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The formal theory of nuclear reactions introduced in a preceding paper is applied to several phenomena
of current interest. Particular attention is given to the derivation of a single-level form for the transition
amplitude, the interpretation of this form being dependent on the physical situation involved. Under certain
conditions the single-level form is appropriate for the description of an isolated resonance; under other
conditions it corresponds to a giant resonance. The width of the giant resonance is discussed in detail, in
particular the possibility of observing the so-called "spreading" width. The theory is used to describe
"doorway" states and their connection with giant resonances. Some clariGcation of the relationship between
earlier alternative approaches to this problem is obtained. The occurrence of statistical fluctuations near a
giant resonance is considered and leads to the suggestion that 6ne structure and gross structure are inti-
mately connected, the actual connection being simple in some cases. Several of these results are illustrated by
considering the phenomena of isobaric analog resonances within the framework of the present formalism.

I. INTRODUCTIOÃ

'HE general theory of nuclear reactions' developed
in the previous paper (hereinafter referred to as

I) is applied here to several phenomena of current in-
terest. Because of the flexibility of the theory the par-
ticular type of phenomena to be described is obtained
by choosing appropriate operators for H' and 2 and
then arranging the various terms into the most suitable
form. The various expressions obtained in this way are
all equivalent forms of the same basic formula and are
only arranged into a particular form in order to high-
light the interesting features of irrnnediate concern.

First we obtain an exact "single-level" form for the
transition amplitude in Sec. II without having to be too
specific about the choice of B' or 2'. This particular
form of the transition amplitude is most appropriate for
describing isolated resonance phenomena. The resonant
amplitude is found to reduce to the well-known Breit-
Wigner form when there are no nearby thresholds or
levels. The "potential" scattering is not described by
a hard sphere but by an appropriate operator such as
the optical-model potential.

The single-level formula may also be used to represent
a size or giant resonance. ' The present forrnalisrn allows
the mixing or sharing of strength to be written exactly
and no recourse to the use of a random-phase approxima-
tion or the use of projection operators is made. The con-
cept of a "spreading" width (such as, for example,
characterized in some situations by the imaginary part
of the optical-model potential) for the giant resonance is
shown to require careful consideration because the con-

* Supported in part by the U. S. Air Force OfBce of Scienti6c
Research.

r A. M. Lane and D. Robson, Phys. Rev. 151, 'IN (1966).
'A. M. Lane, R. G. Thomas, and E. P. Wigner, Phys. Rev.

98, 693 (1955).
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ventional expression (see, for example, Ref. 3) does not.

correspond to an observable quantity. The theory of

giant resonances given in Sec. III suggests an alterna-
tive definition.

In recent years the concept of intermediate structure
has become of increasing interest because it represents
the early stages of compound-nucleus formation. This
attempt to bridge the gap between simple direct inter-
actions and the complex compound nucleus has been
investigated by Block and Feshbach4 and others' via
the language of "doorway" states and projection-
operator formalism. ' 7 Such investigations suggest that
the giant resonance will break down into smaller sub-

structures. Unfortunately, Block and Feshbach4 were

unable to relate their results to the more conventional
intermediate model of Lane, Thomas, and Wigner. ' In-
deed, there appears to be some contradiction between the

two approaches as to the expected width of a giant reso-

nance. In Sec. IV the important results of both ap-
proaches are obtained from the same initial assumptions

by use of diferent forms for the transition amplitude,
and consequently no contradictions occur.

The existence of Quctuations or 6ne structure in

nuclear reaction cross sections is usually explained by
statistical arguments. The results of such assumptions

are to a large extent independent of the particular for-

malism applied and it is therefore straightforward to

'A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257
(1958).

4 B. Block and H. Feshbach, Ann. Phys. (N. Y.) 23, 47 (1963).
e C. M. Shakin, Ann. Phys. (N. Y.) 22, 47 (1963); A. K. Ker-

man, L. S. Rodberg, and J. E. Young, Phys. Rev. Letters 11, 244
(1963); H. Feshbach, A. K. Kerman, and R. H. Lemmer, Ann.
Phys. (N. Y.) 41, 230 (1967).' H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958); 19, 287 (1962).

TL. Fonda and R. G. Newton, Ann. Phys. (N. Y.) 10, 490
(1960); A. Agodi and E. Kberle, Nuovo Cimento 18, 718 (1960).
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obtain the standard results' ' from the present theory.
However, the possibility of a nonrandorn contribution
is not easily treated without resorting to a particular
formalism. The present theory is useful in such situa-
tions, and in Sec. V it is applied in order to investigate
the relationship between 6ne structure and gross struc-
ture, the latter being attributed to a nonrandom com-
ponent of the compound system.

Several of the results obtained in Secs. II-V are very
well illustrated by the phenomenon of isobaric analog
resonance. "The four operators introduced in I are par-
ticularly convenient for describing the two similar nu-
clei involved in isobaric analog studies and yields a
rigorous theory of such phenomena. Most of the results
given here in Sec. VI have been obtained earlier, "but
the present approach is more rigorous and indicates
the relationship between several of the various ap-
proaches" "to the problem of calculating isobaric spin
impurities in heavy nuclei.

g =g.'+ l»&~l/(E. -E),
where ~X) is an eigenstate of (Ps+&a), i.e.,

(JJ+~)l~)=E.I»

(2.1)

(2.2)

s T. Fricson, Ann. Phys. (N. Y.) 23, 390 (1963); D. M. Brink
and R. O. Stephen, Phys. Letters 5, 77 (1963);D. M. Brink, R. Q.
Stephen, and N. W. Tanner, Nucl. Phys. 54, 577 (1964).

9 P. A. Moldauer, Phys. Rev. 135, B642 (1964).
'0 J. D. Fox, C. F. Moore, and D. Robson, Phys. Rev. Letters

12, 198 (1964);C. F. Moore, P. Richard, C. E. Watson, D, Robson,
and J. D. Fox, Phys. Rev. 141, 1166 (1966); G. Vourvopoulos and
J. D. Fox, ibid. 141, 1180 (1966).

"D.Robson, Phys, Rev. 137, B535 (1965).
'2A. M. Lane and J. M. Soper, Phys. Rev. Letters 7, 420

(1961); Nucl. Phys. 37, 663 (1962); C. Bloch and J. P. Schif'fer.
Phys. Letters 12, 22 (1964);L. A. Sliv and Yu. I. Kharitonov, ibid,
16, 176 (1965)."E.P. Wigner and L. Eisenbud, Phys. Rev. 74, 29 (1947).

