalism
would have a different appearance, since the pertinent
physical questions to be asked would not involve the
scattering of plane waves but something else instead.
It would still be necessary to make an independent
check of the theory for invariance with respect to the
underlying isometry group, because the origin of such a
group—in particular, of the Poincaré group—is distinct
from general coordinate invariance.

It is quite easy to verify the Lorentz invariance of
the present theory, much easier than it would be to
check invariance under any other asymptotic or under-
lying symmetry group. This is because, with the usual
choices of field variables (Table I), Lorentz invariance is

3 R. P. Feynman, Acta Phys. Polonica 24, 697 (1963).

%8 The test is usually carried out in momentum space. Since the
wave-packet assumption is implicit in the Fourier transformation
process it is then no longer necessary to worry about conditions
of reversibility of the order of various operations. In fact, the
whole test reduces to an algebraic exercise.

#® Tt has been pointed out by Sachs that the asymptotic
invariance group of gravity is actually much bigger than the
Poincaré group. [See R. K. Sachs, in Relativity, Groups and
Topology, edited by C. DeWitt and B. DeWitt (Gordon and
Breach Science Publishers, Inc., New York, 1964).] We make no
attempt here to investigate this larger group, the existence of
which seems to be related to certain conformal invariance prop-
erties of the theory. We remark, however, that such an in-
vestigation might yield important new insights into the properties
of S-matrix amplitudes. i
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manifest in both the Yang-Mills and gravitational
cases. The only point which really needs checking is
the invariance of the theory under changes in the time-
like unit vector n, which is used to define the bichar-

acteristic p, of Eq. (8.25) and the asymptotic wave

functions #. But we have already seen from Eq. (8.26)
that changes in #, lead to changes in the #’s which are
compounded of (1) gauge transformations of the form
(11.27), which have previously been shown to leave the
theory invariant, and (2) phase transformations. The
phase transformations alter the scattering amplitudes
only by phase factors and leave the probabilities them-
selves unchanged. Therefore, as long as we use helicity
assignments for the initial and final states the theory
is indeed Lorentz-invariant.

The following question, however, arises: Suppose we
were to replace the basic field variables of the theory by
arbitrary nonlinear functions (or local functionals) of
themselves. Would we then still arrive at the same
quantum theory by the methods outlined here, even
though such a change of variables would generally
destroy the manifest covariance? In particular, would
the scattering amplitudes remain unchanged?

We must remark that not all nonlinear transforma-
tions destroy manifest covariance. For example, in the
case of gravity the change of variables ¢, — ¢’y or
Qw—> ¢, Where @' =g gu—1nw, ¢F=gg"—n",
s#%, affects neither the manifest Lorentz invariance nor
the linearity of the general coordinate transformation
laws. However, we need not consider these cases
separately, as it is just as easy to consider the general
case directly.

It is not difficult to see that a change ¢*— ¢’* from
one set of basic field variables to another produces the
following changes in the various quantities appearing
in the theory:

Y

Si=5.0 =0, (15.1)
8ot
Sk bt 820 Sk st
S ij =S u - - = LS B (152)
6@’1 BQOI] 8(P116§01J 5‘Plz 6‘plj )
de’t
R'iy=—R,, (15.3)
o7
do’*
u”4=< > wa, (15.4)
807/
5@,1 1 52¢’z
§im gt —gigh (15.5)
07 21 670"

4 For convenience it will be assumed that ¢’*=0when ¢*=0and
that the transformation is one-to-one analytic at the zero point
so that.series such as (15.5) have a nonvanishing domain of
convergence.

QUANTUM THEORY OF GRAVITY. II

1223

That these changes must leave invariant the term in
X, of the amplitude (14.23) follows from the fact that
X, refers to disturbances which propagate without
mutual interaction. The theory of such disturbances is
identical with that of infinitesimal disturbances on the
background field, and it does not matter what back-
ground variables are chosen to represent them. This
reasoning also leads to the simple transformation laws

R A
fata=—T1%, (15.6)
e
A
dot=—0, (15.7)
17

provided we require v;; to transform like S, [Eq.
(15.2)] so that the Feynman propagator suffers the
change*!

6§0,i Bga/j
_Gk-l.
Sk §ot

G’ =

(15.8)

Less obvious is the invariance of the tree terms. This
is because the bare vertex functions, and hence the
tree functions, unlike ¢¢?, do not transform in a simple
fashion. [See Egs. (19.29), (19.30), and (19.31).] It is
nevertheless true that when the tree functions are
multiplied by ¢y’s, as in (14.23) or (14.25), the result is
invariant. To see this we note that the right-hand side
of Eq. (14.25), in terms of the new variables, becomes

& (ST +¢' ]— S )= —¢*7'S'¢’
1 8¢7 820"

= —¢oi§,ij<¢j+" ——lp™ - ) . (15.9)
21 80'* §plo o™

Since the wave-packet assumption is always implicit, the
nonlinear terms in the ¢’s inside the parentheses vanish
at infinity rapidly enough so that for them the arrow on
S,i; may be reversed. Expression (15.9) therefore re-
duces immediately to (14.25), and we have, for all #>3,

<o’ r=t i p0%t - o, (15.10)

a result which, in each individual case, can also be
verified by a straightforward but nontrivial computation.

There remains to be discussed only the term in W.
Since W is a physical observable its value must remain
unaffected by changes in the mode of description of the
field. Its functional form must therefore adjust in such

’ 15
Pigereino *1e

a way that
Wle'1=WLe], (15.11a)
which, together with (15.5), implies
WLe'+¢ 1=Wle+4]. (15.11b)

' Any other transformation law for v;; would simply add a
gauge term to (15.6) and (15.7). The v invariance of the theory
has-already been demonstrated.
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We cannot, however, give a proof of this since we do not
yet possess a formal prescription for constructing W out
of the basic building blocks of the theory, viz., the bare
vertex functions and Green’s functions. What we shall
in fact do is use (15.11) as one of several interlocking
requirements which will ultimately serve to define W
in a unique manner. It turns out that (15.11) leads to a
rather interesting and previously unknown result which
can be translated into the g-number language as follows:
When operator field equations exist (e.g., when no
invariance group is present) they must necessarily
contain nonlocal terms, which vanish in the classical
limit # — 0, in order that the theory be invariant under
changes of variables. We shall discuss later the reasons
why such terms are not normally considered.

The reader will have noted the ease with which
fundamental theorems may be proved now that the
theory has been expressed completely in c¢-number
language. The c-number language has also the effect of
emphasizing similarities between the classical and
quantum theories of wave scattering. From a classical
point of view the function ¢ represents a finite disturb-
ance on a background ¢, and the tree functions describe
the self-scattering which it suffers. The differences
between the classical and quantum theories arise from
the existence, in the latter, of the radiative correction
term W[ o+¢], which has no counterpart in the
classical theory, and from the fact that it is not the
retarded or advanced Green’s function which is used
but the Feynman propagator, with the result that ¢ is
complex instead of real.

16. FIRST APPROXIMATION TO THE VACUUM-
TO-VACUUM AMPLITUDE. PROOF OF ITS
GROUP INVARIANCE

We come now to the most difficult part of the theory;
the determination of the functional W which describes
all radiative corrections or so-called vacuum processes.
We do this first for a fictitious system defined by the
action functional 3S ;4’¢’ and then later extend the
results to the real system. It is clear, from the point of
view of perturbation theory, that the fictitious system
provides a first approximation to the real system. This
approximation will be denoted by the subscript (1).

Since the quanta of the fictitious system do not
interact with one another the tree functions all vanish,
and the scattering operator reduces to

Swy=:exp(iW oy +3id*"%X:6%):
= :exp(iW(l)-l—iaiTIai
+Liatt Vat*+Liat Aet):, (16.1b)
which is obtained by reexpressing (14.23) in the format
of (13.9b). The functional W ¢, will be determined by
the requirement that S, be unitary.

The =+ signs in (16.1b) are irrelevant and may be
dropped. Introducing right and left eigenvectors of the

(16.12)
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o’s and e*’s, respectively, we may then write (assum-
ing (0[0)=1)

@Sw'Sw|a)y=eTarTahet|a)0|F|0), (16.2)
where a and o' are the eigenvalues and where
F=exp[—ia' It (e+a)—%i(e™+a™) V(ata)

—3iatAta*] exp[i(a’+a) Ia+ il +af)
XV(e*+a*)+4ia"Ac]. (16.3)

Unitarity requires
2 ImW(1>=1n(O[ FIO>. (164)

Since W (1) is independent of the eigenvalues a and of
it should be possible to simplify the right-hand side of
this equation by setting these eigenvalues equal to zero.

