
NUCLEAR —REACTION P ROBL E MS. I I, APPLICATIONS

flexibility arises by virtue of the arbitrariness of the
operators H', Z' which are to be chosen in each instance
so that the significant parts of the mathematical spec-
trum of H', 4' are most simply associated with their
physical counterparts. In some instances this "map-
ping" procedure becomes a matter of personal taste.
The choice which is obviously "most physical" to oa.e
person is not always so evident to someone else.

In the applications given here we have usually em-

ployed 2-matrix-type boundary conditions for the
operator g', the reasons for this choice being discussed
already in I. Nevertheless, the formalism allovs for
multiple choices of the basic operators and only aher
a careful evaluation of each choice will it be possible to
decide which choice is most appropriate for the particu-
lar problem being investigated. General criteria for

choosing a set of operators are not obvious due to the
necessity of compromising between mathematical con-
venience and "physical" significance. Fortunately,
many of the interesting results may be obtained without
specifying H' and g too precisely so that the basic
formalism is reasonably universal in its applicability to
nuclear reactions. Applications of the formalism to di-

rect reactions and nuclear-model calculations will be
reported at a later time.
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The molecular-viewpoint form of nucleon tunneling theory is used in the two-level approximation and

with neglect of the dynamic reaction terms for a partial-wave analysis allowing the inclusion of the effects

of wave function absorption through the use of an imaginary part of the potential. The equations are used

in an analysis of improved measurements of the differential and total cross sections of the reaction

"N( 'N, '3N)'5N, with special attention to laboratory energies 8&&16 MeV;vhich are below the Coulomb

barrier. At the lowest energies, the analysis involves only the Coulomb interaction between the heavy

particles. Fits to data are improved at the higher energies through the introduction of optical potentials.

The principal function of these in the present work is to modify the wave function at distances larger than

those corresponding to definite contact between i4iV and "N. The transfer function p (R) is cut oG at small

values of the internuclear distance R to avoid the inclusion of unrealistic contributions to neutron transfer

when the two nuclei are no longer distinct. The potential has been adjusted for best fits to neutron-transfer

data. The long distance tail of the potentials tried was made to agree, regarding relative values at diferent

distances, with that calculated by McIntosh, Rawitscher, and Park in their work on the elastic scattering of

"N by "N, and depends therefore on nucleon-nucleus scattering information. The potentials were adjusted

to represent the elastic-scattering '4N+'4N data simultaneously with neutron-transfer data. These com-

bined requirements are met best by potentials referred to as 2 and 3 in the text. The reduced width of the

transferred neutron obtained from transfer data depends on the potential only weakly. The same reduced

width from elastic-scattering information is sensitive to the choice of potential. The best agreement of the

elastic-scattering and neutron-transfer reduced widths is obtained for potential 3, the disagreement being

less than by a factor 2. The combined uncertainty of the two ways of arriving at the reduced width is

believed to be large and to make the discrepancy insignificant. The combined treatment of neutron transfer

and of elastic scattering is self-consistent in the sense described. The neutron transfer reduced width is

slightly smaller than the single-particle reduced width calculated with the nucleon-nucleus potential em-

ployed in obtaining the proportionality constant of the long-distance nucleus-nucleus potential tail.

I. INTRODUCTION

HE treatment of nucleon tunneling proposed by
one of the writers' ' is applied to the analysis of

the "N('4N, "N)"N reaction data of Becker and
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McIntyre, of Hiebert, McIntyre, and Couch' as well

as Gaedke, Toth, and Williams. ' The treatment, in its
main part, avoids schematic and questionable replace-

ments of many particle systems by single particles or

.G. Breit, in Proceedings of tire Third Conference on Reactions

Between Complex Nuclei, edited by A. Ghiorso, R. M. Diamond,
and H. E. Conzett (University of California Press, Berkeley,
California, 1963), p. 97.
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4 I.. C. Becker and J.A. McIntyre, Phys. Rev. 138, 8339 (1965).
5 $. C. Hiebert, $. A. McIntyre, and J. G. Couch, Phys. Rev.

138, 8346 (1965), referred to as HMC; R. M. Gaedke, K. S.Toth,
and I. R. Williams, ibid. 141, 996 (1966), referred to as GTW.
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cores. The neutron-emitting and neutron-receiving
nuclei are each considered' "somewhat along the lines
of an electrical engineer's "black box" characterized by
its response to external stimuli by means of quantities
related to, though not identical with, the reduced widths
of Wigner s R-matrix theory. The limitations of the
general theory have been discussed in Ref. 3.

The extension of the data to lower energies in Refs. 4
and 5 has proved especially valuable in providing a
possibility of a quantitative test of the theory because
the energies are definitely below the nominal Coulomb
barrier, so that the participation of collisions involving
direct contact of nuclear surfaces and therefore of
processes of the compound nucleus type is subordinated.
Virtual processes' ' may result in moderate enlarge-
ments of the effective values of nuclear radii that enter
the formula for the cross section of the single neutron-
transfer reaction. With the new data4 ' there is a con-
siderable margin of safety in this respect, the classical
distance of closest approach for motion in a Coulomb
Geld being 8.8 F at an incident energy of 16MeV as com-
pared with a separation required for contact of 7.2 F,
the latter corresponding to a nuclear radius b=rpA "
with the rather large value rp=1.5 F, and the data
extending to incident energies as low as 11 MeV.

It has been thought probable' ' that virtual Coulomb
excitation (UCE) complic ates the neutron-transfer
process even apart from affecting the effective value of
the nuclear radius, some early estimates having indi-
cated that it might cause an appreciable enhancement
of the transfer probability for distant collisions. The
particular effect which appeared most likely to cause
the complication has been shown however to be very
small" and there appears to be no reason for expecting
a large direct effect of VCE on the transfer probability
in the case of distant collisions. The theory of the
tunneling process for the reaction under consideration
has some omissions, however, such as an incomplete
consideration of the nucleon configurations of the
participation of a larger number of states and the neglect
of the dynamic reaction terms. ' ' The VCE process may
be affecting other reactions" and through them the
force between the colliding nuclei. The neutron- and
proton-transfer reactions themselves also have an effect
on this force. The complexity of these effects makes the
data analysis at the higher energies necessarily some-

what phenornenological. At the lowest available energies
the smallness of the reaction yield decreases the experi-

' G. Briet, Phys. Rev. 102, 549 (1956).' G. Breit and M. E. Ehel, Phys. Rev. 103, 679 (1956). This
paper is referred to as BE-I in the text.' G. Breit, K. W. Chun, and H. G. Wahsweiler, Phys. Rev. 133,
B403 (1964).This paper is often referred to as BC% in the text.

' G. Breit and M. E. Ebel, Phys. Rev. 104, 1030 (1956).This
paper is referred to as Be-II in the text."G. Breit, Proc. Natl. Acad. Sci. U. S. 57, 849 (1967)."G. Breit, in Proceedings of the Congas International de Physiqste
ENcldaire, Paris, 1964 (Editions du Centre National de la
Recherche Scientifique, Paris, 1965).

mental accuracy. Nevertheless, a comparison of the
observed angular distributions with calculations making
use of the imperfect theory of pure tunneling appears
useful since it gives an idea of the magnitude of the
effects to be accounted for in improved versions of the
theory. The comparison is carried out in more detail in
the present paper than in Ref. 8 and Ref. 12. Inasmuch
as the forces between the heavy nuclei are allowed to
be not purely Coulomb, the possibility of reactions
other than the single neutron transfer is partly allowed
for, and later more complete experimental data are used.