II. SINGLE-LEVEL FORMULA

One interesting application of nuclear-resonance
theory is to the situation where one particular "com-
pound-nucleus" state is singled out as being important.
This leads to a particular separation of the collision
matrix usually referred to as the single-level formula
which under certain conditions reduces to the Breit-
Wigner formula. Unfortunately, the de6nition of a
compound-nucleus state is not unique because the
operator (H'+Re) introduced in I is arbitrary, e.g. , it
may be chosen to provide the conventional E-matrix'"
set of eigenstates or it could be chosen to provide the set
of states considered by Feshbach. ' Each approach leads
to an exact single-level formula but with different
interpretations as to the nature of the compound
riucleus state actually responsible for the resonance
phenomenon.

To derive an exact single level formula we need not be
too specific about (B'+2') but simply require that the
corresponding Green's operator g' may be written in
the form

For simplicity we assume that (Hs+g ) is chosen
such that

~ » and Eq are real. Non-Hermitian operators
(Ps+2') can be treated also, but a more cumbersome
notation is required. Straightforward algebra yields the
single-level result

in which
8= 8-+ I gb&&g~ I /(E b

—E++~), (2.3)

ol
c,=&) )J —Jg„J)z) (2.6a)

~.=«.lh+h'(g-')'hlg. ), (2.6b)
the dagger indicating Hermitian conjugate.

Transition amplitudes are obtained by substituting
the above expression for g into either Eq. (47) or Eq.
(51) of I, which leads to the two respective results

g b, =&xb(—)~gx (+)) &gexb(—)~g ~gx (+))
—«*Xb' 'lab&&Rbl«. "')/

X(E&—E+C~), (2.7a)
(2.7b)g pot+ g (x)

and

~"=&x t-'t J.l'" &-&x '-'I ~ O-I -I'"')
—&»' 'I J'big~)&a~I I' I&.'+')/

X(cf eq. 2.7a)(E&—E+Cb), (2.8a)
~(pob)+ g 1(X) (2.8b)

'4 The "resonance states" Igq(E)) discussed here are, however,
intimately connected with the complex eigenvalue states ("radio-
active" states) introduced by Siegert (Ref. 15) and Humblet (Ref.
16). The "states" Igq(E)) used here satisfy the equation

CH+~(E) E7 I e(E))=—f(E) I»,
with

f(E)=K E+%(E). —
Now at the energy E= eI„where f(E)=0, we have the eigenvalue
equation

I H+2 (e) —~),) I gg(e).)=0.
Clearly ez is a pole of the 5 matrix and Z(ez) is the boundary con-
dition operator appropriate for a radioactive state at the pole
energy E=e),. For E sufIjIciently close to ~z, one easily obtains
Lusing g„(E)=g„(e&,)7

rl =8-(e)+ I g~(e~) &(g~(~~) I /(s~-E),
which produces an S matrix of the form'-suggested by RosenfeM
and Humblet (Ref. 17).

's A. J. F. Seigert, Phys. Rev. 56, 750 (1939)."J.Humblet, thesis, Roy. Soc. Sci. Liege. Ser. 4, 7, No. 4
(1952).

'r J. Humblet and L. Rosenfeld, Nucj Phys. 26, 529 (1961).

O-=(1+&-'~)-'S-' (2.4)
yields the scattering via all levels other than

~
X). The

Green's operator g„involves a corresponding Hamil-
tonian H„and a set of eigenstates

~ p„)which are ob-
tained by diagonalizing H in the subspace spanned by all
states except ~». The resonance states Igq) are not
eigenstates of any Hamiltonian'4 —'~ but are defined by
the relations

l~»=(1-8-I) I) &, (25 )

&Z I =0 I(1-IO-), (2.5b)
and the quantity C), by either of the two equivalent
expressions
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where the matrix elements are understood to be limited
to the "internal" region y, &~ a„this region being arbi-
trarily large if desired. The notation X,(+& is an arbi-
trary representation for the V' operator which can be
chosen to be distorted waves with plane-wave normali-
zation (i.e., s 1'+) of Ref. 1) or partial waves of the type
Insl) used. in Eq. (2.9) below.

The usual R-matrix form' of V b, may be obtained by
evaluating Eqs. (2.7) using partial waves suitably nor-

lized, e.g., if we choose

X &+) = (iAe,) 'I'(I,/r, e""—'0,/r, ) y, (2.9)

where I', is the penetrability' and the integral

nb, (')lpga/ 2rr)b't'((——1/r s) 5(r,—a,)q, I gb) (2.12)

yields a complex and energy-dependent reduced width.
This resonant contribution may be regarded as an
isolated resonance when g„,tt are independent of energy
in the energy region E=Eq. In this case 0.)„is indepen-

dent of energy for E=E~ and it is useful to use the Breit-
Wigner form, i.e.,

ze'~"' e»e'Itbyq'I P '"e"e'"
E„+ReC„—E——,'ir

(2.13)

with partial widths given by

r,=2p, In„,Is,

and the phase factors by

e"=~b.(I~),.I) '.

(2 14)

(2.15)

For real energies (ht(g„o)th) is real and it may be veri-

fied using Eqs. (2.6b), (2.12), and (2.14) that the total
width satisfies the sum rule

where I, and 0, are ingoing and outgoing Coulomb
radial functions, co, is the relative Coulomb phase, and

y, represents the orthonormal set of surface functions
used in I.The relative velocity e, is as defined in Ref. 3.

The first term of Eq. (2.7a) gives the hard-sphere
term, e.g.,

(xb& ) Izx.&+))= "e"~(1 e "e—.)b-b. . (2.10)

in which P, is the hard-sphere phase, ' and the last term
has the usual single-level form

(b) 2ie~ (&ob eb)pbi/'2~ —~ p i/se~'(rug, —ea)/

X (Eb—E+C b), (2.11)

with X, ) b, and tb, being real, so that Itb, I
& 1 from

unitarity requirements. In the single-channel case there
is an important simplification, i.e., tb, ——Sb and ) =—8,
(see Ref. 3). The only difference between the results in
this section and those of the conventional R-matrix
theory is that the basis states

I X) need not be eigen-
states of H. This important difference will now be made
use of in the following sections.

III. GIANT-RESO5'ANCE THEORY

In a fashion similar to Lane, Thomas, and Wigner, '
we consider the origin of giant resonances to be due to
the existence of a "simple" Hamiltonian H which in-
volves a particular eigenstate I'A). We might consider

I
X) to be a state having a large reduced width in only

one open channel c, in which case we refer to» as a
single-particle state in channel c. Alternatively, » may
have large reduced widths in several open channels, in
which instance

I X) corresponds to a collective state. In
either event, I» will be assumed to have a large reduced
width in at least one open channel which in practice
will usually be the entrance channel.

Because of the open-channel nature of the basic state
it is not easily constructed in the I'eshbach formalism, '
or similar approaches. v However, its construction affords
no problem if we adopt the R-matrix type of formalism.
Consequently, we choose 2' to be real with constant pa-
rameters b, such that

(3 1)

in which I)tb) are all the remaining eigenstates in the
spectrum of Hs. When the particular state I» is in-
cluded we have a complete set which is discrete, real,
and orthonormal over the hypervolume bounded by the
hypersurface r,=a, provided, of course, that H is
Hermitian and suitably behaved for r, &~ a,.

