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Theoretical and experimental results are presented on the propagation of longitudinal ion waves in
weakly ionized gases in a frequency range extending from considerably below to well above the ion plasma
frequency. The theory describes propagation in a uniform plasma on the basis of kinetic equations. First, a
dispersion relation is derived and solved for the complex propagation constant; this is appropriate if the
damping is weak. Second, the spatial dependence of the phase and amplitude of the disturbance excited by a
pair of grids is calculated; when the damping is not weak, the amplitude does not decay exponentially with
distance. The measurements are performed with grid-excited ion waves at frequencies between 0.1 and
10 MHz in hydrogen, nitrogen, argon, and krypton rf discharges with charged-particle densities of about
109 cm ' and electron temperatures of the order of 50 000'K. At frequencies well below the ion plasma fre-
quency ar;, the phase velocity is found to be frequency-independent and is given by the Tonks-Langmuir
speed. At these frequencies, the attentuation is proportional to the neutral gas pressure and is therefore
primarily caused by ion-neutral collisions. At frequencies approaching co;, the attentuation is higher than
expected from collisions, and the excess is attributed to ion Landau damping. Theory and experiment agree
well at ~ smaller than co;. For frequencies greater than co;, the phase velocity increases with frequency, but
not as much as expected on the basis of a Maxwellian velocity distribution of the ion gas. Moreover, the
ratio of imaginary to real part of the propagation constant, which is found to decrease slightly with fre-
quency, is much smaller than expected from the theory. Better agreement between experiment and theory
in this frequency range can be obtained by assuming the ionic velocity distribution to decrease more rapidly
at high velocities than a Maxwellian distribution. Non-Maxwellian velocity distributions of this kind are
actually expected under the conditions of the experiment. The data reported in this paper furnish the erst
experimental evidence of ion-wave propagation at frequencies greater than co;.

In many of these experiments, however, the cross-
dimensions of the plasma were not large as compared to
the wavelength, and guided rather than free waves were
measured. The propagation of such waves depends
critically on the boundary conditions and radial drifts
imposed by the walls. %hile such experiments allow a
study of boundary eBects, they give little information
about the inQuence of volume phenomena, such as
collisions, on the propagation. In other experiments,
the inQuence of wall effects was diminished by the
application of a strong axial magnetic Geld. Contrary
to the activity in the Geld of low-frequency ion waves,
no measurements at frequencies higher than co; have
been reported in the jiterature by other authors. "

In Sec. II of the present paper, we study the propa-
gation of ion waves theoretically (1) by solving the
dispersion equation for complex propagation constant

Z. INTRODUCTION

ONGITUDINAL ion waves at frequencies above
& the ion plasma frequency co; differ considerably

from low-frequency ion waves. The low-frequency
waves are collective vibrations of the ions and electrons,
and the velocity of these waves is determined by the
properties of both particle species. If the temperature
of the electron gas is much higher than the temperature
of the ion gas, the waves are well described by the Quid

theory which predicts a phase velocity

ET,(
m; ( ~;si

This yields, for co«co;, the Tonks-Langmuir velocity
(ET /m. )' Is If the ion and electron gases have com-
parable temperatures, the waves are, even in the
absence of collisions, highly attenuated by Landau
damping, and the theory has to be based on kinetic
equations, such as the collisionless Boltzmann equation.

Ion waves at frequencies higher than the ion plasma
frequency are oscillations of primarily the ion gas. The
propagation is expected to be subject to strong Landau
damping, regardless of the ratio of ion-to-electron
temperature, if the ions have a Maxwellian velocity
distribution. The Quid equations are inadequate to
describe these waves, and one has Io use the kinetic
equations.

Numerous experimental studies on the propagation
of low-frequency ion waves have been performed. ' "
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4s p.(k,pp)

e(k, rp) = 1—Q
ikE(k, &p)

(2)

where p is the charge density of particle species o,, E is
the longitudinal electric Geld, and k and co correspond
to a dependence exp(ikx —io&t). The contribution of
species rr to Eq. (2) may be obtained from the linearized
Vlasov equation if all collisions can be ignored and
amounts to

4s.p (k,cp)

ikE(k, rp) k'

Bfp /Bv.
d~5

7

'vg rp/k
(3)

where rp '=4vrN q '/m is the plasma frequency and fp

the normalized (isotropic) velocity distribution function
for species o.. Use of Eq. (3) in Eq. (2) yields the familiar
"Vlasov" dielectric function.

