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Certain aspects of Rayleigh-Schrédinger (RS) perturbation theory and of the variational principle are
combined in a new perturbationally oriented variational approach for obtaining approximate solutions to
Schrodinger’s time-independent equation. This perturbational-variational (PV) procedure is applicable for
all perturbed Hamiltonian operators which can be expanded as H (\) =ZH,\?, where \ is an external param-
eter governing the strength of the perturbing terms; in particular, the theory is developed here for the im-
portant special form, H=Ho+H\. It is shown how the application of the PV procedure to an arbitrary
analytic approximate wave function yields the variational parameters embedded in the wave function, the
wave function itself, the corresponding approximate energy, and other expectation values, all in the form of
energetically optimized PV expansions in powers of A to any desired order. A variational wave-operator
formalism is introduced to deal with the multivariant expansions required to form the PV expansions. The
remainder theorem and the variational Hellmann-Feynman theorem are derived and their role in the PV
methodology is discussed. The principal advantages of the new method are: (1) Unlike RS perturbation
theory, there is no requirement that the exact solution of a simpler unperturbed system be known; (2) the
explicit X dependence of the optimum quantities is analytically derived; (3) the numerical aspects of a
given variational problem are simplified because the variational equations generated by the PV procedure are
almost completely linearized in the variational parameters; and (4) the PV expansions form a natural frame-
work for the systematic classification and evaluation of all perturbed variational wave functions in respect to
their quality. The PV classification scheme, previously presented in bare outline, is rigorously derived. The
insight obtained from PV theory is further illustrated by the derivation and application of the variational
integral Hellmann-Feynman theorem, the virial theorem, and a theorem relating to the expectation value
of the unperturbed potential. The a priori PV classification of perturbed variational wave functions is ex-
tended to the perturbed variational parameters embedded in the wave functions; it is shown that the
anomalous PV expansions of some open-shell parameters and orbitals can be simply explained in terms of
PV theory.

I. INTRODUCTION

ONE of the major problems of quantum mechanics
is to develop techniques whereby approximate
solutions to Schrédinger’s time-independent equation

(H—ey=0 1)

can be obtained and evaluated in regard to their ac-
curacy. Here, H is the appropriate Hamiltonian oper-
ator for the system in question and ¢ and e are the exact,
steady-state eigenfunctions and eigenvalues, respec-
tively. In many cases of interest, H may be treated as
a function of a well-defined, external perturbing parame-
ter \, which assumes discrete or continuous values over

* Present address: The Choate School, Wallingford, Con-
necticut.
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some range 0SA<A. In such cases, H can often be
written as
H=H+H\, (2a)

or more generally, expanded as

H=H)N)=3 HA, (2b)
where -
He=(t !)_l<;-)\—t> . (2¢)
A=0

We are concerned here with the general problem of
finding approximate solutions to Hamiltonians per-
turbed in this manner; an important example is fur-
nished by atomic isoelectronic sequences, for which,
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via a transformation to modified atomic units! due to
Hylleraas,? the nonrelativistic Hamiltonian can be cast
in the form of Eq. (2a), where A\=2Z"1

As is well known, two principal methods of obtaining
approximate solutions to Eq. (1) are based on (1) the
variational principle, and (2) Rayleigh-Schridinger
(RS) perturbation theory or some variant thereof. In
the present work, the first paper of a series, it is shown
how some of the difficulties associated with the conven-
tional variational approach and with RS perturbation
theory can be avoided by combining certain aspects of
these methods in a new perturbationally oriented vari-
ational procedure. This analytic perturbational-vari-
ational (PV) procedure is contrasted with the standard
methods in Sec. ITA, and the methodology of the new
procedure is derived in Secs. IIB-IID and in Appendices
A-C.

In essence, the application of the PV procedure to an
arbitrary, analytic approximate wave function yields
the variational parameters embedded in the wave func-
tion; the wave function itself; and the corresponding
approximate energy and other expectation values; all in
the form of energetically optimized expansions in powers
of the perturbing parameter A. Thus, the PV procedure
provides variational data for a given perturbed system
as a function of the perturbation. Of greater interest
than any specific numerical results, however, is the fact
that the PV expansions, in conjunction with associated
theorems derived in Appendices D-G, serve as a power-
ful diagnostic tool for investigating and predicting the
relative accuracy of different categories of variational
wave functions.® This interpretive aspect of the PV
procedure is discussed and illustrated in Sec. IIIL
Finally, in Sec. IV, the method is summarized and some
suitable future applications are suggested.

The PV procedure developed here is general in scope
and applicable to all approximate wave functions for
which the optimum expansions exist; further, the expan-
sions can be computed to any desired order in a com-
putationally simple manner. In previous related work,
Scherr and Silverman* have determined the first two
or three expansion orders of the variational parameters
and of several expectation values for a number of vari-
ational wave functions for the helium isoelectronic
sequence by a limiting algebraic procedure, and
Machacek and Scherr® have made similar calculations
for the lithium sequence. These calculations are of a

1 The modified atomic units of energy and length may be ob-
tained from the usual Hartree atomic units by replacing the elec-
tronic charge e with eZ'/2, where Z is the nuclear charge; see H.
Shull and G. G. Hall, Nature 184, 1559 (1959).

2E. A. Hylleraas, Z. Physik 65, 209 (1930); E. A. Hylleraas
and J. Midtdal, Phys. Rev. 103, 829 (1956); 109, 1013 (1958).

3See J. N. Silverman and G. H. Brigman [Rev. Mod. Phys.
39, 228 (1967) ] for such a diagnostic application of PV expansions
to variational wave functions for atomic isoelectronic sequences.
a 4 6((:)) W. Scherr and J. N. Silverman, J. Chem. Phys. 32, 1407

960).

a ;Glt)/l) Machacek and C. W. Scherr, J. Chem. Phys. 33, 242
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specialized nature, involving several simplifying as-
sumptions dependent upon the form of the wave func-
tion; further, their approach does not permit a clear-cut
separation of the various expansion orders and is diffi-
cult to extend to higher orders because it involves the
solution of algebraic equations of successively higher
degree. A simple numerical differencing procedure,
originally developed by Scherr, Silverman, and Matsen®
for application to experimental energies, is also available
for recovering the leading terms of the expansions of
optimum variational parameters and expectation values.
This numerical method has been applied to variational
data for atomic isoelectronic sequences by Scherr and
Silverman’ and by Silverman and Brigman.® Although
a valuable supplementary technique, the numerical pro-
cedure is restricted in application because it requires
accurate variational results as input data, computed by
standard variational means for several adjacent values
of A\; in addition, this technique is limited to the ac-
curate determination of the first few expansion terms
due to the successive accumulation of error with in-
creasing order.®

II. THE PV PROCEDURE
A. Comparison with Standard Methods

The PV procedure represents a new, analytically
oriented approach to the task of optimizing a given ap-
proximate wave function via the energy criterion for a
system with a Hamiltonian described by Egs. (2). The
details of the procedure are developed in the following
subsections; in this subsection the general aspects of
the PV procedure are compared with those of the stand-
ard variational method and of RS perturbation theory
to illustrate their respective points of difference and of
similarity.

Consider an arbitrary, analytic, normalized approxi-
mation, ¢, to ¢ for a given state of the system under
consideration. In general, ¢ which is taken to be con-
structed with the proper symmetry, may contain P
adjustable parameters, the a,; thus,

Q= (p(dl,dg,' o )aP)E <p{a’ll} ) (3)

where the @, may occur linearly, nonlinearly, or in
some combination. It should be noted that the form of
¢ considered in Eq. (3) and throughout has no explicit
dependence on A; any M\ dependency is introduced
implicitly through the a,. The normalization of ¢ can
always be arranged so as to be independent of the specific
values assigned to the a,. Then, for arbitrary values of
the a,,

S=(e{a} | e{a})=1, CY)
and from the variational principle,® for H given by

6 C. W. Scherr, J. N. Silverman, and F. A. Matsen, Phys. Rev.
127, 830 (1962).
( 7 C.) W. Scherr and J. N. Silverman, J. Chem. Phys. 37, 1154
1962).
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Egs. (2),
e<n{a,; N} =(e{a,} |HN) | o{a,}), ®)

where the approximate energy % is an upper bound to
e. Further, for an arbitrary operator 4 independent of
A, the expectation value is given by

(4)={(4{a,})=(e{a.}| 4| e{au}). (6)

In the standard variational approach,® the best upper
bound to e for the chosen form of ¢ is sought by vari-
ation of the a,, yielding the set of variational equations

;_;= -—|H(x)|<p>+<<p[H(>\)l-> 0; ()
u=12,---.P

Ideally, one would solve Egs. (7) analytically so as to
obtain the optimum!® parameters, the @,, which are
necessarily explicit functions of A,

dl‘= du()\); b= 1;2)' : ')P (83')

Correspondingly, the energetically optimized!® quanti-
ties, the wave function @, the energy %, and the expecta-
tion value (4), would then be explicitly given as func-
tions of A,

o= e{a,(\)}, (8b)
7=n{a,(\); \}= <¢|H(>\)| ¢>’ (8c)
(Ay=(4{a.})=(z]4|8); (8d)

thus, for a given approximate wave function, one vari-
ational calculation would in principle suffice for the
entire range of \. In all but the simplest cases, however,
it is usually impossible or impracticable to solve Eqs.
(7) for the @, in closed form. Normally, one must be
content with different numerical solutions for specific
values of \, obtained by iterative techniques requiring
large-scale computers. Therefore, the optimized results
usually consist of a large collection of numerical data
in tabulated form for various values of X in the range of
interest. The disadvantages of this approach may be
summarized as follows:

(1) The loss of the explicit A dependency necessitates
a new calculation for each value of A with concomitant
loss of compactness.

(2) An electronic computer is required for even
relatively simple variational wave functions.

81t is assumed throughout that the variational principle is
applicable. Moreover, in case the variational principle evists for
functionals other than the energy (such as the statistical vari-
ance) and is used as a basis for obtaining approximate solutions,
the main theoretical results of the PV procedure remain appli-
cable; see Ref. 14 for formal details.

9 See for example, B. L. Moiseiwitsch, Quantum Theory I,
Elements edited by D. R. Bates (Academic Press Inc., New York
1961), pp. 211-228.

10 [n this notation, the use of a superior bar denotes an ener-
getically optimized quantity; the omission of the bar denotes an
unoptimized quantity with an arbitrarily assigned value.
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(3) It is well known!! that the optimized energy is
insensitive to small variations in the optimum vari-
ational parameters; conversely, in the standard nu-
merical approach, the optimum energy is a poor criter-
ion for refining variational parameters to a high degree
of accuracy. Thus, other expectation values, which are
in general more sensitive to the variational parameters,
cannot be obtained as accurately as the energy.