To show that this is indeed the case we first compute the
commutators

Lo, F]=F[ila+iV (e*+a*)], (16.5)
[Fl]=[—ia'Tt*—i(e"+a")V1]F. (16.6)

Each of these commutators may be used to reexpress the
other in the form

[e,F]=[ila+iV(a*+a*)+ VI*a*
+ VV?(“'*‘Q)]F )
[Fot]=F[—ia'I'—i(a"+a™) VT
+a IV @+a) V'], (16.8)

from which, with the aid of the optical theorems (11.6),
(11.7), and (11.8), we obtain

Fa+iVa*F= (1+i)[(1—ilMe

(16.7)

—ilfa—iATe*]F, (16.9)
o' F—iFe " Vi=F[at(14+iI)+ia'T+ia"A]
X({1—iIt). (16.10)

From these equations it follows, after factoring out the
(1+4I) and (1—4I?), that

0=(0| 1 —iI")a—il'a—iA'a*]F|0)
= (0[{[—iI"(e+a)—iAta*]F+[o,F]} | 0)

=05(0|F|0)/dat, (16.11)
and
0= (0| Flot(14-iI)+ia' T+ia"A]] 0)
=(0|{F[i(e'+a")I+ia"A+[F o]} |0)
=5(0| F|0)/6a, (16.12)

which is the desired result.
With the eigenvalues a and of set equal to zero
Egs. (16.7) and (16.8) become

(1—vV"eFo=FoatiVe*F,, (16.13)
Fl(1—VVH)=a'Fo—iFa" VT, (16.14)

Fo=exp(—1ia"Via)
Xexp($ietVa*), (16.15)
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whence

5(0| Fo| 0)/8V*=—3i(0] e"Fo| 0)
= —1i(0| a(Foa"+ie! VFy) | 0)

XA—-vtv)t
=3V(A—-VV)0|F.|0},
5(0| Fo|0)/8V =12i(0| Fo*et| 0)

=1i(1—VtV)~10]|o«*Fo—iFoV'a)at | 0)
=3(1=VV)"V(0|Fo|0). (16.17)

Under variation of ¥V and V' (caused, for example, by
a variation in the background field) we therefore have

2 IméW qy= 45 1In{0| Fo| 0)
=1 t[V(1— VIV 16V 4+ (1~ VIV)-1V V]
=—15tr In(1—V1V)
=—151Indet(1—-VV),

(16.16)

(16.18)

which, with the boundary condition: W y=0 when
V=0, may be integrated to yield
2 ImW qy=—4% Indet(1—V1V). (16.19)

If we had used the condition S¢1y)Su)f=1 we would
have arrived at the result
2 ImW(1)= "%‘ ].Il det(l—AAf) (1620)

instead. The two results are, however, identical in view
of the transposition invariance of the determinant and
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the identity
det(1—VVt)=det(1+4I) det(1—iI")
=det(1—A%A), (16.21)

which follows from (11.6). We note that these results
insure that the vacuum-to-vacuum probability lies
between 0 and 1:
0L ({0, |0,— 0 )1y | 2= 2ImW ()

=det(1—VV)2<1. (16.22)

We note that they also permit, with a suitable choice of
phase, the complete identification

Way=—%ilndet(1+:1). (1623)

In order to compute lowest-order radiative correc-
tions it is necessary to perform functional differentia-
tions on W (). For this purpose it is convenient to re-
express W, in a different form. We first recall that a
formal determinant like (16.23) may be expanded by
the Fredholm method in terms of traces. Remembering
the cyclic invariance of the trace and making use of
(9.10) and (9.39) we may therefore write

det(14-4iI)=det(1+iu' ¥, u) = det(1— %, &)
=det(14+X+,®)1.
We next compare this determinant with
det(14X+Go)1,
which contains the effects of both physical and non-
physical quanta. Using the canonical decomposition

(9.7), the fundamental lemma (10.17), and Egs. (9.2),
(9.13), (9.14), and (10.18), we have

(16.24)

det(1+X+Go™P) = det[1—iX+(un'+ RoyN—10' By"+ BwN—1"v'Ry")]

1—iut X+u
=det

— ' Ro" Xt

1—i' X+u
=det| —iIN"W'Ry" X"

0

=det(1+X+P)det(1+X+Go )2,

From this we obtain at once
W ay=131 In det(14+X+Go ™)
—iln det(1+X+Go). (16.26)

Other forms for W 1) may be obtained by making use
of Egs. (9.27), (9.28) and their analogs for G¢t, Gy,
etc., namely

det(l—I—X Go)
Wao=—%h———
det(14X+Ggh)
det(1+XGo)

— (1627
det(1+X+Go) ( 2)

—iN"W Ry X+u

— it X+ R — iUl Xt Ry"oyN=1"
1—iN-WRy"X*Rw  —iN-W Ry X+ RN~
— ' Ry"X*+Rew 1— 'Ry X+RawN-1~
0 — it X +l_§o “oN—L”
1—iM—%' X+ —iN-% Ry X+ RN
0 1— it XtaM—1
(16.25)
det(1—UGy) det(1—0Gy)
=3iln iln — (16.27b)
det(1—UG4*) det(1— UGgH)
detG detGe? detGgt detG+2
=—1iln (16.27¢)

detGo detG? detG+ detGet?

The last expression must be used only formally, as the
determinants of the Green’s functions themselves do
not really exist.*?

2 The determinants det(1— UGy), det(1—UGo*), etc. do not
exist either. However, the divergences which they contain are
removable by renormalization procedures. These  divergences
may be shown to contribute only to the real part of W, and
hence do not affect the vacuum-to-vacuum probability (16.22).
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Since the matrix I is group-invariant W ), as given
by (16.23), is invariant. This invariance must also
hold for the forms (16.26) and (16.27), and this pro-
vides us with a useful consistency check on our results.
Expressions (16.26) and (16.27) are manifestly in-
variant under gauge transformations of the #’s, since
they do not even depend on the #’s. Their invariance
under changes in the y’s may be verified with the aid of
(14.13) and

8F=R"8yR. (16.28)
Thus we have
detG A A
ol —= —tr(F6G)—2 tr(GoF)
detG?

= —tr(FGoyRGR™—FRGs7GR~
+FRGR™3yG+2GR"5vR)

= —tr(yRy67GR™) = tr(7767), (16.29)
and similarly
detG+?
6 1n =—tr(y7167), (16.30)
detG*

with corresponding expressions for the zero-point
quantities, whence 61 3,=0.

To verify invariance under group transformations
of the background field we use (11.9), obtaining

§ In detGE= —tr(FiG=*)
= — Fii(Ria 1GE¥+ Rig 1GEi) 55

=2R%, 08, (16.31)
Similarly,
3 In detG= —tr(FsG=)
=— Fag(c"yaéiaﬂ-l-cﬂyaéi“a) o7
=2¢%a087. (16.32)

We may now either use (4.10) or else note that these
variations will be exactly cancelled by identical ex-
pressions coming from the G’s and G’s of (16.27c). In
either case we have &I 3,=0, which completes the
consistency check.

We remark that no special significance is to be
attached to the use of the advanced Green’s functions
in Egs. (16.27). Because of the transposition invariance
of the determinant the retarded Green’s functions could
be used just as well.

17. SINGLE QUANTUM PRODUCTION.
FICTITIOUS VIRTUAL QUANTA

The simplest example of a physical process which
can be classed as a radiative correction or a closed-loop
effect is the production of a single quantum by the
background field. In this process the background field

BRYCE S.
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F16. 2. Lowest-order diagrams for the single-quantum-produc-
tion amplitude. Diagrams (a) and (b) refer to the cases in which
infinite-dimensional invariance groups are, respectively, absent
and present. Lines terminating in dots represent external-line
wave functions. Lines bearing arrows represent virtual quanta
on the mass shell. Dashed lines represent fictitious quanta. The
asymmetry of the vertices from which fictitious quanta emanate
is indicated by the obliquity of the angle at which the solid
lines are attached.

first produces two or more virtual quanta which, after
various interactions with each other and with the back-
ground field (involving scatterings both forwards and
backwards in time) proceed to coalesce into a single
quantum via elementary vertex interactions. From
Eq. (14.23) it is easy to see that the amplitude for this
process is

(A,OO IO,—oo):ieiWW,ifi(*)iA. (171)

For simplicity we ignore the vacuum processes
described by the exponential and replace . ™ by the
full wave packet ¢o; we may regain individual ampli-
tudes by functional differentiation with respect to the
o’s when desired. In lowest-order perturbation theory
the amplitude then becomes

S W (1y,i= —51(G*— GE*)F j1, ipo*
. +i(GA“ﬁ—Gia’g)F¢xﬁ,i¢oi
= £ Ligg'S iz G @k
F3id0'(V (@irg+V ya) G ¢, (17.2)

where
V (@iyg=R74,:R;g. (17.3)

When no invariance group is present the second term
on the right of Eq. (17.2) is absent, and the ampli-
tude may be given the graphical representation depicted
in Fig. 2(a). The line terminating in a dot represents the
external-line wave function, and the solid line bearing
an arrow represents the function G7%. The arrow may
be assumed oriented in the direction “%2 to 57’4 and
serves as a reminder that the virtual particles associated
with it are on the mass shell, as follows from the fact
that G satisfies the homogeneous equation FG™)=0.

When an invariance group is present the function G
propagates nonphysical as well as physical quanta, and
the second term on the right of (17.2) appears in order
to compensate for the unwanted quanta. Feynman,
who was the first to call attention to the need for this

4 Unlike the Feynman propagator the function G7* is not
symmetric in its indices.
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extra term, has referred to the auxiliary propagator
G® which occurs in it as the propagator for fictitious
quanta.** In the case of the Yang-Mills field the fictitious
quanta constitute a set of massless scalar particles
which transform among themselves according to the
adjoint representation of the group. In the case of
gravity the fictitious quanta are massless vector
particles.