Equation (3) may be applied to the electrons by
assuming that the electron mean free path is long
compared with the wavelength. We obtain for positive
$14

4s p, (k rp) rp,s 1 irp
+2~' fo.(o)—

ikE(k, rp) k' v', k

n R. W. Gould, Phys. Rev. 136, A991 (1964).
«' S. D. Fried, A. N. Kaufman, and D. L. Sachs, Phys. Fluids

9, 292 (1966).
'4 One must use the causal dielectric function; in practice this

means that in any integral of the form fdv a(v)/(v —a&/k) the
contour of integration is chosen such that the pole need not cross
the contour as cu-+ co+see. /We assume a(v) is analytic. g This
corresponds to turning on the perturbations adiabatically or to

and (2) by calculating the spatial dependence of the
disturbance generated by a pair of grids; we will also
compare the results obtained by the two methods. The
second treatment is necessary when all modes are
highly damped. "In Sec. III, measurements of the phase
velocity and attenuation of ion waves are reported both
for or smaller and larger than co;. The waves are studied
in the absence of a con6ning magnetic field under
conditions where wall eGects have no inQuence upon the
propagation. This makes possible the study of collision
and dissipation processes which are typical for the
volume of the plasma rather than for its boundaries.
The experimental results are discussed in Secs. III
and IV.

II. THEORY

The theory discussed here is similar to previous work
but is evaluated for parameters appropriate to the
present experiment. We will assume that the plasma is
in steady state, spatially uniform, and unaffected by the
positions of the grids. The plasma is also assumed to be
weakly ionized so only collisions with neutral particles
are important.

1. Dielectric Function

The longitudinal dielectric function follows from the
Fourier transformed Poisson equation as"

if rp/k is small compared with the speeds of most
electrons. The second term on the right gives Landau
damping by the electrons.

To apply Eq. (3) to the ions we assume that the
ion-neutral collision frequency ~; is small compared
with cp. Ordinarily Eq. (3) cannot be simpli6ed by
further approximations. However, if the phase velocity
cp/k is large compared with the speeds of most ions, one
can generate an asymptotic expansion valid for real co

and k by expanding the denominator (v,—cp/k). We
find, for positive k, '4

4rrp, (k pp) rp, s 3ks
=—1+ (v*'),+

ikE(k, &p) res rp'

+~rr
k2

d8ydvg (5)
~&z —ma=ca/ 1'6

where a =(28/m )'" is the thermal speed, 8 is the
temperature (in energy units), and Z'(f) is the deriva-
tive of the plasma dispersion function. '5

2. Disyersion Relations

Here we regard e(k,&p)=0 as a dispersion equation
relating complex k= k,+ik, and real cp. This approach
is incomplete when only highly damped modes
(k;=k„) are found" but otherwise it does yield useful
information.

When Landau damping is weak (k,&(k„), we can
obtain approximate formulas as follows. If we sub-
stitute the real terms on the right-hand sides of Eqs. (4)
and (5) into Eq. (2), we obtain by writing 8,' for
m./(v-').

m, (v s);-'~s

2m; cprs &vs& e,'

using Laplace transforms in time. Notice in particular that
different analytic expressions apply for positive and negative jt;
~(k,co) is not an analytic function of k.

~6 B.D. Pried and S. D. Conte, The Plasma Dispersjpg F~gg]j0N
(Academic Press Inc. , New York, 1961).

The last term gives Landau damping by the ions which
is, however, very small for pp/k))(v, ),. Thus collisional
damping by the ions may be important. By using Quid
equations, for example, one finds

4 p, (k, )

ikE(k, rp) rd(rp+iv;, )

as the lowest approximation in this case.
By assuming a Maxwellian velocity distribution we

obtain as a special case of Eq. (3)

4s p~ (k,rp)
z'I

ikE(k, rp) k'a ' kka /
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if (v,'),«v„'; this requires co&co; and m, (v,'),«8,'. For
(v,s),= 0, we recover Eq. (1) if we replace 8,' by kT, .
Electron and ion Landau damping may be found, for
Maxwellian velocity distributions, from Eqs. (2) and
(7) by using the series and asymptotic expansions of
Z', respectively. We obtain

)0
8—

f.o

I j I ) I L

k; gv 8, v„——v+exp( —v ')
k„D 0, a,

(9)

The dispersion relation e(k, ro) = 0 can now be written as

2g Go 07

z'(1) = +—Q',
g~ Ms kGq

(12)