(4) A more fundamental objection to the conven-
tional variational procedure arises from its inability
to give either ¢ priori guidance in the selection of ap-
proximate wave functions or @ posteriori insight into the
superiority of one type of approximate solution over
another; in this connection, for Hamiltonians of the
form of Egs. (2), the relative order of energetic superi-
ority of a group of different approximate wave functions
may be a function of A\, but the variational principle,
taken alone, offers no explanation.

In the PV procedure, both the manner of derivation
and the form of presentation of the energetically opti-
mized results differ significantly from those of the
standard variational method. The optimum quantities,
Egs. (8), are analytically obtained in the form of the
Taylor expansions about A=0:

du—z dﬂf)\jy M= 1:2, . ')P7 (9a)

=0
o= Z Br\T, (9b)

r=0
7= 20 mA\"™, (9)

m=0

and

(A= (A)arm. (9d)

m=0

Of course, if the explicit optimum functional relation-
ships of Egs. (8) could be analytically determined, it
would be straightforward to obtain the PV expansions
of Egs. (9). In the PV procedure, however, the reverse
approach is employed, i.e., the expansions are first
obtained in #noptimized form and then optimized order
by order to build up the optimum functions to any
desired order. This technique circumvents some of the
previously mentioned inherent difficulties of the con-
ventional method in the following manner:

(1) The explicit A dependency of the optimum quan-
tities is analytically derived.

(2) The computational aspects of a given variational
problem are greatly simplified because the variational
equations generated by the PV procedure are almost
completely linearized in the variational parameters;

11 See, for example, H. A. Bethe and E. E. Salpeter, Quantum
Mechanics of One- and Two-Electron Atoms (Spnnger—Verlag,
Berlin, 1957), p. 164.
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as a consequence, the use of a desk computer is feasible
in many calculations.!?

(3) The order-by-order optimization of the energy
and the linear structure of the variational equations
enable the optimum variational parameters, corre-
sponding to the chosen form of the variational wave
function, to be determined to any desired degree of
accuracy.

(4) A number of important theoretical relationships
(dealt with in Sec. III, Appendices B-G, and else-
where!?~14) applicable to arbitrary, optimized vari-
ational wave functions, energies, and other expectation
values, emerge in transparent form as a general by-
product of the PV procedure; these relationships,
which are concealed or obscured in the conventional
numerical approach, give considerable guidance in the
selection of and insight into the relative behavior of
different types of variational wave functions.

The points of departure for RS perturbation theory!®
are the known zero-order solutions ¥, and ¢ of the un-
perturbed Schrédinger equation

(Ho— e0)o=0. (10)

The exact perturbed solutions y and e are then con-
sidered as functions of A which can be expanded in
Taylor series about A=0:

y=4(N)= >=:0 o, (112)
and
e=e(\)= i €n\™. (11b)

m=0

The substitution of Eqgs. (11) in Eq. (1) yields an infinite
set of coupled differential equations of which Eq. (10)
is the first one; in principle, the successive solution of
these equations, order by order, would yield the suc-
cessive terms of the ¢ and e expansions, but, in practice,
this is seldom possible. To overcome this difficulty, a
variational-perturbation procedure, originally developed
by Hylleraas? and generalized by Knight and Scherr,®
has been devised for the variational calculation of the
¥» and en to any desired order. The validity of this
variational procedure for a given higher order depends
upon the implicit assumption that all lower orders of
the ¢, and e, required in the calculation have been

12 T, N. Silverman and J. C. van Leuven (to be published). These
calculations illustrate the application of the PV computational
procedure to several variational wave functions for the He
isoelectronic sequence.

13 J, N. Silverman (to be published).

14 J, C. van Leuven and J. N. Silverman (to be published); this
study presents a more mathematically oriented, generalized
treatment of the theory of the PV procedure.

16 See, for example, A. Dalgarno, Quantum Theory I, Elements,
edited by D. R. Bates (Academic Press Inc., New York, 1961),
pp. 171-209

16 R, E. Knight and C. W. Scherr, J. Chem. Phys. 37, 2503
(1962); Phys. Rev. 128, 2675 (1962); Rev. Mod. Phys. 35, 431
(1963); C. W. Scherr and R. E. Knight, ibd. 35, 436 (1963).
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accurately approximated; this becomes increasingly
difficult to accomplish with increasing complexity of
the system considered.

The PV expansions, Egs. (9), bear a formal analogy
to the RS expansions, Eqs. (11). Indeed, as is shown in
Appendices B-F, there are a number of theorems which
apply in an identical or similar manner to the expan-
sions both of optimized approximate quantities and
of the exact quantities. It should be carefully noted that
despite these points of similarity, the PV procedure
differs both in objectives and in methods from RS
perturbation theory and from the Hylleraas-Knight-
Scherr variational-perturbation procedure. Thus, in the
PV procedure, there is no requirement that ¥, and €
be known, or equivalently, that @, and 7, satisfy Eq.
(10) ; similarly, there is no requirement that the solu-
tions be known for the higher-order differential equa-
tions of RS perturbation theory. Further, in RS
perturbation theory, the ¢, and en. are defined as
Taylor coefficients, but no direct use of this can be
made since Y(\) and e(\) are not known; in the PV
procedure, to the contrary, the identification of the
¢» and 7, as Taylor coefficients plays an essential role
in determining these expansions. In the limit of in-
creasing accuracy, both methods should yield identical
results; in general, however, the @ and 7% expansions,
Eqgs. (9b) and (9¢), derived from the optimization of an
arbitrary ¢, would not agree term by term with the
corresponding ¢ and e expansions, Egs. (11a) and (11b).
Such comparisons of the expansions of optimized ap-
proximate quantities and of exact quantities prove to
be of great utility and are discussed in Sec. III.

B. The Expansion and Optimization Technique

We restrict ourselves here to the important special
case of H given by Eq. (2a), as this is sufficient to es-
tablish all the essential details of the procedure; the
generalization to H of Eq. (2b) as well as some aspects
of the convergence of PV expansions are considered
elsewhere.* Then Eq. (5) for the unoptimized energy
can be written in the form

1=G{a,}+g{a}N, (12)
where
G{a}=(e{a.} | Ho| o{a,}), (132)
and
gla)={e{a.} |H1| p{au}). (13b)

The desired optimum solutions for the parameters,
Eqgs. (8a), suggest that we regard the unoptimized a, as
arbitrary analytic functions of N which can be expanded
in Taylor series about A=0:

aw=a,(N)=2 ay,N; w=12,---,P. (14)
=0

It follows from Egs. (14) that the unoptimized func-
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tionals, ¢, G, g, and (4), can be expanded analogously:

X=3 X.m,

m=0

(15a)

where
X=¢,G, g (4). (15b)

By equating coefficients of like powers of A, we obtain
the following formal results for the energy expansion
from Egs. (12) and (15):

Nno= Go ) (163.)

and
m>1. (16b)

In addition to being defined as Taylor coefficients of
integral functionals, the Gn, gm, and (4), are also
defined in terms of matrix elements over expansion
terms of ¢. Thus, for example, it follows from Egs.
(132) and (15) that

Gm= f (‘PrIHOl ¢m——r> )

r=0

NMm= Gm+ gm—1,

a7

with analogous expressions for g, and (4),. Similarly,
the expansion orthonormality conditions are obtained
from Eq. (4):

So={(¢o| ¢0)=1, (18a)
and

Su=2. {¢r| om—ry=0, m>1. (18b)
=0

Since the X of Egs. (15) are all implicit functions of
A through the a,, additional analysis, which is presented
in Appendix A, is required to obtain the explicit form
of the X, In terms of the operators d; and W,m,
defined in Appendix A, the expansion terms of the X are
given by

Xo= X{a“o} y (19&)
X1=d1X,, (19b)
dy?
Xo= (d2+;>X0, (19¢)
dsd
X;= (d3+d1d2+3—'>Xo, (19d)
and in general, by
Xn=WmnmnXo, m>0. (19¢)

We have explicitly written down the first few terms in
the expansion of the X to illustrate the effects of the
constraints [see Eqs. (A13) and Table II, Appendix A]
on the W, operator. The analysis in Appendix A
shows that as a result of these constraints, X, is in
general a function of all a,; for 0< j<m, and for m>1,
the highest-order parameters, the @,m, occur linearly in
X'm; this almost complete linearization of the variational
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parameter expansions, order by order, is essential to the
PV optimization procedure.

It is important to note the distinction between the
application of W, to integral functionals such as G,
2o, (4)0, and Sy, on one hand, and to ¢, on the other
hand. For example,

Gm= Wm,mG0= Wm,m(‘POl HO‘ (PO) ) (20&)

but in terms of matrix elements over ¢, it follows from
Eq. (A20) of Appendix A that

m

Gm= Z (Wrﬂ‘@OIHOI Wm—r,m——-rﬂDO) 5

r=0

(20b)

with analogous expressions for gm, {(4)m, and Su; Eq.
(20b) can also be directly derived from Egs. (17) and
(19¢).

From Egs. (16) and (19), we obtain the general result

77m=Wm,mG0+Wm—1,m—1g0, mZO, (21)

where in accordance with our conventions (see Appendix
A), W n—1,m—180=0 for the special case of m=0. We may
now regard 7 as a function of all the expansion orders
of the a,,

n= 77{0’#07aM1) t s Oumyt T )\} ) (22)

where the a,; are to be variationally determined. Then,
it follows from Egs. (12), (15), and (22) that the con-
ditions for determining the optimum zero-order parame-
ters, the d,o,

an
—=D,m=0; u=12,---,P, (23)
(9(1,,,0
lead to the equivalent set of conditions
D#O")m=0; p=12,--+,P; 0<m< . (24)

It is easy to show that the conditions of Eqs. (24) are
sufficient to determine all expansion orders of the opti-
mum @&,;, order by order, and that no new conditions
are obtained by partial differentiation of the 7, in
respect to a,; for 7>1. Thus, for m=0 ,the conditions

Dyono=DyGo=0; p=12,---P (25a)

yield P simultaneous equations involving only the a,o.
In the general case, this zero-order set of variational
equations is nonlinear in the @, and may have to be
solved for the optimum @, by some iterative technique;
in the special case where all g, occur in ¢ linearly, as
in the Rayleigh-Ritz type of variational wave function,
the zero-order equations can be obtained in linear,
homogeneous form and solved in the usual manner via
the secular determinant. For all types of parameters,
however, the solution of Egs. (25a) in the PV procedure
would be simpler than the solution of Egs. (7) en-
countered in the standard variational approach be-
cause only the simpler operator H, is involved in the
former rather than the total H and there is no A de-
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pendency to take into account; in addition, as is dis-
cussed in Sec. III, the optimum @, may be known in
some cases from theory.