With these assumptions for H' and 2', we note that
the single-level formula (Eq. 2.3) above may also be
regarded as an exact expression of giant-resonance phe-
nomena. Contrary to the work of Bloch" and others, ' 4

we do not need to invoke approximate procedures (e.g. ,
second-order perturbation theory or random-phase
arguments) in order to describe the way in which the
simple state

I » is dissolved and spread out amongst all
other states.

According to Eq. (2.6a), we may write down a giant-
resonance width

r= —2ImC =g, r„ (2.16) r= —»mL( Il I»—(~l jg-I I»j, (3.2)

(pop $ e2itb)g eiXbt es)) ~ (2.17)

as expected for an isolated level. Finally, in this section
we note that "potential" scattering is not given by
hard-sphere scattering but rather by the first two terms
of Eq. (2.7a), which in the present situation may be

parametrized as

where the first term is the natural width arising via the
coupling to the continuum, i.e.,

r,=2/. In I». (3.3)

The "extra" width t/V& given by the second term in Kq.

"C.Bloch, NucL Phys. 4, 503 (1957).
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(3.2) arises via the coupling to all states in the spectrum
of b„.

Similarly, there is a level shift 6 given by the real
part of C'q in Eq. (2.6a) which has a natural shift

The importance of including the continuum coupling
via (Z —ZP) is non-negligible if on the average.

I &) I(Plt &I»I() I&it &I

in which

with

~,=—() lsl)),

h = —(8+i(P),

(3 4) because in this case W, is actually negatitte although I'
remains positive, i.e., 6' produces a narrozv~mg of the
giant resonance. In the usual case where

(3.5)
I &) I tPlt &I«lbl8lt &I

k'a,
8= —JX'+P

I c) b(r, —o,)(S,—b,)(cI, (3.6)
21+c

h'a.
O'=P lc) 8(r,—a,)P.(cl.

2t~ C

(3.7)

The last two equations dehne the shift and penetrability
operators, respectively. Note that Dq has a contribution
from H'=H —H' in addition to the usual Thomas-
Ehrmann" shift.

If we expand g„into a set of states which diagonalizes

g„according to a Kapur-Peierls prescription, "then the
second term of Eq. (3.2) may be written

(3.10)

which is not equal to the natural width I'q. For this
reason we introduce an observable spreading width

tVp= I'—I'~, (3.11)

such as considered by Lane, Thomas, and signer, 8 ~

is positive corresponding to the usual interpretations of
8'& as a spreading width.

The statement above that 8 & is a theoretical spread-
ing width is based on the fact that 8'& is not a measur-
able width. To see this we note that the sum of the par-
tial widths implicitly contained in the numerator of Eq.
(2.7a) above is found to be given by

W, =2 Imp
E (E) E—(3 8) which is easily evaluated from Eqs. (2.6b) and (3.10)

to yield

which for reasons discussed below we refer to as a
theoreticol spreading width. The states

I p ) are linear
combinations of the original states I», the appropriate
coeKcients being complex and energy dependent (see
Sec. VI). It is interesting to compare this result to that
obtained using the random-phase approximation'"
which yields

Wg ——2Im Q (3.9)

corresponding to the approximation g„=g„pbeing used.
In practice this random type of coupling may not occur
and it seems likely that the important terms in the sum

over p in Eq. (3.8) will be those involving coherent

superpositions of the original states I p). In particular,
if the basic operator (HP+ ZP) has a spectrum involving

single-particle states, two-particle —one-hole states,
three-particle —two-hole states, and so on, then a single-

particle state IX& is coupled to lp, ) via essentially the
particle-hole interaction'

I
for the moment we neglect

the continuum coupling (ts —H') J. As pointed out by
several workers, 4' the particle-hole interaction only
couples to two-particle —one-hole states. Nevertheless,
the exact expression Eq. (3.8) tells us that we should use

the diagonalised set of two-particle —one-hole states,
which allows for the possibility of coherent or collective
states in the spectrum of g„.

"9 J.3.Ehrman, Phys. Rev. 81, 412 (1951);R. G. Thomas, ibid
88, 1109 (1952)."P. L. Kapur and R. E. Peierls, Proc. Roy. Soc. (London)
AI16, 277 (1938).

8 p=0, E= real, (3.12a)

1&@~Ih'I»
I

'
Wp= —2 Im Q E= complex. (3.12b)

pWX

or
Wp ———2 Im(XI f 'g„th—htg„htg„alX&, (3.13)

Wo= —2 Im & I&) lh'g-'I»l'(&. —&), (3 14)

showing that S'p is not singular at E=E„asnaively
suggested by Eq. (3.12b).

Finally, we note the occurrence of
I gq) in the numera-

"G. E. Brown, Rev. Mod. Phys. 31, 893 (j.959)."E.P. Wigner, Ann. Math. 53, 36 (1951).

We see that tVp is zero for a physical system and the
usual sum rule between partial widths and total width
is satished. However, a giant resonanc ' is not equivalent
to an isolated level. The point is that many relatively
narrow lp& states may occur within the width of the
giant resonance. These states give rise to rapid energy
variations within the width of the giant resonance. An
average or smoothed

amplitude

can be obtained" by the
use of complex energies F+i I

F
I (cf. Wigner s statistical

R matrix") where I F I
is made large enough so that the

rapid energy dependence is damped out. Consequently,
the averaged amplitude obeys a single-level formula but
with 8'p&0 arising from the positive contribution given
by Eq. (3.12b) when E is complex.

Alternative expressions for S'p are
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tpr of the giant-resonance amplitude allows a single-
particle-type giant resonance to be observed in other
channels as well as the channel containing IX) itself (see
Sec. VI ).It therefore follows that a size resonance may
be observed in many open channels, the observed magni-
tudes depending of course on the effective strength of
the coupling interaction.

operator 8' in the present case is given by

I»(p I ld&(dl lh&(bl8'=& - -+Z- +~-
n E~—E ~ g„—g y jV~

or abbreviating

8'=8 '+8 '+8 ' (4.2)

IV. DOORWAY STATES

We now consider the way in which giant resonances
are broken down into "subgiant" resonances. Such a
concept was qualitatively described by Weisskopf23 and
then more quantitatively by Block and Feshbach. 4 Due
to the considerable e8ort being made'4 to identify the
doorway type of structure, it is important to have a
rigorous theory of such phenomena The difhculty with
the Block-Feshbach theory is that there seems to be no
connection between the doorway states and the con-
ventional giant-resonance pciture of Lane, Thomas, and
Wigner. This is also pointed out by Block and Feshbach
and stems from an intrinsic diKculty with the Feshbach
formalism, i.e., the open- and closed-channel resonances
are treated in different ways. For this reason we adopt
a real discrete eigenvalue expansion which has the ad-
vantage of giving a close connection between doorway
states and giant-resonance theory.

