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obtain ap =26.1&2.5 b. This value is to be compared
with a value of 23.5 b for the neighboring element Ho,
obtained" from the experimental angular distribution
of scattered neutrons, and a value of 27 b calculated
by Zimmerman et u3.29 for natural erbium, using neutron
scattering form factors calculated by Blume eI, al.30

Finally, if we use O.
p 26.1&2 5b for Er'", we get

an absorption cross section for this isotope equal to
13+9b. Since the contribution of the positive energy
resonances to the thermal absorption of Kr'" is only
2 b, this indicates that Er'" has a bound level which
contributes significantly to the thermal absorption cross
section.
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The modified Tamm-Dancoff approximation has been used to study the states of odd-mass Ni isotopes
as the superposition of one- and three-quasiparticle states. The three-quasiparticle basic states are classified
according to the well-known seniority scheme and are expressed in an equivalent second-quantized form.
These three-quasiparticle states form an orthonormal and nonredundant set. The eGect of the spurious
0+ two-quasiparticle state has also been removed from these basis wave functions. Several diRerent kinds
of two-body residual interaction have been used in the calculation. Fairly decent agreement is obtained
in the energy spectra between our results and the exact shell-model results, using the effective interaction
of Cohen et c/. Various approximate methods, such as the perturbation theory and a phonon approximation,
are discussed in the context of the present method. The eBect of the ground-state correlation is also studied.
The admixture of the three-quasiparticle states in the lowest few levels causes very little change in the
magnetic moment, and the M1 transition rates calculated on the basis of a single-quasiparticle structure
of these states. The E2 transition rate is fairly sensitive to the admixture and the type of interaction used.

I. INTRODUCTION'

HE nuclear shell model has been successfully
applied to the description of nuclei having few

nucleons in the unfilled major shell. This line of ap-
proach becomes very complicated with the increase of
number of nucleons due to the large number of near
degenerate configurations involved. Such calculations
are made possible by the development of the super-
conductivity (BCS) modeP ' of the nucleus, which
tak.es into account the strong "pairing interaction"
between nucleons by the Bogoliubov-Valatin trans-
formation resulting in quasiparticles. In the lowest

*A preliminary report on this work has been published in the
Proceedings of the Low Energy Nuclear Physics Symposium
Kanpur, 1967 (unpublished) held by the Department of Atomic
Energy, Government of India.

t Permanent address: Saha Institute oi Nuclear Physics,
Calcutta, India.' L. S. Kisslinger and R. A. Sorensen, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Medd. 32, No. 9 (1960).' M. Baranger, Phys. Rev. 120, 957 (1960).

approximation, the model interprets the first few low-

lying states of odd-A nuclei as independent one-quasi-
particle excitations. The first 2+ state of spherical even
nuclei, the so-called one-phonon state, is described as a
superposition of quasiparticle pair states in the frame-
work of Tamm-Dancoff approxim. ation (TDA) and as
a superposition of quasiparticle pair and quasihole pair
states in the framework of random-phase approxi-
mation (RPA). A better approximation for odd-mass
nuclei, then, is to mix the independent quasiparticle
states with the states obtained by coupling single
quasiparticles to this phonon state. Hereafter, this will
be referred to as the phonon approximation (PA).

A more rigorous procedure is to do the configuration-
mixing calculation of quasiparticle residual interaction
in an enlarged space of all the one- and three-quasi-
particle states. Such calculations involve technical

difhculty in the construction of three-quasiparticle
basic states when all the three-quasiparticles @re in thy
same level.



ii40 GAMBHIR, RAJ, AND PAL 162

In the work of Ref. 3 we considered the case of even
nuclei and discussed the method of doing a quasi-
particle calculation in the space of two- and four-
quasiparticle states using the correct set for the latter.
The types of problems associated with the construction
of a nonredundant and orthogonal set of four-quasi-
particles states were discussed there, and the solution
to the problem was laid down in terms of states classified

by the well-known shell-model seniority scheme. In the
present paper the three-quasiparticle basic states are
constructed according to the same scheme. In this sense
the present work is an extension to odd nuclei of the
modified TDA method (henceforth MTDA), already
proposed in our earlier work' on even nuclei.

The seniority classified three-quasiparticle states,
together with the tabulated values of their fractional.
parentage coeScients, are very convenient in evaluating
the matrix elements contained in the three-quasiparticle
subspace. The equivalent second-quantized versions of
these states are also given in this paper. They are
necessary for the evaluation of matrix elements between
one- and three-quasiparticle subspaces.

The spurious effects arising because of the non-
conservation of the number of particles in the quasi-
particle method have been removed following the
procedure of Ref. 3.