The inclusion of other than purely Coulomb forces is
described in Sec. II, which contains also a discussion
of the way in which the present treatment is combined
with the "molecular" viewpoint' ' of the tunneling
process. In order to include incident laboratory energies
as high as 16 and 18 MeV, the motion of the nuclei is
described by means of a complex potential somewhat as
in the optical-model discussions of nuclear reactions.
The main difference from the latter is that the calcula-
tion of the reaction probability takes place by means of
the equations derived from the molecular, "two black
boxes, " viewpoint. These two ingredients would be
irreconcilable if the potential used were to produce an
appreciable interpenetration of the two nuclei. It was
found possible, however, to obtain satisfactory fits to
experiment by means of potentials which are only
slightly attractive but, on account of the centrifugal
barrier, are effectively repulsive in those states of
relatively high I. that are responsible for the main
contributions to the reaction cross section. The main
role of the imaginary part of the potential in the calcula-
tions presented below is to take into account the
attenuation of the incident wave for internuclear dis-
tances corresponding to little overlap of nuclear matter.
Since for such positions a description of the incident
state in terms of space attenuated waves has a clear
meaning, the employment of the imaginary part of the
nucleus-nucleus potential to be described below does
not interfere in a major way with the consistency of the
application of the "two black boxes" viewpoint.

It has been found possible to adjust the potential so
as to give also a satisfactory account of elastic-scattering
data in the "N+'4N collision along the general lines of
previous analyses of scattering data by the Yale
group, "but with a modification of the short-range part
of the interaction. The optical potentials representing
the "N+"N elastic-scattering data used here as well as
in the work just quoted are not purely phenomenological
Gts to experimental data but make partial use of the

' F. C. Jobes and J.A. McIntyre, Phys. Rev. 133, B893 (1964)."J.S. McIntosh, S. C. Park, and G. Rawitscher, in Proceedings
of the Second Cortference on Reactions Between Complex itrlclei,
edited by A. Zucker, F. T. Howard, and E. C. Halbert (John
Wiley R. Sons, New York, 1960); G. H. Rawitscher, J. S,
McIntosh, and J.A. Polak, in Proceedings of the Third Conference
on Reactions Bet7ftfeen Comp/ex Nuclei (University of California
Press, Berkeley, 1963),p. 3;J.S. McIntosh, S. C. Park, and G. H.
Rawitscher, Phys. Rev. 134, B1010 (1964).
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nucleon-nucleus scattering information employing e,

general connection between phase shift and energy. "
This connection makes it possible to employ the
nucleon-nucleus potential for the computation of the
real part of the nucleus-nucleus potential at large inter-
nuclear distances. On account of the absence of data on
the elastic scattering of "N by "N the same potential is
used for the initial and final stages of the process. The
reduced width derived from neutron transfer and that
obtained by 6tting the long-distance tail of the elastic-
scattering potential are in rough agreement with each
other.

Section III describes the procedures used in making
fits to data and some of the results. Section IV is con-
cerned with a discussion of the findings, particularly in
connection with the limitations of the data analysis.

Q2

6,+E'——X+V, y g—.— PIt =0.
2p 231

(2.1)

The notation is the same as in Ref. 3. The total energy
is E; r is the vector displacement from the center of
mass of nucleus a to that of nucleus b and r=

~
r ~; E is

the energy of the nucleon to be transferred from nucleus
u to nucleus 5 when it is in a; similarly E' is the energy
of the nucleon after it has been transferred to nucleus b;
both of these energies are defined for r = ~ and in each
case the arbitrary additive constant in the definition of
the energies E is adjusted so that E=O for dissociation
of a nucelus to a state of rest of the two fragments at an
infinite distance between them; V ~ is the potential
energy describing the relative motion of u and b; the
functions P„, P. are connected with the adiabatic
analysis functions f', f~ by the transformations of
Eqs. (2.10), (2.11),and (2.13) of Ref. 3; the quantity P
contains tunneling penetration factors, is defined in
Ref. 7 and is used in the same sense as in Refs. 1, 2, 3,
and 8; the reduced mass of the collision process of a and
b is denoted by p, and that of the nucleon by N.

A number of approximations and assumptions are
involved in the derivation of (2.1). The equations are
supposed to hold if the projectile and target do not
come into bodily contact with an appreciable proba-
bility. Such is the case at bombarding energies definitely

'4 G. Breit, Rev. Mod. Phys. 23, 238 (1951).

II. PARTIAL-WAVE ANALYSIS

The partial-wave treatment employed below makes
use of Eq. (2.20) of the set of two coupled equations,
Ref. 3, which are essentially the same as those presented
at the Padua Conference' on a previous occasion. The
coupled equations are

below the Coulomb barrier. The motion of the nucleon
is supposed to be well-enough describable by linear com-
binations of adiabatic wave functions belonging to two
space degenerate states corresponding to the capture of
the transferred particle c by e or by b; certain "dynamic
reaction" terms containing the mass ratio cV/p, , with
M standing for the nucleon mass, were neglected in
Eq. (2.17) of Ref. 3 in arriving at Eq. (2.20) of the
same reference, which is equivalent to Eq. (2.1) of the
present paper. The derivation of Eq. (2.1) does not
replace nuclei u and b by single particles, as is the case
in some treatments. As in BE-I the relevant properties
of the many-body systems composed of all the nucleons
in u and in b interacting with each other as well as with
c determine the barrier penetrability parameter P. The
possibility of describing the collision between a and b

by means of a local and static potential is of course also
not fully justi6able for several reasons. In the erst place
virtual Coulomb excitation and other excitations of
nucleons and of collections of nuclei to virtual states
produce eGects on the forces between a and b that are
not accurately describable by a local static potential.
Secondly, as long as a transfer of a nucleon between a
and b is possible there are forces between u and b arising
from the exchange of c as well as from the interchange
of identical nucleons. Neither of these forces is rigorously
describable by a static local potential. A description by
a real potential is of course impossible if reactions and
excitations of u and b take place as is the case for reac-
tions. These remarks and cautions have their origin in
the impossibility of making a sharp distinction between
collisions in which a+c makes no contact with b in the
initial stage of the reaction or u makes no contact with
b+c in its final stage and collisions in which such con-
tacts take place.

In view' of the simultaneous presence of several re-
actions, the potential V ~ will be taken complex. The
diGerence between the procedure used here and that in
the usual optical model is that the main part of the
transfer of c takes place from positions of u in which its
surface is not in contact with that of 6 so that the main
part of V b is the Coulomb potential. Had it proved
necessary to use a strongly attractive V & at short
distances, such a picture would be inapplicable, since
an appreciable interpenetration of a and 6 would result,
making the many-body considerations for P loose
validity. Large fractions of the total transfer yield
would then arise from the complicated interactions of
many particles in which the original structures of a and
b would loose signi6cance. In the application described
below V & is suKciently repulsive at short distances to
make the main contribution to the transfer probability
come from distances for which there is no contact
between the nuclear surfaces. The change of V, ~ from
its purely Coulombian value enters the description
mainly as a device for obtaining an improvement in the
values of the wave function describing the relative
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motion of a with respect to b for distances at which no
contact between u and b is taking place.