For completeness we must consider three types o&

states, all being solutions of the unperturbed or basic
HamBtonian H with E.-matrix boundary conditions.
These three types depend on the choice of B' which we
assume here to have a spectrum de6ned by:

'i)
I p) states are entrance-channel states correspond-

ing to the situation where the target and projectile are
not excited. The complete set gives rise to potential
scattering including single-particle resonances of the
entrance-channel character.

(ii) Id) states are exit-channel (open or closed) states
which are directly coupled to the entrance channel via
the residual interaction h, i.e., for at least one

I p& state,
(plhl d&NO. In order that Id) correspond to the concept
of a doorway, we require that H' be chosen so that all

ld) states have zero reduced widths for decay into the
entrance channel.

(iii) lb) states are all other states and which, there-
fore, correspond to more complicated target or projectile
excitations than those of the doorway type. These must
satisfy the requirement (plhlh&=0, and we again as-
sume all

I h& states have zero reduced widths for decay
into the entrance channel.

Using the fundamental relation from I,
8= (1+8'h)-'8' (4.3)

8,'hBbs=0
to obtain the result

(4.6)

8=8„+8,+(1—B,h —B,h)

xl-1+8.'h(1 —Bp—Bbh)$-'

xB s(1 hB„—hB )— (4.7.)

Considering the entrance channel to involve the
limited set of channels c, then the surface integrations
in these channels yields matrix elements 8„.. within
this subspace we have (Bb)„=0and

where

8—=B~+ + la~&~«(g' I,
d, d'

I g.)=Beld),
(g'I =(d'lhB. ,

(4.8)

(4.9a)

(4.9b)

and A is the inverse of a matrix with elements

(E» E)8«+(d—lb hB'h hB—bhld')—
=(~s—~)4s+4a'+4a. '. (4.10)

The last equation conforms to the idea proposed by
Feshbach that the doorway states have an upward
coupling to the "continuum, "i.e.,

P« t=(dlh —hB„hjd& (4.11)

we may separate out the doorway contributions in a
straightforward manner,

8= D+(B.'+8 ')h3 '(8 '+8 ')
+L1+(B.'+Bb')e '
x(1+8"hL1+(8.'+8 ')h3-')-'8"

xp+h(8, '+ Bb')p'. (4.4)

To simplify this relation we de6ne

8.=(1+8.'h)-'8. ', 8 =(1+8"h)-'8 ' (4 ~)

and utilize the identity

(4.12)
~ V. F. Weisskopf, Phys. Today 14, 18 (1961).
~ See, for example, J. A. parreO, G. C. Kyk.er, Jr., E. 6 In he weak-coupling case we may assume that g is

Bilpuch, and H. W. Newson, Phys. Letters 17, 286 (1965). iagonal, which yields a doorway-state contribution to

Firstly, we shall obtain the type of result emphasized
by Block and Feshbach. The appropriate Green's nd a d wnward coup»ng « th«ompound nucleus via

4"= (dl hBbh
—jd &
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the transition amplitude

(&*&.' ' Igd)(hl ~x""'&
q",, (&)~

d Ed+Re(bd&+ &ddt) E —~i (I—'d~+ I'dt)

(4.13)
where the widths

where

which yields

Cdd=(dlh-kg&Id),

(p lhld&«lhl p&

Ed E+C'dd

(4.21)

(4.22)

I'd~= —2 Im)ddt, I'd~ ———2 Im)dd~, (4.14)

can be directly compared to those used by the Feshbach
group only when Id) is a closed-channel resonance. In
this case Im(dl hid) is zero and width only arises via
coupling to lp) or Ib) states. Note, however, that if

I d) is an open-channel resonance, then it has a natural
width typical of perhaps a single-particle state so that
in this case the doorway state may be very broad and
a giant resonance in its own right. Such doorway states
are not easily discussed in the I'eshbach theory for
reasons already discussed. Of course, there is no require-
ment to call these latter states doorways; one could sim-

ply include them in the set of states I p). The present
definition seems simpler, however, since the concept of
a doorway state should not depend on whether a par-
ticular channel is open or closed. Certainly the available
nuclear models involve no such considerations of the
boundary conditions imposed on a physical system.

To complete the picture we must connect the fore-

going approach to that of Lane, Thomas, and signer.
This is easily achieved in the present formulation by use
of an alternative separation. Instead of separating o6
gd', we now separate off g„'.After some algebra and
restricting ourselves to the entrance-channel subspace
we 6nd

e=-L1+8.'&(1+a"~(1-S.~))-')-'O. . (4 13)

Expanding g~ into its eigenstates we obtain the exact
result

(4.16)s=Z Ip)&..(p'I,

hb h hgt, k——— (4.18)

To be consistent with the giant-resonance theory of
Lane et u/. , we must keep only diagonal terms, i.e.,

I p)(pl

n E„E+C„„—(4.19)

In the present case C» may be approximately evaluated

by assuming a similar expansion for (1+Bdoht,) 'bd', i.e.,

ld)(&l
(1+a"»)-'S"=Z (4.20)«d —E+C'dd

in which A is the inverse of a matrix with elements

(E,—E)s„„.+(pie —a(1+g. a,)- gd al p'&

= (E~ E)4m+@'nn, (4 17—)
with

Consequently, we see that the giant resonance may
break up into a series of subresonances of the doorway
type whose width depends in most cases on how the
doorway states are in turn broken down into the next
state of complication via the term involving b& in Eq.
(4.21) for Cdd. Although the intermediate model of
Lane, Thomas, and Wigner may be valid for

I p) states,
it is not obvious that the same assumptions apply to
the doorway states. For this reason the unperturbed
states

I d) appearing in Eqs. (4.21) and (4.22) should be
replaced by a suitably diagonalized set of states.

The results obtained here show the equality between
the two treatments of giant resonances given in Refs.
3 and 4. This equality is exact in the simple situation
wherein one only considers one giant resonance and one
doorway state because the diagonal assumptions are
automatically fulfilled. In this case Eqs. (4.8) and (4.19)
can easily be shown to be simply di6erent ways of
writing the same expression. The conclusion arrived at
by Block and Feshbach concerning the widths of giant
resonances appears to be invalid and presumably arises
from their inadequate treatment of the open-channel
resonances.

7. CROSS SECTIONS FOR A SPECIAL STATE
WITH FINE STRUCTURE

Up until now no explicit attempt has been made to
directly relate the phenomena of the previous sections
to experimental data. It is appropriate, therefore, to
consider the cross section within some finite energy in-
terval wherein there occurs an isolated broad structure
with Gne structure superimposed upon it in some way. In
such situations it appears reasonable to associate the
origin of the broad structure with one special type of
eigenstate corresponding to an ideal operator H'+2'
as in Sec. II. Usually there will also be some nearby
eigenstates of the same operator IP+2' which will give
rise to 6ne structure in the broad-resonance region.