It is to be noted that the fictitious quanta are needed
only when the invariance group is non-Abelian. In the
Abelian case the vertices V(aiys to which they are
coupled vanish. This is one of the reasons why quantum
electrodynamics, with its Abelian gauge group, fails
to provide a satisfactory training ground for studies in
quantum gravidynamics. Another peculiarity of the
vertices V (as)p is their lack of symmetry with respect
to the group indices. Although they appear in a sym-
metric combination in (17.2) they do not always appear
thus in more complicated processes. Their asymmetry is
indicated in Fig. 2(b) by making the solid lines attached
to them join the dotted lines at an oblique angle. The
dotted lines represent fictitious quanta and the presence
of the arrows indicates that the propagator G rather
than G is to be employed. The sum of the three diagrams
appearing in Fig. 2(b) gives the full production
amplitude.

Explicit calculation of the amplitude leads to diver-
gences which must be handled by the methods of re-
normalization theory. For this reason use of the
manifestly covariant functions G® and G is essential.
From a purely formal standpoint, however, the func-
tions @@, which propagate only physical quanta,
suggest themselves as natural replacements for G¥;
they should in principle permit one to avoid dealing
with the fictitious quanta. That is, we expect that it
should be possible to rewrite (17.2) formally in the
simpler form

o'W 1),i= £ 53ipo’S ,in OB * (17.4)

in which the propagators G no longer appear.

Equation (17.4) can in fact be shown to follow from
(16.23). We shall here show its equivalence to (17.2)
directly. For this purpose we must first assemble a
number of fundamental identities.

We begin with Egs. (9.20), (9.21), (9.37), and (9.38),
which, after a certain amount of algebraic manipulation,
yield

X— %=X (Go— Gos) ¥s=Es(Go—Gor) X (17.5a)
= x:l:(GO_ ®0i)[1 - x:l:(GO_ @oi)]_lxi , (175b)
“R. P. Feynman, Proceedings of the 1962 Warsaw Conference

on the Theory of Gravitation (PWN-Editions Scientifiques de
Pologne, Warszawa, 1964).
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GC—O=FGH LG
=14GoX)(Go— o) (14 %, S0y) (17.62)

=140+ X1) (Go—Go1) (14X Go)
= (1401 X1) (Go— Oo)[1— XL(Go— Gor) T
X(14+%.Oos). (17.6b)

Further reduction of these expressions is most easily
carried out by direct formal expansion of the bracketed
factors. Using

Go— o= — Gy + G

=iRwN~9 By +iRowN-1"v'R,”, (17.7a)
Go—Gp-=Goy O — G
=iRW*N~ Ry +iRw*N-1"0"R,~, (17.7b)
which follow from (9.7) and (9.10), and
xiRo'U= XiRo'U, (178)

which follows from (9.38b) and (10.18), we find, with
the aid of (9.13), (9.14), and the lemma (10.17),

(Go—Go)[1—X:(Go—Oo) I
=i[Ro(1+GoH X+ "Nt By™+ RowN—1"ot
X (1 +X+(;0(+>)R0~:|__ Ro(1+Go(+>X+)—1vN—1

X'Z)TR0~£+R0‘UN_I~'UT(1+X+Go<+))Ro~. (179)

(The corresponding formula with -+ signs replaced by
— signs can be obtained from this by transposition.)
Inserting this into (17.6b) and using the analog for
the functions Gy, G, etc. of Eq. (9.27), together with

14+ X)Rw=R(1+G=X*)y,  (17.10)

which follows from (9.40), (10.14), and (10.18), we
obtain :

G—@+=—G(+)+®(+>

=1iRQ4+iQ_"R™—RP,R~, (17.11a)
G—O_=GO—@E
=iRQ_+iQ,"R™—RP_R~, (17.11b)
where
Q+=(1+GX)oN-"4 By~ (14 %, G0y), (17.12a)
0-=1+GX)v*N-9"Ry"(1+%_G_), (17.12b)

P,=P_"=Q1+GX) 2N~ Ry ¥, RoN—1"ot
XA+XGy). (17.13)
Before Egs. (17.11) can be used to compute the effect
of replacing G& by @@ some special properties of

the functions Q4, Py must be derived. First we note
that Eq. (9.2) permits us to write

F(1+Go=X %) Row= — FG:FoRpw=F,Rv=0. (17.14)
From this, together with (4.7) and (5.11), it follows that

Fy R y(1+GoX*) Rov

=R F1+GEXH)Rw=0. (17.15)
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By the laws of propagation, taking into account

boundary conditions in the remote past and future,

this in turn implies

IR (1+Go=X*)Row= (1+G*X+)75 Ry yollow
=(1+G#XE)M-N", (17.16)

in which (9.13) has been used in obtaining the second

form. Analogous reasoning, combined with (8.18), leads
to

7R y(14+GoEXH)u= 1+ GtX*) 7 Ro ™ you, (17.17)

which also follows from (10.3) and (10.6). Equations
(17.16) and (17.17), together with (9.40), then yield

TR Y1+ X )Rov= (1+Go=X £)sM—'N~. (17.18)

From this, with the aid of (9.14) and the analogs for
G, G, etc. of (9.27) and (9.30a), we obtain

QiR =7 R vQ-"=iGH (17.19a)
QR '=5"RyQ,"=—iG™.  (17.19b)
We also have the equations
FQ,™ =0, (17.20)
FQ.=0, (17.21)
FpP,=0, (17.22)

which are immediate consequences of
F(l‘*‘@oixi)R(ﬂ): —I—’:®i<ﬁ0ﬁ(ﬂ)= F()Ro'l):- 0 ) (1723)

PU+CoX)v=— FGFw=F=0. (17.24)

These equations, combined with (5.11) and (17.19),
give us -
0..5:=FiGHRy. (17.25)

For completeness we record here also the following
useful and readily verified identities:

S:G=—1—yRGR", (17.26)
SeG® = —yRGHR™, 17.27)
G&®yR=0, (17.28)
S:&® =0, (17.29)
OGP =—@O"=—if 1+~ f_®7.  (17.30)

The last identity, which is obtained with the aid of
(9.10), (9.42), (10.9a), and (11.2), shows explicitly
that the functions @@ propagate real quanta on the
mass shell only.

We are now ready to employ (17.11) in the verifica-
tion of (17.4). In this, as well as in many similar but
more complicated derivations later to be stated without
proof, repeated use is made not only of (4.7), (14.5),
(17.25), and the other identities collected above, but
also of a hierarchy of identities following from (4.8),
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namely

S,;l...gﬂija
= —S,jigu-i Rja.ix— [P

n

(17.31)

which relate bare vertex functions differing in order by
unity. We give the steps of the present derivation
without comment:

%iqsois,ijk@ SR
=1ig0'S iju(GD - iRI,Q, *k4-iQ_2iRE,
— Ri P, Rk,
= ’%iﬁbois,ﬁikG(+)jk+%¢0i(S,ijja,,'+S,inja,k)Q_*_“k
+360°(S kR e, i+S irREa, ;) Q-
+3i¢0(S jxR%a,i+S iR a,k) P+**R¥g
=3i¢h’S ijsG % — L R;gR7 ;G H) o8
+3ido'RisRre, G2, (17.32)

In view of the symmetry relation G&~=—G®
[cf. (9.6)] the last line reduces immediately to the
right-hand side of (17.2).

Aside from eliminating the fictitious quanta, Eq.
(17.4) has the important advantage of yielding an
immediate formal proof of the group invariance of the
amplitude ¢¢*W (1y,;. To see this we note that .S 4 is
identical with the tree function f;;;z. Therefore, in view
of (17.30) the right-hand side of (17.4) appears as
a sum over tree amplitudes in which all of the external-
line wave functions refer to physical quanta on the
mass shell. Group invariance of the total amplitude
follows immediately from the tree theorem. This
possibility, namely of reducing all amplitudes to sums
over tree amplitudes so that group invariance is assumed
by the tree theorem, was first suggested by Feynman.?
We shall now see how it works in more complicated
processes.

Sv':l""-n-.ljRJa»in y

18. MULTIQUANTUM PROCESSES.
FEYNMAN BASKETS

Next in order of complexity are the lowest-order
radiative corrections to the amplitudes for scattering,
pair production, and pair annihilation by the back-
ground field.*® These are obtained by functionally
differentiating the amplitudes of Fig. 2 and using the
variational law

IGD =GDIFG+GIFCHLGHSFGE | (18.1)

which follows from (6.19), (9.19), and (9.29). When no
invariance group is present the result is

do’do’(W 1y ,i+ S, iikGF W (1y,1) = 3ipo'Po’Lij1iG I *

i tiriG GOy o, (18.2)

which has the graphical representation shown in Fig.
3(a). We see immediately that Feynman’s idea works;

45 When the background field vanishes these reduce to the
self-energy corrections to the 1-quantum propagator.
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(a)

d (g“Lg"E'(\S*"-(b—afY“--p,{fP)
(650

(b)
F16. 3. Lowest-order radiative corrections to the 2-quantum

amplitude. (a) Invariance group absent. (b) Invariance group
present.

the total amplitude appears as a sum of products of
tree amplitudes. In the figure the diagrams have been
grouped into sets corresponding to the tree structure,
ie., to the two terms of Eq. (18.2). These sets are
known as Feynman baskets. The key method in develop-
ing the general theory of radiative corrections of
arbitrarily high order will be to take diagrams having a
given topological structure and reassemble them into
Feynman baskets.