The main aim of this paper is to test erst the ac-
curacy of our formalism by comparing the results on
energy levels with the exact shell-model results for
phenomenological interactions. Apart from this, the
reliability of various approximations, used by earlier
workers, such as the perturbation theory (PT) in which
the quasiparticle interaction is treated by the per-
turbation method and the PA, described above, have
also been investigated in a quantitative manner.
Various two-body interactions have been used and
detailed results presented on level energies, magnetic
moments, and transition rates.

2. MODIFIED TAMM-DANCGFF
APPROXIMATION

The quasiparticle method of treating the Hamiltonian
has been described by many authors. ' ' The important
aspects of this theory that are required in our work are
summarized in Sec. 2 of Ref. 3. All the notations used
in the present paper are de6ned there. We would like
to add here only one stateinent concerning the solution
of Eqs. (2.5) and (2.6) of Ref. 3. The latter equation
giving the number of particles, applies to an even
nucleus, the right-hand side being the expectation value
of the number operator for the vacuum state of quasi-
particles. For an odd-mass nucleus, the expectation
value has to be taken for a single quasiparticle state,
say I jm). As a result we should now, strictly speaking,
add a term (e;—X)/E; to the right-hand side of the

' M. K. Pal; Y. K; Gambhir, and Ram Raj, Phys. Rev. 155,
1144 (1967).

A. .Basis States

The one-quasiparticle state In) is just the quasi-
particle operator a t operating on IO), viz. ,

(2.1)

In the second-quantized notation, a normalized
three-quasiparticle state of angular momentum J with
projection M can be written as

%(abJi, c; JM) =N(abc JiJ)/At(abJ, )&a, tj~~~ IO), (2.2)

where N(abc, JiJ) is the normalization constant and
J~ is the intermediate angular momentum of two
quasiparticles (a,b) These w.ave functions 4 form an
orthonormal set except when all the three indices
(a,b, c) are equal. In this case

%(aaJ', a; JM) and %(aaJi', a; J3I) (2.3)

are not generally independent; in other words, they are
redundant and nonorthonorxnal. Therefore, this case
requires special treatment. Here we follow the pro-
cedure of Ref. 3 and classify the three-quasiparticle
states according to the well-known seniority scheme4

which automatically ensures an independent, orthogo-
nal, and, nonredundant basis. The following are the
possible three-quasiparticle con6gurations.

(1) Ia'Jv) (2) Iai'Ji, ag,' J)
(3) IaiagJig, a3, J). (2.4)

Here J is the total angular momentum, v is the seniority,

4 A. de-Shalit and I. Talmi, in SNcLear SheL/ Theory (Academic
Press Inc. , New York, 1963). The angular momentum coupling
coefficients and the coeKcients of fractional parentage used in our
v'ork are defined and tabulated in the Appendix of this book.

above-mentioned equation. We, however, check.ed by
actual numerical computation that the addition of such
a term makes a very small difference in the solutions
of the chemical potential A. and the energy-gap param-
eters d . The maximum discrepancy occurs for Ni59,

where the values of the quasiparticle energies E, and
transformation coefFicients V„that are calculated with
X and A„change by about 5 and 20%, respectively.
We have therefore ignored the extra term of the number
equation in solving our quasiparticle quantities for
odd-mass nuclei. The slight error that this procedure
entails for Ni" is not considered to be serious because
the number of particles in unfilled levels being only
three, the quasiparticle method is not expected to yield
very good quantitative results for this nucleus anyway.

Having obtained the quasiparticle transformation
coefficients U, and V, and energies E, with the help
of formulas of Ref. 3, the task that remains is to use
these quasiparticle quantities and set up the matrix
for the residual quasiparticle interaction H;„~.We now
proceed to quote the necessary formulas for computing
these matrix elements.
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and a subscripted J is the intermed. iate angular mo-
mentum of a quasiparticle pair. The superscript on a
and a~ denotes the number of quasiparticles present in
that particular state.

For configuration (1). the antisymmetric normalized
state

~
a'J) can easily be written with the help of co-

efficients of fractional parentage, 4 while for the types
(2) and (3), the antisyinmetric normalized state can be
obtained by using the relation (4.6) of Ref. 3.

These shell-model forms are very well suited. for the
calculation of matrix elements connecting any two
three-quasiparticle basis states. But it is essential to
write these states in their second, quantized form for the
evaluation of the matrix elements between one- and
three-quasiparticle states. The second-quantized version
of these states is given below (cf. Ref. 3):

Configuration (1): ~
j'JvM)

=«3) (j (j.),~,jll~'»}
X[IiI(jjJ,), „t] lQ) (2.5)

Configurations (Z) and (3):
~j ij 2Ji2,j i,' JM)

= [o'(i ii 2J»),ai, ']~'Io) (2 6)

Q,~ and A t are the normalized. and, unnormalized.
creation operators for a quasiparticle pair state.

