
161 THREE —BODY PROBLEM

that is, as the difference between a positive operator of
unit norm, and a positive-definite operator of norm less
than 1, we see that the norm of X itself is less than j.,
and. so the Neumann series for (1—E) ' converges.

We briefiy recapitulate the results of this Appendix:
we have shown that no reformulation, of the Faddeev, '
Weinberg, or Blankenbecler and Sugar' type, of the
scattering equation for g(W), yields a tractable integral
equation at positive, real energies. They all evidently
suffer from the same disease as the two-body Lippmann-
Schwinger equation for the Coulomb Green's function,
namely the scattering amplitude diverges in the forward
direction. This strongly implies that an entirely new

approach is required to construct the Coulomb Green's

function for, three charged particles at positive energies.
Secondly, we have shown how a method suggested by
Sugar and Blankenbecler' may be applied to the case
of repulsive potentials, at negative energies. This
particular form of the solution )Eq. (A12)j has the
advantage of being nearly in the product form, which
Amado has found more closely resembles the true so-
lution than the partial-sum form. "Evidently there is
some merit to Amado's contention, since the kernel E
has norm less than 1, indicating that the product
Gok1k2ke is the first term in a convergent series expansion
for g(—(E~).

"R.D. Amado, Phys. Rev. 158, 1414 (1967).
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By means of the process involving the capture of muons in 0" (g.s.) leading to detinite anal states in N'e,
we examine simultaneously (a) the qnasipartscle model of nuclear structure developed by Migdal and
(b) the pseudoscalar coupling generated by the axial-vector coupling in the etfective weak-interaction
Hamiltonian. In (a) we clarify the basic assumptions". essential for the model and the connection between
this model and other better-known (nuclear)'models. In (b), it is shown that the Migdal model successfully
eliminates the well-known discrepancy between theory and experiment in ts +0"(0+) -+ v„+N" (2 ) and
also in e +0'e(0+) -+ e +0"*(2 ). This in turn enables us to make use of the nuclear model to obtain a
reasonable estimate of Cp=rn„tv/Fx. The conclusion is that the one-pion-pole dominance hypothesis is
compatible with all available data in 0"and that there seems to be no urgent need to introduce the tensor
coupling as some people have suggested.

I. INTRODUCTION

'HK major diQiculty with the use of complex nuclei
as a means of studying the muon capture process

is the inherent uncertainty associated with the nuclear
structure. One process which does not involve nuclear
physics is capture in hydrogen. But since the capture
takes place mainly in muon-hydrogen molecules, there
is some uncertainty associated with the molecular struc-
ture. Moreover, not all the necessary information on the
weak-coupling constants can be deduced from this
muon-hydrogen experiment.

The p, capture process involves a large momentum
transfer g m„100 MeV/c, and for this reason it can
provide valuable information about effects which are
not found in processes like P decay; e.g. , the induced
pseudoscalar (P) coupling generated by the axial-vector

*Work partially supported by the U. S. Atomic Energy Com-
mission. Document ORO-2915-75.

)On leave of absence from Service de Physique Theorique,
Centre d'Etudes Nucleaires de Saclay, Gif-sur-Yvette, France.

' H. Primako8, Rev. Mod. Phys. 31, 802 (1959).
'M. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354

(1958).

coupling. ' s Goldberger and Trieman (GT) have ob-
tained a theoretical estimate of the I' coupling constant
by relating the constant to the pion lifetime and pion-
nucleon coupling constant in the one-pion-pole domi-
nance hypothesis. ' At this moment, there is no clear
experimental verification of the GT result. There is
evidence, however, which suggests that the actual I'
constant might be much larger than the GT estimate.
One set of experiments which seems to indicate this is
the measurement of the asymmetry of the neutrons
emitted after the capture of partially polarized muons. '
The other is the radiative p, capture in complex nuclei. 4

These two seem to require a larger I' coupling constant
than the theoretical estimate.

Here we are concerned with another type of experi-
ment, which seems to have been proposed originally by
Shapiro and Blokhintsev. ~ This is to look at the partial-

' See the review by H. P. C. Rood LCern Report, 1965 (un-
published) j, where other references are given.