It is convenient to discuss the situation of a special
state plus its nearby states in terms of a nonrandom
state plus a set of random states in the sense that the
Quctuations arising from the nearby states can be evalu-
ated in terms of statistical theory. The remaining eigen-
states of IP+go will lie outside the energy region being
considered and need not be treated via statistical argu-
ments since they are easily included in the formal
theory as a slowly varying contribution. This model of
one nonrandom state imbedded in a sea of random states
is no doubt an oversimpli6cation of the true situation.
As has already been pointed out in Sec. IV, a simple
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resonance structure may in fact be made up of several
substructures corresponding to a further breakdown in
the statistical assumptions normally invoked. The
problem treated here does illustrate, however, some of
the possible eRects which may arise when a nonrandom
component is included.

It is convenient to separate the discussion of the
problem into two distinct cases, each one corresponding
to a definite experimental situation. In the 6rst part we
consider the situation wherein the experimental resolu-
tion is insufhcient to observe the fine structure but suffi-
cient to observe the broad resonance and in the second
part the situation wherein the resolution is suKcient to
observe the fine structure itself. In the former situation
the interesting results are contained in energy-averaged
cross-section expressions, whereas in the latter situation
we are more concerned with the interplay between the
fine structure and the gross structure. We now consider
each situation in turn.

although larger values of 8 up to the order of I' itself
can be considered in practice.

In formulating the expression for a typical cross sec-
tion we only need a slight extension of the usual optical-
model approach. The scattering matrix is separated
into two parts, e.g.,

Sbu= 8ba+Sba", (5.&)

where the 6rst term is the appropriate energy-averaged.
amplitude and the second term describes all the Quctua-
tions away from this average. In the present situation
it is convenient to include the broad structure in the
energy averaged amplitude using the single level form
of the S matrix, i.e.,

Sb.(E)=Sb.'(E)
i[r,(E)r.(E)ji12

+oi [Xb (rr)+La (a) 1 (5.2)
Eb—E+C'b(E)

This expression is easily deduced from Eqs. (2.7a)
and (2.7b) if we define X,(E) as the channel phase
(b +(o,—~t,), and Sb (E) as the S matrix in the absence
of the special state ~X). The single-level parameters
B„@„(o„I',(E), Cb(E), and Eb are identical to those
defined in Sec. II except that we have indicated the en-
ergy dependence of the parameters explicitly in the
present situation. The energy averaged amplitude 8&
can be obtained by the use of complex energies E+i t F ~,

A. Average Cross Sections

From the above discussion we assume that the experi-
mental resolution characterized by l) (energy units) lies
somewhere between the mean Quctuation width I'~, of
the 6ne structure and the total width F of the broad
structure. Ideally, then, we require

where (
F) is made large enough so that the f)ne struc-

ture is cRectively damped out. The relation

8b.(E)=Sb,(E+i)F~)

holds rigorously if the energy average is performed" us-
ing a Lorentizian weighting factor with a half-width of
)F ~. However, the use of Sb, (E+i ~F ~) is expected to
be an accurate representation of 8b, (E) for any reason-
able energy averaging procedure.

As a convenient notation we write

rb= [exp[i),(E+i[Fl)]r,(E+ilF I) I,
since by definition it should now be essentially constant
within the energy interval containing the gross struc-
ture. Energy dependence arising from threshold eRects
will not be damped out by using E+i

~
F

~
in place of E,

but in any case the energy dependence from this source
is monotonic and can easily be treated in terms of con-
ventional penetrability arguments. If we use a similar
notation for the other parameters we obtain

(d(r ./dQ), =de /dQ+(do ~
. "/dQ). , (5.5)

where do ~ /dQ is the "shape" cross section obtained by
using 8b, in the scattering amplitudes and (do. ~ "/dQ),
is the energy averaged contribution from the Quctuat-
ing amplitude S~ ".If the fluctuations from the average
are regarded as being random then (do't/dQ), can be
estimated in a similar fashion to the Hauser-Feshbach
results" except that the transmission coeScients T, are
modified' so that in the present case

T.=~—Z I8...I~, (5.6)

which involves all channels c' for which shape reactions
are not negligible. 8, , is given by Eq. (5.4).

In the Hauser-Feshbach theory the differential cross
section involves the terms T,T;(P, T; ) ' which in
the general case considered here will not reduce to a
simple Breit-signer form as exempli6ed by the shape
amplitude itself. In the most complicated cases each
transmission coeKcient involves an interfering Sreit-
Wigner type of energy dependence, so that the cross
section may well have a complicated energy depend-
ence. Some insight into (do"/dQ), is obtained in the

'5 W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).

(FbF,)'i'
8 =S,~+ie'(bb+b (5 4)

E)b E —',i(I'—+-2
~

F ~)

where E)b E),+ReC—b—(E+i~F ~) and l'= —2 ImCb
(E+i ~tF ~) define the resonance energy and width,
respectively, for the broad structure. Usually ~F ~&&i',
so that I'+2

~

F
~

f' can be used.
Expressions for the diRerential cross section averaged

over an energy interval characterized by F are given
by a sum of two terms, i.e.,
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situation where S~,'= e""b~„with X,= real. One 6nds
in this approximation that

r,r. / I,I.q (I'+2
I
Z

I

—P. I'.)
IX,(5.7)

Z, I', &P, r,/ (z —z)~+-,'(r+2 lel)
2'

and

It ')(t 'I
Bi'= + F

E),—E v'&u E„—E
=Bi'+8' .-p. (5.12)

in which the first factor gives the fractional probability
of the resonant transition a ~ b and the second factor
corresponds to the contribution out of the total strength
of the broad resonance arising from fI.uctuations. This
follows from the usual de6nition of a strength function
and from the fact that I'—P, I",= Wo is the spreading
width discussed in Sec. III. Usually F((F can be used
so that (do"/dQ), becomes directly proportional to Wo
in the present example.

The above cross-section formulas appear to be best
suited for the analysis of experiments on isobaric ana-

log resoriances as discussed in Sec. VI.

1. Separated Fine Structure

This situation is in principle the simpler of the two
possibilities and can arise experimentally when the corn-

plicated states I ti) surrounding the special state
I l~) have

a large enough level spacing so that after the mixing via
h is included, each new state remains well separated
from its neighbor. In the case of isobaric analog reso-
nances such a situation appears to have been approxi-
mately realized. " Since we are involved with single
resonances, we again have recourse to the general single-
level formula. Now, however, it is appropriate to single
out a particular 6ne-structure state

I p) and introduce
a slight change in notation, i.e.,

8=8.+ I g.)(g.l/(&.-E++.),
where

Bi=1(+8 'ti) 'Bi'

(5.9)

(5.10)

(5.11)

'6 G. A. Keyworth, G. C. Kyker, Jr., E. G. Bilpuch, and H. WV.