B. Matrix Elements in Three-Quasiparticle Subspace

In this case, only the Hg2 palt (which conserves the
number of quasiparticles) of H;„&will contribute and
the various expressions for the matrix elements are
given below. A typical matrix element connecting a
type-(1) state with another type-(1) state is given by

(ai'Jv[8;„&)a2'Jv')=-,' P (ai'(Ji), ai J) )ai'Jv)(a2'(Ji), am J) )am'Jv')Y(aiaiama2Ji)baia~. (2.t)

A matrix element connecting a state of type (1) with another of type (2) or (3) is given by the expression

(ai'Jv )II ~i ( uga3J pi a4, J)=1V(alai) (2)'i'((ai'( jg3),ai j
~ ) ai Jv)Y(aiaiagasjgi)baia4+P(alai J23)

XQ (al (Jl))al)J
~ ~

al~jv)[jiJ2g] W(agaija4i J23J1)(—1)"+ '- baiamY(aiaiu3a4ji)) . (2.8)

The matrix element between any two states of types (2) and (3) is given by the following expression:

(ala2J»&a3 j j ~
Knt

~
a4a5J45)a6 jJ) +(ala2P (a4a5) ibu3a6b J12J45Y (aia2a4al 745)+P(ala2J»)[J12J45]

XW(aia2Ja3, Jiij1g)(—1)'6+~« ~buiueY(a2usa4ai J4g)+P(ugasj4, )[j»J4g]i~'W(a4agjae, J4ijig)

Xbu3a4( 1) '+ '~ Y(uia2usa6 J»)+P (aia2ji2)P (u4a~ J45) P [J23][jiij45]'"W(aia~Ju3, Ji2ji3)
J23

XW(a4aga6. , J4d 23)baia4 Y(a2agasa6J2))) . (2.9)

Here ( a( J)i, aj~~a'Jv) is the one-particle-type fractional parentage coefficient, and P(abJ)=1 —(—1)~+~~
XP(a~ b), where the operator P(a~ b) interchanges a and b. Y is the matrix element of H22 between two-
quasiparticle states dehned, by

Y(abed J)= (Q
~
g (abJgj)H~2+ t (cdJ1if')

~
Q)

= ((U,UbU, U~+ V„VI,V,Vq)G(abed J)+P(cdJ)(U,V t U, Vq+ V,Ut V,U~)F (abed J)) . (2.10)

The notations [a]=2a+1 and [ab ]= (2a+1)(2b+1) . For the notations F, G, U, V, and W, see Ref. 3.

C. Matrix Elements Between One- and Three-Quasiparticle Subspaces

A typical matrix element of this kind. is given by

(~IH -tl0), (2.11)

where 4' is any of the three-quasiparticle states of (2.4). To evaluate it, we first express H»u t ~0) as a sum of
three-quasiparticle basis states and then pick up the coeKcient of + in the expansion. In this way we obtain

(a'JvM)Haiaot)0)=-', P (U,'UIV, —V,'V U,)i(3t)'t'(a'(Ji) a J) )a'Jv)([ji]/[b])'t'G(aaabji)btqboiIr (2.12).
For the states 4 of types (2) and (3) of (2.4), the single general expression, given below, is adequate;

(0
~
[St(abJ»),a J]iver tH»a&t

~
0)=Ã(ab) '{[Jim]/[d]}'"((U, Ut UgV. —V,V i VgU. )G(abed Jim)

P(abJ») (Ui,U, UgV —~ VgV. VgU, )F(abed J—») }bgg4sr -(2.13).
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D. Ground-State Correlation

To derive the equation of motion for the correlated ground state, one has to retain in the commutators of H
with one- and three-quasiparticle operators only those terms containing single and triple quasiparticle and quasi-
hole operators. These conunutators can be written as

[B)az3rt]=Ezagjrt+ Q S(J~bcJa2, d; J)%'t(bcJ»)d; JM)
bed Jyg

+ Q R(J~bcJ»)d) J)(—1)~ ~%'(bcJi2d; J—M), (2.14)
bgd J12

[P@t(abJ»,c; JJE)]=(E.+Et+E.)+t(abJ», c; JM)+ Q L(abJ», c~deJ»', f; J)et(deJ»', f; J1id')

+S(JIabJ», c,.J)«~'—R(JIabJ», c, J)(—1)' ~a~-~ (215)