The treatment is thus largely free from the objection-
able fea.ture of relying on predictions of a model for
situations in which the model has little meaning, as
would be the case if the ordinary optical model were
used. In the calculations to be discussed use is made of
the possibility of characterizing the behavior of the
many-body problem presented by all of the particles in
a and. the particle c by means of quantities rela, ted to
reduced widths as has been done in Refs. 1 and 3. In
this respect the treatment has no similarity to the usual
optical-model calculations.

The present treatment does not take into account
the effect of spin-orbit coupling except for the shell-
model considerations in BE-I.One may look accordingly
for solutions of (2.1) corresponding to the same total
angular momentum I.A by setting

to a.. The expansion has the well-known form

P.„=P.=Q iz(2L+1)L'c(cos0) ez, rz'(k. r)/(k. r), (2.5)

where

ez, '=exp(ioz, '), az~=argl'(L+1+iq ). (2.6)

Here g,=Z,gabe'/kzi, is the Sommerfeld parameter for
the collision of two charged particles with charges Z,
and Zt„and ~, is the relative velocity of the two
particles. The value of the wave mimber k,/(2') enter-
ing Eq. (2.5) is that corresponding to the initial state
in which o+c moves as a whole with respect to b under
the inhuence of the Coulomb law of force. In order tha, t
(2.5) should represent the Coulomb modification of a
plane wave of unit density plus a purely outgoing wave
at r = ~ it is necessary to set

g„~=P"(r) Yz,»(0 p)/r, P.„~=Fz,"(r)Yz,»(9,&p)/r, (2.2)
Pz'(k„r) = Fz, '(k,r) exp(i8z, ),

FL =PL COSSL +GL Sln5L
(2 7)

where 8, q are polar angles describing the orientation of
r. The polar axis is chosen along the line joining the
centers of mass of the colliding particles, the positive
direction being from u to b as in Ref. 3. Substitution
into (2.1) gives, then,

except for a common factor of absolute value for all
Fz, . Here Fz, (k,r), Gz, '(k, r) are the usual regular and
irregular Coulomb functions. These equations hold for
values of r larger than those for which V g differs
appreciably from the Coulomb potential. For smaller
values of r, I'I,' may be obtained by continuation
employing the ra,dial equation. Employment of SI. in
place of Fz, in the second of the two equalities of (2.3)
together with the requirement that FL,' be purely out-
going at r = ~ determines the latter function uniquely.
From the second line of (2.3), employing the approxi-
rnation (2.4), it follows by standard methods that

d' L,(L+1) 2zz p
+ LE E Y.bf—&i"+

r2 r2 II82 3E

dr2

(2.3)
d' L(L+1) 2p p

+ PE E' V—~b5 —Pc'+—PSz"=0. —'

r2 )A 3f

It may be noted that strictly speaking two coordinate
systems such as in BE-II should be used, one corre-
sponding to the initial and the other to the final stage
of the process. The quantity r is r&—r~. for the first
stage and r~,—x, for the second, in an obvious nota-
tion. Since particle c is relatively light the approxima-
tion of neglecting the difference between the two kinds
of r is made at this point. Since p is a function of r, an
exa.ct treatment of these coupled equations would be
involved. Its value is questionable because the condi-
tions which lead to comparable values of $1." and 51.'
correspond also to the participation of other reaction
channels —some open and some closed. For this reason
the equations are treated only approximately, the main

assumption being that P", which corresponds to the
incident wave, dominates over bt '. Barring special
circumstances such as a resonance, the same relation-
shipholds then also for $1, and FL,'. The former of these
quantities may be obtained in first approximation as

CP~Q~ P~c

rz, "(kbr) =Q/(kbM)$ Sez, b(kbr))

XP '(kzr )bP((r') Fz, (k.r')dr'

—Lp/(kbm)fxz, b(kbr) rz, b(kbr')P(r')

X Fz, '(k,r')dr', (2.8)

where the last form applies only if r is greater than any
r' for which p(r') is sensibly different from zero. The
smaller and larger of the two quantities r and r' are
written here as r& and r&, respectively. Omitting super-
scripts Kz, (p)=g&(p)+iFz, (p) with bz, satisfying the
same second-order radial equation as 51.and having the
asymptotic form gz, cosyz, if Pz, sing@, . Substituting
Gz, '(kbr) for Pz, "(k r) in (2.5) and making use of the
asymptotic form

where Fl, is r times the radial wave function in the
expansion of the incident wave, for which c is attached

Xz, (kbr) exp(it kbr —(L7r/2)
—gb ln(2kbr)+ez, b+8z, b]}, {2.8')
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there is obtained the asymptotic form

k,kgMr I=0

p exp{i(kyar —g~ in(2k')7} 2 (2L+1)Fr.(cos8)e~ e~~ exp/i(8~'+8~~) j F~ (k~r')P(r')F~ (k,r')dr'

p exp{iPk~r —gs ln(2k~r))}

4xMr

4n- L
Ip'& +&(8)+ g(2L+1)P'(cos8)e~ e"

k,ky '

where

X {~L (kg')F'z, (k,r') exp/i(bz, +8&~)j—Fz, ~(k&r')Fz, '(k,r')}P(r')dr', (2.9)

4x
Ip' +'= fq&'&~~ &*(r')p(r')p, '(r')«'= p(2L+1)e~'e~~P~(cos8) F~'(k r')p(r')F~~(kyar')dr'. (2.10)

0 0

The second of the two asymptotic forms for f„ in
Eq. (2.9) is written in terms of the quantity Ip'& +',
which is expressed in Eq. (2.10) in terms of an integral
involving the ingoing modification of the Coulomb field
modified plane wave of unit density in the final state,
fq&'&~' ', and the outgoing modification of the Coulomb
field modified plane wave of unit density in the initial
state, g, '. This integral divers only through the presence
of factors that may be taken outside the integral sign
from the Io(8) of Eq. (2.1) of Ref. 8, which is the same
as the Io(8) of Eq. (48.2/) of Ref. 15 and may be
evaluated either by the methods described in these
references or, if a high-speed electronic computer is
available, by means of the first form for P„ in Eq. (2.9)
employing undistorted Coulomb field radial wave func-
tions. The maximum I. for which the radial integrals in
Eq. (2.9) su6iciently affected by the differences
Pr ~—Fz, ~, FL —FI to make it necessary to take these
inequalities into account is denoted by L

The phase shifts 8L, 6L ~ need not be real, the
derivations being unaPected by the employment of a
6nite number of complex phase shifts. The origin of the
imaginary part is mainly the presence of other reactions,
although strictly speaking the transfer reaction itself
calls for complex values of the 8L. The phase shifts will

be considered as complex therefore. However, since the
reaction channels responsible for the absorption of the
incident wave are not explicitly included in the calcula-
tions, the treatment must be regarded as incomplete.