Nelson, Phys. Letters 20, 281 (1966).

B. Cross Sections with Observable Fine Stx'ucture

Within a particular broad resonance the mean 6ne
structure width may be large enough so that a high-
resolution experiment can observe the oscillatory be-
havior of the cross section. When the level density is
small enough, the 6ne structure may be separated into
a series of essentially isolated levels. In such cases it is

appealing to try to discuss each particular 6ne-structure
state explicitly. On the other hand, as the level density
increases the fine-structure resonances will overlap, and
it becomes impractical to discuss particular resonances.
It is convenient to discuss these two experimental pos-
sibilities separately.

In writing the above results, we have assumed EP+2'
to be Hermitian and energy-independent, so that the
ideal states

I li) and
I p) are real and independent of en-

ergy. The S matrix or T matrix can be obtained as in
Sec. II, which yields a simple Breit-Wigner amplitude
for the resonance part as given in form by Eq. (2.11).
The reduced width In„,l arising from lg„)is given by
an equation like (2.12), but it is more convenient to
manipulate this into the interesting form

v,
.here

( It lg.')
eye=a!geo &Xe p

+(l~lttlgio)

Ig.')=(1—B-,—.t) It ),
I
gi') = (1—B-,-.I ) I »,

8 .-~= (1+B,-~'ti) '8 .-~'

(5.13)

(5.14)

(5.15)

(5.16)

8-,—.'=8-'- It )( I/(~, —~) (5.17)

II'g,
h=g Ic'&8(r; —a, ) cV, (c'I,

C 25Zc'
(5.18)

relates 8„,„0to the complete fine-structure operator

8 ' used in earlier sections.
Unfortunately, the behavior of the partial widths

I'„,given by
I'„,=2P, I n„,l

will depend on the peculiarities of the individual states.
It is possible to ask what happens, however, if we regard
each I ti) state as essentially the same and consider what
happens as one moves across the energy region affected
-by the special state. For those channels satisfying the
condition yi, '»y„,' for all states

I ti& in the vicinity of
the broad structure, we see from Eq. (5.13) that the
6ne-structure widths I'„,will tend to be broadened near
the center of the broad resonance. The actual energy
behavior of these fine-structure widths can be described
by a simple Breit-Wigner shape only if (lil hl g„'& and
n„,' are uncorrelated in their relative phase (or, of
course, if n„,'=0 for all ti). In general, the contributions
from n„,o and ni, ' in Eq. (5.13) which produce n„,will
interfere, and if the phase of (), I Itl g„o)and n„,'is in some
way correlated, the interference will be observable.

One interesting possibility involving a correlation be-
tween (li I ti I g„')and n„,' has been suggested" in the case
of isobaric analog resonances. Such correlations can
be phrased. more generally. For example, if we assume
A, has a surface form



990 D. ROBSON AND A. M. LANE 161

wc obtain

rr„.=a„c'L(Er—E—giF r)/(E2 E QFs)j (5 19)

where

( rr) c asc'$
Et—rsiFt=E~+ 2 ~"~"~."'I 1—,, I, (52O)

and
E,—-,'iF =E),+Q 3E;y);n)„'.

c'
(5.21)

In general, the usefulness of Eq. (5.19) depends upon
how the parameters E», 1». E~ and I'~ depend on the
individual 6ne-structure levels. The parameters E~ and
I"s are unlikely to depend sensitively on

I tl) since a
I ll)

dependence enters only via n)„.On the other hand, the
parameters E» and I'» couM be sensitive in this respect.
There are two obvious cases where E» and F» become
independent of p. Firstly, when M, p)„=0except for
c'= c, one obtains the single-channel result

n„,= rr„,'I (E),—E)/(Es —E——',iFs)), (5.22)

which shows a striking interference pattern, as has been
discussed elsewhere. ' The zero at E=Eq appears to be
a characteristic only of the single-channel approximation
within the present framework. .

Secondly, if many channels contribute and the fine-
structure amplitudes n„,and n„, for the various chan-
nels are uncorrelated in phase, then the series involving
r)t„,s/n„,s will tend to zero and Er, Ft will become as in-
sensitive to p as E~, I'~ are expected to be. In this situa-
tion, however, 1» need not be zero, because for the
special state I),) it is unlikely that the phases of the
various amplitudes o&„'will also be uncorrelated.

Note that the phase of the reduced width is essenti-
ally determined by the slowly varying term in square
brackets in the examples discussed above, only if
o.„,=p„,. This approximation is likely to be valid for
the 6ne-structure states near isobaric analog reso-
nances, but in general 0.„,will have a non-negligible
imaginary part.

Z. Qr)erlappitlg Fine Strlctlre

In the situation where Fr&)Dr„(with Dr, being the
average level spacing of the fine structure observed),
the previous analysis becomes dificult to apply because
all quantities g„', g&' become energy dependent in a
nontrivial manner. In this situation we only wish to
know how the fluctuations behave on the average (even
when the 6ne structure is separated the average be-
havior is of some interest). This result has already been
obtained in part A of this section, i.e.,

(0, ,"), ~T,T, /p T;,
c"

with T,=1—P,"IS., I' and 8„.given by Eq. (5.4).
'7 P. Richard, C. F. Moore, D, Robson, and J. D. Fox, Phys.

Letters 13, 343 (1964).

Only in the single-channel case and elastic scattering
is a simple result obtained, i,e.,

(~-")-"T =1—IS-I'
For this case we write from Eq. (5.4) (assuming
IF l«F),

8„=e"1 Le-'s +e"s "iF,/(E, —E——',iF)j, (5.23)

where the background function S„'=e"&ae '&a and
PP =X,—(,have been substituted so that all parameters
are real. The meaning of p, ~ becomes clear if we evaluate
T,=1—IS„I'(which is valid in the single-channel
case), i.e.,

with

B.(E)l E)+C—,F,
T,=A,+

(E)r—E)'+-'F'

e Pc=+

B,=2F, sin2$. )re '&',

C,= F cos2$, )re-'& —F, .