Notice that for co sufficiently smaller than or;, the solu-
tions t' are constants independent of co. For ro suKciently
larger than re;, the solutions 1 are independent of 8~/8,

'

and the electrons play no role. Phase velocity v„=a&/k,
and damping k,/k„, obtained from Eq. (12) for various
temperature ratios, are plotted in Fig. 1 as function of
frequency. The results show clearly that the damping is
weak. only if 8,«8,' and oi&ce;. Equation (12) is most
useful in the range 0.05&k;/k„&0.5 where Eqs. (8) and

(9) break down. Actually Eq. (12) has many additional
solutions corresponding to highly damped modes which
interfere with the least-damped mode if k;= k„; rather
than considering all modes in detail, we will now pro-
ceed differently.

3. Inversion of Fourier Transform

To give a more complete discussion which includes a
treatment of transmitting and receiving grids we follow
Gould" and Fried, Kaufman, and Sachs."We assume
that the separation hx of the two transmitting grids is
small compared with the wavelength and that the same

where v = a,/v„and D= v'(1+3v'+ —ro'/oi, s). Damp-
ing by ion-neutral collisions follows by substituting
Eq. (6) and the first term on the right of Eq. (4) into
Eci. (2)

k; v;„8,'

k„2' ns;v„2

If ro is much smaller than ra;, 8,'/m;v„' is approximately
equal to unity and thus k,/k„= r;„/2'. For small

k;/k„, collisional and Landau damping are probably
additive; we have verified this for one particular colli-
sion model.

To obtain an expression which is also valid for large
ion Landau damping (k; k„), we will assume the ionic
velocity distribution to be Maxwellian and use Eq. (7)
for the ions. By ignoring the second term on the right
of Eq. (4) we obtain from Eq. (2)

coP (0& ) Mg 1
e(k,~) =1— Z'I I+

k'a, s t ka, / k'
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FIG. 1.Phase velocity and damping of ion waves for di6'erent
temperature ratios 8=8;/v, '. Reference quantity vo= (0;/m;l'~'.

is true for the two receiving grids. We assume further
that the grids intercept no particles so their effect is
purely electrical.

The voltage Vir(x, ra) generated between the two
receiving grids located at a distance x from the trans-
mitting grids is given by

8R(x,&0)

Vz(x, ro) = Vr(~)hx
8$

(13)

1
Rt(x, re) =—

"dk-
/ 1—sinkx Re~

o k Ee(k,ro)l

Rs(x,(o) =—

—coskx Im ~, (14)
e(k,ae)l

"dk
/

1—e"*Im~
p k ke (k,ro))

Notice that E& is purely real and so cannot represent a
propagating disturbance. Gould argues that E~ consists
only of exponential terms and, for Maxwellian distri-
butions, has the form exp( —

~
x~ /D), where D is

approximately the Debye length. "Our primary interest
is therefore in R2. For Maxwellian distributions, Gould
has evaluated R& for a number of cases, primarily for

Here Vr (co) is the voltage applied between the two
transmitting grids and R(x,oi) is the response function
which may be expressed as Rt(x,o~)+Rs(x, o&) (see
Appendix A) with
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0,=8; and o)((o);. We have used Eq. (11) in evaluating
E.~ for 8,&8; and ~&~;. Typical results are shown in
Figs. 2 and 3. The parameter o)x/a; is chosen as abscissa
since, for ~&(co;, E2 is proportional to co' but otherwise
depends on x and o) only through o)x/u;. ts'r

For co&~;, we obtain weakly damped exponential
results for E2 that agree well with the roots of the dis-
persion relation e(k,o))=0 as given in Fig. 1. In this
range the dispersion relation is, however, much easier
to evaluate. For ~&)~;, E2 decreases rapidly with x and
does not appear exponential, although it may be
dominated by two exponential terms corresponding to
two highly damped roots of e(k,o)) =0. The result for
0=0.5 and ~=1.Sod; shows an interesting interference
of two or more such modes.

For very large x, the evaluation of E& is impractical
because the factor e'~ oscillates so rapidly. An approxi-
mate evaluation by the saddle-point method is then
appropriate. Such an evaluation (see Appendix 8)
yields for co&)or; and for a Maxwellian velocity distri-
bution of the ions

2 1 (o) ) /'o)x)
E,(x,co) .-"VS fe/'&~/ &2a;/

107T

-127T

-[6'7T

-20/T

-22m'

-247T I I I I I I I I I
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QJX
8~

Fro. 3. Phase v of —R2(x,co)=—IR2(x, cv) Ie '+. The caption
for Fig. 2 applies. For clarity, the curves have been displaced
vertically.