M. Conversi, R. Diebold, and L. di Lella, Phys. Rev. 136,
B1077 (1964); H. W. Fearing, ibH. 146, 723 (1966).

L S. Shapiro and L. D. Blokhintsev, Zh. Eksperim. i Teor. Fiz.
59, 1112 (1960) LEnglish transl: Soviet Phys. —JETP 12, 775
(1961)j.
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FIG. 1. The energy-level diagrams and isobaric analog-states
in 0"and N". The arrows indicate the muon capture transitions.
Zf and elf are energies in MeV measured relative to the 0"ground
state.

transition rates in 0".By a partial transition, we mean
a transition which involves definite initial and final
states. The process we are interested in is

p +0"(0+ T=O) —+ i +N"(0 , 1 , 2 , 3 , 7= 1), (1)

where we have indicated the J"of the states of interest
in addition to the isotopic spin T. The level schemes in-

volved are shown in Fig. 1, where the isobaric analog
states in 0"are also exhibited.

Reaction (1) presents an interesting combination of
processes. First of all, the transitions 0+ —+1 and 3
do not involve the I' coupling constant. If one assumes
that the vector and axial-vector coupling constants are
known, these processes can be used to determine the
validity of the nuclear wave functions. Once the nuclear
wave functions are reliably determined, then the transi-
tions 0+ —+ 0 and 2 can be employed as an experi-
mental probe for the I' coupling constant. With these in

mind, several experiments' have been performed on
reaction (1). At the same time, however, it has been
found in various theoretical calculations~ that the
0+ —+ 1 and 2 cannot be Gtted no matter what nuclear
wave functions are used, so that doubt is cast on the
only result of calculation —namely, the 0+ —+0 proc-
ess—which seems to agree with the GT value. In view of
impressive success obtained with the universal Fermi
interaction (UI'I) picture Lnamely, the conserved vec-
tor current hypothesis (CVC) for the vector couplings

R. C. Cohen, S.Devons, and A. D. Kanaris, Phys. Rev. Letters
ll, 134 (1963); Nucl. Phys. 57, 255 (1964), referred to as the
Columbia measurement; A. I. Astbury, L. D. Auerbach, D. Cutts,
R. J. Esterling, D. A. Jenkins, N. H. Lipman, and R. E. Schafer,
Nuovo Cimento 33, 1020 (1964), referred to as the Berkeley
measurement.

' L Duck, Nucl. Phys. 35, 27 (1962);T. Kricson, J. C. Sens, and
H. P. C. Rood, Nuovo Cimento 34, 52 (1964);V. Gillet and D. A.
Jenkins, Phys. Rev. 140, 832 (1965); H. Ohtsubo, Phys. Letters
22, 480 (1966).

R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958);for a review on this, see T.D. Lee and C. S.Wu, Ann. Rev.
Nucl. Sci. 15, 381 (1965), especially p. 402 ff.

and the equality of the muon coupling to the electron
coupling for the axial-vector part'), such a discrepancy
is most likely to come from the nucear-structure uncer-
tainty. It is the major concern of this paper to propose a
"nuclear model" which can eliminate this discrepancy. '
g If we assume that the defect in the nuclear wave func-
tions is the cause of this discrepancy, then we can think
of two possibilities: (1) the states involved in the transi-
tion may be deformed, in which case the spherical basis
which has been used so far is no longer good, " and jor
(2) the effective nuclear interaction used may not be
correct. These two conditions are not completely inde-
pendent of each other, however, and the relationship
between the two is a currently interesting subject. Since
there is no conclusive evidence for the deformation of
the 0"ground state or the low-lying states in I",we
shall attempt to treat the second effect and see whether
the defect can be remedied. We shall thus confine our-
selves to the spherical j-j coupling scheme throughout
this work. The modeii' (or method) we are going to use
is that which has been developed by Migdal with the aim
of taking into account correctly the interactions between
quasiparticles. '3 The main point of this approach is that
the renormalization eGect due to con6gurations more
complicated than two-quasiparticle ones can in prin-
ciple be properly taken into account through both the
"effective" single-particle (transition) operator atrd the
"effective" quasiparticle interaction (hereafter denoted
by I'~), which is described by a set of constants to be
taken from various experiments. Whether or not one can
obtain such constants theoretically is hard to answer.
In this paper, we shall not try to justify Migdal's as-
sumptions, but shall apply the method with the same
constants as determined from magnetic moments, "P
decay, "thee total p capture, "etc. to the partial transi-
tions (1) and show that the difFiculty with the 0+ ~ 2
transition can indeed be eliminated. 'r

In Sec. II the essence of Migdal's ',approach is re-
viewed. The assumptions involved are clearly indicated.
We discuss in Sec. III the problem of muon capture and

' C. P. Bhalla, Phys. Letters 19, 691 (1966).
From the point of view of weak-interaction physicists, the

nuclear-structure complication is an undesirable feature. In this
connection, C. W. Kim and H. PrimakoB LPhys. Rev. 140, B566
(1965)j have developed a scheme whereby nuclear physics can be
avoided by treating the nuclei as "elementary particles. "

"For this, see G. E. Brown and A. M. Green, Nucl. Phys. SS&
87 (1966)."The reason for calling the Migdal's approach a model is stated
at the end of Sec. II.

