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The yields of IC x rays emitted by primary '"Cf fission products have been measured with a high-resolution
$0.82 keV full width at half-maximum (FWHM) at 26.25 keV] lithium-drifted silicon spectrometer. The
most noteworthy feature in the systematics of the observed x-ray yields is the presence of a pronounced
even-odd fluctuation associated with the atomic numbers Z =52 through Z= 57, in which the odd-Z-product
x rays are found to be more intense than the even-Z-product x rays by approximately a factor of 2. This
effect is not observed in the light-fission-product region. The x-ray yields observed in this experiment are
compared with the results of previous experiments in which the E x-ray yields were measured in association
with the fission-fragment masses. Although general agreement is found in the over-all structural features,
no evidence is seen in this study of the sudden drop in x-ray yield in the heavy-fission-product region corre-
sponding to that which has previously been reported. The validity of the use of x-ray measurements as a
method of determining the most probable charge distribution is examined in the light of the observed
structure in the systematics of the x-ray yields.

I. I5TRODUCTIO5'

S EVERAL recent investigations have resulted in
measurements of the yields of E x-rays and con-

version electrons arising from the nuclear de-excitation
of primary (pre-P-decay) fission products. ' ' In these
studies, the x-ray and electron yields were measured in
association with the fragment masses and the resulting
distributions have provided new information about the
general features of nuclear structure in the 6ssion-
product region.

Other investigators have since studied the E x rays
arising from continuous sources of "'U fission fragments
using high-resolution bent-crystal spectrometers. s'
These studies have resulted in accurate measurements of
the various x-ray intensities. The systematics of these
intensities reveal a number of interesting character-
istics, including a pronounced even-odd effect in which
the odd-Z heavy-fragment x rays are found to be more
intense than the even-Z heavy-fragment x rays by
approximately a factor of 2. Unfortunately, the ex-
tremelv low efficiencies associated with bent-crystal
spectrometers, in general, makes their use in a high-
resolution coincidence-type experiment impractical. ~

Because of this limitation, the measurements of the
above mentioned investigators include the contributions
to the x-ray intensities of the P-decay products as well
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140, B1310 (1965). (Hereafter referred to as KBT.)' R. A. Atneosen, T. D. Thomas, W. M. Gibson, and M. L.
Perlman, Phys. Rev. 148, 1206 (1966).

4 R. L. Watson, Ph. D. thesis, University of California, Lawrence
Radiation Laboratory Report No. UCRL-16798, 1966 (unpub-
lished).' J. E. Canty, C. D. Coryell, L. Leifer, and Ã. C. Rasmussen,
Bull. Am. Phys. Soc. 16, 481 {1965).' W. John, R, Massey, and B. G. Saunders, Phys. Letters 248,
336 {1967}.

'Acknowledgment is made of the bent-crystal-speCtrometer
studies. .of x rays coincident with the fission of "'U reported by
B. W. Wehring and M. E. Wyman, Phys. Rev. (to be published).

162

as the contributions of the primary products. Further-
more, because of absorption, it was not possible to
measure the x-ray intensities associated with the light-
fission products in these studies.

The continued improvement of semiconductor de-
tectors, on the other hand, has finally led to resolution
good enough to make their use in the measurement of
x-ray intensities from complex mixtures of elements—
such as those arising in fission —entirely feasible. This
study was, therefore, undertaken with the purpose of
measuring the intensities of both the light and heavy
primary fission-product X x rays by taking advantage
of the suitability of semiconductor detectors for co-
incidence applications. The value of such a study stems
from the fact that the results can be directly compared
with the bent-crystal spectrometer measurements to
shed additional light on the origin of the observed
even-odd eGect. In addition, a direct comparison can
be made between this determination of primary Ex ray
yield as a function of atomic number and the previous
determinations of primary E x-ray and conversion-
electron yields as functions of mass.

II. EXPERIME5'TAL

A diagram of the experimental arrangement used is
shown in Fig. i. The x-ray energies were measured with
a high-resolution lithium drifted silicon semiconductor
spectrometer of dimensions 0.6 mm'&3 mm. The per-
formance of this detector in the measurement of low-

energy p rays and x rays is illustrated in Fig. 2, where
it is seen that the energy resolutioo of the 26.25-keV
line of '4'Am was 0.82 keV full rvidth at half-maximum
(FWHM). A weightless source of '"Cf mounted on a
90-ttg/cm' nickel foil and having a fission rate of
2.43X10' fissions per minute was separated from the
x-ray spectrometer by 0.020 in. of beryllium and 0.002
in. of aluminum. Immediately behind the source was
mounted a 0.05-cm-thick phosphorus-disused silicon
detector for counting 6ssion fraginents. The a1uminupi
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made before the experiment was started and checked
again at the end. The calibration was achieved by
measuring the E x rays produced by Quorescent ex-
citation of individual samples of all the elementsPre-
throughout the fission-product region (Sr to Sm) or
which a stable isptppe exists. Examples pf the x-ray
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IV. RESULTS A5'D DISCUSSION'
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er and listed inplotted as a function of atomic num er,

namel a a pronounced even-odd Quctuation for
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Amsterdam, 1959).