Here +t and % are, respectively, the creation and annihilation operators for a three-quasiparticle state, designated
by the quantum numbers inside parentheses. S stands for the matrix element between one- and three-quasipar&icle
states denoted inside the parentheses wherein a vertical line has been used to separate the two states. I. denotes
the matrix elements between three-quasiparticle states defined by Eqs. (2.7)-(2.9), and, R is given by

R(a
~
bcJ»d; a) =1K(bc){[J»]/[a]}'"{(Ut U.V~Vo+ V~V.U~U, )G(bcda J»)

P(b—cJi2) (U,UqV t V,+V,VqUt U,)F(bcdaJ»)} (2.16)

except for the case of 5=c=d. In this case it is expressed by

R(a~bbJ»)b) a)=~(Ub'VgV +Vb'UpU )(3~)'"(b'(Ji2))b; a] (b'av){[J»]/[a]}'"G(bbbaJi2). (2.17)

The corresponding commutators of one- and three-
quasihole operators with H will be obtained by taking
the Herrnitian conjugate of Eqs. (2.14) and (2.15) and
then reversing the. sign.

E S 0
S L+E' —R 0
0 —R —E —S
Z 0 —S —I,—E'.

(2.18)

where E' is a diagonal matrix with elements equal to
the unperturbed energies of three-quasiparticle states.
Note that the above RPA matrix for odd-A nuclei is
syxrnnetric. The energy matrix without ground, -state
correlations (MTDA) will be just

(
E S

S L+E')
(2.19)

F. The Spurious Effects

The effect of the spurious 0+ pair states has been
removed by the method described in Sec. 4.1 of Ref. 3.
Instead of using e three-quasiparticle states of the type
~aPO,j;jm), i=1, 2, ~, rI,, we use (I—1) states of
the type ~P;,j;je), i=1, 2, ~, e—1. The states
~P,) are delned in Ref. 3, Eq. (4.4). The quantum
numbers after the semicolon denote the anal angular

E. The Energy Matrix

The energy matrix in the space of one- and three-
quasiparticles and one- and three-quasiholes is given by

{S(aI
bcJ»,d,.a)}'

t «~u Eg+E,+Eg—E,

B. Phonon Approximation (PA)

(3.1)

The first 2+ state of a spherical even nucleus is
described as a one-phonon state in the quasiparticle
theory. ' ' The state of projection M is created by an
operator Q~t given by

Qmt= P x(ab)et(ab2M)

+ P x(ab)( —1)~Q, (ab2 —M). (3.2)

The coeKcients x and x appearing in this expression

momentum and its projection, while the quantum
numbers separated by the comma denote the two
angular momenta that have been coupled to each other
to produce the final value. In practice, an orthogonal-
ized set, obtained by suitable linear combination, is
used.

3. APPROXIMATE METHODS

A. Perturbation. Theory (PT)

The independent quasiparticle excitation energies
can be improved upon by treating the H;„~as a per-
turbation. Second-order perturbation theory is expected
to yield good results for the first few low-lying states if
all the three-quasiparticje states are quite high and if
the collective effects are not important. The lowest
eigenvalues in this case are given by
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denote, respectively, the amplitudes of the quasiparticle
and quasihole pair states. Here (43b) stands for the
restricted sum over the distinct quasiparticle (hole)
pairs (a~& b). In the framework of TDA the amplitudes
x are neglected.

The low-lying states of the next od.d-mass nucleus,
in the phonon approximation, are obtained, by mixing
the single quasiparticle states with the states arising
from the coupling of single quasiparticles to the phonon
state. The matrix elements between the one-quasi-
particle state and, the states resulting from the coupling
of a quasiparticle to the phonon are just combinations
of the "S" and, "E." matrix elements given by Eqs.
(2.12), (2.13), (2.16), and (2.17). The matrix element
between any two quasiparticle plus phonon states is
zero, except for the diagonal case which is given by the
sum of energy of the first 2+ state of the even nucleus
and the coupled. quasiparticle state. This is because
only the H» part of II;„&can contribute to this type of

matrix element; but H22 in the phonon approximation
is a pure phonon, operator and has already beendi-
agonalized, in obtaining the lowest quad, rupole phonon.

4. ELECTROMAGNETIC MOMENTS AND
TRANSITION RATES

General expressions for the reduced, transition proba-
bility have been given in Sec. 6 of Ref. 3, Eqs. (6.1)—
(6.7). The static moments are given by the same kind
of matrix elements, the only d,iRerence being that the
nuclear states on the two sid.es of the operator Q~ are
identical. The operator for the quadrupole moment is
(16m./5)"2 times the zero projection component of the
E2 transition operator, while the magnetic moment
operator is obtained, from the s component of the 3f1
transition operator by omitting the multiplying factor
of (3/42r)'".