3 /o)x)
Xexp —

~ ~

(v3&—1) (16) by the exponential factor. This yields a "phase velocity"
2&2a;&

For large x the spatial dependence of E2 is dominated
(Ox q 1/3 4

v„=
I

-~3a, ,
2u, &

10-1

which increases slowly as x and co increase. The
"attenuation" is given by

k;/k, = 1/v3. (18)

10 ~
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Fzo. 2. Amplitude of (co;/ca)'xRs(x, au) as a function of the dis-
tance x from the transmitting grids. The solid curves are for
8=8;/8, '=0.1 and various values of &e/&o;. The dashed curves are
for co=1.5&a; and various values of 8. For co&3';, the results
depend very weakly on 0, particularly for 8&0.2.

A numerical evaluation shows that Eq. (16) agrees
reasonably well with Eq. (15) (or Figs. 2 and 3) for
o)=3o); and o)= 5o); if o)x/u, )20. The results for o&)&o);,
as expressed in Eqs. (16) to (18), are determined by the
velocity distribution of the ions, while the distribution
of the electrons does not enter.

Since non-Maxwellian velocity distributions are
frequently encountered in experiments it is of interest
to examine how deviations from a Maxwellian will
inQuence the results. As an example, suppose that for
e, near the phase velocity v„, the ion velocity distri-
bution is such that

de„dt), fs, ~e ('*'")",

Then one 6nds from the saddle-point method

"This may be seen from Eqs. (11) and (15) after changing
variables to v =ka~/co.

» Thus, Eq. (13) shows that at low frequencies Vn(x, ca)/V r(cu)
is proportional to w' and otherwise depends only on coax/o;.

o)xq 1/(m+1) — ]q1+—
i
cos

nu/ n/ 2(

——r
/o)xq 1/(n+t)

Q= — I
n+1) knN/

(2o)
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FIG. 4. Apparatus for excitation and measurement of ion waves.

k'—= tank„2(n+1) 2(n+1)
(21)

This shows that for increasing e the dependence of
phase velocity upon frequency and distance becomes
weaker while the damping decreases.

X10

o
4P

2—
Eo

o
O
4J

0
0 0

0 o o ~~0 0
0

I

27r

~ 0.5—
rn

X
tL

0.2
0.1

I

0.2

A
44

4 h~~g' 4 4
4 b

o HYDROGEN
2& 4 NITROGEN

I l l I

0.5 5
FREQUENCY (MHz)

10

FIG. 5. Phase velocity of ion waves in hydrogen and nitrogen
discharges. Plasma parameters are in Table I. Plasma frequencies
co; are indicated. Solid and dashed lines: best fit at low and high
frequencies, respectively, with the required frequency dependence.

» G. M. Sessler, J. Acoust Soc. Am. 42, 3. 60 (1967).

III. EXPERIMENTAL RESULTS
AND DISCUSSION

I. Experimental Method

The method for the generation and measurement of
ion waves is discussed in detail elsewhere. "Therefore,
only a brief description is given in the following.

Figure 4 shows the setup for the experiment. The
plasma is generated in a glass tube by a continuous
rf-discharge at a frequency of 50 MHz. Langmuir
probes are used to measure the electron and ion densities
and the temperature of the electron gas.

The ion waves are excited by applying pulsed wave
trains with carrier frequencies between 0.1 and 10 MHz
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FIG. 6. Phase velocity of ion waves in argon and krypton
discharges, otherwise like Fig. 5.

to a pair of parallel grids. The spacing between the two
grids is 0.0'7 cm and the grid diameter is 5 cm. 's Another
pair of grids is employed to detect the almost cylin-
drical beam of waves (beam diameter equal to grid
diameter). The distance between the two pairs of grids
is variable, thus making the measurement of phase
velocity and damping of the waves possible.