If neither the incident particles nor the reaction
products are identical, the di6erential cross section for
the emergence of k+c at angle 8 is obtainable from
(2.9). It is convenient to write it in the form

p exp{i)k~r—gg ln(2k~r))}
Ip, fi& +&(8), (2.11)

~p, ff stands for the quantity in curly

braces in (2.9). The differential cross section is then

« '(8)=—
I

—
I IIp, «' +&«)I' (2 12)

)2

e; (4~M)

the superscript ÃI indicating that all particles have
been taken as nonidentical. If, as in the case of
'4N('4N "N)"N the incident particles are identical, a
more detailed consideration is needed. On the special
assumptions of extreme j-j coupling in the p shell and

the exclusive participation of p states in the transfer

process, Eq. (16.7) of (BE-I) together with the con-

siderations following it at the end of Sec. IV of that
paper result in the application of an additional factor

~ to the right-hand side of (16.7) in BE-I. Transcribing
these results to the calculation of the differential cross
section including the observation of "N in the form of
so-called "recoils, " i.e., the result of transfers from

right to left as well as those from left to right,

«(8) =
2z, E4n-MJ

X{IIp..«' +'(8)I'+I-Ip «' +'(~ 8)I'—
——Re(Ip ii~ '+&+(8)Ip, e«& '+&(m' —8)j}. (2.13)

The total cross section is obtained as

0'"= «(8)dQ (2.14)

the integration being carried out over all solid angles. In
the rather good approximation of neglecting the last
term in curly braces in Eq. (2.13),0"'is contributed to
equally by the erst two terms, so that

' "()I' ( )
'Vy( p

e; E4mM

xs . ... The last equation corresponds to the statements at the
~~0. Breit, in Bandbech der Ehysik, edited by S. Fliigge

(Springer-per&ag, per&'n, &959), po&. 4&, part j, Sec. 48. end of p. 697 and beginning of p. 698 in SE-I~ ' ce



8 RE I T, POLAK, AND TORCH IA

(2.15) is just what would follow from (2.12) if one were
to forget about spin, statistics, possibility of transfer in
two directions, the special p-shell con6gurations and the
simultaneous observation in the direction (H, p) of
directly produced as well as the recoil type "N and
naively calculated the transfer of the u to 8 type. The
relationship of the two results just referred to is de-
scribed above in almost the same words as in BE-I,
except that in the latter reference the equations corre-
sponding to (2.12), (2.13),and (2.15) were not explicitly
written down.

HI. FITS TO DATA

An attempt was made to fit available measurements
of the differential and total cross sections of the
'4N('4N, "N)"N reaction and of the elastic-scattering
cross sections of "N by "N in a mutually consistent
way, As in Ref. 13, the long-range part of the interaction
potential was supposed to be derivable from the repre-
sentation of nucleon-nucleus scattering data by means
of the optical nucleon-nucleus potential to within a
factor independent of the nucleus-nucleus distance r.
As shown in Ref. 13, this view makes it possible to
calculate the long distance tail of the optical potential
of the two colliding nuclei, "N-' N in the present case,
provided the proportionality constant is known. This
constant depends on the reduced widths of the nucleons
in the ground state of "N and is approximately pro-
portional to the reduced width of the p-shell nucleons.
The present paper makes use of the results of McIntosh,
Park and Rawitscher" regarding the space dependence
of the tail of the "N-"N potential and the factor con-
necting this potential with the reduced width. The value
of the reduced width is adjusted, however, so as to
agree not only with "N-"N scattering but also with the
total cross section of '4N("N "N)"N.

The analysis of elastic-scattering data suffers from
the following complications. On account of the identity
of the projectile and target it is not possible to separate
effects of distant from close collisions by using small
angle data. The elastic scattering at low energies is
dominated by Coulomb effects making the determina-
tion of purely nuclear effects di6icult. As in Ref. j.3 it
proved impossible to rely entirely on the "N-"N
potential in the region of r large enough to make the
derivation of the long distance tail of the "N-'4N
potential valid. It was necessary therefore to join the
tail to a phenomenological optical potential at smaller
r. The optical potentials at shorter distances have, how-
ever, no theoretical justification. On the other hand,
since it proved possible to account for elastic scattering
as well as for the neutron-transfer reaction by the same
optical potential, the data Gtting is not as arbitrary a
procedure as that used in many other applications of
this phenomenological device. The reduced neutron
widths needed for neutron transfer and. for elastic
scattering also appear to be reconcilable or at least not

contradictory. In this respect there appears to be no
reason for suspecting the consistency of the explanation.
It should. be emphasized, however, that for neutron
transfer two different potentials should be used: one for
the initial '4N+'4N arrangement of nucleons and
another for the final "N+"N rearranged grouping of
nucleons. Since no data on the elastic scattering of
"N by "N are available, the potential in the Anal

arrangement was taken to be the same as in the initial
one. It is not known that the difference between the
initial and 6nal potentials is small enough to make
the error introduced negligible. On the other hand, the
authors are not aware of a reason for supposing the
difference between the two potentials to be large enough
to affect the main conclusions arrived at in this paper.

In the calculations on neutron transfer the quantity
P(r) of the preceding section was set equal to zero for
r(r, „& with preassigned values of the cutoff distance
r.„~.The reason for doing so is that if the spatial nucleon
distributions of the colliding nuclei interpenetrate, there
is an increase in the probability of other reactions. The
competition between the neutron-transfer reaction and
the de6nitely exothermic ones such as "N("N,"C)"0
may then be expected to inhibit the neutron transfer.
The value of r,„~ was used as one of the adjustable
parameters and stayed around 7.2 F, a value corre-
sponding approximately to contact between the nuclei
with somewhat larger than usual nuclear radii. The
sharp cutoff is not expected to represent the actual
situation accurately. It would have been possible to
use a gradual decrease of P(r) to 0 as r decreases. It is
believed, however, that the resulting gain in realism
would not be an essential one because of the omission
of other effects, such as the energy dependence of the
parameters entering the potential and more generally
its nonlocal character, the shortcomings' of the two-
state energy matrix approximation of transfer theory,
the omission of the dynamic reaction terms, etc. The
use of the cutoff for P(r) is in qualitative agreement
with the rounding off of the usual plot of the logarithm
of total cross section against energy at energies de6nitely
above the Coulomb barrier for many transfer reactions.

The calculations of the differential and total cross
sections of the neutron-transfer reaction made use of the
equations of Sec. II by means of two machine programs
written for the IBM 7094 electronic digital computer
The numerical work was carried out on the IBM
7094-7040 direct coupled system at the Yale Computer
Center. The first program provided values of the
Coulomb functions" and their derivatives. Employing
the values of these functions the second program" was
used to obtain Ip,,g~& +~ at needed values of 8. The

"In preliminary stages of the work a FAP Coulomb Functions
machine program written and kindly lent by Dr. G. H. Rawitscher
was made use of in debugging the Fortran IV program used in the
calculations reported on in this paper."Dr. J. S. McIntosh collaborated in writing parts of the initial
version of this program.
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proportionality constant of P (r), i.e., the quantity 1/44
of BE-I was adjusted by that program to give the best
6t to the experimental values by minimizing X', the
weighted sum of squares of deviations of calculated from
observed values. The same values of the fundamental
constants were used as in Ref. 8. It was ascertained by
trial that the erst twenty values of L are sufhcient for
the calculation of the series for Ip, ff ' . The addition
of higher L values affects the results by less than 1%.
Tests of the adequacy of this approximation were made
periodically as new potentials were tried, the usual
sequence of the maximum L included in a test case
being 22, 25, 27, 30.