ii72 WATSON, BOWMAN, AND THOMPSON 162

I5—
FO

O
&& 4I-

O

"2--

0~o

2IO

Sn So Te

s R
0
4
0
4

I

I Xe

250 250

b
4
os S
OP

Ba

I
'

I
'

I
'

I
"

I
'

I j
~ Measured points
~ Calculated points

o 04e
0

I I I I I
La Ce Pr Nd Pm

!

270 290 3IO

C harm el number

Srn

550 550 570

Fzo. 6. The measured and
calculated E x-ray distribu-
tions associated with the pri-
mary heavy fission products
(Sn to Sm) formed in the spon-
taneous fission of '52Cf. The
Gaussian fitting functions for
the element cesium are shown
by the solid curves and the
locations of the centroids of the
En& x-ray components belong-
ing to the other elements are
indicated by arrows.

0.07—

0.05—

0.04—

0
0.03 (-

Y
0.02—

0.0 I—

0&
38

p

42 43 4439 40 4l

P

I

///

54 55 56

/r

sAN"":,
47 48 49 50 5l 52 53

Atomi c number

45 46

~

///// // //~g/

// /// /&//
57 58 59 60 6I 62

FrG. 7. The observed yields of K x rays per fission arising from
primary 25'Cf fission products within 93 nsec after fission.

'0 A. C. Wahl, R. I . Fergusori, D. 1». Nethaway, D. E.Troutner,
aiid K. 7Volfsberg, Phys. Rev. 126, 1112 (1962),

that two of the characteristics observed by John et al. '
a,nd Canty et at. ' in the total (primary plus secondary)
x-ray spectrum (i.e., the even-odd fluctuation and low
xenon x-ray yield) are characteristic of the primary
x-ray spectrum as well. It is noted, however, that the
even-odd Quctuation arising from the primary Qssion
products extends over a much more restricted region.

Comparison of the x-ray yieMs determined in this
experiment with the results of Kapoor et at.' (referred
to hereinaft:er as KBT) and of Glendenin and Griffin'

provides a check on their accuracy. Summing the yields
of all the light-fission-product, heavy-hssion-product,
and total-fission-product x rays gives values from this
experiment of 0.205&0.005, 0.375&0.008, and 0.58
&0.01 X x rays Per fission, respectively. The corre-
sponding values given by KBT are 0.24%0.02, 0.32
&0.02, and 0.56+0.04, and by Glendenin and Gri%n
are 0.16%0.02, 0.40&0.02, and 0.57&0.06. Hence, it
is seen that the agreement is satisfactory.

In order to estimate the x-ray yields per fragment, the
independent fission yield of each isotope formed in the
spontaneous fission of '"Cf was calculated. Using the
prescription given by Wahl et a/. " in which the charge
distribution of primary fission products is assumed to
be Gaussian, the fractional independent yield of a

fission product with charge Z and mass 3f is given by

i z+
if) (p)—

(2m)' 'to g f

e (&* rr )~/s~sd—g, '—
(2)

TAaI.K I, E x-ray yields of primary 25'Cf fission products.

Element

38Sr

eg&

40Zr

41Nb

4gMo

43TC

44Ru

45Rh

46Pd

4ZAg

48Cd

4gln

5pSn

51Sb
soTe

54Xe

55Cs

56Ha

5zLa

58Ce

5gPI'

60Nd

6IPm

62Sill

(E x rays)/fission

(0 33&0 10)X 10 '
(0.54+0.07)X10-'
(137w0 09)X10 '
{1.80~0.11)X10 '
(2.66~0.16)X10 '
(5.36+0.32) X10 '
(3 77+0 23) X10 '
(1.76~0.11)X10-'
(1 82&0 12) X10 '
(0.84~0.07) X10 '
(0.24~0.10)X10-~

&0.10X10-'
(0.18+0 07) X10 '
(0.48&0.07)X10 '
(O.48a0.07) X10 '-'