The plasma density in the cylindrical space in which
the waves propagate is homogeneous to within +10%.
The inhomogeneities are, however, greater within the
sheaths of the grids. '8

2. Phase Velocity as Function of Frequency

The measured phase velocities of ion waves are
plotted in Fig. 5 for the hydrogen and nitrogen dis-
charges and in Fig. 6 for the argon and krypton dis-
charges as a function of frequency. The plasma param-
eters for the four discharges are given in Table I.' In all
but the hydrogen plasma, about the same neutral gas
pressure, charged particle density, and electron tem-
perature are used. The temperature of the ion gas, which
cannot be measured with probes, is estimated to be
above room temperature by a factor of order 10. This
is due to ambipolar dc fields which are, for locations not
too close to the walls, about 200 to 300 V/(cm Torr). '

The velocity results in Figs. 5 and 6 indicate an
absence of dispersion at frequencies well below ot;/2v,
as expected from Fig. 1 or Eq. (1). A comparison
between the measured phase velocities v at low fre-
quencies (solid lines in Figs. 5 and 6) and those pre-
dicted by Eq. (1) is given in Table II. The ion tempera-
ture is not considered in Eq. (1).By using Eq. (8) and
substituting an ion temperature of, say, 3000'K, the
(v /v„)' values in Table II would all be lowered by 15
to 20%. Results by Alexeff and Jones, 4 who have
interpreted (v /v„)s as the specific heat ratio of the
electron gas, are also given in Table II. The particle
densities in the experiments by Alexeff and Jones were
about equal to those used in the present study.

The slight deviations of (v /v„)' from unity could be

' Other pairs of grids with spacings between 0.05 and 2 cm and
diameters between 2.5 and 6 cm yield about the same results for
phase velocity and attenuation Lace Ref. 18$.



162 ION Vr AV ES I N %EAKL Y IONIZED GASES

¹utral gas
pressure
P (micron s)

ALE I. Plasma parameters.

10 2.5 2.5 2.5

Hydrogen Nitrogen Argon Krypton

0.2
x
O
1-

O.tz
tsjI- ~
n ~ 005-
4l

o&~~O

0
o o

A
A h

oao 0
Electron and

ion densities
37, and E; (cm ')

Ion plasma
frequency
co;/2s (MHz)

Electron gas
temperature
&. ('K)

3.6 1.0 0.77

69 000 45 000 48 000 48 000

0.58X109 1.0X109 1.0X10 1.1X10 0 HYDROGEN ~~~
A NiTROGEN

I I

0.2 0.5

d
h

0.02—
0

I I

0.1 1 2 5 10
FREQUENCY (MHI)

P' Fro. 7. Normalized attenuation k;/k„of ion waves in hydrogen
and nitrogen discharges. Plasma parameters are in Table I.Theo-
retical curves: sum of expected collisional and ion Landau
damping.

TmLE II. Experimental results.
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& See Ref. 4.

due to the fact that the electron velocity distribution
is non-Maxwellian; thus the quantity 8,' in Eq. (8),
which determines the phase velocity, may not equal the
"temperature" measured by a probe and used to
calculate v~.

The deviations of (e /s~)s from unity may also in
part be attributed' to a change in the effective ion mass
due to the presence of more than one ion species in each
plasma. The phase velocity in a plasma with several ion
species having masses equal to M~, M2, ~ ~ and relative
densities x~, x2, is

z '= (8 ')'"L(xr/Mr)+ (xs/Ms)+ j'" (22)

The values of (n /nF)' in Table II were obtained by
assuming the presence of only H2+, N~+, Ar+, and Kr+,
respectively. If we assume that H+, N+, Ar~+, and Kr~+
are also present in the respective cases, (v /oF)' is
decreased for hydrogen and nitrogen but is increased for
argon and krypton.

In the presence of a second considerably heavier ion
species, another ion wave with a lower speed may exist
under certain conditions. Experiments in nitrogen-
mercury mixtures actually show the propagation of two
ion waves having a phase velocity ratio of about 1:4.
The phase velocity of the faster wave is equal to that

expected for a nitrogen plasma. Ion waves behave in
this respect diGerently than ordinary sound waves
where the particle species are strongly coupled by colli-
sions, thus permitting onl.y one wave to propagate.

At frequencies higher than co;, Figs. 5 and 6 indicate
a slight increase of the phase velocities. As shown in
Sec. II 3, the kinetic theory predicts the phase velocity
and damping to depend in this case on the separation x
between the two pairs of grids. Since the measurements
at co)ro; were taken at values of co@/a; between 60 and
800, it is appropriate to compare the experimental
results with the asymptotic solutions given in Eqs. (17)
and (20). The dashed lines in Figs. 5 and 6 have the
dependence on a&'" predicted by Eq. (17) but are other-
wise best 6ts to the data. The observed dependence on
co is apparently somewhat more gradual than predicted
by the theory based on a Maxwellian velocity distri-
bution of the ions. This indicates that the velocity
distribution in the experiment corresponds to n) 2 in
Eqs. (19) and (20). The fact that the phase velocity
measurements yield" values independent of x also
seems to suggest a relatively large exponent in Eq.
(20). We will deal with these questions in more detail
when we discuss the damping measurements in Sec.
III 3.