The absence of a significant accumulation of round-
ing-off errors in the evaluation of the sum over L repre-
senting Ip& +& was ascertained by comparing the values
of the real, imaginary and absolute values of Ip( +'
and of on with those obtained by means of Eqs. (6.1)
to (6.4) of Ref. 3 in terms of the hypergeometric func-
tion sJ»t, in the case of a Coulomb field and a reaction
with vanishing Q value. The possibility of evaluating
the sum over L up to a moderately small maximum
value of L, say L, subtracting the value of that sum for
a Coulomb potential and adding the value of the sum
up to L= ~ for a Coulomb interaction along the lines
of Eq. (2.9) was examined. Its advantages in decreasing
uncertainties arising from the use of many terms of the
series over L appeared outweighed by the greater com-
plexity of the machine program. The equation is never-
theless included in the present report on account of its
possible usefulness in desk machine calculations. It was
used to provide a check on the partial-wave machine
program. In the main data htting, that program was
used with PL, ——Fl, =—PL, at a common center-of-mass
energy E,+Q/2, where E; is the incident center-of-mass
kinetic energy. This approximation is suggested by the
smallness of the Q value of the reaction. The accuracy
of the approximation was tested by comparison with
calculations in which FL, and SL,' were used with $1.
corresponding to the incident energy E; and Fl, ' to the
energy Er+Q. These comparisons indicated a 2% ac-
curacy of the approximation, an accuracy believed
sufhcient in view of the experimental uncertainties.

In the approximation of using E~+Q/2 in place of
E, and E;+Q it is seen from (2.10) that

Ie ff '+ (B)= (4m/k') P (2L+ 1)erPr (cosB)

Pr, '(k»)P(r)dr, (3.1)

in the notation of the preceding section. In the absence
of a nuclear potential fI, becomes the regular Coulomb
function Fr, . In this case Eq. (3.1) gives values agreeing
with the steepest descents approximation used by BCW
to within a few percent and practically perfectly with
the hypergeometric function written out in Ref. 3.

I

O

=IO

'o
R (F)

IO l5

I' ro. 1. (5r,'(p/C'corresponding to potential 1 for I.=o, 5, 10.
Effects for R&5 F are seen to be small for most I,

Figure 1 shows plots of (Fn'(kr)(8(r) against r for
several values of L. The main contribution to the
integral in (3.1) is seen to arise from the region r) 5 F.
For further details reference is made to the 6gure legend.
The integration was started therefore at r= 5 F. It wil. l.

be noted that this integral is proportional to the first
Born approximation to the phase shift if P(r) is replaced
by the potential. Since P(r) decreases with r while the
potentials used are nearly constant for small r, the
region r& 5 F is also not important for phase-shift cal-
culation. The main contributions to the integrals in
(3.1) arise from the vicinity of the classical turning
point in agreement with the general connection'5 be-
tween the semiclassical approximation and the quantum
treatment.

The potential energy V, & of the preceding section
was used in the form

V= Vo/{1+exp( (»—«.)/~.7},
W= Wp/{1+expL(r —r„)/a 7}.

(3.3a)

(3.3b)

In the limit r))r„, Eq. (3.2a) becomes

V=( Vp exp(r„/a„)7 exp( —r/c„) (r —+~). (3.4)

Calculations of V performed" in the adiabatic approxi-

V,p= (ZrZse'/r)+ V+iW (r) 5 F) (3.2)

for values of r greater than the somewhat arbitrarily
chosen value r=.5 F and continued as a constant
V,&(»=5 F) through r&5 F. The quantities V and W
are real, 8"taking account of the absorption of the wave
caused by reactions competing with elastic scattering.
No attempt was made to reine the calculation by using
a rounded modi6cation of the Coulomb potential
represented by the 6rst term on the right-hand side of
(3.2). Such a modification would take into account more
realistically the probable space distribution of the
proton density. It was not used because the region
r&5 F is accessible only to a few partial waves with
small L and because the effective potential between the
colliding nuclei is at best only a schematic representa-
tion of a many-body interaction that cannot be pictured
correctly in three dimensions. Saxon-Woods-type poten-
tials were used for V and TV in the following notation:
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TABLE I. Values of parameters of three potentials.

V t= V t(t'; Gt, cs, ' ', ozz, ' ' ',o„) (3.tz)

Denoting the parameters entering a given form of the
potential by a&, c2, , a„, . , a one has

—3.6—1.5—1 ~ 73

6.2 0.543 —2.2 8.3 0.27 7.1
7.8 0.543 —2.0 7.8 0.50 7.2
8.0 0.543 —1.98 7.83 0.511 7.2

o n= C'zrn"'(0, E; at, as, ,a~, ,a„). (3.7)

mation give a„=0.543 F. The fa.ctor Ve exp(r„/a„) in
(3.4) is proportional to the neutron reduced width.

As mentioned earlier in this section, the calculations
were made as though V ~ were the same in the initial
and final states of the neutron-transfer reaction. It may
also be mentioned that the introduction of a phenome-
nological potential describing the "N-"N interaction
would increase the number of parameters available.
Therefore, unless the relationship of the "N-"N and
'4N-'4N potentials, such as their difference, should be-
come sufFiciently well known from other sources of
information, the its to data could be improved by the
introduction of the second complex potential but with-
out assurance that the improvement has a physical
significance.

In the later stages of the work three potentials with
parameters recorded in Table I were under considera-
tion for the representation of neutron-transfer data.
Potential 1 is nearly the same as that used in the fit
presented at the 1964 Paris Conference' except for
r, „&

——0 and a variable r„decreasing with increasing E
having been used in the earlier report. "The variation
in r„came about in attempting to fit older diAerential
cross-section data at" 18.0 MeV, but proved un-
necessary when newer data were used instead. The
neutron reduced width derived from transfer data was
found to increase with E by amounts greater than could
be ascribed to statistical uncertainties. In the older
work" the real parts of the potentials were the same for
neutron transfer and elastic scattering but the imaginary
parts were not. Potential 2 was designed to remove the
necessity of systematic variations in reduced width in
fitting transfer data and to account. simultaneously for
neutron transfer and elastic scattering. Potential 3 gives
good fits to neutron-transfer data employing a constant
reduced width but does not fit elastic scattering unless
r„ is reduced from its present value by about j.Ii. The
small s cutoff of p(r) was used in neutron-transfer but
not in elastic-scattering calculations.

The neutron-transfer diGerential cross-section data
are intended to supply relative values at any one energy.
The adjustment of theory to experiment was made
therefore with the following end in view. The quantity
P(r) was expressed as

(3 5)
tz G. Breit, J.A. Polak, and D. A. Torchia, in Proceedzlgs of tlze

Congres Internutional de Physique Euclduire, Puris, 1964 (Editions
du Centre National de la Recherche Scientifique, Paris, 1965).