The matrix elements necessary for the computation
of these quantities are given below.

(i) Matrix elements connecting one- and three-quasiparticle states: type-(1) three-quasiparticle state:

(~ »I III
I
lb&=( —1) +~ ~~(~ ~)(3~)1~ (~2(L),~,JI l~ Jv&b. 5

Type-(2) or -(3) three-quasiparticle state:

(4.1)

(ala2J12, 438, Jl III I Ib)=cV(a1432)P(a1432J12)((—1) + 8 (a1,432)ba85brg„+8„5LJ12Lj'"

XI@�(b432J438~

J12L)L&1,(432 438) ( 1)a2+a8—zeal (438 432)j} (4 2)

(ii) Matrix elements between states in the three-quasiparticle subspace: type (1) three-quasiparticle states:

(al'Jll ll IQ I
I432 J282&=6 Q (431 (Jl),431Jll I431 J1 l)(l(43J2)&413 J2II2a2'J212)

XL.a2LLJ2$'"W(J1'ulJ1L; J2al)R (431,al). (4.3)

Type-(1), type-(2), or type-(3) three-quasiparticle states:

(431'J»ll I& I
I432l33J2" 434 J2) 2V3ba8a8bagaa(431 (J23).F31 Jll Idyll J1V1)R (431)434)(J2L]"W(J23434J1L;J2lll) ~ (44)

Type-(2) or type-(3) states:

(431432J12 &81 Jl
I I

II
I I I24&5J45 436 j J2) 2+(431l32)+(&4435)(p(&1&2J12)bgya4~aag4b J)2J44+ (&8 436)l LJ2j

XW(J45~6J1L) J2a8)+P(~1~2J12)p(a4a5J45)[J12J45J2L]"(b..a8ba2aap (a3)~4)W(a4a5J2a6) J45J12)

X W(J12434J1L; J2~8)+baga4ba8a8R (431~436)W(431432J2~8) J12J45)W(J45l36J1L) J2431)+z & (431)434) I J23]

X W(431432J1438, J12J23)W(434~5J2l36, J45J28) W(J2843 J'1L; J2431)(b....b.,a6
—(—1)"+ ~"b.8.,ba8a5))} . (4.5)

S. NUMERICAL CALCULATIONS, RESULTS)
AND DISCUSSIONS

For the explicit numerical calculation, the protons
in the Ni isotopes are assumed to form an inert core
corresponding to the semimagic number 28, while the
neutrons in excess of 28 are assumed, to be distributed,
in all possible ways among the close-lying 2p3» 1f5~2
and, 2P 1~2 orbitals. The unperturbed single-particle

energies for 2p8~2, 1f6~2, and 2p1~2 were taken to be 0.0,
0.78, and 1.08 MeV, respectively, from the Ni'7 spec-
trum, and in agreement with other authors. '

The following different eRective two-body inter-
actions have been used:

' R. D. Lawson, M. H. MacFarlane, and T. T. S. Kuo, Phys.
Letters 22, l68 (1966).

6 S. Cohen, R. D. Lawson, M. H. MacFarlane, S. P. Pandya,
and M. Soga, Phys. Rev. (to be published).
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TABLE I. For each nucleus the first row gives the single-quasi-
particle energy (E) in MeV, the second row gives the same
quantity corrected by perturbation theory (see Sec. 3 A), and
the third row gives the transformation coeKcient (V). The
pairing matrix elements of EIC have been used in obtaining these
values.

59 1.80
1.77
0.379
1.58
1.54
0.512
1..38
1.36
0.644
1.21
1.20
0.783

1.26
1.21
0.647
1.45
1.37
0.783
1.65
1.55
0.870
1.85
1.78
0.931

1.51
1.48
0.416
1.40
1.37
0.581
1.34
1.32
0.724
1.32
1.31
0.847

(1) effective interaction of Cohen et al. s (KIC) and
Auerbachr (EIA);

(2) the pairing plus quadrupole interaction ' the
pairing interaction of Kisslinger and, Sorensen is used in
determining the quasiparticle quantities E, U„V„
etc. , while the residual interaction is taken to be of the
quadrupole type:

Hqq = —Xr srssF'(1) I"(2) (5.1)

with the strength parameter X given by 7rb 4X=0.097
MeV, where b= (ti/3Ecv)"s is the oscillator well param-
eter.