The ion temperatures derived from the dashed lines
in Figs. 5 and 6 are given in Table II. A separation
x= 2.5 cm, corresponding to the center of the measuring
interval (2 to 3 cm at high frequencies), has been used
for the evaluation.

3. Attenuation as Function of Frequency

The normalized attenuation constant is shown in
Fig. 7 for the hydrogen and nitrogen discharges and in
Fig. 8 for the argon and krypton discharges. The
plasma parameters are the same as for the velocity
measurements (see Table I).

The expected attenuation consists of damping due to
ion-neutral collisions and of ion Landau damping.
Electron Landau damping is, for the temperature
ratios T,/T, under consideration, much smaller than
ion Landau damping. The lines in Figs. / and 8 repre-
sent the expected total damping, calculated with Eqs.
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Fro. 8. Normalized attenuation k;/k, of ion waves in argon and
krypton discharges, otherwise like Fig. 7.

(10) and (12) under the assumption that collisional and
Landau damping are additive (see Sec. II). For the
calculations, known collision cross sections for dc fields
of 300 U/(cm Torr) (see above) are used, while the
ratio T;/T, is adjusted to yield best fit with the data.
The resulting T; values are shown in Table II and may
be compared with the ion temperatures derived from
the velocity measurements at co)co;. These determina-
tions of T, rely, of course, on the assumption of a
Maxwellian velocity distribution of the ion gas and are
thus not expected to be very accurate.

If or is raised above co;, the attenuation is primarily
caused by ion Landau damping. For well above ~; and
for large transmitter-receiver separations the damping
is expressed by Eq. (18) if a Maxwellian velocity
distribution of the ion gas is assumed. The observed
attenuation is by about an order of magnitude smaller.
This suggests again that the experimental velocity
distribution of the ions corresponds to e&2 in Eqs. (19)
and (21), thus yielding lower damping. For k;/k, to be
as small as the experimental value, one would have to
choose e)20. This suggests that an ion velocity
distribution with a sharp cutoff is needed to explain the
experimental results. This distribution, however, need
not have the form given by Eq. (19). The reason for
using this particular distribution is that it permits an
easy evaluation. Because the ions gain their energy
from the ambipolar 6eld, a distribution with a sharp
cutoff is actually expected in this experiment.

It is of interest in this context that experiments by
%ong' yielded also much smaller ion Landau damping
than predicted on the basis of a Maxwellian velocity
distribution of the ions. Mong's experiments were made
in a highly ionized plasma with T,=T, at frequencies
much smaller than the ion plasma frequency. A similar
result has been obtained for Landau damping of elec-
tron waves by Van Hoven. "
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the case, to determine the cross section for this collision
process. The ratio of attenuation to pressure should be
independent of frequency and pressure if ion-neutral
collisions are the only reason for the damping, as is the
case at very low frequencies.

Measurements of n/P„are shown in Fig. 9 for some
argon plasmas having different pressure but equal ion
density of 1.3)&10' cm '. Also shown are theoretical
curves representing the sum of collisional and ion
Landau damping. Since co is much smaller than or;, the
collisional part of the attenuation follows from Eq. (10)
by setting 8,'/(m;e') equal to unity. It is therefore
given by (k;)„u——v; /2e„. Ion Landau damping may be
determined with Eq. (12) (or from Fig. 1) for known
temperature ratio T;/T, .The curves shown in Fig. 9 are
obtained by substituting the measured phase velocity
of 3)&10' cm/sec (which is independent of pressure and
frequency in the ranges under consideration) and by
treating v; and T;/T, as disposable parameters. This
yields, for a pressure of 1 Torr, v; =5&(10~ sec ', in
agreement with the value expected" from drift velocity
measurements assuming E/p„=300 U/(cm Torr). The
corresponding collision cross section Q = v; /a;S is,
for a,=1.7X 10' cm/sec, equal to 0.83)& 10 "cm'. The
6tted temperature ratio follows as T,/T;=12, which
agrees with that obtained from the data in Fig. 8. The
curves shown in Fig. 9 approach the collisional damping
value asymptotically with decreasing frequency.