After the @, have been determined, the optimum
conditions for m=1,

Du0771=0; n= 1)27' * ')P’ (ZSb)

yield P simultaneous linear inhomogeneous equations
in the @,, involving in addition only the known @,.
The optimum @, are then determined by solving these
first-order variational equations by standard linear
means. On the other hand, the alternate optimum con-
ditions obtained by partial differentiation of 5; in
respect to the a,,

anl/aa’ﬁll:O; u= 172" : ':P ’ (25bl)

merely lead again to the zero-order equations for the
au, Egs. (252), as may be seen from Eq. (A8) of Ap-
pendix A, and Eqgs. (192a), (19b), and (21). After the
@, have been determined from Egs. (25b), the process
is extended to the determination of the d,, with the
second-order variational equations obtained from the
conditions D,on.=0, etc. For each order of m>1, P
simultaneous linear inhomogeneous variational equa-
tions in the @,. are obtained, containing in addition
only the known lower orders of the G,;, 0< j<m. These
calculations can be extended in this manner to any
desired order.

The integral functional and the matrix-element
formulations presented above are entirely equivalent
and lead to identical results. Essentially, the former
procedure requires initial integration with subsequent
differentiation, while the latter procedure reverses the
order of these operations. Usually, the calculation of
expectation values is simpler in the integral functional
approach while, if interest is focussed on the behavior of
the wave function, greater theoretical insight is ob-
tained with the matrix-element approach. In the
subsequent discussion, we use either or both formula-
tions interchangeably, depending on which aspects of
the PV procedure are to be emphasized.

All of the equations in this subsection apply to opti-
mized as well as unoptimized approximate functions,
and indeed, to the exact quantities as well. Therefore,
Egs. (14)-(21) may be termed the general expansions
of the PV procedure. By appropriate substitution of
the optimum 4,;, 0<j<m, in Egs. (19)-(21), the
optimum?” d;, Wo,m, Xm, and 7 can all be obtained
through the highest order of the a,; computed. It would
thus appear that a knowledge of the optimum g, ex-
pansions through the mth order is required to evaluate
the optimum X and 7 expansions through the mth
order; alternatively, in the matrix-element formulation,
it would appear that a knowledge of the optimum @ ex-

17 The use of the superior bar in the operators d;, Wo.m, etc.,
indicates that all derivatives have been evaluated at the optimum
@0, and that the optimum values of the othes @,; involved have
been appropriately substituted; see Ref. 10.
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pansion through the mth order is required to determine
the X and # expansions through like order. For the op-
timized quantized quantities, however, it is possible to
effect certain systematic reductions in the order of the @,;
and of the &, required to compute the 7 expansion to a
given order; these reductions are discussed in the follow-
ing subsection.

C. The Energetic Reductions in Parametric Order

Two essentially different methods are available for
obtaining the optimum 7% expansion to orders higher
than the highest order computed of the optimum g,
expansions. These methods are based respectively on
the remainder theorem, derived in Appendix B, and on
the variational Hellmann-Feynman theorem, derived
in Appendix C.

From Egs. (B10), Appendix B, the remainder
theorem assumes the following form in the functional
representation:

fio= G, (26a)
11={o, (26b)
fio=(d1%/2)Go+d1go, (26¢)
3= ((213/3 ')Go-l" (&12/2 ‘)go , (26d)
and in general, for >0,
Tian=Wan ,nGo+W 2u1,n80, (26e)
and _ _
'7)2n+1: W2n+1,nG0+W2n,ng0. (26f)

Here, we have explicitly written down the first few
terms of the 7 expansion to illustrate the effects of the
constraints [see Eqs. (Al14), Appendix A7 on the
asymmetric W, operator. It follows directly from the
definition of W, and from Eqs. (26) that the optimum
@, expansions through #nth order suffice to compute the
optimum # expansion through (2#-+1)th order; this
result may be regarded as the quantitative formulation
of the previously mentioned qualitative observation
that variationally optimized energies are insensitive
to small changes in the variational parameters. The
remainder theorem is in striking analogy to the well-
known theorem! from RS perturbation theory, which
states that the y expansion through nth order suffices to
compute the e expansion through (2n+41)th order
[see Egs. (11)]. The analogy is not complete, however,
asmay best be seen from the matrix-element formulation
of the remainder theorem, obtained by a straight-
forward application of Egs. (A21), Appendix A, to Egs.
(26). This shows that the computation of fzs41 requires
not only the @ expansion through nth order but, in
addition, a portion of each @, for n+1<s<2x%-1; these
incomplete @,, given by W, .¢o, may be simply de-
scribed as the remainder functions obtained by the
systematic omission of all terms containing a,; for j>#
from the complete @,. Alternately, the asymmetric
Wonn operator may be obtained from the symmetric
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W m,m operator by systematically omitting all terms con-
taining d; for j>#, as is illustrated in Eqs. (26). Finally,
the remainder theorem assumes its most restricted
form in Eq. (B11), Appendix B, which enables the opti-
mum G to be computed through the (m-1)th order
from the optimum @, expansions through the mth
order.

Alternate expansions for the optimum 7 are derived
from the variational Hellmann-Feynman theorem. From
Eq. (C4), Appendix C, and Egs. (17) and (19), we
obtain

M=go={@o| H1| &0), (27a)
2=3d1go= (0| H1| &1), (27b)
fis= 3L da+(d1%/2!) Jgo
=302(@0| H1| @2)+(@1| H1| 21)], (27c)
and in general, for m>0,
fimt1= (m_l_l)_le,mgO
= (m+ 1t Zu <¢'r|H1| ¢7n—r>; (27d)

the matrix-element terms in Egs. (27b) and (27c) have
been simplified by making use of the Hermitian charac-
ter of Hy and by assuming, for convenience, but without
loss of generality,!® that the @, are real. Equivalently,
from Egs. (C6) and (C7), Appendix C, we obtain

fio=Gh, (28a)
fla=—(d1%/2)Gs, (28b)
fis=—3[drda-+(d:*/3!) 1Go, (28¢c)

and in general, for m>1,
imi1=—"Wni1,mGo. (28d)

It is seen from Egs. (27) or (28) that this approach
yields the optimum # expansion to only one order
higher than the corresponding optimum @, expansions.
Although the variational Hellmann-Feynman theorem
is not as powerful as the remainder theorem in respect
to reduction of parametric order, the former theorem
does have the advantage of yielding a clear-cut sepa-
ration of the unperturbed and perturbing contributions
to the optimum energy. Thus, from Eqgs. (27), all orders
of 7, excepting 7o, can be computed solely in terms of Hj,
and from Egs. (28), all orders of 7 ,excepting 71, can be
computed solely in terms of H,; this separation cannot
be achieved with the remainder theorem, Egs. (26).
Equation (27a) offers the theoretical justification for
the often-used empirical technique of computing the
first-order correction to a variationally obtained zero-

18 See, for example, E. U. Condon and G. H. Shortley, The
Theory of Atomic Spectra (Cambridge University Press, Cambridge,
England, 1957), p. 33; see also S. T. Epstein, Am. J. Phys. 22,
613 (1954).
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order energy in this manner.!® It is interesting to note
from Eq. (C5), Appendix C, that the unperturbed and
perturbing contributions to the %, tend to cancel in-
creasingly with increasing order m in analogy with the
like behavior of the exact quantities.?

The reductions in parametric order obtained with the
remainder and the variational Hellmann-Feynman
theorems are direct consequences both of the X depen-
dency of H and of the variational determination of #.
In general, therefore, the energetically optimized expec-
tation values of other operators do not satisfy these
theorems; the computation of such expectation values
through mth order must be done without any reduction
in parametric order using the symmetric W= operator
as in the general expansions of Egs. (19) and (20).

D. The Cyclic Flow of PV Calculations

The unoptimized input data in all PV calculations
consist of g, Go, go, and the (4 ), for the properties of
interest, all of which are obtained in analytic form
from the chosen ¢. It follows from the structure of the
symmetric Wn,» operator, Appendix A, that the suc-
cessive higher-order terms of the expansions of the un-
optimized ¢, G, g, and 7, can be analytically constructed
by suitable weighting and grouping of the expressions
for the partial derivatives formed during optimization
of the lower orders of # via Eqgs. (24). Thus, the for-
mation of the D,omo in Eqs. (25a) generates the terms
required for Gi, which, together with g, yields #; via
Eq. (16b) or (21); similarly, the formation of the D,
yields the additional terms required to derive G, gi,
and hence 79, etc. Therefore, the PV calculations assume
a naturally cyclic character which is schematically out-
lined in Table I. During a routine cycle, the (z+1)th,
for example, 7, is formed and differentiated to yield the
nth-order variational equations; these equations are
solved for the @,., which together with the previously
determined lower-order a,;, suffice to compute &,
Guy1 [via Eq. (B11)], §x, 7ing1, and (A )., to conclude
the cycle. In such a routine cycle, the energy is most
readily computed via Egs. (16), (27), or (28), as the
required optimum expressions for these equations are
all generated during the cycle; these three alternate
formulations afford a useful check on the energy calcu-
lations. After sufficient orders have been computed to
attain the desired degree of convergence,?! the cycling
process is terminated, and the remainder theorem is then
employed; thus, if the last cycle were the (z+1)th, the
n-fold application of the remainder theorem, Egs. (26),

_ 1 The validity of Eq. (27a) for 7 depends upon the fact that
Gy={(@o|Ho| $1)-+(@1| Ho| @o) vanishes; in general, this is true
only for exact functions because of Eqs. (10) and (18), or for
variationally optimized functions because of Eq. (CS5).

20W. J. Carr, Jr., Phys. Rev. 106, 414 (1957); see also Ref. 27.

2 See Ref. 12 for a discussion of the different degrees of con-
vergence of several variational wave functions for the He isoelec-
tronic sequence; see also Ref. 14 for a more general discussion of
convergence.
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TasiE I. Cyclic flow sheet of PV calculations.

Unoptimized quantities generated Variational Optimized quantities computed
Cycle during previous cycle equations at end of cycle
1 ©0,Go,80,m0(=Go),{4 )o Dyomo=0 0, 80,Go,0,70(=G) 1 (= o) (A )o
2 e1,GLm, (AN Dyuom=0 A1, &1,G2,g1, 72, (A )1
3 ©2,G2,g1,m2,(4 )2 Dyon2=0 Gz, @2,613,92, g, (A)s
ntl2 ?’n;Gnygn—l,’Vlm(A )n—l D#O")n=0 Qun, ‘Pn,Gn-i—l,gn,’.lnH,(A— >n

& The n-fold application of the remainder theorem after completion of the (z41)th cycle yields the additional energy orders, Fn+2, n+3, * *

would yield the additional higher orders of the energy
N2 through Nony1.

III. THE PV CLASSIFICATION OF PERTURBED
VARIATIONAL WAVE FUNCTIONS

A. Introduction

The PV expansions provide a natural, general scheme
for the a priori classification of all perturbed variational
wave functions into three broad categories. These three
categories differ in their asymptotic behavior as the
perturbing parameter approaches zero. The basis for
the classification depends upon the theoretically pre-
dictable agreement or lack of agreement of correspond-
ing leading terms in the PV and exact expansions, Egs.
(9) and (11), respectively. The conclusions reached in
this manner are valid whether the variational wave
functions concerned are optimized by conventional
numerical means or order by order via the PV pro-
cedure; the results, however, are particularly easy to
interpret in terms of PV theory. The three categories
of perturbed variational wave functions are derived and
contrasted below.?? Several theoretical applications
illustrating the insight obtained from the classification
scheme are also presented.