(3) Surface-delta (S-8) interaction of Green and
Moszkowski, ' for which the required, matrix elements
were calcula, ted using expression (7) of Gambhir and
Ram Raj,"and a strength g equal to 0.50 MeV deter-
mined. by the inverse-gap-equation method. "

(4) A potential" similar to Rosenfeld mixture (RM)
with the following strength parameters (in MeV):

odd singlet= 41.5,
even singlet = —34.4,

od.d, triplet= 19.4,
even triplet = —46.9,

ha, ving Yakawa radial dependence and range=1. 4 F.

TABLE II. Energy levels (MeV) calculated in three-quasi-
particle space (a) with and (b) without eliminating spurious 0+
effects. (See Sec. 2 F.) The subscripts on the level quantum
numbers denote the number of the particular J level in order of
increasing energy.

Inter-
action a b

G in place of Y for EIC, and then diagonalized. The
energy eigenvalues thus obtained, reproduce the num-
bers for Ni" reported, in Ref. 6, rejecting the correct-
ness of our cod,e written for CDC 3600.

In Table I, we present the single quasiparticle
energies (E) and transformation coefFicients (V) using
the pairing matrix elements of the EIC two-body in-
teraction. The perturbation theory (see Sec. 3 A) values
of the quasiparticle energies are also shown; the per-
turbation in each case is seen to be very small.

To test the importance of eliminating spurious sects
from the three-quasiparticle states, we next diagonalize
the residual interaction using these states alone (i.e.,
without mixing the one- and three-quasiparticle states).

The calculations in three-quasiparticle subspace are
made for all the interactions with and, without elimi-
nation of the spurious effects. The results of EIC, EIA,
and QQ interactions show the same trend, while the
results of S-b and, RM interactions are very similar. %e
present in Table II these results for S-b and, EIC inter-
actions for the first two energy eigenvalues of ~, 2,
and —,

' states. The results for the S-8 interaction show
that there appears one three-quasiparticle state very
near the energy of the one-quasiparticle state, and, that
the former is spurious. On the other hand, , this spurious
effect is not so obvious in the case of the EIC inter-
action. Therefore, it is essential to remove the spurious
e8ects consistently before the d,iagonalization of the
energy matrix, and. before comparing the results for
different interactions.

Table III presents, for the EIC interaction, a com-
parison between the various methods of calculation-
phonon approximation (PA), TDA, and MTDA. PA
has been explained, in Sec. 3 B. In the TDA method,
the diagonalization is done in the three-quasiparticle
subspace alone; the predicted spectra then consist of
the single-quasiparticle levels of Table I and the three-
quasiparticle eigenstates resulting from the diagonaliz-

Matrix elements between three particle shell-mod-el

configurations are given by the same expressions for
the three-quasiparticle states, namely, Kqs. (3.7)—(3.9),
provided that Y in these expressions is replaced by G.
The various matrices were erst generated, by feed. ing

' N. Auerbach, Phys. Letters 21, 57 (1966).' I . S. Kisslinger and R. A. Sorensen, Rev. Mod. Phys. 35, 853
(1963).'I. M. Green and S. A. Moszkowski, Phys. Rev. 139, 8790
(1965).

'0 Y. K. Gambhir and Ram Raj, Phys. Rev. I61, 1125 (1967).
1 V. K. Gambhir (to be published).
'~M. K. Banerjee and Harish Charidra (private communi-

cation).

EIC

{'1)

(k)~

($)I
(')
(-~)1

(4)2
(4)1
(),'-
(3)—
(3)

8)
(5)

1.81
2.12

2.14
1.68
2.60
2.18
3.50
1.78
2.69
2.41
2.82

2.09 1.71 2,11
4.27 2.11 4,42
2.12 1.60 2.07
2.79 2.07 2.69
2.62 1.63 2.63
2.83 2.62 2.72
2.19 1.97 1.97
3.87 3.45 3.48
1.85 1.87 1.87
2.77 2.18 2.18
2.43 2.05 2.05
2.81 2.70 2.70

1.55 2.17
2.19 4.54
1.72 1.97
1.97 2.72
1.57 2.59
2.58 2.73
2.06 2.07
3.12 3.49
1,82 1.82
2.08 2.09
1.94 1.97
2.73 2.76

1.41 2.26
2.30 4.63
1.81 1.87
1,89 2.79
1.50 2.51
2.45 2.82
2.36 2.44
2.79 3.81
1.91 1.92
2.44 2.47
2.09 2.18
2.81 3.08
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TABLE III. Energies (MeV) obtained with EIC interaction and
various methods of calculation. The three lines for each nucleus
corresponds, respectively, to phonon approximation (PA), no
mixing between one- and three-quasiparticle states (TDA), and
mixing between these states (MTDA). The results for MTDA
with ground-state correlation differs negligibly from MTDA, and
hence is not presented separately. The subscripts on the level
quantum numbers denote the number of the particular J~ level
in order of increasing energy.