The fact that the observed attenuation per Torr is
independent of frequency and pressure at the lower fre-
quencies indicates that damping due to ion-neutral
collisions dominates in this range. This is substantiated
by the result that the ion-neutral collision frequency
derived from the attenuation measurements agrees with
that obtained by other methods.

4. Deyendence on Neutral Gas Pressure

0
O.t

t t l 1 l I l

0.2 0.4 0.6 0.8 1.0
FREQUENCY (MNz)

Variation of the neutral gas pressure offers a possi-
bility to check whether the attenuation at low fre-
quencies is due to ion-neutral collisions and, if this is

FIG. 9. Relative attenuation k;/p of ion waves in argon dis-
charges (a.= 1.3X10' cm ') at various neutral gas pressures. The
lines represent the sum of expected collisional and ion Landau
damping.

"G.Van Hoven, Phys. Rev. Letters 17, 169 (1966). J. A. Hornbeck, Phys. Rev. 84, 615 (1951).



ION %AVES IN %EAKLY IONIZED GASES

S. Excitation CoefBcient

The measured over-all frequency response of the ion
wave experiment is shown in Fig. 10. The results are
obtained by feeding a frequency-independent voltage
into the excitation grid and measuring the voltage
produced by the receiving grid as a function of fre-
quency. Since measurements are not possible for zero
separation between excitation and receiving grids, the
amplitude-versus-separation dependence measured at
distances from 2—6 cm is extrapolated to zero separation.
The results are shown in Fig. 10.

The solid line in Fig. 10 is the predicted dependence
calculated for zero separation between excitation and
receiving grids. For low frequencies, the theory yields'7
a dependence proportional to oP. The dependence is
weaker at frequencies comparable to or higher than co,.
The agreement between the measured and the predicted
dependence on frequency is good.

IV. DISCUSSION

In deriving our theoretical model, a number of
assumptions about the plasma and the grids have been
made. We would like to discuss now whether these
assumptions are in agreement with the experimental
conditions.

The plasma can certainly be assumed to be in steady
state since the rf Gelds that maintain the discharge have
little effect upon wave propagation which occurs at
much lower frequencies. Similarly, the assumptions
about the various collision rates are known to be valid.

The assumption concerning the grid spacing is a good
approximation for most of the frequency range under
consideration since separa, tions Ax as small as 0.05 cm
were used while the shortest wavelength is about
0.07 cm. With variable grid separations, "only an effect
on the amplitude of the disturbance, but not on its
phase velocity and attenuation, could be detected
experimentally. "The assumption that the grids inter-
cept no particles is expected to aBect also primarily the
amplitude of the disturbance excited and should again
be of little importance to the propagation.

It is apparent from the geometry of the grid struc-
tures that one expects longitudinal waves propagating
directly from the transmitting to the receiving grids.
Any other path would involve higher attenuation and
would not yield the observed linear dependence of phase
on separation. "Since the wavelength is small compared
with the grid diameter, one expects a well-deGned beam
of nearly plane waves.

By using Eq. (11) in evaluating Rs(x,o&), we have
assumed effectively massless electrons. This overlooks
an additional contribution to E2 that was investigated
by Gould. " However, this contribution represents a
disturbance that propagates with a much higher speed,
characteristic of electron speeds, and so appears
temporally separated from the ion-wave signal in
experiments with pulsed wave trains.
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PIG. 10. Excitation coefBcient times sensitivity in a nitrogen
plasma. Solid line: expected dependence for 8,/8, '=0.1, with
au;/2x =0.87 MHz. This effective plasma frequency is smaller than
the value 1.1 MHz measured by probes at the plasma center,
presumably because it represents a spatial average.

We expect no great effect from the plasma-density
inhomogeneity, " which is due to wall effects. The
relatively great inhomogeneity near the grids can be
regarded as part of the grid structure and will aGect
only the efficiency of the grids, while the small in-
homogeneity of the plasma density elsewhere in the
region of the wave propagation has a scale length long
compared with the wavelength. Further~ore, the phase
velocity depends only weakly on the plasma density.

Radial drifts, which are also due to wall effects, tend
to extract ions and electrons from the wave beam. Note
that if one particle leaves the beam and is replaced by
another, the effect is similar to that of a collision. "
Because in the experiment the collision mean free path
for ions is shorter than the beam diameter, one expects
little effect from radial drifts of the ions. Since the
electrons store no appreciable momentum, their drifts
are of no inQuence on the wave motion even though
their mean free path is comparable to the beam
diameter.