The corresponding amplitude when an invariance
group is present may be obtained by three distinct
methods: (1) functional differentiation of (17.2); (2)
functional differentiation of (17.4); and (3) replacement
of G by @ in (18.2) and use of the identities (17.11),
(17.19), (17.27), (17.31), etc. All yield the same result,
namely

o'W (1y,45+S G W 1y,1)
=3ido'potijr@HH
+Ligoit i QD EmG 0l bd  (18.3a)

—_ %f¢oi¢oj[tijle(+) kl+ tiniG ) em(G (+)nltmnj

— 2V (@iysGH1G BV 3y, — 2V (80yaGH1G BV (55

—V (aiygG TG HBIY (10— V (50 a G TG HIBY (i
=S, GV @st+V aa)GH28], (18.3b)

which has the graphical representation shown in
Fig. 3(b). In each case the derivation is straightforward
but tedious. Obviously, the amount of computational
labor involved in converting from @) to the functions
G® and G“Y mounts rapidly as the complexity of the
underlying tree diagrams increases.

In functionally differentiating either the external-
line wave functions or the physical propagators it is
necessary to have a variational law for @@ analogous
to (18.1). This is obtained by inserting (6.19) and (11.10)
into (11.11) and then using (9.23) and (9.35), which
yields

SO® =G FO D +GDSFGEFPH B SFOE®
=@ FOP+OGDFY L +=@GRFOD

and, incidentally,

(18.4)

6®i=®i6F®* . (18.5)
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From Eq. (17.28) and the explicit form

6F=8S,+8(yRy'R™), (18.6)

it then follows that

O =@, (8S2+vR7 1R “y+vRy R ~8y) @
+O® (8Sy+ YRy 'R y+70R7'R™y)®
:l:@(i)552® (+)

=065+ @B S ,G L GBS, G
+RG=(8R™y+R™8y)®@®
+ & (8yR+v8R)GER™. (18.7)

When this law is used for the purpose of generating
Feynman baskets it turns out that the last two terms
never contribute anything owing to the presence of
the R’s. One finds also that the ®,’s in the first two
terms may always be replaced by G’s, a result which is
directly related to the previously mentioned possibility
of using G or & interchangeably for the internal lines
of tree diagrams.46

Another fact which is useful in computations is that
in performing functional differentiations one may skip
over any v’s which occur. Terms involving functional
derivatives of y’s conspire mutually to cancel in any
observable amplitude. This is a consequence of the v
invariance of the theory.

There is, however, one possible source of worry which
needs to be disposed of. In passing from an expression
like (17.2), say, to the expression (17.4), one makes use
of (6.11) and many other identities which depend on
the background field equations being satisfied. The
right-hand sides of (17.2) and (17.4) are therefore not
identical but are equal only modulo the field equations.
They differ by an expression of the form @%S ;. One may
ask what happens to this difference when it gets dif-
ferentiated. The answer is that, in the passage from the
one-quantum amplitude to the #-quantum amplitude,
the combinations in which the functional derivatives

46 With the identities which we now have at our disposal it is
straightforward to show that the theory of tree functions may
be based on ® rather than G. One replaces Eq. (14.4) by

¢1=00t+O:(Si[ot¢.]—Ssps)
and obtains Si[¢+¢.]=0, in complete analogy with (14.10).
The corresponding tree amplitudes are then obtained from
(14.25) by replacing ¢ with ¢.. To show that this replacement
leaves the tree amplitudes unaffected we write
$—ds=—GS:+8:Sebs=—GS:(6—¢) — (G—®S:s.
In view of (4.7), (5.11), (10.10), (14.3), and (17.11) this equation
is solved by
¢—¢=—iRQ . (F—YRYR™Y) (p+— o).

The quantity ¢.—¢o vanishes at infinity rapidly enough so
that the operator in parenthesis can be reversed. From (17.19)
and (17.20) we therefore get

$—0¢.=TFRCDR y(g1—¢1)= FRCDR ™y (p—¢u),
from which the invariance of (14.25) immediately follows..,
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of this difference occur always add up to zero. These
combinations, in order of increasing complexity, are
(a%S.i+a'S.i)eo,

[a? %S ,i120% ;S ax+a®S ijn

+ (@85S i+ a%S ;) G'™S mjr Jbo’do®, (18.8)
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etc. By making use of (2.2), (10.10), (17.26), and (17.31)
one readily verifies in each case that these combinations
vanish. It is not hard to show, in fact, that this is to be
expected as a corollary of (14.10).

We close this section by recording the contributions
of Wy to the three- and four-quantum amplitudes:

B0'do’do* (W 1y, i5+ 361G W (1) ,mi+LijtiG™ W (1),m) = 5ip0"bo'do* (Lijkim©O 43151, D 2@ B g )

+2tum@(+)’"”tqu@ ) qrtnk@(-l‘) sl) , (18,9)

o'bo’ o dol (W 1y ikt 6tiimG™ W 1y, nkit4LijemG™™ W 1y, 21+ 3Lijml51aG™PG* W 1y, pgt+LiiuimG™W (1,n)
=Lido'poipo¥ o  (£ijktmn @ ™41 Hmp@Erang 43t GEmpGE) ant kit 128mn @ EOInrg, G B arg,  GHrrm

The corresponding diagrams when no invariance group
is present are shown in Fig. 4. The grouping of the
amplitudes into Feynman baskets is again evident.
The task of reexpressing (18.9) and (18.10) in the
general case in terms of G, G, GP, G will be left to
the reader as a (rather lengthy) exercise. The reader
may also enjoy discovering the simple rules of dif-
ferentiation which lead in a step by step fashion from
Eq. (17.4), through Egs. (18.3a), (18.9), and (18.10),
to the lowest-order radiative correction to the general
n-quantum amplitude.

19. HIGHER-ORDER RADIATIVE CORRECTIONS.
USE OF THE FEYNMAN FUNCTIONAL
INTEGRAL TO CONSTRUCT A
CONSISTENT THEORY

The functional derivatives of W 1) are represented by
diagrams each of which has only a single closed loop.

L1(8+ g+p3\8+g€‘5+&a‘§+%‘g+ F‘;é*‘*’aaﬁ* %5!2)
o

B eenfon e e g§+pg

FregraRradindindme
g

Fogdng

2§+ ‘ﬁ)i-lz»(%gé-F §§+p2 +R,

i)

F16. 4. Lowest-order radiative corrections to (a) the three-
quantum amplitude and (b) the four-quantum amplitude in
the absence of an invariance group. When an invariance group
is present all the mass-shell propagators GPare replaced by @,

Rz

i P

+6t;mn® (+)nptqu© @ arg, G 8ttml@(+) um) . (18.10)

Connected diagrams having two or more closed loops
correspond to higher-order radiative corrections. A
diagram having #-independent closed loops is said to be
of the nth order.

Consider the set of all connected #th-order diagrams
which contribute to a given scattering amplitude. By
repeated functional integration one may remove the
external lines. The resulting vacuum diagrams represent
the nth-order contribution to W, which will be denoted
by W(n).

The basic topology of the vacuum diagrams and the
numerical coefficients to be attached to them are the
same for all field theories. For purposes of orientation we
begin with the case in which no invariance group is
present. The Feynman functional integral may then be
used as a convenient formal expression for the vacuum-
to-vacuum amplitude:

(07°° lo’—' °°>=eiwl¢] )

Wle]=wlp]—2[0],

(19.1)
(19.2)

et lel = / expi(SLo+¢]—SLo]—S L o1%)
XALe+olde (19.3)

dp=I] do:. (19.4)

Here A is a density which serves to define the functional
volume element. It will be chosen in such a way as to
maintain invariance of the theory under the variable
transformation (15.5).

It is not difficult to show that Eq. (19.3), when
supplemented by the statement

0, | TULED 10— =)=e-0 [ aT4]

Xexpi(SLe+¢]—SLe]—S.Le])
XALe+¢lde, (19.5)
yields the hierarchy of Egs. (12.20), (12.21), (12.22).
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Thus,
é
G#i—(0, |0,— )
0o*
— —.w[01G11f<_—{expi(S[tp‘l-d’]"S[ﬂ@]
107

=S Lol ALe+¢ 1} —S. [ o 1o* expi(SLe+6]

—S[¢]—S,z[¢]¢‘)A[so+¢]>d¢

=<0’°° I(I)i(()’——-oo>’ (19'6)
)
GF—Go <0’°° [07— °°>
0o* 10!
0
=G <07°° i(l)fIO’—oo>
10 %

0
= —iw[olGik/<7*{¢j expi(SLe+¢]—SLe]
18¢*

—SaLeleNALe+ o1} {i6%—S ul ¢ 1o’}
Xexpi(SLe+¢]—SLe]—S .ml:<p]¢"‘)A[¢+¢])d¢

=iGij<07°° IO:_OO>+<07°° lT(¢’¢7)|0,-00>, (19'7)
etc., in which functional integrals of total functional
derivatives are set formally equal to zero. In fact,
Eqgs. (12.20) et al., can be used to derive Egs. (19.3)
and (19.5), showing once again that the technique of
varying the background field is completely equivalent
to (but of wider applicability than) more familiar
methods employing external sources. '

Further algebra yields
$4/— T(§°4) = —i0(j,) G=iG+

= ,I:G+i1‘_|_iG+iilk¢k+%iG+ij'le(¢k¢l) — %Gij'le+kl+ SRR
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The formal identity

[
/ ;;{expi(SDp-i-sb]—S[¢]—S,s[¢]¢‘)
XALe+¢]}dep=0, (19.8)

combined with the condition S,[¢]=0 on the back-
ground field, suggests that the operator field equations
of the theory may be written in the form

T(S. Lo+ o]—i{lnALo+¢]},: )=0. (19.9)

On the other hand we expect that they may also be ex-
pressed in the simpler “classical” form

1
0=SLet+¢]= S,ij¢j+;l's.ijk¢j¢k

1
+§‘!S,ijkt¢"¢k¢l+' -+, (19.10)

the manifest Hermiticity of which follows from the
symmetry of the coefficients (bare vertex functions).
Equation (19.10) will, in fact, turn out to be not quite
right; it cannot be reexpressed in the form (19.9) and,
moreover, it is not form-invariant under transforma-
tion of variables. However, we shall adopt it tentatively
and then correct it later.