B. Category I Wave Functions

The point of departure in all PV calculations is the
optimization of the zero-order energy 7o, which from
Eq. (16a) may be written as

no=Go= <<PolHo|<Po)Zéo- (29)

Thus, Eq. (29) may be considered to represent the ap-
plication of the variational principle to an approximate
solution of the unperturbed Schrédinger equation, Eq.
(10). Here ¢y is formally obtained from the chosen ¢
by replacing the a, with the a,, i.e.,

Po=¢{ @y} . (30)
If the form of ¢ is such that ¢, becomes equal to ¥,
for special values of the a,o, then in accordance with the
variational principle, the optimization of the 7o, Eq.
(29), in respect to all the a,o, will generate just those
special values as the optimum @,. For such a o, it
follows that
¢0= ‘P{dp0}=¢0) (313‘)

22 The theory of the PV classification scheme has previously
been presented in bare outline in Ref. 3.

*y 241,

and from Egs. (29) and (27a), and RS perturbation
theory,®

7= (o] Ho|Y0)= o, (31b)
= (Yol HilYo)=e1, (31c)
while from the variational principle,
. T2 €2, (31d)
since
RS e (31¢)
m=2 m=
where in general, for the higher orders,
Am €my, M3, (311)

All wave functions satisfying Eqs. (31) are designated
as category I functions. Such wave functions yield
variationally optimized energies correct at least through
first order and other expectation values correct at least
in zero order. If ¢, is known from theory, it is always
possible to construct an unlimited number of approxi-
mate wave functions belonging to category I by taking
Yo as the starting point. Thus, the prototype of this
category is obtained by taking ¢ as ¢ with all parame-
ters embedded in Y, fixed at their theoretical values;
in this case, there are no adjustable parameters, so

o=p=po=%0, &=07forr>1, (32a)
and

7_7= éO_i_ 61>\’ (32b)

The accuracy of Egs. (32) can be systematically im-
proved in the higher orders by again taking ¢ as ¢ but
by systematically replacing the theoretically fixed
parameters in y, with variationally determined parame-
ters @,; still more elaborate functions may be con-
structed from y, by inserting additional parameters
and adding other functions containing adjustable
parameters. Nevertheless, the conditions of Egs. (31)
will be satisfied if ¥, is contained at least implicitly in
¢ as the optimization of 7o, Eq. (29), will project out
Y. In general, the introduction of one or more vari-
ational parameters in y, converts the optimum & and 7
of Eq. (32) into infinite PV expansions where the leading
terms satisfy Eqs. (31). Any improvement in the vari-
ational quality of functions of this category is auto-
matically concentrated in improving the quality of
second- and higher-order energy terms. The only dis-
tinction among category I wave functions, then, is how

im=0 for m>2.
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accurately the @, for #>1 and the %, for m>2 approxi-
mate the corresponding exact terms, ¥, and en. This
common feature permits meaningful comparisons to be
made among these functions. For example, if follows
from Eq. (31d) that all category I wave functions can
be arranged on a relative scale of increasing variational
accuracy with the criterion being how well %, approxi-
mates e from above, and hence, from Eq. (27b), how
well @; approximates ;.

Under suitable conditions, the agreement between
corresponding terms of the optimum @ and % expansions
and the exact ¢ and e expansions can be extended to
still higher orders than in Egs. (31). The second step in
the PV procedure consists of finding the stationary
value of the first-order energy 71, which from Eq. (16b)
may be written as

m=Gr+ go=2(vo| Ho| 01)+{¢o| Hi| 00);  (33)

here

P
o1=W1,100= 2 (8¢0/3a,0)a, (34)

p=1

and the stationary value of 7, is found by variation of
the a,o which in turn yields the optimum @,:. A general
argument in justification of this procedure has been
given in the discussion following Eq. (22). Another
more specialized argument is the following : The condi-
tion that 71, Eq. (33), have a stationary value in respect
to an arbitrary variation of ¢, subject only to the con-
straints that ¢y remain normalized and orthogonal to
o1 [see Egs. (18)], leads to the following defining
differential equation for ¢ and ¢;:

(Hota) o1+ (Hi+B) 0o=0,

where @ and 8 are Lagrangian multipliers; this is seen
to be equivalent in form to

(Ho— e+ (Hi— e )o=0,

i.e., the first-order coupled differential equation of RS
perturbation theory.!® Thus, Eq. (33) is the variational
equivalent of Eq. (35). For category I wave functions,
it follows that if the form of ¢ is such that ¢; becomes
equal to ¥ for certain values of the a,, then the opti-
mum @,; determined via Eq. (33) will correspond to
just those values. For such ¢,

(33)

e1=W1.00=11, (362)
2= (o Hil¥1)= e, (36b)
=W Hi—al)=e, (36¢)
and from the variational principle,
N4> €, (364)
since
X a2 X e, (360
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where in general, for the higher orders,
ﬁm# €m,y mZ 5 . (36f)

Here, Egs. (36b) and (36¢c) follow from Egs. (27b),
(27¢), (35), and (C6), and from RS perturbation
theory.’s Category I wave functions satisfying Egs.
(36), in addition to Egs. (31), yield variationally
optimized energies correct at least through third order
and other expectation values correct at least through
first order. In analogy with the previous discussion con-
cerning the construction of category I wave functions,
if both ¥, and ¢, are known from theory, approximate
wave functions satisfying Eqs. (31) and (36) can always
be constructed by taking ¢ as linear combinations of
generalized forms of ¥o and 1. This process can be
extended to still higher orders if higher orders of the ¢,
are known. In general, it follows from RS perturbation
theory?:1® that if the expansions of @ and y should agree
through the nth order, the expansions of % and e would
then agree through the (2%-+1)th order.

C. Category II Wave Functions

If the form of the chosen ¢ is such that for no values
of the variational parameters a,o can ¢y become equal
to v, then the optimization of 7o, Eq. (29), will merely
produce the variational approximation function .
Thus,

Po=o{auo} #V0, (37a)
flo={@o| Ho| p0)> e, (37b)
’ fin={@o| H1| o)~ €1, 37¢c)
and in general, for the higher orders,
T €my m>2. (37d)

All wave functions satisfying Egs. (37) are designated
as category II functions. In general, such wave functions
yield variationally optimized energies and other expec-
tation values incorrect in all orders. Although there is
no theoretical basis at present, it has been found in all
PV expansions® 2.2 for atomic isoelectronic sequences
with scaled category II wave functions that Eq. (37c)
may be replaced by the bounded relationship?4

OS ’7)1S €1. (37C')

Any improvement in the variational quality of func-
tions of this category by the introduction of additional
parameters is expended in the improvement of the
quality of the zero- as well as higher-order terms. It
follows from Eq. (37b) that all category II wave func-
tions can be arranged on a relative scale of increasing
variational accuracy with the criterion being how well
flo approximates e from above, and hence, how well &,
approximates yo. The introduction of additional parame-
ters in ¢ cannot eliminate the inherent zero-order error

23 J. N. Silverman (unpublished).
% The lower bound in Eq. (37¢’) applies for all systems, such as
atomic isoelectronic sequences, where H, is positive definite.
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unless in this process sufficient terms are added to intro-
duce ¢, implicitly, thus converting ¢ to a category I
wave function.

D. Category III Wave Functions

A third category of perturbed variational wave func-
tions, intermediate in a sense to categories I and II,
arises when there is zero-order degeneracy. According to
degenerate RS perturbation theory, the correct o may
be obtained in such cases by diagonalizing the matrix
of the degenerate zero-order functions of the proper
symmetry, the ¢o?, over the perturbation operator.
This is entirely equivalent?® to variationally optimizing
the linear mixing coefficients, the s, of a linear combi-
nation of all these ¥, in respect to the total Hamilton-
ian H, yielding the optimum results

Yo=2 b, (38a)

and

7= (o] H|Yo)= e+ €. (38b)

It should be apparent from the previous discussion that
if ¢ is constructed so as to contain in generalized form
only oze of the ¥, say ¥,®, then the optimization of
n0, Eq. (29), will project out just this o). For such ¢,

Po=o{duo} =P =Y, (39a)
o= (Yo ® | Ho|$o®)= €0, (39b)
but from the variational principle,
= o® [ Ha[o®) 2 €1, (39¢)
since
2 A>3 €™, (39d)
m=1 m=1
where in general, for the higher orders,
T E emy, M2, (3%)

All wave functions satisfying Eqs. (39) are designated
as category III functions. In general, such wave func-
tions yield variationally optimized energies correct
only in zero order and other expectation values incorrect
in all orders. It also follows from the variational princi-
ple that the 7;® corresponding to the various ¢, can
be arranged in a sequence of relative accuracy,

a<pO<HPL - L<HOL -, (40)

where for atomic isoelectronic sequences,? ¢, and
7Y correspond to the “lowest” spectroscopic configu-
ration. It follows from Eq. (40) that different category
IIT wave functions, each corresponding to a different
Yo, can be arranged on a coarse relative scale of in-

25 See, for example, L. Pauling and E. B. Wilson, Jr., Introduc-
‘tion to Quantum Mechanics (McGraw-Hill Book Company, Inc.,
New York, 1935), pp. 165-172 and 186-189.

26 See, for example, D. Layzer [Ann. Phys. (N. Y.) 8§, 271
(1959)7 and J. Linderberg and H. Shull [J. Mol. Spectry. 5, 1

(1960)7 for calculations of &, and m for various degenerate
states of several atomic isoelectronic sequences.
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creasing variational accuracy with the criterion being
how well %, approximates e from above, and hence,
how well ¥ approximates yq.

A somewhat more refined system of evaluating the
relative accuracy of category III wave functions can be
developed as follows: Consider a number of category III
wave functions all based on different generalized forms
of the same P, most advantageously taken as ™.
Any improvement in the quality of such category III
wave functions, obtained by inserting additional pa-
rameters, cannot in general affect the value of 7™,
Eq. (39¢), but is restricted to improving the quality of
second- and higher-order energy terms. Thus, these
functions have a pseudo—category-I character and can
be arranged on a relative scale of increasing variational
accuracy by comparing their respective values of 7™,
which can be considered to bound a hypothetical de-
generate eV from above. If, however, the process of
improving the quality of such a category III ¢ via the
introduction of additional functions containing adjust-
able parameters should also introduce a generalized
form of another degenerate o, the corresponding
first-order energy levels of Egs. (40) would be displaced
in the characteristic manner by the interaction between
the two degenerate zero-order functions, and an im-
proved upper bound to ¢ would be obtained. The intro-
duction of all the degenerate ¢? in generalized form
in this manner would culminate in the construction of
the ¥, of Eq. (38a) in generalized form and in the con-
version of the ¢ in question to a category I wave
function; the category I ¢ based on such generalized
Yo have been termed® minimum-configuration wave
functions.