(3.54a0, 22) X10-2
(1.64~0.11)X10 '
(7 45~0 45) X10 '
(435W0.26) X10 '
(6.11~0,37) X10 '
(4 15~0 25) X10 "'

(3 96~0.25) X10 '
(2.50&0.17)X10 '
(1.67+0.14)X10 ~

(0.97~0.16)X10 '

where Z„=the most probable charge for the mass chain
of which the fission product is a member. O. =the
standard deviation (width) of the charge distribution.
Values of Z„used in these calculations were obtained
from a curve derived from empirical Z„values given
by Wahl et al. '0 and Z„values determined from x-ray
measurements by KBT. The standard deviation of the
Gaussian charge distribution was assumed to be con-
stant and a value of o.=0.59 was used in the calculations
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as given by Norris and Wahl. u Fission chain yields for
'"Cf were obtained from the radiochemical measure-
ments of Nervik. " By summing the calculated inde-
pendent yields of all isotopes having the same atomic
numbers over mass

i'(Z) = E i'r~(Z);
HIE~1

the element yields F(Z) were then computed and are
tabulated in Table II. By dividing the x-ray yields per
fissio by these element yields, the x-ray yields per
fragment were obtained and are shown in Fig. 8 plotted
as a function of atomic number. The indicated errors
in Fig. 8 reQect only the uncertainty in the x-ray
intensity measurements and no attempt has been made
to estimate the amount of error associated with the
calculated element yields.

It is interesting to compare Fig. 8 with Fig. 9, taken
from KBT, in which is plotted the E x-ray yield per
fragment versus fragment mass. For the most part,
the general structural features are quite similar. Both
figures exhibit sharp peaks in the light-fission-product
regions with slight discontinuities to the right of the
yield maxima, low yields in the vicinity of the doubly
closed proton (Z=SO) and neutron (X=82) shells,
and a rather abrupt rise in yield in the heavy-fission-
product region. One striking feature in Fig. 9 which
seems to be missing in Fig. 8 is the sudden drop in
yield to the right of the maximum yield in the heavy-
fission-product region. In Fig. 9 it is seen that the sharp
decrease in yield begins beyond mass 152. This mass is
associated with a most probable charge of approxi-
mately 61, as is indicated on the scale along the top of
Fig. 9. Moreover, the atomic number having the highest
yield of mass 152 isotopes, as indicated by the top scaIe
in Fig. 8, is calculated to be Z=60. One would expect,
then, that a similar decrease in x-ray yield should occui
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for Z&61. There appears to be no evidence of this in
Fig. 8 and hence a definite difference between the results
of the two types of experiments seems to exist. This
di8erence, of course, could easily be due to error
associated with the way in which the element yields
used in the construction of Fig. 8 were calculated. On
the other hand, since Figs. 8 and 9 represent plane views
perpendicular to the Z and A axes, respectively, of a
three-dimensional contour plot of x-ray yield versus Z
and A, the discrepancy between the two views might
be an indication of a peculiar "S"-shaped bend in the
heavy-fission-product x-ray-yield contours giving rise
to a constant yield when summed along adjacent lines
of constant Z and decreasing yield when summed along

. . Fragment atomic number
58 4042 44 46 48 54 56 58 6062 64

Ato ml c number

FIG. 8. Estimates of the yields of K x rays per fragment arising
from primary "'Cf fission products. The indicated errors reflect
only the uncertainty in the x-ray intensity measurements. Atomic
numbers for which E=82 closed-shell fission products are expected
to occur are denoted and the approximate boundary of the de-
formed region is shown. The top scale indicates the calculated
most-probable fragment mass associated with each atomic number.

TAIPEI.z II. Calculated primary 95'Cf fission-product-element yields. 0.7—

Light-product
atomic number

36
37
38
39
40
41
42
43
44
45
46
47
48
49

Fission
yield
Wo)

1.10
1.92
3.01
4.54
6.95

10.52
13.37
14.48
14.45
10.70
7.04
3.23
0.90
0.39

Heavy-product
atomic number

62
61
60
59
58
57
56
55
54
53
52
51
50
49

Fission
yield
(%)
1.25
2.18
3.55
5.28
8.02

11.18
12.76
13.24
12.32
10.32
9.47
5.81
1.94
0.39

Average

1.17
2.05
3.28
4.91
7.48

10.85
13.06
13.86
13.38
10.51
8.25
4.52
1.42
0.34
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» Andrew E. Norris and Arthur C. Wahl, Phys. Rev. 146, 926
(1966).