(5.24)

(5.25)

Clearly the term involving (Err E) gives—an inter-
ference pattern (or asymmetric Breit-Wigner pattern)
and arises only if @,TWO. One can understand the gen-
eral relationship between T, and the fine structure bet-
ter by the result

T.=2~(F„,)/D, (5.26)

where (I'„.) is the a~erage partial width of the underly-
ing fine structure and D is the average level spacing. To
prove (5.26) we introduce the notation

lc)=(A'a /2rN )'I'Irc '5(rc a,) yc), —(5.27)

so that the definition (5.6) of T, may be written as

T,=1—(c 88tlc)
=4P.(c (Im(8)) —(g)P(g)' I c),

where (8)= b(E+il F I) is the smoothed Green's opera-
tor. In writing (5.28) we have assumed that Il is inde-
pendent of energy for the energy interval AE encom-
passing the broad structure. The operator I' in Kq.
(5.28) is given by

(5.28)

P=P lc')P;,c'I, (5.29)

with I', being the appropriate penetrability in channel
c. Noting the relation

(S)=(1+(O'»)-'(S'), (5.30)

lt ')( 'I

n'&ctlclnnl) E„,—E
It)( I

(5.32)
s( bv) E„—E ilFI—

we obtain

T,=4P, (cl (1+(g')ll)—' Im(8')(1+ll'(g')t) —'I c), (5.31)

where



NUCLEAR —REACTION PROBLEMS. I I. APPLICATIONS

The smoothed (8'), it should be noted, only requires a
smoothing for the narrow nearby fine-structure states
and consequently

Im(b')= P Im
o (~«sbs') E„E—e I

F—
I

(5.33)

since the first two terms are real in Eq. (5.32) by con-
struction. Finally, then we have

with

T.=4F, P
e E„—E—t'IFI

(5.34)

Experiments involving overlapping 6ne structure in
the case of isobaric analog resonances have been dis-
cussed earlier. "The above approach yields a more exact
result for the energy dependence of the Quctuations
across the analogue resonance. In the experiments
cited, '~ provided that h can be represented by a surface
delta function" in channel c, one obtains' the trans-
mission coefEcient in channel c as

T,= T.'(Ei—E)'/I (Ett —E)'+-', I"). (5.38)

Note that this equation actually does include the terms
c'4c, as required from the de6nition (5.6) of T,. This
result involves Ez, I' in place of the natural energy E&
and width I'~ introduced in the earlier work. " The
present expression is more accurate and consistent with

the conventional theory of average cross sections; more-

over, it removes the earlier difhculties associated with
matrix inversion. The present approach is now being
applied to isobaric analog resonances in the reactions
Mo"+p, Zr' +p and will be reported elsewhere.

The important suggestion which the above discussion
introduces is that 6ne structure and gross structure may
be correlated in an observable fashion. It should be
emphasized, however, that such a correlation exists

only for levels of the same spin and parity, if we assume

H and H' are rotationally invariant. In most nuclear
reactions, levels of many values of spin and parity will

contribute, so that the eBects discussed above will be
masked. Certain selective reactions such as (p,yo) de-

caying to even-even nuclei, or reactions involving iso-

baric analogue resonances look most favorable for ex-

' D. Robson, J. D. Fox, P. Richard, and C. F. Moore, Phys.
Letters 18, 86 (i965).

and if
I
F

I
is large enough and the level density high

enough we can evaluate the sum over p by turning it
into an integraL This results in Eq. (5.26) if we make
the identifications commonly used:

(5.36)

Im g (E„—E t', IFI) '=sr/—D. (5.37)
p, (nearby)

amining such phenomena. A certain amount of selectiv-
ity can be obtained in some elastic-scattering experi-
ments by measuring at particular scattering angles; e.g.,
at 90 in the elastic scattering of n particles from even-
even nuclei only states with even spin and positive
parity can be excited.

VI. ISOBARIC ANALOG RESONANCES

The theory of isobaric analog resonances has been
treated" in some detail using essentially the conven-
tional E.-matrix formalism. It is a phenomenon which is
a remarkable illustration of several spects of the present
formalism; e.g., the observed resonances" "show all the
expected features of the giant resonance discussed in
Sec. III. %e consider a pair of nuclei having the same
nucleon number but differing by one unit of the iso-
baric spin projection Tz, i.e., the two nuclei differ by
the interchange of one neutron for one proton. For
obvious reasons we refer to these two nuclei as the
neutron nucleus and the proton nucleus. For simplicity
we consider the situation wherein the low-lying bound
states of the neutron nucleus (S,Z) are assumed to have
pure isobaric spin T=Tz= ,'(X Z). T-he —eigenstates

P z are solutions of a Hamiltonian H and satisfy bound-
state boundary conditions expressed via an 2 operator
Zz which involves a sum over all closed channels of the
(X,Z) system. Analog states in the "ideal" proton
nucleus (X—1, Z+1) are then defined" "by

tP, z,i= T Qz=(2T) '-t'T itr z, -
with T being the usual lowering operator. The exten-
sion of the formalism to the case where T is not a good
quantum number is straightforward' but will not be
considered here because the basicideas remainunaltered.

The states f,z+i are not physical eigenstates of the
proton system but are solutions of the operator F H7."+

with boundary conditions T zv'+. It is convenient for
the present discussion to introduce projection operators
in isobaric spin space of the form

D=
I T&Tz—1)(T&Tz—1I

f'f =
I T&Tz—1)(T&Tz—1

I

where T& Tz 1, T&—T&——+1 a—re the u—sual values of
isobaric spin used to characterize "normal" states and
analogue states, respectively. In the energy region close
to T& states of interest, we assume D+ U= 1, which cor-
responds to neglecting ~ia11 states with isobaric spin T
larger than T&.

Vjfe are now in a position to relate the four operators
in I to the operators describing isobaric analog reso-

» G. A. Jones, A. M. Lane, and G. C. Morrison, Phys. Letters
15, 329 (1964).

e'D. Robson, in Proeesdertgs of the INtermatt'onal Colferertee ort

Isobaric Spirr, zrl, SNclear Physics (Academic Press Inc. , New York,
i966), p. 4ii.
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which yields

where

O'Xc 'Ykc Q PXlc'ryc I
p&X

p~.= Z &~Is-l~')&~'Ihl»

(6.2)

(6 3)

gives the mixing coeKcients essentially in terms of
(y,'I b I) ).

In the E.-matrix-type formalism the matrix elements
are limited to a volume r, &~ a, and consequently the
matrix elements (p I h

I » have two contributions

(i) Internal or interaction mixing. This is expressed
by the matrix elements of B—II = II', i.e.,

E"=& IH'I» (6.C)

and is the type of mixing which several groups" have
been particularly interested in calculating. In these
treatments the states

I p) and I» are replaced by har-
monic oscillator functions and boundary condition
differences (2—2 ) ignored. The difliculty is that ortho-
gonality over the range r,=0—+ u, is not ensured by
such methods, so that the results need not correspond to
I„),.