"The energy of the projectile in the laboratory system is used
throughout this paper in referring to experimental data.

x'=g Q w, [Beo.n")(0;,E; u„)—o.n „(8,,E)]'

+P gT, [C2&t t(1o) (E ~ o ) & tot(E )j2 (3 8)

with respect to independent variations of C', the a„
and the 8g. The values of 0 at which measured values
at energy E are available are here denoted by 0; with
i=i, 2, , ez and the measured values of cr& by

(O, ,E); the measured values of o'" at energy E, are
designated by o ""(E,) and the corresponding theo-
retical values by C'a "to). Superscript (1) in (3.7) and
(3.8) indicates evaluation for C= 1.The weights w, and
w, are related to the "standard errors" Dzrn (O, ,E) and
Ao "'(E,), i.e., the experimental uncertainties expressed
as standard deviations of supposedly "normal dis-
tributions, "by

w, =1/[ztzr (8,,E)]', W;=1/[hzr "'(E;)y. (3.9)

The usual hypothesis of absence of error correlations i&

the measurements is implied in the above statement of
the data-analysis problem. There is room for doubt
regarding its actual applicability since the an, (0;,E)
may be systematically off in one or another direction for
a few neighboring 0; at given E as compared with values
in another range of 0. Similarly a systematic source of
error may make the o. ""(E,) too high or too low for a
few neighboring E; as compared with values for another
E,. In view of these uncertainties regarding the appli-
cability of usual assumptions in the statistics of data
treatment as well as the approximate character of the
theory combined with relative recency of stablization
of experimental values, a complete treatment in terms
of Eq. (3.8) was not attempted, but that equation was
nevertheless useful as a guide.

The absence of C in the first sum occurring in Eq.
(3.8) makes it possible to test any assumed potential
for constancy of the value of C needed to represent
neutron-transfer data without using directly the angular
distribution information. For this reason, least-square
fits to the 0- ""data were made by means of a poly-
nomial in the energy representation of lna."' as follows:

o"t(E)=exp(azz+arE+atE'+ . ). (3.10)

With the parametrization used in Eqs. (3.2) to (3.4) the
parameters a~ are Vo, r„, c„,8'0, r„, and a„,but for more
general forms a larger number of parameters would come
under consideration. Considering neutron-transfer data
alone, the best adjustment of C and of the a„ to the
data corresponds to minimizing the weighted sum of
squares of deviations:
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The best values of the coefFicients of E in the polynomial
were determined. The data of Hiebert, McIntyre and
Couch' (HMC) and those of Gaedke, Toth, and
Williams' (GTW) have been separately represented in
this way with rather similar results, especially at
energies above E&= 11 MeV. The least-squares fits were
made employing the second term in Eq. (3.9) and re-
placing the term proportional to C' in square brackets
by the exponential function appearing on the right-hand
side of Eq. (3.10). Polynomials of various degrees were
tried. A quartic appears to provide a satisfactory fit
without overparametrization, as seen in Fig. 2. In this
6gure three sets of curves are shown, the upper set
referring to the HMC, the next below to the GTW data
and the lowest to the comparison of the potential 3
and BCW (pure Coulomb potential) theoretical curves.
For the lowest set the normalization is arbitrary but
adjusted to give osculating joining at low E. In the
upper two sets of curves the quartic 6ts to each of the
two sets of data are shown as dashed curves, the theo-
retical energy dependence for potential 1 by circles, for
potentials 2 and 3 by a full curve. In all cases the
theoretical curves, whether fully drawn or indicated by
points, have been adjusted to give a minimum X' to the
full set of data with which they are compared. The
relationship of the fits to each other and to the data is
displayed on an expanded scale for the laboratory-
energy range 16—19.5 MeV in the inset at the lower

E I—
l-
m 0—

b
c

0 a
0

O

x
b

-4—

-5—

-6—

IO II I2 Ia I4 I5 IS I7 I8
Eg (Mev)

Fn. 2. Total cross-section data of HMC and GTK are shown
by the upper and lower sets of data points, respectively. Fits
obtained employing potentials 2 and 3, which are identical to
within the accuracy of the drawing, are shown by solid curves.
Other conventions: open circles for fit obtained with potential 1;
light dashed curves for quartic fits; full line in lowest part of main
figure is the the potential 3 curve displaced downwards in order to
compare with heavy dashed curve representing pure Coulomb
case in BC% approximation. Insert at lower right shows extension
of fifs to 1$.$ Me/.

TABLE II. Comparison of the goodness of fit of the three potentials
to neutron-transfer data at the angular distribution energies.

Potentials:
Eg ng b,Cg

(MeV) (F ')
CE

(F-1)
Cg

(F—1)
D CE

(F-I)

11.0 19 0.41
12.3 35 0.23
13.24 34 0.17
14.0 38 0.18
16.0 40 0.28

1.5(5) 13.2
1.0 13.3
1.3 14.8
1.1 15.5
0.9 (5) 16.4

0.98~0.04
1.04+0.08

1.5 I,'5) 13.2
1.0 13.5
1.0 14.1
1.1 14.4
1.0 14.0

0.92~0.03
0.99+0.08

1.5 I'5) 13.0
1.0 13.3
1.0 13.0
1.1 14.0
0.8 13.7

0.90'0.03
0.97'~0.08

right. Potentials 2 and 3 are seen to give its of com-
parable quality and to come close to the quartic fit. The
lowest set of curves shows close similarity of energy
dependence for potential 3 with that for the purely
Coulomb case at the lower but not at the higher E. The
imaginary part of the optical potential depresses the
yield at the higher E.

In adjustments of the potential parameters the
quartic 6t values corresponding to the 0 ~' of HMC at
the energies for which angular distributions are avail-
able were employed. No account was taken in these
adjustments of the presence of error correlations be-
tween the o"'(E) as obtained at these energies by the
quartic fit which exist even if the ho '"(E;) are un-
correlated. This error correlation may be expected to be
rather strong but, since the results of the adjustments
reported on here do not pretend to give more than an
approximation to the best possible representation of
available data and for other reasons mentioned pre-
viously, the error introduced is believed not to aGect the
reliability of conclusions materially. Through the
employment of these o"'(E) the calculation of phase
shifts from potentials had to be done only at the energise
E of the first term of Eq. (3.8) for which angular dis-
tributions are available. In effect, at each such energy
there were then available absolute values of 0-g which
were fit by allowing Vo, r„S"0,r„, and a„ to vary. The
additional requirement of an energy-independent C' was
imposed. The 6ts carried out were obtained mainly by
cut and try procedures. The adjustment of potential 3
to neutron-transfer data was made more systematically
with potential 2 as a starting point. With values of
other parameters kept fixed, one a„of (3.6) was varied
at a time adjusting it to its best value at a particular E,
taking the weighted average of the changes in that a„
to determine the change to be used before going on to
variations of the next parameter. The potential giving
best over-all agreement with neutron-transfer and
elastic-scattering data was obtained, however, pri-
rnarily by a cut and try rather than by a systematic
procedure.

The goodness of fit to neutron-transfer data at the
energies for which angular distributions are available is
compared in Table II, The laboratory energy Ei in
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FIG. 3. Fits to relative differential cross-section data of HMC at
E&= 18.0 MeV are shown by solid and dashed curves for potentials
2 and 3, respectively. Open circles indicate Gt produced by
potential 1.