1.78
1.80
1.70
1.58
1.58
1.46
1.35
1.38
1.31
1.15
1.21
1.18

(2)2

2.37
2.19
2.26
2.52
1.87
2.05
2.44
2.07
2, 13
2.43
2.44
2,46

1.20
1.26
1.19
1.44
1.45
1.34
1.57
1.65
1.53
1.81
1.85
1.75

2.41
1.85
2.44
2.52
1.87
2.05
2.44
1.82
1.98
2.36
1.92
2.20

(-2-) I

1.50
1.51
1.45
1.38
1.40
1.34
1.34
1.34
1.31
1.31
1.32
1.30

(2)2

2.37
2.43
2.47
2.52
2.05
2.08
2.44
1.97
1.98
2.33
2.18
2.18

ation. MTDA consists of diagonalizing in the complete
space of one- and. three-quasiparticle states. It is clear
from the table that the 6rst ~, ~, and, ~ states have
very nearly the same energy in all the cases. However,
the energies of second -', —,—,

'—,and. —,'—states obtained
in the case of PA are somewhat higher (except in Ni"
and Ni") and occur nearly at the same energy. The
effect of the mixing of one- and, three-quasiparticle
subspaces (MTDA) is to slightly lower the first state
and to push up the second state relative to the TDA
results. We also did, the calculation based, on RPA
using the creation and annihilation operators for all
our MTDA states. The results of includ. ing the effect
of the ground-state correlation in this way, however,
produce energy eigenvalues which are practically
id,entical with the MTDA results. For this reason we
have not shown the RPA results in the table. A similar
trend. is expected. in the results for the other interactions
and. therefore only the MTDA results will be presented. .

Although we did, both TDA and, MTDA calculations
with all the different effective interactions listed, in the
beginning of this section, we present only the MTDA
results for a few selected, interactions in Table IV.
About the TDA results we make only one general
remark: Although these results are quite satisfactory,
the goodness of fit to the data (included in the same
table) definitely improves for all interactions as we go
from TDA to MTDA. For example, the X' value for
the fit to all the known levels from A =59 to 65 changes
from 0.092~0.068 for EIC, 0.057 —+0.029 for QQ,
and, 0.208 —+ 0.193 for RM. The MTDA results display
a great deal of similarity in the cases of (i) EIC and
EIA and (ii) QQ and S-8. Hence, we present only the
results for one each of the two groups, i.e., EIC and
QQ. The results for RM have a significantly larger Xs

value compared with other interactions, and hence
they are not listed. Similar remarks hold for the results

TABLE IV. Energy levels (MeV) of odd Ni isotopes by the
MTDA-method. All the levels of a given nucleus have been
calculated with respect to the lowest of them. The numbers
labeled 1qp denote the percentage of the one-quasiparticle state.
The line "Exact" for EIC gives the energies calculated in Cohen
et al.'

Interaction

KIC Exact
MTDA
iqp

gg a~rDA
1clp

Expt. energy
EIC Exact

MTDA
iqp

W MTDA
1 cIP

Expt. energy
EIC Exact

MTDA

QQ MTDA
iqp

Expt. energy
EIC Exact

MTDA
iqp

QQ MTDA
~qp

Expt. energy

(k)~ (2)2

0.29 1.10
0.51 1.07

85.9 4.21
0.51 1.06

80.7 2.22
0.47 1.32
0.02
0.12 0.73

83.2 5.46
0.15 0.82

80.3 3.19
0.28
0.0 1.18
0.0 0.83

92.2 3.03
0.0 0.87

87.0 2.72
0.0 1.01
0.05
0.0 1.28

98.1 0.82
0,0 1.21

94.2 1.54
0,06

0.0
0.0

96.6
0.0

96.6
0.0
0.0
0.01 0.71

95.0 0.78
0.0 0.68

89.8 2.09
0.0
0.24 0.90
0.23 0.67

93.1 4.23
0.18 0.54

88.0 1.92
0.16 0.53
0.53 0.76
0.57 1.02

91.6 6.12
0.49 0.74

92.2 0.91
0.32 0.70

(2)i

0.21
0.26

95.7
0.31

94.5
0.34
0.0
0.0

94.4
0.10

97.6
0.07
0.01
0.0

97.3
0.06

99.0
0.09
0.0
0.12

99.3
0.12

98.6
0.0

(-',};
1.47
1.28
0.95
1.40 59
0.51

0.90
0.75
1.48
1.13 61
0.19
0.91
0.95
0.67
0.65
1.15 63
0.0

1.01
1.00
0.07
1.41 65
0.11

a See Reference 6.

obtained, by using the separable nonlocal potential of
Tabakin, "which was used, by Kuo et a1."Exact shell-
mod, el results are available' for the EIC interaction
for which the value of X' is 0.052. This shows that,
although our prediction on particular energy levels
differs somewhat from the exact results (also shown in
Table IV), the over-all fit we have achieved is nearly
of the same quality as that of Ref. 6.