E. Several Theoretical Applications

A significant application of the PV classification
scheme lies in resolving a theoretical ambiguity in con-
nection with the accuracy of arbitrary approximate
wave functions. It is often asserted that the energy of
any state can be calculated correct through first order
with any optimized variational wave function. From the
above discussion, however, it follows that this statement
is incorrect when literally applied to optimized energy
expansions in powers of a well-defined perturbing pa-
rameter; only category I wave functions have this de-
sirable characteristic. It also follows that for small
enough perturbations, i.e., for small enough values of A,
all category 1 wave functions must be energetically
superior to all category IIT wave functions which must
in turn be superior to all category II wave functions;
with increasing A, of course, this relative sequence of
superiority of representative wave functions of the three
categories may change due to partial compensation of
error among the various energy orders. Silverman and
Brigman?® have made extensive use of the PV classifica-
tion scheme to categorize a wide variety of variational
wave functions for atomic isoelectronic sequences and
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to interpret in this manner apparently anomalous
energy trends with varying Z.

The PV expansions have proved to be well suited for
the derivation of a number of important theorems appli-
cable to optimized variational quantities. These or
similar theorems also apply to the exact quantities and
can be derived in an analogous manner via the RS per-
turbation expansions?’; this close correspondence be-
tween exact and variational quantities is not surprising
in view of the formal analogy between the RS and the
PV expansions. The remainder theorem, derived in
Appendix B, and the variational Hellmann-Feynman
theorem, derived in Appendix C, have already been
discussed in Sec. IIC in connection with their applica-
tion in the PV procedure. In addition, the variational
integral Hellmann-Feynman theorem is derived in
Appendix D, the virial theorem, in abbreviated form,
in Appendix E, and a theorem relating to the expecta-
tion value (Vo), where V is the unperturbed potential
operator, in Appendix F. Appendix D also contains an
important theoretical application of the variational
integral Hellmann-Feynman theorem in conjunction
with the PV classification scheme. A general analysis of
the scaling parameter and the virial theorem in terms
of PV theory is presented in a subsequent paper!? in
this series.

The theorem involving (V) is of particular interest
because it permits an estimate to be made of the asymp-
totic accuracy of an energetically optimized expecta-
tion value other than the energy; this is done by obtain-
ing a relationship between the PV expansions of the
property and of the energy. Thus, it follows from Eq.
(F4), Appendix F, that the PV expansion of the opti-
mum {#!) for an atomic isoelectronic sequence is given
in Hartree atomic units!-?® by

FH=ZR)= 3 (m—2)AnZ

m=0

(41)

It has been empirically determined that the expecta-
tion value of 1, which is proportional to the diamag-
netic nuclear shielding,? is in some instances extra-
ordinarily insensitive to the quality of the variational
wave function used in its computation; for example, this
has been observed® for the ground state of the He
isoelectronic sequence for variational wave functions
ranging from the simplest to the most elaborate form.
This behavior can be readily interpreted via the PV
classification scheme. It is apparent from Egs. (31),

27 See P.-O. Lowdin, [J. Mol. Spectry. 3, 46 (1959)] for a
comprehensive review of the virial, Hellmann-Feynman, and
other related theorems, with applications to perturbation theory.

28 We reserve the symbols » and #; for radial coordinates in
Hartree atomic units and R and R; for the corresponding quantities
in modified atomic units; to convert results expressed in modified
atomic units to Hartree atomic units, multiply energies by Z?
and expectation values of the type (RB") by Z="; see also Ref. 1.

29W. E. Lamb, Jr., Phys. Rev. 60, 817 (1941).

30 J. N. Silverman, O. Platas, and F. A. Matsen, J. Chem. Phys.
32, 1402 (1960), Tables IV and XI.
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(37), (39), and (41) that (#1) is obtained correct
through second order with all category I wave functions,
and, aside from the vanishing second-order term, in-
correct in all orders with all category II wave functions,
and correct only in zero order with all category III wave
functions. Therefore, with increasing Z, values of
(7~1) computed with different category I wave functions
should rapidly converge to the correct values, values
computed with different category II wave functions
should eventually diverge linearly with Z below the
correct values, and values computed with different
category IIT wave functions based on the same general-
ized degenerate y,‘¥ should rapidly converge to common
values lying below the correct values by a constant
amount. These predictions are borne out by the pre-
viously cited®® He sequence calculations, all of which
were performed with category 1 wave functions;
insufficient variational data are available3! at present
for an adequate test of the predictions concerning
category IT and III wave functions. Equation (41)
has previously been used by Hall®2 to compute the ex-
pectation value of 7! for the He isoelectronic sequence
with the RS expansion of the exact ¢ determined
variationally by Hylleraas and Midtdal.?

The PV classification may also be applied to the
a priori analysis of the variational parameters embedded
in the variational wave functions. Thus, for category I
wave functions, it is possible to subdivide all the @, into
three principal types of paremeters, designated as the
bs, ¢py and d,, respectively. For these, the optimum
bxo and ¢,0 can be determined merely by inspection and
comparison of ¢ and Y, while the d,o cannot be so de-
termined. The b, are those parameters which can be
brought into correspondence with the theoretically
known parameters embedded in ¥, so the b, are given
by just these theoretical values; the ¢, represent ad-
ditional parameters inserted in ¢ in such a manner
so that the ¢, must vanish identically to satisfy Eq.
(31a); the d, represent those additional parameters
inserted in ¢ in such a manner so that the d,q are in-
determinate from the comparison of ¢ and y,. Then,
Eq. (31a) can be replaced by the more general condition
for category I wave functions,

¢0= <P{51r0§ Ep(); &00}
= ¢{bxo; 0; dso} =ts. (31a%)

In the discussion following Eq. (25a), it was noted
that, in general, the zero-order parameters appear
nonlinearly in the zero-order set of PV variational
equations while the successive higher orders of the
parameters appear linearly in the successive higher-
order variational equations; thus, a marked reduction

31 F. T. Ormond and F. A. Matsen, J. Chem. Phys. 30, 368
(1959), Table I; the Li and Be sequence closed- and open-shell
calculations reported here were performed with category II wave
functions but were not computed for sufficiently large values of

Z to reveal the asymptotic behavior.
32 G. G. Hall, Phil. Mag. 6, 249 (1961).
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in the PV computational labor can be achieved by the
a priori evaluation of some or all of the @yo.

An important example of the type-b, parameter is a
scaling parameter % inserted to insure that @ satisfies
the virial theorem?’; it is easy to show!®:33 that ky=1
for all category I wave functions.

Examples of the type-c, parameter are furnished by
the linear coupling coefficients for functions added to
a generalized v, in the construction of a category I wave
function. It should be noted that the ¢, expansions must
vanish in zero order but need not vanish in higher
orders; thus, the ¢, expansions have the general form

(42)

in agreement with the previously empirically deter-
mined* behavior of the linear mixing coefficients in
category I configuration-interaction wave functions
for the He isoelectronic sequence.

Another example of the type-c, parameter worthy
of special note arises in some category I open-shell®
wave functions. For the ground state of the He isoelec-
tronic sequence, Scherr and Silverman* have found that
the optimum orbital exponents, and hence the optimum
orbitals, of a simple analytic category I open-shell wave
function do not have a normal PV expansion but rather
can only be expanded in powers of A\1/2. For the analytic
function considered, the open-shell character can be
formulated in terms of an orbital-splitting parameter x.
In Appendix G, it is shown via a simple argument based
on PV theory that the anomalous expansions result
from the fact that the optimum Z? must be a type-¢,
parameter described by Eq. (42). Stewart®> and other
authors?®® have subsequently shown that these anoma-
lous orbital expansions persist when the much more
general open-shell, or so-called unrestricted, Hartree-
Fock orbitals are used to construct this He sequence
open-shell wave function; thus, the anomaly is not an
artifact of the simple analytic orbitals originally used,
but represents a fundamental characteristic of this
type of wave function. A general explanation of this
anomalous behavior from the standpoint of PV theory
is outlined in Appendix G. In essence, this variety of
PV orbital expansion arises whenever the quadratic
integral (gaml ga,), in analogy with &%, must have a ¢,-type
of expansion, i.e., whenever {@so| ga,o) 0; here, ¢, is a
generalized sphttmg orbital.

The indeterminate d.-type parameters of category I
wave functions are usually encountered in configu-
ration-interaction functions formed by taking a linear

33 W. Kohn, Phys. Rev. 71, 635 (1947).

3 See Ref. 3 for a definition of closed- and open-shell wave
functions and for an extensive bibliography of such calculations
for atomic systems.

3 A, L. Stewart, Proc. Phys. Soc. (London) 83, 1033 (1964).

36 C. A. Coulson Proc. Phys. Soc. (London) 84 511 (1964);

J. L. J. Rosenfeld and D. D. Konawalow, J. Chem. Phys 41, 3556
(1964), C. Froese, Phys. Rev. 140, A1489 (1965).
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combination of a generalized ¥, with one or more ad-
ditional functions X. The optimum linear coefficients
of the X must, of course, vanish in zero order; if, how-
ever, the X contain nonlinear parameters which are not
present in the generalized o, the X, may contain non-
vanishing dso which must be computed via the PV
procedure. An example of such a parameter is furnished
by the orbital exponent of the (2p)2 configuration func-
tion added to category I wave functions for the He
isoelectronic sequence.*

For category II wave functions, it is predicted from
PV theory that in general all variational parameters
are of the same type with the normal PV expansions
of Eq. (9a). It is not possible, however, to determine any
of the expansion orders of the optimum parameters in
an a priori manner; thus, the @, must be computed
via the PV procedure. Some guidance in the iterative
numerical calculation of the @, may be obtained from
empirical rules such as those due to Slaters’; alterna-
tively, if ¥, is known, and the category IT wave function
in question resembles a generalized ¥, the @, may lie
close®1? to the corresponding theoretical values in .
Since the type-¢, parameter of Eq. (42) does not gener-
ally appear in category II wave functions, the pre-
viously described anomalous behavior of optimum
orbital exponents and orbitals for some category I open-
shell wave functions cannol occur for a corresponding
category II open-shell wave function. Thus, as shown
in Appendix G, for category II wave functions, %2540,
or more generally, (@] @20)5%0. If £,2>0, the orbital
exponents and the corresponding orbitals would have
normal PV expansions in terms of real quantities; if,
however, Zo2< 0, the orbital exponent and corresponding
orbital PV expansions would be in terms of complex
quantities. The former behavior has subsequently
been verified!? for some category II open-shell wave
functions for the He isoelectronic sequence; the latter
behavior has previously been empirically determined®
for a category IT open-shell wave function for the Li
isoelectronic sequence, and has been conjectured?® for
an analogous wave function®® for the B isoelectronic
sequence.