MeV and eE, the number of angles at which relative
values of the de'erential cross section have been mea-
sured, are listed in the erst two columns. The third
column contains values of ACE, the uncertainty in CE,
the value of C at energy E as determined by the error
matrix method for the quartic fit. The listed ACE are for
potential 1. The values for other potentials are similar,
being proportional to CE and thus readily obtainable
from those listed. The tabulated values of ACE are
intended only as a guide for forming a judgment regard-
ing the variability of CE in the remainder of the table.
The presence of correlations in errors at neighboring
energies for the quartic fit would not justify, however,
regarding the CE at diferent energies as having statis-
tically independent uncertainties ACE. At each energy
listed in the 6rst column the value of C was found as

C@2 ~tot(g)/~tot(1) (g ~ g ) (3.11)

where o'"(E) is the quartic fit value at energy E and
other symbols in the same convention as in (3.8). The
a„have different values for diGerent potentials and the
values of CE' therefore diGer also. At each E~ the
weighted mean-square deviation D was calculated by

8c.m.

FIG. 5. Fit to relative differential cross-section data of HMC at
E&=14.0 MeV. Heavy dashed curve indicates fit obtained when
only the Coulomb interaction between the nuclei is considered.
This curve is normalized to the potential 2 result at 90'. Otherwise
conventions as in Fig. 3.

adjusting BE to give a minimum of the contribution of
that E to the erst term in (3.8) and dividing by nz —1.
The values of D and CE are listed for the three potentials
in the last six columns of the table. At the bottom of the
table are given the values of (C')'"/C„ for the three
potentials, employing total cross-section data in the
range 11.0 to 16.0 MeV directly, without the inter-
mediary use of the quartic Gt. The subscript sp indicates
that the value of C obtained from the single-particle
model is used. The single-particle potential employed in
calculating C,p was the same as in the 1964 reference to
the work of McIntosh, Park, and Rawitscher" except
for a slight adjustment to reproduce the neutron binding
energy more accurately. The reduced width was affected
by this change by 0.5%, an amount negligible in the
comparisons made here. The quantity (C') is the
weighted mean of the CE' for the potential in question
with relative weights

tot= L~ .tot(g. )/gg tot(g )]2 (3 12)

This weighting follows from minimizing X, as in (3.8),
with respect to C'. The energy range used in obtaining

N( N, N) N

E&= I6.0 MeV

/
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FIG. 4. Fit to relative differential cross-section data of HMC at
E~=16.0 MeV. Conventions as in Fig. 3.

FIG. 6. Fit to relative differential cross-section data of HMC at
E~=13.24 MeV. Inset shows comparison of results for potentials
2 and 3 for the angular range 10' to 30' with the scale magnified
by a factor of 5. Otherwise conventions as in Fig. 3.
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Fn. 7. Common fit for potentials 1, 2, and 3 to relative differential
cross-section data of HMC at EI,=12.3 MeV.

FIG, 8. Common lt for potentials 1, 2, and 3 to relative differential
cross-section data of HMC at E~=11.0 MeV.

(C') was 11.0 MeV(E~(16.0 MeV. The two sources of
data are referred to by the subscripts HMC and GTW.
The procedure used in the determination of the un-
certainties in the values of (C'P'/C, ~ listed in Table II is
described in connection with Table V. The comparison
of differential cross-section data with relative values
expected for the three potentials is shown in Figs. 3—8
at E~=18.0, 16.0, 14.0, 13.24, 12.3, and 11.0 MeV,
respectively. In all cases the value of C used at a
particular energy has been adjusted to give the least
X' at the energy, as in Table II.Therefore, the fits shown
are somewhat better than they would be if energy-
independent values of C were used for each potential.
The same designations for indicating values corre-
sponding to the potentials are used throughout this
set of graphs. The difference in angular-distribution
predictions becomes perceptible only at the higher of
the six energies. At the lowest two energies the angular
distributions are the same as for a purely Coulomb
potential, within the accuracy of the drawing. At
14 MeV the eAect of removing the non-Coulomb parts
is seen in Fig. 5. It increases with increasing energy.

In Table III the goodness of 6t to the elastic-scatter-
ing differential cross section is compared for the three
potentials. The values of D have the same significance
as for neutron-transfer data. Columns labeled D' list
the values of D corresponding to the values of r„which
give the best 6t to elastic-scattering data with the other
parameters of Table I kept 6xed. These values of r„
are referred to as r„' in the table. The decrease in D that
results from the adjustment of r is appreciable in

several instances. However, in most cases D', the
improved D, is less than 1. Since there is no reason for
demanding such small values of D these improvements
are hardly significant. On the other hand, for potential
number 1 and 3, a,t E&=21.7 MeV, D is decidedly
improved by the readjustment of r„. For potential
number 1, r„'—r„=0.3 F; for potential 3, r„'—r„
= —1.3 F. The sense of direction of the energy depen-
dence of r„called for by elastic-scattering data is thus
dependent on other potential parameters. For potential
2 the improvement of the fit to data at 21.7 MeV is
hardly signincant since for the value of r„as in Table I
the excess of D over unity is slight.

IV. DISCUSSION

Comparison of Table III with II shows that although
potential 3 gives a slightly better fit to neutron-transfer
data than potential 2, it gives a much poorer representa-
tion of elastic scattering. Potential 2 is better than
potential 1 both for transfer and for scattering. Since
differences in D for neutron transfer are small for the
three potentials, the preference for potential 2 on this
score is not a decided one. The diKculty of assigning
Q.gures of merit to the potential is increased by the fact
that the incident energies considered for elastic scatter-
ing are appreciably larger than those for transfer, the
highest energy in Table II being only slightly larger
than the lowest in Table III. On the other hand, the
applicability of neutron-transfer theory to energies
higher than those in Table II is questionable. For
example, at E~=18.0 MeV, the distance of closest ap-

TABLE III. Comparison of the goodness of Gt of the three potentials to elastic-scattering data.

Potentials:

(Mev) (F)

2
DI

15.0
17.7
19.2
21.7

9
9

12

1.0
1.1
0.7
3.0

1.0
0.7
0.7
1.3

7.4
7.6
8.25
8.6

1.0
1.0(5)
0.7
1.1

1.0
0.5(5)
0.4
0,4

7.1
7.0
7,4
7.4

0.9
1.4
1.5
4.2

0.9
0.5
0.3
0.6(5)

7.0
6.7 (5)
6.9(5)
6.5
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proach on a Rutherford orbit corresponding to 0=160'
is 7.9 F. On account of particle identity, this value of 0
enters calculations of neutron-transfer probability at
20' in the center-of-mass system. Since some of the r,
and r„ in Table I are greater than 7.9 F, it is possible
that for such collisions the nuclei begin to merge

sufficiently to make a picture of two separate nuclei
used in this paper inapplicable. The correction for the
range of nucleon-nucleon force makes the overlap of the
matter distributions not as pronounced as the values of
f„and r would indicate but the values of u, and u„as
well as the lack of sharp localization of the positions of
the nuclei give corrections in the opposite direction.
Therefore the assurance for the validity of the theory
at 18 MeU is questionable but not absolutely excluded.