The percentage of one-quasiparticle states in each of
the eigenstates of Table III shows the following system-
atic features: The erst state of any given angular
momentum is pred, ominantly one-quasiparticle type,
while in the second, state three-quasiparticle states
invariably predominate. The intermixture of one- and
three-quasiparticle states, although smaU, accounts for
the improvement in the X.' value from TDA to MTDA,
as mentioned above.

The calculated magnetic moments are presented in
Table V. As is well known, the correction to the mag-
netic moment operator itself d.ue to velocity-d, epend, ent
forces, meson-exchange current, etc. , gives a contri-
bution of roughly 0.2 nuclear magneton (nm). The
values that we calculate using the various interactions,
on the other hand, differ from each other by less than
0.1 nrn. Hence we present only the results for EIC
interaction and the one-quasiparticle (the same as the
one-particle) values of the magnetic inoments for coin-
parison. The admixture of the three-quasiparticle states

'3 F. Tabakin, Ann. Phys. (N. Y.) 30, 51 (1964).
4 T. T. S. Kuo, E. U. Baranger, and M. Baranger, Nucl. Phy s.

79, 513 (1966},
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TABLE V. Quasiparticle contribution to the magnetic moment
in nuclear magneton. 1q„denotes the value for a single-quasi-
particle state, and p is the value calculated with our quasiparticle
wave functions having three-quasiparticle admixture.

1—
2
k
2

2

iqp

0.64
—1.91

1.36

A =59

0.74
—2.14

1.35

Jtl

A =61 A =63

0.75 0.68
—2.22 —2.12

1.36 1.38

A =65

0.65
—1.97

1.38

Tmxz VI. M1 transition strength Bglf1) in units
of squared nuclear magneton.

in our calculation does produce a departure in some
cases from single-quasiparticle values, but this once
again is of the order of the basic uncertainty of 0.2 nm
mentioned above. We make no attempt at fitting any
observed data because it is well known that the core-
polarization eGect is a big contribution to the magnetic
moment of these nuclei, and, estimates of this effect.
already exist (see Ref. 8).

The same kind of observation holds for the 3f1
transition strengths of Table VI. The small admixture
of the three-quasiparticle states aRects the results to
a very minor extent; consequently, the M1 strength
connecting fs~s with ps~s, which is strictly forbidden
without the three-quasiparticle admixture, is still found.
to be negligibly small, and, hence is not shown in the
table.

The E2 transition strengths, shown in Table VII,
on the other hand, display a more sensitive d,ependence
on the interaction used, , and, the admixture of three-
quasiparticle states. One must remember, however,
that in this case the detailed. form of the radial wave
function plays an important role. We used, harmonic
oscillator radial functions; the use of more realistic
functions seems to be necessary before the sensitive
d.epend. ence of the E2 transition strengths may be
utilized, to arrive at d,efinite conclusions. Experimental
d,ata are also rather scarce at the present time.

TABLE VII. E2 transition strength in units of e,ff' F where
F=10 "cm and e, ff is the effective charge of the neutron.

Transition

2

Interaction

EIC
EIA
QQ
S-s

EIC
EIA
QQ
S-s

A =59
1qp MTDA

6.1 10.8
6.2 12.9
6.9 12.4
6.6 3.6

1.5 0.46
1.6 0.98
1.6 0.05
1.5 3.9

A =61
1qp MTDA

0.53 3.5
050 66
0.77 2.9
0.59 0.19

0.02 0.32
0.03 0.16
0.03 1.55
0.02 1.2

A =65
3—~ 1—
2

3—~ 5—
2

EIC
EIA
QQ
S-s

EIC
EIA
QQ
S-s

2.0 1.1
2.2 0.38
1.4 0.03
2.1 1.9

0.50 0.87
0.50 1.7
0.44 2.9
0.49 0.09

15.5
15.6
13.3
15.9

2.2
2.2
2.0
2.2

20.2
8.0
5.1
2.4

1.8
3.9
3.2
0.78
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