The term in A in Eq. (19.9) may be regarded as
arising from the process of converting from ordinary to
chronological products, and may be computed on this
basis. In rearranging factor sequences we need to know
the commutator [ $%,¢7].47 For this purpose we take the
commutator of (19.10) with ¢* and find that the result
is solved by

[4,67]=iG¥, (19.11)
Gii= G+ G 1 o*(1/20) G ag*el+---.  (19.12)

The algebra is straightforward. Here we work only up
to the order needed in discussing W (sy; more efficient
methods of procedure will be given in the next section.

(19.13)

$50E— T(6%470) = 00, k) G0k, )4G0k, ) G430 1) G- ig G
=G GGG T ()G T (9 ) G T (4'4)

G GG G-, (19.14)

¢i¢j¢k¢l_ T(¢z¢]¢k¢l) = 1G+1]T(¢k¢l) +,LG+le(¢1¢j) — G+ijG+kl_|_ zG-}-sz((bJ‘bl) +,LG+JZT(¢t¢k) — G+ikG+jl

HIGHIT($i9h)+iGHT(§79) —GHIGH*+- -, (19.15)

47 Here we proceed purely formally and ignore the fact that in a local theory all the ¢’s of Eq. (19.10) are evaluated at the

same space-time point.
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where 6(3,7) is the temporal step function*s

BRYCE S. DEWITT

0i,))=1 for i>j

=0 for j>1.

These results permit us to reexpress Eq. (19.10) in the form

0="T(S, Lo+ oD +5S.inliGH*4iG S 4y GF P ¢+ FiGH2S 4GP T (90 +iG+]
FHGS,pGHS, faGH 2T ($°0H) +iGHHIG4T+ - - - } 43S i 3iGH*§1+ 3iGH2S 4GP T ($°9Y)

—GHi8S 4y GGG+ - -  } 4248 1 imGHAT(916™)— 1S isiimGTHGHmF -+ -+

The terms following 7'(S,{L¢+¢]) in this equation
are almost, but not quite, expressible in the form
—iT({InALo+¢]},:) of Eq. (19.9). What is missing
is a term having the following structure:

1%35,iitGH0S 05GPS o1aGH G, (19.18)
If this term is added to Egs. (19.10) and (19.17) we find
A[¢]= (detG"’)‘W exp(—%iS,ﬁkG“‘G"'f'”G‘k"S,Zmn

— 148 GG - - 1), (19.19)
ALet+¢]= (detG*)"/2 exp(—3G+S, ijnd*
—%GH“S,aka'*'bjS,,’jztﬁk(ﬁl—%G'Hjs,ijkld’kd’l
— o =148 (GHIGTmG=knS |
— 318 ;iuGHIGTR .. 2) . (19.20)

Expression (19.18) is the first of an infinite sequence
of correction terms, which must be discovered by
laborious computation. These terms maintain the formal
Hermiticity of the field equations [e.g., (19.18) is real]
but are not mathematically well defined. Like the terms
of A they involve Green’s functions with coincident
arguments and hence cannot be properly discussed
apart from renormalization theory. However, they may
be regarded as possessed of certain formal properties.
Owing to the kinematics of the Green’s functions they
depend only locally on the fields, and in the case of
scalar fields with nonderivative couplings they may be
regarded as vanishing by virtue of the commutativity
of field components at the same space-time point.

We are now ready to compute W (5. We first reexpress
Eq. (19.3) in the form

eiwlel = (CXPiW(l)[O:D(O,OO | T (expi[ (1/31)S,ijxdid'*
+(1/4DS ixid ¢+ - - ]
XA’[‘P;‘!’:D IO,— © )(1)‘ (19‘21)

Here A’[¢,0] is AL+ ¢] with the factor (detG+)—1/2
removed, and

(0;°° [T(4[6])]0,— = )q)

= Cexp(—iway[0])] f AT6] exp(ibS.o66)
X(detGH)V2d¢, (19.22)

48 The step function need not be defined for spacelike separa-
tions of ¢ and j but must be handled with care when the two
space-time points coincide. Fortunately it disappears in the final
forms of Egs. (19.13), (19.14), and (19.15).
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(19.16)

(19.17)

exp(iwm[e])
= / exp(i3S. 1,6'd7) (detGH)~1/2dg

(detG)1/2

~ e’ (19.23)
(detGH)1/2

where Z is a numerical constant determined by the
lattice spacing used in the definition of the functional
integral, but independent of the background field.
The Green’s function G makes its appearance in (19.23)
owing to the Feynman boundary conditions assumed
in the Gaussian integral.

Writing
W= Y:I Wy, w= 21 Wny, (19.24)
Wmlel=wmle]—wm[0], (19.25)

and making use of (19.20), (19.21) and the hierarchy of
equations generated by

<07°° | T(CXP“\NI)’) ]O’_ ® )(1)

= exp(iW(l)-{—%i)\;)\JG“) , (1926)
we find
- 151 detG detGot (19.27)
=—3ln—— X
O detGo detGH

W @y= —15.iit(GIGImG*n4- 2GHIGHimG—hn
—3GHGHMGTE)S tma—§ (GT—G)S iz GHS tmn
X (G GHmn) 8. 4G GH1) GH—GH4)
minus the same terms evaluated with ¢=0. (19.28)

Equation (19.27) is observed to agree with (16.27¢)
for the case in which no invariance group is present.
Expression (19.28) for Wy, on the other hand, is
still not quite right; it fails to be invariant under the
variable transformation (15.5). To find out how . it
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changes we make use of the transformation laws
S S
S, =805 , (19.29)
5<p/1' 5(P’J'
8(pa. 5(pb &Pc 5(p”’ 52¢b 8(pa 5z¢b 5¢a 52(pb
St =S abe———— .ab<—_ - f - _ - > , (19.30)
6({7,1 6({”" 5§0,k 5¢11 6¢I:’5¢/k 6(pl‘7 é(p/kaqali 6§0lk 8(p/16§0,'7
6«9“ 5¢b 5(pc &Fd 5<pa 5(pb 52<pc 6<pa 5(pb 62<P° 3<pa 3<pb 62‘pa
S.iu’ =S abea—— —— +S,ubc( e + —
6€ol, 6@"’ 5(9”‘ 3¢Il : 6@“ 6(0"7 8(plk6§0ll 6(0”6 6(,0” 6(p/16§0"’ 6(,0/1 6‘P,k 6Q0,]5§0”
5z<pa 52<pb 62¢a 52<pb

, 5(,0"‘ 3<pb 52(pc , 5(,0"’ 5(0" 52«,«: ' 5¢a 5<pb 52¢c ) <
- T I ab
5(,0”.5(,0/1 5(9,1‘5(;3”0 a(p/i 6(9,1 3<p/j3<p'k 6(p’j 6€011¢ 5(pli6g0ll

52(pa 52‘/’b 6<pa 53(pb | 6“00

83pb

. 1 . .
8§O,i6(p,'7 6§0’k6¢/l 5<p”5<p”‘ 6(‘0116¢IZ

’ 6(9“ 53‘Pb | 5(p“ 634,05

5060/ 8080k 807 808 R0 80/ 608G BTk 8015080 5yt byt byt

from which terms in S, have been omitted owing to the
fact that the background field obeys the classical field
equations. These laws permit us to infer [cf. (15.8)]

8({7/’. 6§0’j 6‘pli 5<Plj
Glii=—— ——GH, GMii=—— —GH, (19.32)
do* 8ot dot 8ot

whence it follows that W, s invariant. For W ), on
the other hand, we find, by a straightforward but
tedious calculation,

820° 8ot 8’7

800" ¢ dp°

1
W<2>’|:¢>']—W(z)[¢]=£S,ach“dGbe

2 ,a 2,0 /7 /5 ’k 1
1 6(p Pe 5<P d¢70¢ ai_ccecdf

ab . A
48 8¢80T 80"k 80" 8ot Sp? 8¢ bof

]
T

minus the same terms evaluated with ¢=0, (19.33)

showing that Eq. (15.11a) is violated.