As previously mentioned, category III wave functions
based on generalized forms of a given degenerate ¥,
have a pseudo-category-I character. Therefore, the
above discussion concerning the variational parameters
of category I wave functions applies in its entirety to
such category ITI wave functions. The only peculiarity
worthy of special note arises when a generalized form
of another degenerate ¥, is added to the initial func-
tion. In such cases, the optimum linear coupling co-
efficient of the added function no longer vanishes in
zero order and must be computed by the PV procedure.
If generalized forms of all the degenerate (@ are
added in this manner, the minimum-configuration?

3 J. C. Slater, Phys. Rev. 36, 57 (1930).
3G, H. Brlgman and J. N, Silverman, J. Chem. Phys. 44,
3136 (1966).
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category I wave function is formed, and the optimum
linear coupling coefficients are given in zero order by
the biy of Eq. (382).

These parametric considerations have been applied in
a series of PV calculations for the helium*? and lithium?®
isoelectronic sequences with category I and category
IT wave functions.

IV. CONCLUSIONS

The PV procedure may be regarded as a generalized
extrapolation scheme which yields energetically opti-
mized approximate solutions for a perturbed system in
the form of Taylor expansions about either exact or
optimized approximate solutions to a simpler, unper-
turbed system. The PV procedure is thus of wider ap-
plicability than RS perturbation theory because the
latter approach, unlike the former, requires that the
exact unperturbed solution be known; in the PV pro-
cedure, any analytic wave function containing a number
of adjustable parameters may serve as the input func-
tion for the unperturbed system.

The PV expansions obtained as output serve a dual
purpose: (1) They furnish specific variational data as a
function of the perturbation for the systems and wave
functions considered; and (2) they provide a general
framework for the systematic classification and evalu-
ation of all perturbed variational wave functions in
respect to their quality. It is this interpretive aspect of
the PV expansions which is of particular interest be-
cause it affords an insight into the relative behavior of
variational wave functions which cannot be obtained
via the conventional variational approach.

The PV procedure is applicable to all systems for
which the Hamiltonian may be written in the form of
Egs. (2). Atomic isoelectronic sequences have pre-
viously been mentioned as an important example of
such systems. There are numerous other possible
applications such as atomic systems perturbed by elec-
tric and magnetic fields, and nonrelativistic formulations
of such systems perturbed by relativistic effects. Any
previously derived analytic variational solution for the
unperturbed system may serve as the starting point in
these calculations; if such a function is used, the opti-
mum zero-order parameters are already known. The
effect of the perturbation on the variational parameters,
the wave function, and associated expectation values,
may then be followed to any desired order via the PV
procedure.
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APPENDIX A: THE VARIATIONAL
WAVE OPERATOR
Consider the functional
X=X(a1:a2" ° ',GP)EX{G,,} ) (A]-)

where the @, are undetermined analytic functions of the
independent variable A, which can be expanded in
Taylor series about A=0:

a’ll=a#()‘) = Z a'M')‘j; p=12,--- Py (Aza)
7=0
where
. dia,
%ﬂw() . (A2b)
AN/ =0

We seek the explicit form of the X,, in the analogous
expansion of X about A=0,

[

X=3 X.\™, (A3a)
m=0
where
X
Xn=(m !)“1(—-——> . (A3Db)
d\™ / a=o

Since the a,— @, as A— 0, equivalent results are
obtained by expanding X about the a,; in the usual
notation, the Taylor expansion of a function of P
variables can be written as

X{a,}= 3 (k)

k=0

{E el

ay ap=a,q

Tmm.ma

The as yet undetermined a,o may be treated as dummy
variables so it follows that

[ a x{ }:| d
—X{a = X{auo}.
aa“ » avmtnn P { MO}

auo

(AS)
Then, Eq. (A4) can be written in the form
© P o k
X(a= 5 60| £ £ 0D X0, (a0
k=0 =1 j=1

where we have substituted Eq. (A2a) and introduced
the notation
(V]

Dyo= (A7)

aa,‘o
Upon changing the order of summation and introducing
the additional notation

P
di=2 a,;Dy,

p#=1

(A8)
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TasLE II. Constraints®* of Wan,m operator for 1<m<7.
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a Positive integral solutions of Egs. (A13b) and (A13c).
we obtain from Eq. (A6)
X{a,}= 2 kD7LX dNTX{aw}.  (A9)
k=0 J=1

It follows from the multinomial theorem that

o w (M)
[Z dnF=r T I ——,

j=1 k;j j=1 je

(A10)

subject to the positive integral solutions of the con-
straint
0
2 ki=k.
=1

Then, subject to Eq. (A11),

(A11)

© 0 djki
X{a =2 2 I:H "—'X{dpo}:IKB , (Al2a)

k=0 ki Lj=1 kjl
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where
B=3" jk;. (A12b)
=1

Thus, by comparing coefficients of like powers of X in
Egs. (A3a) and (A12a), we obtain the general result

m m ki

&=zznjgmmﬂe1<mw

k=1 kj j=1 it

subject to the positive integral solutions of the con-
straints,

2 ki=k, (A13b)
=1
and
2 jki=m; (A13c)
=1

the special case of #=0 corresponds to k=0 and yields
Xo=X{a,0}. (A13d)

The summation limits over %z and j in Eqs. (A13) can be
derived from a straightforward consideration of the
nature of the constraints. The summation over % in
Eq. (A13a) is required because for m>2, the constraint
of Eq. (Al3c) is satisfied in general by different dis-
tributions of %; corresponding to different values of k.

It proves useful to introduce the multinomial dif-
ferential operator W, defined as

m n djkf

Wia=2 211 —, m2n>1

k=1 kj j=1 kj!

(A14a)

subject to the positive integral solutions of the con-
straints,

2 ki=k, (A14b)
=1

and
3 jkj=m. (Al4c)
7=1

In this notation, the first subindex in W, gives the
order of the highest derivative, while the second sub-
index gives the order of the highest expansion term of
the a,; in addition, the special case of m=#n=0is defined
as

Woo=1, (A14d)

while for all other combinations of indices such as m<#n
or for negative indices, the operator is defined as zero.
The application of the Wm,» operator in the asymmetric
case of m>n>1 is discussed in Appendix B. In the
symmetric case of m=n2>0, the W, operator is directly
applicable to Egs. (A13), yielding

X =W nmXo, m>0. (A15)
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As an aid in calculations, the various solutions of %,
7, and k; satisfying the constraints of the symmetric
W m.m operator, Egs. (A13b) and (A13c), for 1 <m <7 are
collected in Table II. It should be noted that for m>1,
it follows quite generally from the constraints that the
only solutions for j=m are kn=1 and k=1 and that
no other solutions of j and %; are possibie for 2=1; as
a consequence, the highest-order expansion terms of
the a,, the a,m, occur only linearly in W,.» and are
localized in the leading d,.. In addition, it is easy to see
that it is always possible to find %; and % values which
satisfy the constraints for j=m—1, m—2, - -, 1. Thus,
including the zero-order parameters contained in Xy,
X is in general a function of all a,; for 0< 7<m.

By introduction of the total operator W, defined as

W=3 Wnm\", (A16)

m=0
the Taylor expansion of Eq. (A3a) can be written as
X=WX,. (A17)

Lowdin® has introduced a so-called wave operator for
generating the perturbed eigenfunction ¢ from the un-
perturbed eigenfunction . In analogy with his termi-
nology, W is designated as the variational wave operator
since it generates the perturbed approximate function
from the corresponding unperturbed approximate
function.

The above considerations are readily extended to the
product of two or more functionals. To illustrate the
simplest case, which is all we need consider here, let

F{a,}=X{a,} V{a,}, (A18)

where X and Y are two different functionals, each con-
taining the same set of a,. Since the Taylor series of
a product equals the product of the Taylor series, it
follows immediately that

F=WFy=W(XY)e=WXo)(WY,),
and that

(A19)

Fp= Wm.mFO= Z (Wr,rXO) (Wm—-r,m—ryo), mZ 0. (AZO)
r=0

Further, it is not difficult to determine the effect of the

asymmetric operator W, on such a product; of par-

ticular importance are the cases m=2n, m=2n-+1, and

m=2n—1, which yield, respectively,

n—1

W2n,nF0= Z [(Wr.rXO) (WZn—T.ﬂYO)

r=0
+ (WZn—r,nXO) (Wr,rYO):l
+ (Wn,nXO) (Wn ,nyﬂ) )

W2n+1,nF0= Z [(Wr,rXO) (W2n+1—r.ﬂ YO)
re=0
+ (W2n+1—r,‘nX0) (Wr,ryo)] ) (AZlb)

40 P.-0. Léwdin, J. Math. Phys. 3, 969 (1962); Rev. Mod. Phys.
35, 702 (1963).

(A21a)
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and
n—1

W2n—1,nF0= Z [(Wr.rXO) (W‘Zn—l—r.nyo)
r=0
+ (W2n— l—r,nXO) (Wr,ryo)] . (AZIC)

APPENDIX B: THE REMAINDER THEOREM

It follows from the discussion in Sec. IIB and Appen-
dix A that the even and the odd orders of the energy
expansion can be respectively expressed in terms of the
variational wave operator as

Non=W an,20Go+W 2n—1,20-180, (B1a)
and
N2041= W ant1,9041G o+ Wen 2080, (B1b)

for n>0. Equations (B1), however, have not yet been
reduced to their most useful form. The desired simpli-
fication can be achieved by suitable rearrangement of
the variationa)l wave operator. By way of illustration,
consider the Wy 2, Operator,

2n 2n dj"i
Wonzw=2 2 11 —, (B2)
k=1 k; j=1 ;]
subject to the constraints,
2n
2 ki=k, (B3a)
J=1
and
2n
> jki=2n. (B3b)
=1

From the constraints, it is apparent that for j=s, where
#n+1<5<2n, the only possible solutions of Eqs. (B3)
for &, are k,=1, i.e., the corresponding d, must occur
linearly in Wan,2q; further, these ds can only occur in
products with other d; for which j<#—1. Thus, the
factoring of d, from a typical term of this type in Eq.
(B2) for a given k and a given distribution of the %;
yields

djki 2n—s @;Fi
2 —=ds X —, n+1<s<2n (B4)
=1 k;l =1 k;

where the d; and %; on the right-hand side of Eq. (B4)
are subject to the modified constraints

2n—s
> ki=k—1, (B5a)
i=1
and
2n—s
> jhi=2n—s; (B5b)
=1

for the special case of s=2#, the right-hand side of Eq.
(B4) reduces to the single term ds,. The systematic
factoring of all d, in Eq. (B2) yields

2n—1 2n—s 2n—s djkf

W2n,2n=d2n+ Z dt Z Z H -

s=n+1 k=1 kj =1 k;!