Employing the values of the reduced width needed to
explain the absolute value of the tail of the inter-
action potential in the work of McIntosh, Park, and
Rawitscher and allowing for the ratio in the tail heights
of the potentials employed here as compared with those
used by them, ratios of elastic-scattering values of
reduced widths required for the explanation of the long-
range parts of the potentials used here to single-particle
reduced widths may be obtained. These are listed in
Table IV. The values of C.p used for this table are the
same as those for Table II. Comparison of the bottom
rows in Table II with Table IV indicates a preference
for potential 3, leaving a disagreement in values of the
reduced width by roughly a factor of 2. This disagree-
ment as well as the preference for potential 3 over
potential 2 are not believed to be especially significant
for the following reasons. The adjustment of the depth
of the nucleon-nucleus potential in the work on elastic
scattering affects the nucleon-nucleus wave function
rather strongly. The results are sensitive therefore to the
exact way in which the adjustment is made. The
necessity of making the adjustment is connected with
imperfections of the method used for the calculation of
the tail of the potential and this adjustment is more an
expedient than a fully justified procedure. Furthermore,
the nucleus-nucleus potential is affected by the reduced
widths of all nucleon states in the p shell and also in the
s shell as well as partly by protons. On the other hand,
on the j-j coupling model used in BE-I, neutron
transfer is concerned mainly with the transfer of a pries

neutron. Again, the error committed by disregarding
the difference between the effective potentials for

"N-'4N and for "N-"N affects neutron transfer and
not elastic scattering. It may be noted that McIntosh,
Park, and Rawitscher do not consider the reduced width
to be determined by their data analysis to much better
than a factor of 2. Much of this uncertainty arises from
the difficulty of isolating truly long-range collisions
which is bound up with the identity of the colliding
nuclei and makes it dificult to isolate the effects of the
long-range part of the potential. This inherent diQiculty
in analyzing "N-"N scattering affects the present work
as well.

The determination of (C')'~sjC,n from neutron transfer
is also subject to uncertainties which are partly indi-
cated in the last two rows of Table II. In Table V these
uncertainties are broken down into parts arising from
uncorrelated (statistical) and correlated (systematic)
sources of error in total cross-section data. The'"un-
correlated" and "correlated" designations have refer-
ence to data at different energies. The designation 6'
indicates taking the effect on the uncertainty in the
standard deviation convention that is caused by the
uncorrelated error; AC' is the uncertainty in (C') ob-
tained by compounding the contributions of uncorre-
lated and correlated errors in quadrature. The un-
certainties 6'Cs and hC' are expressed in percentages of
the corresponding C'. The energy interval used is shown
in the second column of the table in terms of the lower
and upper limits of the laboratory energy E~. In the
case of the GTW data it was dificult to assign experi-
mental errors to the two categories with certainty.
Somewhat arbitrarily the detection efficiency error of
15% was considered as correlated and the remaining
error as uncorrelated. It is practically certain that this
division of the total uncertainty of an individual datum
underestimates the systematic error and therefore also
the value of DC'. Were the whole error considered as
systematic (hC')oTw would be 30% of (C'). Similarly
in the case of the HMC data the partial presence of
systematic (correlated) errors in the stated errors of
individual points that do not include the 7% stated
correlated uncertainty also increases the uncertainty of
(C'). The uncertainties in Tables II and V are therefore
likely to be underestimates.

Inspection of values of (C') derived from the two
sources of data shows disagreement by more than 10%.

TAaLE V. Uncertainties in squares of reduced widths.

TanLE IV.* Elastic-scattering values of C/O, ~, the ratio
of reduced width to its single particle value.

Potential

C!C,Q 0.04 0.3 0.5

*The values in this table make use of the effect of the reduced width
on the nucleus-nucleus potential in the adiabatic approximation. Since
the potential affects elastic scattering somewhat more directly than neutron
transfer the values in this table are sometimes referred to as values derived
from elastic scattering.

Data
E

Potential (Me V)

1 (11.0,16.0)
2 (11.0,16.0)
3 (11.0,16.0)

(9.4,19.5)
(9.4,19.5)
(9.4,19.5)

HMC
(C') a'O' aC'

('%) (%)

219 1.8 7.2
195 1.8 7.2
187 1,8 7.2

225 1.7 7.2
193 1.7 7.1(5)
187 1.7 7.2

GTW
(C') 6'O' AC'

(%) (%)

247 4.6 15.7
223 4.6 15.7
215 46 15 7

236 3.3 15.3
214 3.2 15.3
211 3.2 15.3
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Since the value based on GTW measurements is always
the higher, it is likely that there is a difference in the
correlated errors in the two cases but further experi-
mental work would be needed to ascertain the total
uncorrelated (systematic) uncertainty.

The fractional uncertainty of C' is twice that of the
reduced width. In the case of the HMC data the latter
appears to be between 3.5 and 7%, and in the case of
GTW between 7.5 and 15%%u~. Since absolute-value
determinations often take appreciable time to settl. e
down, the difference from the true value may be larger
than the estimates, Combining these uncertainties in
(C') from transfer with those in (C') from elastic
scattering as well as the previously mentioned in-
completeness of the theory, there appears to be no
reason for regarding the difference between C/C„of
Table IV and (C')'12/C, ~ of Table II for potential 3 as
serious.

The values of the quantity

where b is an assumed value of the nuclear radius, have
been calculated by Becker and McIntyre. s The ratio to
the shell-model value according to their numbers is
(4.5&1.0)/(5.2+1.0)=0.87&0.26. According to Table
II the comparable values for potentials 2 and 3 are
0.92&0.03 and 0.90&0.03, respectively. As previously
stated the uncertainties may actually be larger. In
either case there is no significant disagreement between
the numbers in Table II and the ratio following from
those of Becker and McIntyre. There are some minor
differences in detail, however, which make a direct corn-
parison not too significant. The work in Ref. 5 makes
use of a value 80'=4.5)&10 ' employing the BCW total
cross-section formula at K~=13.6 MeV and the experi-
mental value 0.043 F' of the cross section. The value
of the cross section at that energy corresponding to
calculations in Table II is 0.040 F'. It appears that the
numbers in Ref. 5 correspond to the energy in the c.m.
system without the addition of Q/2. Including these
refinements the 00'=0.045 with b= 5 F changes to 0.038
which corresponds to the calculations reported on here.
This change would make the ratio of the transfer value

to the shell-model value 0.74 in place of 0.87. There
would still be no disagreement with Table II. The sheH-

model reduced widths used in the two papers are also
different, the ratio of that used here to that used in
Ref. 5 being 0.81. It is perhaps a misnomer to call the
single-particle model used here a shell model, because
it is primarily designed to represent the approximately
exponential decay of the neutron wave function outside
the nucleus.

In this respect the theory in BE-I and in the black
box point of view of the molecular model is essentially
different from that commonly used in discussions of
(d,p) reactions. The nucleon configurations used in the
former two treatments are those in the peripheral region
of the nucleus. The wave functons describing them are
simpler than those needed in the nuclear interior. Their
important parts can in principle be characterized. by
relatively few parameters while the shell model wave
functions of the usual (d,p) theory are used as though
they represent the nuclear wave function throughout
the whole nucleus. It is well known that such a repre-
sentation is quite poor. The picture also lacks realism
in the part of configuration space in which two nuclei
interpenetrate, and yet this part is used in the calcu-
lations. The black box approach also has weak points
some of which have been discussed in Ref. 3.

The evidence points on the whole to a smaller value
of the reduced width than that corresponding to the
escape of particles from a j-j coupled P shell, which
was assumed for use with the single-particle reduced
width in BE-I. The reduction factor suggested by
Table II is small however, indicating considerable
simplicity of the peripheral nuclear structure consisting
in the dominance of the shell-model configuration over
the admixture of other configurations. As previously
mentioned, however, the theory has many imperfections.
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