The violation, however, is not very great. Relative
to the large number of terms involved in the calcula-
tion and the large amount of cancellation which takes
place between them, expression (19.33) represents a
very small residue. One suspects that it can be easily
eliminated by the addition of a suitable term to (19.28).
The desired term should be real, so as not to disturb
the vacuum-to-vacuum probability, and should be built
out of quantities, such as Green’s functions and bare
vertex functions, which already exist in the classical
theory. It is not difficult to verify that there is only
one second-order expression with the necessary prop-
erties, namely

Y @y =(1/48)S.ixGIGmGH*"S 1mn

—(1/48)S.iit°Go*'GoGot*S 1mal.  (19.34)

We therefore conclude that the final correct forms for

> , (19.31)

W (2y and A (to second order) are

W @y=— 15S.,:js(GG™G*n+- 2GHIGHmG*n
—_ 3GilG+j7nG*kn_%GilGij+kn) S tmn
—1(GH—G+1)S ;4GS (G — Gmm)
—38 ;i1(GY— Gt9)(GH—G**) minus the

same terms evaluated with ¢=0, (19.35)

A[¢]= (detG+)‘” 2 exp(—%zS _,‘jkG+ilG+ij~ kS imn
-+ (1/48)1'5,,','1;6”61-"’0"""5,z,,m
—31S,5uGTIGtH- - - 2). (19.36)

The introduction of the term (19.34) brings a qualita-
tively new element into the theory. It adds to the
operator field equations (19.10) a term of the form
T(Y . o+]) which, unlike (19.18), depends #on-
locally on the fields and is nonvanishing even for scalar
fields with nonderivative coupling. This implies that
within the framework of local field theory there exists
no covariant ordering of the factors of the operator field
equations which maintains form-invariance of the theory
under arbitrary (local) transformations of variables.
Such a conclusion, however, presupposes a definition of
“locality” which, because of its formality, is perhaps not
very useful. Of greater importance are the conditions of
analyticity on scattering amplitudes which ought to
hold if certain conditions of causality (conventionally
assumed to follow from ‘“locality’”) are to be wvalid.
The “derivations” of this section are purely heuristic
(since one is dealing with the unrenormalized fields)
and there is evidence that the surgery effected by
standard renormalization techniques (which, when
applicable, is implicit also in dispersion theory) removes
from the theory precisely the formal nonlocality repre-
sented by ¥ (2. We shall return briefly to this question
in the next section, where alternative, more systematic
methods for treating the higher-order radiative correc-
tions are discussed.
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20. NONCAUSAL CHAINS. FEYNMAN BASKETS
FOR OVERLAPPING LOOPS. GENERAL
ALGORITHM FOR OBTAINING THE
PRIMARY DIAGRAMS TO
ALL ORDERS

If, in Eq. (19.3), the density functional A is set equal
to unity then all the terms drop out of Egs. (19.27) and
(19.35) save those which involve the Feynman propaga-
tor G only. The resulting functional will be denoted by

g

W= —%’L In detG— Tl'z" ,,’jkGilemGk”S,lmn
—1GS 4GS 1maG™ — 1S GG+ -

minus the same terms evaluated with ¢=0.-  (20.1)

The basic topology of vacuum diagrams is already con-
tained in the terms of this series. Each term corresponds
to what will be called a primary diagram, composed of
bare vertices and Feynman propagators only. The
primary diagrams of orders 1 through 3 are shown in
Fig. 5. In these diagrams the terms with ¢=0 are to
be understood as already having been subtracted out.
In most applications one is not interested in the
vacuum-to-vacuum amplitude itself but only in its
functional derivatives, which yield the radiative cor-
rections to scattering amplitudes. The terms with
¢=0 make no contribution to these amplitudes, being
essentially constants of integration. Therefore, no
attempt has been made to represent them pictorially.

The terms of Egs. (19.27) and (19.35) which are
missing from (20.1) are topologically similar to the
primary diagrams. They differ only in the replacement
of various Feynman propagators by G+, G-, and G. The
question which presents itself is how these replacements
are to be made in the general case and with what
coefficients.

It is evident from the analysis of the preceding sec-
tion that the diagrams which cause the most trouble

F1e. 5. Topology of higher-order radiative corrections. Primary
diagrams of orders 1 through 3. No invariance group present.
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are those which contain overlapping loops (just as in
renormalization theory). Let us therefore consider first
the simpler diagrams in which no loop touches any
other loop in more than a single point. By referring to
Eq. (19.35) and to Figs. 2, 3, and 4 it is not difficult
to see that, as far as these diagrams are concerned, the
correct expression for W is obtained from that for W
simply by removing the noncausal chains from all loops.
By “noncausal chain” we mean any cyclic product of
advanced (or retarded) Green’s functions connecting a
sequence of points of which the last is equal to the first.
Such cyclic products necessarily vanish except when all
the points coincide, and hence they depend only locally
on the background field. In the case of scalar fields with
nonderivative coupling they may be formally set equal
to zero. In the general case they must be explicitly
removed.*?

The diagrams with overlapping loops cannot be
treated so simply. Here the difficulty is twofold. First,
the noncausal chains enter in a more complicated way
and, except in the case of W (s, there is no unique way
of removing them. Second, the removal of noncausal
chains by itself does not suffice to lead to invariant
amplitudes.

The situation may be described more fully thus: At a
certain point in the process of removing noncausal
chains from a given primary diagram one must stop;
no further noncausal chains remain. At this point the
diagram no longer contains closed loops composed of
Feynman propagators only. At least one segment of
every loop consists of a “free” propagator G or G,
That is to say, the removal of the noncausal chains
“breaks open” all the closed loops, and the result is
representable as a sum over tree diagrams with all
external lines on the mass shell. However, the particular
trees which are obtained, and the coefficients attached
to them, generally depend on which noncausal chains
are removed first and on what orientation one chooses
to assign to them. In the more complicated diagrams
there is not even a unique way of averaging over
orientations.

One may nevertheless ask whether there is a “correct”
way of removing noncausal chains. The answer is yes,
but it must be determined separately in each individual
case by a computation which is as complicated as those
of the preceding section; no simple general algorithm
has so far been found. Moreover, even when the non-
causal chains have been properly removed the resulting
tree diagrams cannot yet be assembled into Feynman
baskets. “Nonlocal terms” beginning in lowest order
with ¥ (2, have also to be discovered and added.

To gain an appreciation of the complexities which
arise the reader may try his hand at decomposing W (s),
remembering to take into account the contribution
which ¥ () makes in this order, through its presence in

49 For W (1) this means subtracting In detG* from In detG; the
latter is represented by the simple circle in Fig. 5.



162

the density functional A. We shall content ourselves
here with the decomposition of W (3.

In this case it turns out that although the removal
of noncausal chains can be carried out in various ways
the end result is always the same. Thus the three prop-
agators of the first diagram for Wy, in Fig. 5 may,
with the aid of Egs. (9.17), be decomposed as follows:

GRGRG=GRGTRGC+G RGTRGHGTRGRG™
—GQRGTRG—GtRGTRG+GTIQRGRGT
+G(+)®G(+>® G_G®G(+)®G(—)+G(—)®G<+)®G(—)

—GHRGEHRG™. (20.2)

The first five terms on the right of this equation yield
noncausal chains. If they are subtracted one obtains
the first term on the right of Eq. (19.28). We have
already seen that this expression is not quite right; we
must add the quantity ¥ (), obtaining (19.35) as the
correct full expression for Wy. It is then straight-
forward to verify that W) has the following decom-
position into Feynman baskets:

W (ay= —*i“sz("‘)”G(““-l-(1/48)t”kG(+)”G(+)"”
X GDongy— Bty GHAGH ImGHInky, . minus the
same terms evaluated with ¢=0, (20.3)

a result which admits of immediate extension to the
case in which an invariance group is present:

W gy = —: ;5@ DGO A (1/48)1;, @D UG im
X @k, — g GO AGHmG B inky,  minus
the same terms evaluated with ¢=0. (20.4)

Several observations may now be made. First, the
possibility of decomposing the vacuum-to-vacuum
functionals into Feynman baskets is closely related
to unitarity of the S matrix; unitarity statements such
as Eq. (13.14) involve sums over tree amplitudes of
precisely the form (20.4).% Second, although the require-
ment that the theory be invariant under transformations
of variables has led us to functionals which decompose
into Feynman baskets, it is clear from the tree theorem
(14.26) and the invariance statement (15.10) that we
could instead have started from decomposability itself
as a criterion for the discovery of ‘“correction” terms
such as ¥ (9, and thereby obtained vacuum-to-vacuum
amplitudes which are not only invariant under trans-
formations of variables but group-invariant as well.
Evidently the various consistency requirements of the
theory fit together in an interlocking fashion, and it
appears that the imposition of one will yield the others
also. This makes it possible to consider alternative
approaches to the theory of radiative corrections.

One such approach is arrived at by reexpressing
(20.4) in terms of the manifestly covariant propagators
G,G™, G, G, Using Eqs. (4.2), (5.6), (17.11), (17.19),
(17 26), (17 27), and (17.31) one finds, by rather

intricate and tedious algebra, that (20.4) appears as

5 An explicit verification. that (20.4) satisfies unitarity has

been carried out (unpublished).