2n n djki
+2X X I1—, (B6)

k=1 ki =1 f;l
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where all the remaining terms, which do not contain
the d,, are collected in the last expression on the right-
hand side. Then, it follows from Egs. (A13), (A14), and
(BS) that Eq. (B6) can be written as

2n
W?n,2n= Z dsWZn-—a,2n—c+W2n.n,

s=n+1

(B7a)

which is the desired final form. In an analogous manner,
it is easily shown that the Wani1,2041 and Wan 1,901
operators can be respectively expressed as

2n+4-1
Wonst,en1= 2. dsWont1i—s,2nt1—sFWant1,n, (B7D)
8=n+1
and
2n—1
W2n-1,2n—-1= Z daW2n—1—s.2n—1—a+W2n——l,n- (B7C)
s=n+1

The appropriate substitution of Egs. (B7) in Eq.
(B1a) yields

2n
Nen= Z ds(WZn—-a,2n—sGO+W2n-l—s,2n—1—ag0)

s=n+1
+W2n.nG0+ WZn—l,ngl) ) (BS)

which reduces to

2n
Nen= 2, dsNon—stWon,aGoF+Wan-1,180, (B9a)

g=n+1

via the expression for the general expansion term of 7,
Eq. (21); in an analogous manner, Eq. (B1b) can be
transformed to

2n4-1

Neng1= Z d:ﬂ2n+1—a+W2n+1,uGo+W2n,ngo-

s=n+1

(B9b)

Let us now suppose that the first (z+1) sets of vari-
ational equations obtained from Egs. (24) have been
solved, thus yielding the optimum &, expansions through
the nth order. It follows from the definition of d;, Eq.
(A8), that the substitution of these optimum parameters
in Egs. (B9) causes the summations over s to vanish
identically. Thus, the optimum energy expansion terms
can be expressed solely in terms of the remainder func-
tions, i.e.,

fizn=W 2n nGo+ W2n—1,ng0 , (B10a)

and

Tians1=Want1,sGot Wan,ngo (B10b)

for n>0; this result is termed the remainder theorem.
It also follows in an analogous manner from Eqs. (B7)
and (25a) that

Gm": (&m+Wm,m—l)GO= Wm,m—lGO, mZ 1 ; (Bll)

Eq. (B11) may be regarded as a much weaker appli-
cation of the remainder theorem. It should be noted
that Egs. (B1) and (B9) are valid for both unoptimized
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and optimized energies, while Eqs. (B10) and (B11)
only apply to optimized % and G, respectively.

APPENDIX C: THE VARIATIONAL
HELLMANN-FEYNMAN THEOREM

For a variational wave function of the form of Eq.
(3), where all the g, are arbitrary differentiable functions
of the independent variable X, it follows from Eq. (5)
that

dn P dndae, 9

= ———; ()
d\  w=1da, d\ O\
here,
an do de
—= —IH(A>|¢>+<¢IH<A>I*>; (C2a)
da, \da, da,
N:172)"'1P:
and

an < 'dH. > <dH> (C2pb)
—=( ¢|—|e)=(—)-

1)\ aa ax

The total-derivative notation in Eq. (C1) indicates that
\ is considered to be the only independent variable;
there is no difficulty in generalizing these results to the
case where H depends on several independent vari-
ables.*! If the optimum @, have been variationally de-
termined, it follows from Egs. (7) that the substitution
of these optimum parameters in Eq. (C1) causes the

summation over u to vanish. Then, for optimum @ and
7, and for the specialized H of Eq. (2a),

dn/d\=07/IN={p|H:| 3)=(H1)=7,
and for the general H of Eq. (2b),'* analogously,

(C3a)

dq 97 dH
b
AN )N a\
Equation (C3a) or (C3b) is also applicable to the exact
¥ and e and, as such, is termed the Hellmann-Feynman
theorem*?; the usual proof for exact quantities, however,
depends upon ¢ and e satisfying Eq. (1) rather than
upon the specific optimization of adjustable parameters.
We term either of Eqgs. (C3) the variational Hellmann-
Feynman theorem to emphasize that variationally
optimized functions are involved. The above proof
was first put forth by Hurley*; subsequently there
has been considerable discussion* as to the general
applicability of the variational Hellmann-Feynman
theorem. For our purposes, it is sufficient to specify
that the ¢ of Eq. (3) is to be constructed so as to satisfy
41 See, for example, E. M. Roberts, Phys. Rev. 128, 1381 (1962).
“* H. Hellmann, Einfilrung in die Quantenchemie (Deuticke,
Vienna, 1937); R. P. Feynman, Phys. Rev. 56, 340 (1939); see
also J. I. Musher [Am. J. Phys. 34, 267 (1966)] for a historical
disucssion of this theorem.
4 A, C. Hurley, Proc. Roy. Soc. (London) A226, 179 (1954).
44 See, for example, C. A. Coulson and A. C. Hurley, J. Chem.

Phys. 37, 448 (1962); A. C. Hurley, sbid. 37, 449 (1962), and
references cited therein.

¢>=§1 KA. (C3b)
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the requirements of Hurley’s*® floating functions or of
Hall’s®2 stable functions; this ensures that Eqgs. (C3) are
satisfied.

From Egs. (9¢), (15), (19e¢), and (C3a), we obtain
for the PV expansion of the optimum #,

Am=M Gm-1, m>1. (c4)
In addition, by combining Egs. (21) and (C4), we
obtain the alternate relations for the PV expansions,

Grt-m= Y m—1)jm1=0, m>1 (C5)
and _
(m—1)fim=—Gn, m2>0. (C6)

In the variational wave-operator representation, Eq.
(C6) can be reduced by one parametric order via Eq.
(B11) of Appendix B; this yields
(m—1)m=—WanuGo=—WmnmniGo,, m>1. (C7)
Since the exact ¥ and e satisfy the Hellmann-Feynman
theorem, the RS perturbation expansions must also
satisfy Egs. (C4)—(C6); these or equivalent relations
for the exact quantities have previously been derived
independently by Carr,?® Froman,* and Scherr and
Knight, and have been discussed by Léwdin.?

APPENDIX D: THE VARIATIONAL INTEGRAL
HELLMANN-FEYNMAN THEOREM

Consider the identity
(¢|H—n| ¢)=0. (D1)

For H given by Eq. (2a), we obtain by suitable re-
arrangement of Eq. (D1)

(@o| Ho—m0| @)+ {00l HA—(n—10)| ©)
+{e— o H—1| ¢)=0,

which can be written in the form
(ool H1| o)\

(¢o| @)

(D2)

[(n-— 70)— ](sool e)=4, (D3a)

where

AE(‘P()‘HO—TIO' o)+ (o— sl’o!H"’?l ¢). (D3b)

Equations (D1)-(D3) are valid for arbitrary, unopti-
mized, normalized ¢. In general, for such ¢, there is no
requirement for A to vanish. Consider, however, the
special case where =1 and, hence, 7= ¢, po=10, and
n0= €. Then it follows from Egs. (1) and (10) that A
vanishes, and from Eq. (D3a), we obtain for the exact
energy shift in passing from the unperturbed to the
perturbed state

e—eo= (Y| H|Y)— o| Hol| o)
= ol Hily)N/ Woly). (D4)

Equation (D4), which was originally derived in another
4% A, Froman, Phys. Rev. 112, 870 (1958).
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manner by Breit,* and independently by Parr*’ and
Richardson and Pack,* has been termed the integral
Hellmann-Feynman theorem by Parr.#

The question naturally arises whether A vanishes
when computed with energetically optimized approxi-
mate functions. By substituting the PV expansions of
the optimum @ and %, Egs. (9b) and (9¢), in Eq. (D3b),
we obtain the following PV expansion for the optimum
A:

A=Y Aa\m,

m=0

(DS)
where
Bo={@o| Ho— 70| @o)=Go—70=0, (D62)
Ay={@o| Ho— 0| &1)+{&1| Ho—7io| po)=G1=0, (D6b)
Bo={po| Ho— 70| @2)+{1| Ho— 10| 71)

+{(@2| Ho— 70| @0)+{@1| H1— 71| o)

=Go+10:=0, (D6c)
but, in general,

m—1
Bn=tm—[{@0| H1| pm-1)— Z:l #{@o| Bm—r) 1520,

m>3. (D6d)

In deriving Egs. (D6), we have made use of the matrix-
element formulation of the G, and g1 and of the
orthonormality conditions, Eqs. (17) and (18), as well
as of Egs. (16). Equation (D6a) vanishes identically
while Eqs. (D6b) and (D6c) vanish because of Eq.
(C5) of Appendix C. Thus, for all optimum variational
wave functions which satisfy the variational Hellmann-
Feynman theorem, A vanishes in general only through
second order. Since (@] a)=1+0(\?%), it follows that
the corresponding variational energy shift (7—#o) is
not given by the equivalent of Eq. (D4) but rather by

i—70={a|H| 8)— (0| Ho| 20}, (D7a)
where
Go| Hi| &)\
(7— ﬁo)‘M= o), (D7b)
Po| &)

a rigorous result. We term Eq. (D7b) the variational
integral Hellmann-Feynman theorem; a clear statement
of this theorem in terms of a well-defined perturbation
parameter does not appear to have been previously
presented.

p: Parr®” has suggested that the approximate expression
(correct through second order) for the variational energy

shift (5— 7o)
{@o| H1| @)\

(@0l &)
46 G. Breit, Rev. Mod. Phys. 23, 238 (1951).
47 R. G. Parr, J. Chem. Phys. 40, 3726 (1964); H. J. Kim and
R. G. Parr, ibid. 41, 2892 (1964).
( 4 Jj W. Richardson and A. K. Pack, J. Chem. Phys. 41, 897
1964).

f—To= (D8)
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may serve as a useful approximation to the exact energy
shift (e—eg) resulting from changes in molecular con-
formation.# It is appropriate, then, to determine under
what circumstances the PV expansion of Eq. (D8)
would agree through a given order with the RS expan-
sion of the exact shift

@

€— €= 2. €x\P.

p=1

(D9)

We recognize the expression in square brackets on the
right-hand side of Eq. (D6d) as being identical in form
to the familiar expression for the mth-order RS energy
expansion term e, obtained by multiplying the mth-
order coupled differential equation of RS perturbation
theory?® from the left by ¢¢* and integrating. Therefore,
a sufficient condition for A to vanish through mth order,
and hence for Eqs. (D8) and (D9) to agree through
mth order, is for the expansions of @ and ¢ to agree
through the (m—1)th order. On the other hand, as
shown in Sec. III and elsewhere,® ! if the expansions
of & and ¢ should agree through the (m—1)th order,
the PV expansion of 7 computed directly from (3| H| &)
would agree with the RS expansion of e through the
(2m—1)th order. Thus, the use of Eq. (D8) rather than
directly taking the difference of % and 7o, as in Eq.
(D7a), would effectively result in the loss of the (m—1)
orders of ¢, for m+1<p<2m—1, and their replacement
by approximations; this conclusion is one order less
pessimistic than that previously advanced by Musher.%

The accuracy with which Eq. (D9) is reproduced by
Eq. (D8) can also be discussed in terms of the PV
classification of variational wave functions: Category I
wave functions satisfying only Egs. (31) yield results
correct through first order; category I wave functions
satisfying both Eq. (31) and (36) yield results correct
through second order, etc.; all category II and category
IIT wave functions yield results incorrect in all orders.
It is apparent that there is nothing to be gained, and
much to be lost, if Parr’s theorem, Eq. (D8), is applied
to accurate (through first- or higher-order) category I
wave functions. In practice, however, only relatively
poor category II wave functions are presently available
for molecular calculations. Although Eq. (D8) is not
protected by the variational principle, it is also not
restricted by it. Thus, the possibility exists that the
use of Eq. (D8) may introduce some compensatory
error in the higher-order terms of % and thereby yield a
better approximation to the exact (e— €) than does the
use of the rigorous expression for (75— 7o), Eq. (D7a). It
is significant to note that since Egs. (D7a) and (D8)
agree through second order in N, any compensatory
error introduced by Eq. (D8) should only become ap-
preciable for rather large \, i.e., precisely in the range
of increasing perturbation where the directly computed

4 R. E. Wyatt and R. G. Parr, J. Chem. Phys. 43, S217 (1965);

44, 1529 (1966).
% 3. I. Musher, J. Chem. Phys. 43, 2145 (1965).
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7 would be expected to become increasingly inaccurate.
This prediction is in accord with the trend of the data
reported by Hayes and Parr,’! who applied Egs. (D7a)
and (D8) to variational wave functions for the HeH+
molecule; here, A may be regarded as the inverse nuclear
separation.