The wall effects give rise to ambipolar electric fields
that could lead. to distorted velocity distributions
because the apparatus dimensions are not very much
greater than the particle mean free paths. Actually, the
electrons are "contained" by the ambipolar Geld long
enough to su8er many collisions, so the electron velocity
distribution should not be seriously anisotropic. No
similar reasoning applies for the ion velocity distri-
bution, which may be highly distorted and certainly
cannot be assumed to be Maxwellian.

V. SUMMARY AN'D CONCLUSION'S

The experimental results obtained. at frequencies
smaller than the ion plasma frequency agree well with
theory. Of particular interest are the wave-attenuation
data which yield information on dissipation phenomena
due to volume effects in weakly ionized gases, a ra, ther
unexplored Geld from an experimental point of view.
It is found that the attenuation at frequencies well
below co; is caused by ion-neutral collisions; the cor-
responding collision frequency for momentum transfer
agrees with that determined from mobility measure-



G. M. SESS LE R AN D G. A. I'EA RSON

ments. At frequencies below but close to cu; the attenu-
ation is higher than expected from collisions and the
excess is attributed to ion Landau damping. The phase
velocity, which is frequency-independent, is determined
by the Tonks-Langmuir relation as has also been found

by other authors.
The data taken at frequencies larger than the ion

plasma frequency represent the first experimental proof
of ion-wave propagation in this range. The measure-
ments, which were performed at transmitter-receiver
separations much larger than the wavelength, show a
small increase of the phase velocity and a slight decrease
of the normalized attenuation constant with frequency.
These results require the assumption of an ion velocity
distribution which decreases more rapidly than a
Maxwellian at high velocities. Non-Maxwellian velocity
distributions of this kind are expected under the condi-
tions of the experiment.

As has been implied in this paper, ion waves have
many potential applications in plasma diagnostics.
Contrary to probe measurements, experiments on such
waves allow one to determine many parameters without
disturbing the plasma. Phase velocity and attenuation at
low frequencies, for example, yield the electron tempera-
ture and the ion-neutral collision cross section, respective-
ly, while measurements at frequencies comparable to and
above the ion plasma frequency give information about
the average ion temperature and the shape of the ionic
velocity distribution.
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APPENDIX A

The electric 6eld at a distance x from the transmitting
grids is given by

If this is regarded as a contour integral in the complex
k plane, one may close the contour in the upper half
plane for positive x. Then poles of e(k,co) I

solutions of
e(k,o/) =0j in the upper half of the complex k plane
yield exponential contributions to R(x,ra); in addition,
because e(kp&) has a branch cut, '4 there is a nonex-
ponential contribution to R (x,o/).

If Vr(t) can be Fourier transformed, we need only to
evaluate R(x,co) for real co. If e(k,co) is an even function
of k for real k,"we may write for Eq. (A3)

1 "dk sinks
R(x,o))=-

k e(k,co)
(A4)

R(x,co) can be expressed as R~(x,cv)+R~(x,~), with
R& and R2 given by Eqs. (14) and (15).

For large x this is small compared with co/a; so one
may use

APPENDIX 8
To apply the saddle-point method to R2(x,cd), we

erst rewrite Eq. (15) by using Eq. (11)and substituting
the imaginary part of Z' from the power series" to
obtain

2 (;~' "dk
R.(x,~)=-

I

—
I

—
I I (k,-) I-'

&~(~), k ka)

("5
&(exp ikx —

I I
. (&1)

&ka;)

We consider kc
I &(k,a&) I

2 to vary slowly with k; this is the
case for a»)co; if we use c(k,co) as given in Eq. (11).
According to the saddle-point method, the major
contribution to the integral is from

(2a,)'/3 ~)
k~x) a;)

"dk e"
E(x,co) = Vr(co)

„2s- o(k,o/)
(A1)

~ 2 2gc (o/x)2/~.=-1—+-
co' ~' 8,' (2a;)

M(x,o/)

V/c(x, cv) = Vr(o/)ax (A2)

where

where V~(cd) is the voltage between the transmitting
grids. The voltage between the receiving grids at
position x is then V/c (x,o/) =hx E(x,cd), which we prefer
to write as

which has various limiting forms depending upon o/;/o/,

8;/0, ', and x. The saddle-point method then yields

2 1 (c0;)' ~x)'"
R (x o/) - —

I

—
I I

e'~'/3

2a;)

-3 (cox)2/3
Xexp -I

I
(43i—1) . (84)

2&2a;)
R(xp)) =

„2m ikc(k, )o/
(A3)

Similar results are known for electron waves. "