QUANTUM THEORY OF GRAVITY. II

1235

prey -~
7N [ |
wm"'él‘@*'«li Ot D+

_1 LOALL (T
O+ 4 O+ G40

-1 +1 Nyl N
8 *2 _,.' 4 \_A

3 3N L3 N L3 A

Fi1G. 6. Second-order vacuum diagrams when
an invariance group is present.

the sum of the 23 terms which are depicted in Fig. 6.
It turns out that these terms can alternatively be obtained
from the primary diagrams of Fig. 7 by removing non-
causal chains and adding the nonlocal “correction”

Y(2) = (1/4:8)5,{]'];@”@‘7-’"'6*—]0”3.lmn— (1/24) V(ai)ﬂ
X (GH @G ad)(GHBYGOBY)GHIV (505
—(1/24)V (aiy ﬂ(c‘;(+>aa+(;(—)aa)g‘+ﬂy@ijv (vi)s
—(1/24)V (aiysGHad(GHBY+-G BN GV (4155, (20.5)

which is a generalization of (19.34). In this case the
noncausal chains must be removed in a maximally
symmetric manner which gives equal weight to both
dotted and solid lines and to the various distinct orienta-
tions of the diagrams.

Now it is a remarkable fact that W), as given by
the primary diagrams of Fig. 7, is already group-
invariant as it stands. It is not only invariant under
group transformations of the background field, which is
obvious from its manifestly covariant construction,
but it is also y-invariant as well. The latter assertion
may be verified by a straightforward but tedious com-
putation which makes use of Eqs. (4.2), (4.3), (4.10),
(6.11), (14.13), (16.28), (17.26), and (17.31).

This result shows that combinations of tree ampli-
tudes are not the only group-invariant quantities in
the theory and suggests that the method of decomposing
diagrams into Feynman baskets, and the formal com-

_ R 1 777,

Wy = 126 *z @
_1 1
8 O_O t3 Q_A‘\_,

I "t_\\ I—N\\ _ L
2l s OO

F1G. 7. Primary diagrams of order 2 when an invariance group
is present. (Dashed lines without arrows represent Feynman

propagators G for fictitious quanta.)

u Equations (4.10) are never needed except when dealing with
primary diagrams,
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plications which go with it, can be avoided. Indeed in
conventional field theory one works with the primary
diagrams from the beginning and never bothers to
remove the noncausal chains. In the case of non-
overlapping loops it is easy to see why one nevertheless
gets correct results. It is a standard procedure in mo-
mentum-space calculations, after all terms of an
integrand have been brought to a common denominator
of the form (k24-2p-k+A—140)", to perform a rotation
through 90° in the %° plane and thereby to convert
from Minkowski space to Euclidean space for the sub-
sequent evaluation. When the integral is convergent the
procedure is legitimate, but when the integral diverges
a part—the arc at infinity—is lost which can be shown
to correspond exactly to a noncausal chain. Moreover,
since the arc is at infinity in momentum space its con-
tribution is necessarily “local’”’ in space-time and would
in any case be removed by renormalization, e.g., with
the use of regulators.

In the case of overlapping loops #onlocal renormaliza-
tions, i.e., renormalizations withix momentum sub-
integrations, must be performed in order to get rid of
the well-known overlapping divergences. Although a
complete analysis of the overlapping case remains to
be carried out there is considerable evidence that here
too renormalization absorbs the ‘“‘correction” terms,
which now include not only noncausal chains but also
the “nonlocal” quantities ¥ (s), etc. One expects that
the decomposition of radiative corrections into Feyn-
man baskets is in effect replaced by analyticity state-
ments, and that the unitarity of the S matrix is secured
by the famous Cutkosky rules.®

As a working procedure we shall therefore assume,
just as in conventional field theory, that it suffices to
deal with the primary diagrams alone. Although much
work remains to be done to establish this assumption
with complete rigor, it is then quite easy to construct
a manifestly covariant quantum theory of gravity
(and/or the Yang-Mills field) which is unique to all
orders of perturbation theory. One has only to discover
what diagrams have to be added to those of Fig. 5,
etc., in order to obtain y-invariant vacuum-to-vacuum
amplitudes, and this problem has been completely
solved.

The solution of the problem for the case of Wy is
given in Fig. 7. The diagrams of this figure can be dis-
covered in the following way.5® One adds to the W,
diagrams of Fig. 5 other topologically similar diagrams,
involving the fictitious quanta in all possible ways,
each with an arbitrary coefficient, and then adjusts the
coefficients so that the total expression becomes in-
variant under changes in the 4’s. In the process one
discovers the following facts, which hold to all orders:
(1) The fictitious quanta always occur in closed loops;

82 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960). When the
Cutkosky rules are applied to divergent diagrams it is always
assumed that the divergence is first removed by regulators. The
nonacausal chains are therefore automatically excluded.

% B. S. DeWitt, Phys. Rev. Letters 12, 742 (1964).
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they never begin or end on solid lines. (2) In addition,
to the bare vertices S, the only vertex which is needed
is V(aiys. Vertices such as R¥, ;viiR's ; at which more
than one solid line meets a dotted line never occur. (We
shall see later that they do not even occur when external
lines are inserted into the vacuum diagrams.) (3) The
solid lines which enter a given fictitious quantum loop
all do so with the same orientation around the loop.
(Remember they enter obliquely.) This means, for
example, that the combination V (ai)sG*"GPG 7V (vjys
does not appear in Fig. 7.

It is remarkable that the condition of v invariance
alone suffices to determine all the higher-order radiative
corrections. By going through the computation for
W (2 one is easily convinced that the same procedure
gives unique results to all orders, with no ambiguity
about coefficients. However, it is extremely tedious to
carry out the computations required, order by order,
and one naturally asks whether or not a short cut can be
found. Fortunately it can.

One introduces a fictitious system described by the
action functional 1F;;¢'¢'+ Fapl*ef, where the field
¢¢ is of the commuting type and the fields 4* and *e,
which create and annihilate the fictitious quanta, are
of anticommuting type. One then computes W from the
formulas

WLel=uwle]—u[0],

expitb[ ¢ |= (expi® 1,[0]) (dety)~1/2
X {0, | T(expi[ V @ipi*ed*yf+ (1/31)S i1 di07¢*
+(1/4DS kb’ 6!+ - - D] 0,— @)1y, (20.7)

where the subscript (1) indicates that the evaluation is
to be carried out with reference to the fictitious system.
The vacuum-to-vacuum amplitude of the fictitious
system itself is to be understood as defined without the
removal of acausal chains. Thus

(20.6)

(detp)vr  _
(0, 0 IO,-— © >(1) = W expzW(l)Dp] , (20.8)
W wlel=wale]—ww0], (20.9)
(detG)V2(dety)—1/2
expit [ ¢ ]= — , (20.10)
detG;

with no factor (detG*)/(detG+)!/2 appearing in (20.10).
The factor (det§)~Y2 or its inverse is inserted into
Eqgs. (20.7), (20.8), and (20.10) so as to make g,
J-invariant [see Eq. (16.29)].

The anticommuting character of the fields ¢* and
{*« implies that the fictitious quania are fermions.5
It is this property which enables them to play a com-
pensatory role in the theory. For example, it is what
causes detG to appear in the denominator rather than

% The usual relation between spin and statistics obviously
need not apply to these quanta.



162

the numerator of Eq. (20.10).55 It is also what restricts
the fictitious quanta to appearing only in closed loops.

The explicit evaluation of expression (20.7) is carried
out with the aid of the hierarchy of equations generated
by

(detyo)t/?

(0,0 | T (exp(ihsd*+iN* s+ i**Na)) O, —°°)<1>-———
t,?)llz

= eXp(’LW(l)+§1)\i>\jG”+1)\*a)\ﬂGaﬂ) , (20.11)
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where the \; are ordinary ¢-number variables and the
Nay Ao* are variables from an anticommuting number
system.% The determination of the higher-order primary
diagrams then becomes a straightforward exercise. In
Fig. 8 we show, for example, the diagrams  which must
be added to those of Fig. 5 in the case of W (.

The proof that formula (20.7) yields vy-invariant
vacuum amplitudes to all orders may be carried out by
first rewriting it in the form

expi(37apXXP+-5Fsi0'p+(1/31)S ijip'did*+- - +)

expiv ¢]=2’ f

where the factor Z’ is a normalizing constant for the
functional integrals, the field X, is introduced in order
to generate the necessary factor (dety)~V/2, and ¥ is a

_ axd
S exp(iFapp*yYP)dypdy*
SLet+o]—S S i o Jd"+ 37 apX2XP+-FRiaR ;'
=Z/‘6Xp¢( Loto]—SLe]—S. Lol +57as ¢¢3 o, (20.12)
S exp(iFapp*yP)dpdy*
variables;
Xe=XotoXe, ¢i=¢itipt, o=yt
Yre=yrat gt (20.15)

non-self-adjoint operator defined by
Fap=RaRig=FagtV @i pt*, (20.13)
Rie=Ris+Riy jp'=R'[ o+¢]. (20.14)

We next place primes on all the field symbols X, ¢,
¥, ¥* in (20.12) and (20.13). This is purely a formal step
which changes nothing. However, we may regard it as
corresponding to actual changes in the integration

F1c. 8. Diagrams which must be added to W (3 of Fig. 5
when an invariance group is present.