APPENDIX E: THE VIRIAL THEOREM

The relationship between the virial theorem and
the PV procedure is of sufficient interest to warrant
detailed analysis elsewhere.’* Here, only those results
are summarized which are relevant to this unified
presentation.

Consider a bound system of charged particles inter-
acting with Coulombic forces. Then, che Hamiltonian
can be written as

H=T47V, (E1)

where T and V are, respectively, the kinetic and po-
tential energy operators. Further, in analogy with our
treatment of H, Egs. (2), assume that V=V (). Then,
for A=0, the unperturbed Hamiltonian assumes the
form

H 0= T+ VO ) (Ez)

where V, is the unperturbed potential operator. For
H given by Eq. (2a), we obtain from Eqgs. (E1) and (E2)

V=Vot+Hn. (E3)

For such a system, the virial theorem?’ states that
for the exact normalized wave function,

201 T+ VI¥)=0.

In general, Eq. (E4) is not satisfied if  is replaced by an
arbitrary variational wave function, whether optimized
or not. If, however, the coordinates of each particle in
¢ are transformed from R; to kR;, where % is a so-called
scaling parameter, it is well known?” that the trans-
formed ¢ satisfies the virial theorem for the energeti-
cally optimized k. Let us now specify that one of the
a, contained in the ¢ of Eq. (3) is such a scaling
parameter. Then, for optimum g,

AT)+(V)=0. (ES)

Equation (ES) can be expanded in the usual manner by
the variational wave-operator formalism or by substi-
tuting the PV expansion of the optimum &, Eq. (9b).
This yields for the PV expansion terms

2Ty +(Vo)o=0,

(E4)

(E6a)
and _
2TV Y+ (H1Ym1=0, m>1, (E6b)

ie., the virfal theorem is fulfilled in each expansion
order. In addition, since

a=(H)=(T)+(V), (ET)
51 E, F. Hayes and R. G. Parr, J. Chem. Phys. 44, 4650 (1966).
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it follows from Eq. (ES) that

i=—(T), (E8)
with the PV expansion,
im=—(T)m, m20; (E9)
also
=57, (E10)
with the PV expansion,
Fo=3%(Vo)o, (E11a)
and
in=3[(Vo)mt+(Hi)m], m>1. (Ellb)

Thus, all orders of the PV expansion of the optimum
7 can be computed either solely in terms of the kinetic
energy operator or of the potential energy operator.
Since the exact ¢ and e satisfy the virial theorem, Eqgs.
(E6)-(E11) necessarily also apply to the RS pertur-
bation expansions.!®:20:27

APPENDIX F: THE SEPARATION OF (7,)

It is possible to combine the variational Hellmann-
Feynman theorem, Appendix C, and the virial theorem,
Appendix E, to obtain another theorem relating to the
energetically optimized expectation value of the Vg
operator. In general, from Egs. (17) and (E2),

Gn=(Ho}n=T)n+Vo)m, (F1)
so it follows immediately from Eqs. (C6) and (E9) that
Q—m)m={Vo)m, m>0 (F2)

for all scaled, fully optimized variational wave functions.
Thus, all orders of the PV expansion of the optimum #,
excepting 7s, can be computed solely in terms of the
unperturbed potential operator. Since the exact ¥ and
¢ satisfy both the Hellmann-Feynman and the virial
theorems, the RS perturbation expansions must also
satisfy Eq. (F2); this relation for the exact quantities
has previously been derived independently by Froman,*5
Hall,®2 and Scherr and Knight,!® and has been discussed
by Lowdin.?” Hall’? has also discussed the applicability
of the theorem to certain approximate wave functions.
For an N-electron atomic isoelectronic sequence, the
nonrelativistic ¥ operator, in modified atomic units,!
is given by

=_z R,

f=1

(F3)

where R; is the radial coordinate?® of the ¢th electron.
Then, from Egs. (F2) and (F3), the PV expansion of
(R“) in modified atomic units is

(B= (é R )= %ﬂ (m—2)7.Am.  (F4)
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APPENDIX G: THE ANOMALOUS PV
EXPANSIONS OF SOME OPEN-SHELL
ORBITALS

For the 1S ground state of the He isoelectronic se-
quence, the open-shell®* wave function has the general

form
o=M[0.(1) 0s(2)+ o1(1) 0a(2)], (G1)

where the separable, antisymmetric spin function has
been omitted; here, M is an over-all normalization
factor, and ¢, and ¢, are nonequivalent, normalized,
s-type variational orbitals. In the analytic, open-shell
wave function considered here, the orbitals are taken?*52
as

ea(t)=(a%/m)? €%, y(1) = (b%/m)!1? 2%+, (G2)

where the orbital exponents, ¢ and b, are variationally
determined. The orbital exponents can also be ex-
pressed*5? in terms of a scaling parameter & and a
splitting parameter # by the transformation

a=k(14+2x), b=k(1—x).

If x is not allowed to vary freely but is arbitrarily
fixed at zero, then

(G3)

0= Pb= ¢, (G4)

and ¢ becomes a closed-shell function. With the choice
of the open-shell orbitals of Eqgs. (G2), it follows from
Egs. (G1) and (G3) that ¢ is an even function of x,

So(k;x) = ‘P(k, _x) ’ (GS)

so that, correspondingly, the energy » must also be an
even function of x. In particular, it is found*52 that

1=1(k,3), (G6)
where

(GN

and the optimization of 7 is to be performed in respect
to k& and y. Then, in PV notation, the unoptimized
zero-order energy is

— 2
y=x%,

no=G(ko,yo0). (G8)

In the hydrogenic RS perturbation expansion,? the

exact zero-order function ¥, is given by the closed-shell
function

Vo= (1) (2); (G9)

here, the ¥ (7) are normalized hydrogenic 1s orbitals
with the form

Yo ()= (1/m)"1? e B4,

in modified atomic units.!:28
From comparison of ¢ and ¢, it is apparent that ¢

(G10)

52 H. Shull and P.-O. Léwdin, J. Chem. Phys. 25, 1035 (1956),
see also R. P. Hurst, J. D. Gray, G. H. Brlgman and F.
Matsen, Mol. Phys. 1 189 (1958).
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is a category I wave function, where

ko=1, (G11a)
Fo=E2=0, (G11b)
Mo=%, (G11c)
Ba0= Pr0= Pro=vo, (G11d)
o=, (Gl1e)
and
To=e=—1. (G11)

Equations (G11) could also have been derived by
direct optimization of 7o, Eq. (G8). These results show
that k is a type-b, parameter but 7 is a type-¢, parameter
with the expansion

g= i giN= 271>\[1‘f‘§;1 @i/gIN]. (G12)

=1

It is apparent from Eq. (G11b) that it is not possible
to expand (§)Y2 about #o is a normal PV expansion.
From Eq. (G12), however, we obtain

(@)= (20)2= (@) v
X[+ @/ 2500002 ], (G13)

providing the expansion exists. Since k has a normal PV
expansion, it follows from Egs. (G3) and (G13) that

d'—‘z linj, 5'—‘-2 BjKj, (G14a.)
=0 7=0
where
k=NV2=7Z"12 (G14b)

in agreement with the observed*? behavior; the expan-
sions of Egs. (G14) are to be multipled by Z to convert
to Hartree atomic units.!»?® It is not difficult to show
that both @ and 7 have normal PV expansions despite
the anomalous expansions of @ and b, and hence, of
@a and &p.

These anomalous results are directly dependent upon
¢ being a category I wave function. Suppose that another
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choice of orbitals, such as Gaussian,’? were made for
va and s, with the orbital exponents defined as in
Eqgs. (G3). The resulting ¢ would necessarily belong to
category IL. Equations (G4)-(G8) would still be appli-
cable but, in general, the variationally determined
optimum value of 7, would not vanish. Then, for
Jo==To?#0, it is anticipated that (7)'/2, and hence,
@, b, @4, and @, would all have normal PV expansions,
again in agreement with the observed behavior!? for
such a wave function.

This method of analysis can readily be generalized
as follows: Let the normaiized ¢, and ¢; be trans-
formed to

Pa= <Pk+ Pzy Pob= Pk Pz, (GlS)

where ¢, is a generalized splitting orbital. Here, the
orbitals ¢ and ¢, are defined by the inverse transfor-
mation

(G16)

and are nof individually normalized. As in the special
case treated above, it follows that both ¢ and 7 are even
functions of ¢,. In particular, 5o contains terms of the
type (@0l Ho| ¢z0) and {@q0| 0z0). If @q and ¢, are so
selected that the conditions of Eq. (G11d) are satisfied,
then ¢ is a category I wave function, where, necessarily,

(G17)

in analogy with Eq. (G11b). For such functions, it
follows that &, has a PV expansion analogous to ()2,
Eq. (G13), and &, and @; have expansions analogous to
Eq. (G14); this behavior has been observed®® for the
general case of the category I wave function constructed
with open-shell, Hartree-Fock orbitals. On the other
hand, if ¢, and ¢, are so selected that ¢ belongs to
category II rather than to category I, the conditions
of Eq. (G11d) are not fulfilled, and, in general,

(@20] @20)7%0. (G18)

For such functions, it is anticipated that @,, and hence,
$. and &, would have normal PV expansions.

er=3(0at08), 0:=3(0a— 1),

<¢10| ¢’x0>= 0,