'2 W. E. Nervik, Phys. Rev. 119, 1685 (1960).

FIG. 9. The observed yields of E x rays per fragment emitted
within 50 nsec after fission from primary '"Cf fission products,
versus the final masses (Mf*) of the fragments. The top scale
indicates the average atomic number associated with each frag-
ment mass (taken from Kapoor et ol., Ref. 2).
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adjacent lines of constant A. Still another alternative
would be to accept the results of Fig. 8 as correct and
ascribe the sharp decrease in yield observed in Fig. 9
to some sort of experimental error. Since this feature
has been observed in at least three other independent
studies of the same type, any error giving rise to this
resuli. would have to be common to all. The most likely
source of error of this kind would probably be asso-
ciated with the problem of relating x-ray yield to specific
intervals of mass. In all of the experiments in which the
x-ray yields were related to fragment mass, the masses
of the fragments were calculated from measurements of
their kinetic energies. These calculations, however, are
unable to correct for neutron emission from the frag-
ments except in an average way and hence considerable
dispersion arises in the mass determinations. This dis-
persion can be expected to be largest for those fragments
which emit, on the average, the greatest number of
neutrons and has the e8ect of spreading any events
being correlated with these masses over a broader
distribution of adjacent mass intervals, thus resulting
in a decrease in the observed total yield of events per
mass interval. Results of previous studies" show that
one of the regions of fragment mass associated with the
emission of the greatest number of neutrons in the fission
of '"Cf overlaps closely with the mass region in which
the anomalous x-ray yield decrease is observed to occur
in Fig. 9. The apparent discrepancy between Figs. 8
and 9 could, therefore, be an indication of the serious-
ness of this mass-dispersion eGect.

Returning again to the even-odd Quctuation in the
region extending from Z=52 to Z=57 in Fig. 8, it is
not hard to explain this feature on the basis of known
nuclear-structure systematics. It is reasonable, for
example, to expect the variation of x-ray yield as a
function of atomic number to reQect the relative im-
portance of low-energy p-ray transitions in the de-
excitation processes of the various fission products,
based upon the behavior of internal conversion co-
efficients as a function of transition energy. It follows,
therefore, that lou-energy transitions are more abun-

'~ Harry R. Bowman, J. C. D. Milton, Stanley G. Thompson,
and Wladyslaw J. Swiatecki, Phys. Rev. 129, 2133 (1963).

dant for the odd-mass nuclei immediately to the right
of the 50-proton —82-neutron doubly closed shell region
than for even-mass nuclei in the same region. This is
entirely consistent with the known systematics of
even-mass spherical nuclei and the known systematics
of odd-mass nuclei in this. region. As the rare-ea, rth
deformed region is entered (the boundary of which is
indicated approximately in Fig. 8), it is interesting to
note that the even-odd Quctuation becomes washed
out. This is most likely due to the increasingly im-

portant contributions to the even-Z yields from low-

energy E-2 rotational-type transitions in even-mass
nuclide s.

It should be pointed out, in the light of the observed
alternation in x-ray yields for heavy fission products,
that use of x-ray measurements in this region to deter-
mine the average fission-fragment charge for a given
mass (i.e., the Z„) may result in values which represent
poorly the true charge distribution. It is important,
for this technique to be applicable, that the internal
conversion probability vary slowly and smoothly as a
function of mass and charge. This, as has been shown,
is definitely not the case. On the other hand, most of
the error in these determinations will most likely be
restricted to the even-mass chains since the x-ray
Quctuations are probably most pronounced between
adjacent even-even and odd-odd products. In fact. if
the Quctuation between these pairs is fairly systematic,
then the x-ray yield measurements may average out in
such a way as to give Z„values which do not deviate
appreciably from the true values after all. It is especially
significant, in connection with these considerations, to
note that in the data given by KHT, the largest
deviations between the Z„values of complementary
light and heavy fragments from a sum of 98 (Z~„
+Z»„——98) occur for heavy fragment Z„values of
52.8, 55.4, and 56.1. The deviations for these values
were 0.4, 0.4, and 0.3 units, respectively.
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.erratum

Theory of Proton-Proton Bremsstrahlung, A. H. CRoMER AND M. I. SonEz. )Phys. Rev. 152, 1351 (1966)).
The sentence following Eq. (4.1) should read: "To sum over photon polarization we must integrate
dg/~ from 0 to 2~." The factor in front of the integral in Eq. (4.2) should be m. ' instead of (2s.) '. The
factor of —,

' on the right-hand side of Eq. (4.5) should be omitted, together with the line immediately
following.