(ii) External or boundary condition mixing. This, of

nances. The necessary relations are

H =H'+H',
z= zo—L= z&+&,

H'=DHD+T H2'+,

2'=DZz+zD+ T ZzT+,

where Zz+& is the physical boundary matching operator
for the (X—1, Z+1) nucleus. The difference between
IJ and H, and 2 are given by II', —L, respectively,
i.e., h,=H' —L and,

H'= DEEU+ UHD+ UPH TH—T+]U,
L=D—Zz+iU+ UZz+iD+ U(2z~i T Zz—T~)-U,

although the terms involving operators UXU will be
small when the analogue states are widely spaced. The
terms of type UXD or DXU involve the mixing via
Coulomb interactions or the change of boundary condi-
tions due to Coulomb interactions, as discussed below.
The interaction H, as can be seen from its definition, is
the charge-dependent (usually Coulomb) interaction of
the converted neutron. The eigenstates of II' are of two
types, one set being the normal T~ states and the other
et being the analogue states.

Mixing occurs between an "isolated" T& state and
the myriad of T+ states usually surrounding it in the
case of heavy nuclei. This mixing is contained in the
single-level formula of Sec. II if we associate the state

I » with the T& state and the remainder with essentially
the surrounding T& states. The giant-resonance state
lg&) is given from Eq. (2.5a), i.e.,

(6.1)

&~ I
L I»= 2 L v~ ~" (6.6)

where L,=b,—b, and for proton channels b~=S„+
+iP~, b~o=S„(E 5,) as in—dicated in Ref. 11.Conse-
quently, if only one term in the sum over c is important
then we have the identity

&v I L I ~»" = &~ I L I ~)~" (6 2)

If as in Ref. 11,we choose &X I
H'

I »= 0 (by simple modi-
fication of H' to H'+&BOIH'I») and assume (&I Hlp)
=0, then we obtain a relation like Eq. (5.22) of Sec. V.
Such a result was applied in Ref. 1.1 to explain the ob-
served'4 damping of Auctuations near the analog
resonance being investigated.

Finally, in this section we note that the reduced-
width relation Eq. (6.2) explains the existence of a reso-
nance in isobaric-spin-forbidden reactions, e.g. , (p,e) or

(p,o,) reactions leading to the low-lying levels of the
respective residual nuclei. In particular, boundary-
condition mixing does give rise to a neutron width in

(p,n) reactions via the component g„LI»of Eq. (6.1)
and has been shown" to be a reasonable explanation of
the large S-wave resonance observed in Zr '(p,e)Nb". If
there is a significant 6ne-structure contribution then
isobaric-spin-forbidden reactions averaged over energy
will also resonate via the term (o"), due to the reso-
nance terms contained in the nonforbidden transmission
coefficients. Such a possibility was first pointed out by
Jones, Lane, and Morrison" in the case of Y '(p, p') Y8'*
In general one should consider the inclusion of both the
shape contribution o and the fluctuation term (o"), ,
although, as pointed out earlier, this may be a compli-
cated problem and dificult to apply in practice.

VII. CONCLUSIONS

The most striking feature of the present work is the
way in which several apparently unrelated phenomena
are described by the same formalism simply by alge-
braic rearrangements of the same basic entities. This

course, is simply the matrix elements of (2—2o), viz. ,

(6.5)

which is important because of the long-range character
of Coulomb forces which mixes isobaric states at large
values of r,.This type of mixing was emphasized in Ref.
11 on the grounds that a constant interaction Il' for
r, ~&a, does not cause any mixing provided that

I p) and

I X) are orthogonal over this range. Actual calculations
of the average value of S„),yield results which account
for the observed" "' mixing effects in heavy nuclei
and suggests that radii a, exist which minimize the
e6ects of internal mixing.

One important difference between H' and L is that
8' is not in general diagonal in channel space, whereas
L by construction is diagonal, i.e.,
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flexibility arises by virtue of the arbitrariness of the
operators H', Z' which are to be chosen in each instance
so that the significant parts of the mathematical spec-
trum of H', 4' are most simply associated with their
physical counterparts. In some instances this "map-
ping" procedure becomes a matter of personal taste.
The choice which is obviously "most physical" to oa.e
person is not always so evident to someone else.

In the applications given here we have usually em-

ployed 2-matrix-type boundary conditions for the
operator g', the reasons for this choice being discussed
already in I. Nevertheless, the formalism allovs for
multiple choices of the basic operators and only aher
a careful evaluation of each choice will it be possible to
decide which choice is most appropriate for the particu-
lar problem being investigated. General criteria for

choosing a set of operators are not obvious due to the
necessity of compromising between mathematical con-
venience and "physical" significance. Fortunately,
many of the interesting results may be obtained without
specifying H' and g too precisely so that the basic
formalism is reasonably universal in its applicability to
nuclear reactions. Applications of the formalism to di-

rect reactions and nuclear-model calculations will be
reported at a later time.
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Scattering of "N by t4Nt
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The molecular-viewpoint form of nucleon tunneling theory is used in the two-level approximation and

with neglect of the dynamic reaction terms for a partial-wave analysis allowing the inclusion of the effects

of wave function absorption through the use of an imaginary part of the potential. The equations are used

in an analysis of improved measurements of the differential and total cross sections of the reaction

"N( 'N, '3N)'5N, with special attention to laboratory energies 8&&16 MeV;vhich are below the Coulomb

barrier. At the lowest energies, the analysis involves only the Coulomb interaction between the heavy

particles. Fits to data are improved at the higher energies through the introduction of optical potentials.

The principal function of these in the present work is to modify the wave function at distances larger than

those corresponding to definite contact between i4iV and "N. The transfer function p (R) is cut oG at small

values of the internuclear distance R to avoid the inclusion of unrealistic contributions to neutron transfer

when the two nuclei are no longer distinct. The potential has been adjusted for best fits to neutron-transfer

data. The long distance tail of the potentials tried was made to agree, regarding relative values at diferent

distances, with that calculated by McIntosh, Rawitscher, and Park in their work on the elastic scattering of

"N by "N, and depends therefore on nucleon-nucleus scattering information. The potentials were adjusted

to represent the elastic-scattering '4N+'4N data simultaneously with neutron-transfer data. These com-

bined requirements are met best by potentials referred to as 2 and 3 in the text. The reduced width of the

transferred neutron obtained from transfer data depends on the potential only weakly. The same reduced

width from elastic-scattering information is sensitive to the choice of potential. The best agreement of the

elastic-scattering and neutron-transfer reduced widths is obtained for potential 3, the disagreement being

less than by a factor 2. The combined uncertainty of the two ways of arriving at the reduced width is

believed to be large and to make the discrepancy insignificant. The combined treatment of neutron transfer

and of elastic scattering is self-consistent in the sense described. The neutron transfer reduced width is

slightly smaller than the single-particle reduced width calculated with the nucleon-nucleus potential em-

ployed in obtaining the proportionality constant of the long-distance nucleus-nucleus potential tail.

I. INTRODUCTION

HE treatment of nucleon tunneling proposed by
one of the writers' ' is applied to the analysis of

the "N('4N, "N)"N reaction data of Becker and
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