5 That In detG appears in W with opposite signs for bosons
and fermions was first pointed out long ago by Feynman. It is
a consequence of the familiar minus sign which goes with closed
fermion loops [R. P. Feynman, Phys. Rev. 76, 749 (1949)].

We then choose these changes in the following way:

0X= 17198555, X | (20.16)
3= Rigote, (20.17)
o= —GBR(8yiiRIy— V )1 0E2 W7, (20.18)

S*e= cag Y158 (20.19)

0¢=—¢*(FRus07 17 45+ 6v:;R76) GP*, (20.20)

where G is the Feynman propagator® for the operator
%, and the 8v;;, 6745 are to be regarded as arbitrary
infinitesimals.

We now compute the effect which these changes
produce on the numerator and denominator of the big
integrand in (20.12). By making use of the identity

Viains®iy—V (yi)p®a=c’arF sp (20.21)

and the fact that S[¢o+¢] is invariant under (20.17),
we find

0V apXXP+3F isp'¢+ (1/31)S ijnd'dp*+ - - )
=Y apX*0XP+ R ;%R op'8¢p7= 5X 57 apX?

+ 'R %6E5F g
=3X*07apXP+3¢'Riad7 %0 R jpp?
+¢*R:2R*,0vrid?, (20.22)
(S app*yP)
= Fapl* Y+ T * WP+ ¥V (aiy s PO0*
=y R v RigP. (20.23)

But these are just the changes which these quantities
would suffer under the changes 8v;j, 0¥as in the 7’s.

% See J. Schwinger, Proc. Nat. Acad. Sci. U. S. 48, 603 (1962).

5 The presence of the Feynman propagators in Egs. (20.18)
and (20.20) indicates that we are dealing here with a special class
of monlocal transformations of variables. Transformations of this
class are permissible because of the Feynman boundary condi-
tions implicit in the functional integral.
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Therefore, if we can show that the functional Jacobians
of the transformations (20.16), (20.17), (20.18), and
(20.19) cancel in (20.12), it follows that (20.12) is
v-invariant.

These Jacobians are obtained by first computing

ox'«
valies T (20.24)
LA 8(5¢)
= §ij+4 Rig ;054 Rig——, (20.25)
o’ o’
by , ,
agr 2GRV aosdt), (20.26)
By*/e
Py = 8%ty gbL7 , (20.27)
8(d¢
o —3R;s07 10V 1GP*— by uR¥pGPe

+0£8V (855,57, (20.28)

Invoking Egs. (4.10) we then get

50X ¢) .  8(08%)
=143 tr(77107) 4+ Ria, 0 24 Rl
(%) o'
= 1— RadyiiR5GPHREWOEPV (85,37, (20.29)
S W) =1—QabR: R Y a ¥
P =1-¢g (Rﬁ(&'y;’j oV (yi)abé )te yad§
3(X'9")
= . (20.30)
3(X,9)

Since the latter Jacobian is independent of ¥ and y*
it can be removed from the integral in the denominator
of (20.12), whereupon it cancels with the Jacobian for
the X and ¢ integrations. The v invariance of formulas
(20.7) and (20.12) is thus proved.
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This establishes, in particular, the legitimacy of the
scale transformation :

Yij = NYijy, Vo => Map- (20.31)
Under this transformation we have
R,'aRj“ — )\R,‘aRj"‘ y Fap—>ATFap, (20.32)

and in the limit A — 0 Eq. (20.12) reduces to the con-
ventional but ambiguous formula

1
expit[ ¢ ]=2 / expi(E;S i1

1
+5-|S ik PIpE+ - - -)dcb, (20.33)

Z=Z’/dx//d¢/d¢/*.

Expression (20.12) evidently removes the ambiguity
and may be regarded as the definition of the integral
(20.33) when an invariance group is present.

There remains only the question how to insert ex-
ternal lines into the primary vacuum diagrams. When
we dealt with W instead of W the insertion was ac-
complished by simple functional differentiation. Now
that the noncausal chains are left unremoved and no
correction terms are added we must proceed some-
what more carefully.

We have remarked earlier that expression (13.6)
for the S matrix in terms of chronological products
holds even when an invariance group is present. We
were nevertheless forced to use it in a very circuitous
manner, by restricting it to the case in which no group
is present and then generalizing its c-number con-
sequences, because we previously had no direct way
of calculating the chronological products. Now we have.

Following the example of Eq. (19.5) (but ignoring
the density functional A since we are here dealing with
primary diagrams) we may set

where
(20.34)

DT X OO+ AF 9+ (1/3DS i §'5+ )

(20.35)

(0,2 | TULED 10— )= exp(—iu{0])7 [ 4T4]
Then Eq. (19.6) is replaced by
(0, | $¢]0,— oo)=exp(——iw[O])Z’@i“/[<——Fﬂc¢’°+

w)

1667,
ST XL 10816™+(1/3DS 876"+ )

dXd.
S exp(iSast ™ yYP)dpdy* i

' 1 1
=exp(—iw[0])Z'@,L¥ / I:-Z—;S ,jkld)kd)l"";S mPFPlmt - - -

: ]dxdcb (20. 362)
S exp(iF g™ yP)dydy*

SV @ppb*f eXP(ing‘l/*”’k“)dl//dlﬁ*]
S exp(iF s yF)dydy*

% eXP’i(%'faﬂx"‘x’g‘f'%FrsW‘ﬁs'f‘ (1/3 !)S.rst¢r¢’¢t+ . )

S exp(iSa* ) dpdy* dXdg, (20.36b)
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where we now use the propagator @ in place of G in front of the integral so as to obtain correct external-line wave
functions for the .S matrix. :

The only vertices which get inserted by the factor in square brackets in (20.36b) are the bare vertices .S, and
V (airg. Therefore (0, |$?]0,— ) may be expressed in the compact form (12.20), but with G replaced by ®y,
provided the symbol §/8¢ is no longer taken literally but is understood to yield GSsG when acting on G and Sp41
when acting on S5, to have no effect on ¥ (4iys, and to insert (in all possible ways) into any fictitious quantum loop
merely one more vertex V(aiys having the same orientation as all the other vertices already in the loop.5® With this
understanding it is easy to see that (20.35) then yields also Egs. (12.21), (12.22), and (12.23), with the modification
G — O applied to all external lines. Chronological product amplitudes defined in this way may be used directly
in (13.6) to calculate the .S matrix.

The consistency of these simple rules with previously obtained results is readily checked. For example, if non-
causal chains are reinserted into Figs. 2(b) and 3(b) the resulting primary diagrams for the lowest-order radiative
corrections to the one- and two-quantum amplitudes are precisely those obtained by the present prescription. We
note in particular the sufficiency of the vertices S, and V (aiys and the uniform orientation of the latter around any
fictitious quantum loop.

5 It will be noted that the operators §/5¢¢, when redefined in this way, are still commutative.
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The basic momentum-space propagators and vertices (including those for the fictitious quanta) are
given for both the Yang-Mills and gravitational fields. These propagators are used to obtain the cross
sections for gravitational scattering of two scalar particles, scattering of gravitons by scalar particles,
graviton-graviton scattering, two-graviton annihilation of scalar-particle pairs, and graviton bremsstrah-
lung. Special features of these cross sections are noted. Problems arising in renormalization theory and the
role of the Planck length are discussed. The gravitational Ward identity is derived, and the structure of
the radiatively corrected 1-graviton vertex for a scalar particle is displayed. The Ward identity is only one
of an infinity of identities relating the many-graviton vertex functions of the theory. The need for such
identities may be eliminated in principle by computing radiative corrections directly in coordinate space,
using the theory of manifestly covariant Green’s functions. As an example of such a calculation, the con-
tribution of conformal metric fluctuations to the vacuum-to-vacuum amplitude is summed to all orders.
The physical significance of the renormalization terms is discussed. Finally, Weinberg’s treatment of the
infrared problem is examined. It is not difficult to show that the fictitious quanta contribute negligibly to
infrared amplitudes, and hence that Weinberg’s use of the DeDonder gauge is justified. His proof that the
infrared problem in gravidynamics can be handled just as in electrodynamics is thereby made rigorous.

1. INTRODUCTION

N the first two papers of this series! two distinct
mathematical approaches to the quantum theory

canonical or Hamiltonian theory and the other on the
manifestly covariant theory of propagators and dia-
grams. So far no rigorous mathematical link between
the two has been established. In part this is due to the

of gravity were developed, one based on the so-called

* This research was supported in part by the Air Force Office
of Scientific Research under Grant AFOSR-153-64 and in part by
the National Science Foundation under Grant GP7437.

t Permanent address.

1 B. S. DeWitt, Phys. Rev. 160, 1113 (1967) ; preceding paper,
ibid. 162, 1195 (1967). These papers will be referred to as I and
II, respectively. The notation of the present paper is the same as
that of II, which should be consulted for the definition of un-
familiar symbols, e.g., S, for the n-pronged bare vertex and
Viairs for the asymmetric vertex coupling real and fictitious
quanta.

kinds of questions each asks. The canonical theory
leads almost unavoidably to speculations about the
meaning of “amplitudes for different 3-geometries” or
“the wave function of the universe.” The covariant
theory, on the other hand, concerns itself with “micro-
processes” such as scattering, vacuum polarization, etc.
Some of the questions raised by the canonical theory
were explored in I. In this third and final paper of the
series we examine some of the consequences of the
covariant theory.