» A. B. Migdal, Enrico Fermi Summer School, Varenna, 1965
(unpublished); also Nucl. Phys. 57, 29 (1966) and references given
therein.

'4A. B. Migdal, Zh. Eksperim i Teor. Fiz. 46, 1680 (1964)
LKnglish transl. : Soviet Phys. —JETP 19, 1136 (1964)j; Nucl.
Phys. 75, 441 (1966).

"A. 8. Migdal and V. A. Khodel, Soviet J. Nucl. Phys. 2, 20
(1966); Y. V. Gaponov, i b2i,d714 (1966)."V. M. Novikov and M. G. Urin, Soviet J. Nucl. Phys. 3, 302
(1966); G. G. Bunatyan, ibid 2, 619 (1966.); 3, 613 (1966).

'7 A preliminary result was reported before; M. Rho, Phys. Rev.
Letters 18, 671 (1967).
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derive the capture rate in terms of Migdal's amplitudes.
The details of calculation are given in Sec. IV. Sections
V and VI contain discussions of the results as well as
some interesting conclusions on both the weak-coupling
constants and the nuclear structure. The Appendices
should be consulted for explicit formulas and the proofs
of two essential th~eorems.

(~pl T(~) lo)=(~pltlo)+ p (~pl vi~8)

where
x(),t„,(~)(peal T(~) lo), (2a)

Q, t„„(co)= (2z i)—' de G,„(e+ot)Gt„(e).

Suppressing indices and the summation, we shall write

"In terms of the creation and destruction operators (ot,o) in
Heisenberg representation, the Green's function Gqi (c) is the
Fourier transform in time of Gqi (t) where

Gg, (t) = —f(T(ai(t)ag t(0)))0+,

T=—time ordering o erator. For a reference, see D. J. Thouless,
Nucl. Phys. 22, 78 1961).

"An "irreducible vertex part" is defined as the part of graph
which is connected to the rest of a diagram by one incoming and
one outgoing line and cannot be separated into two parts by cut-
ting two Fermion lines horizontally.

IL THE NUCLEAR MODEL

In this section, we present in a representation suit-
able for our purpose what we shall call "Migdal's quasi-
particle model of the nucleus. "We consider specifically
the case where the total isospin T is a good quantum
number and where the j-j coupling scheme is applicable.

Let us suppose that an external disturbance, for in-
stance the weak-interaction current, is applied to a
doubly closed-shell nucleus in its ground state (J = 0+,
T=0). If a transition is induced via some single-particle
operator I, and the 6nal state l f) has the isospin T= 1,
then to the lowest order in the nuclear interaction the
excitation will correspond to a simple particle-hole type,
and the transition element (fl tl 0+) should involve an
isospin Rip. To higher orders, not only other one-par-
ticle —one-hole (1p-1h) configurations, but also Np-Nh

where e&1 can intermix. The aim of Migdal is then to
write an equation for an exact operator T in terms of
another operator t" which already contains a good part
of information about the ep-gh con6gurations. This is
illustrated diagrammatically in Fig. 2. This T, which
is to be evaluated in the pure 1p-ih con6guration,
can be simply related to the exact transition matrix
element (f l

t
l
0+).

We define Gii (cv) to be the single-particle Green's
function, ' where X represents the appropriate quantum
number (for example, X= ttilij itrt&, ) We write . (trP l

U
l p8)

for an irreducible vertex part" which in general depends
upon energy co. Let us further de6ne an exact transition
operator T as

Fro. 2. A diagrammatic representation of Eq (6.). The shaded
circle represents the exact operator 1; the square represents the
amplitude Pa (denoted here as P) given in Eq. (8), and the internal
lines on the second diagram on the right-hand side represent the
pole parts of the Green's function. t is the same as t~ of the text.

this as a matrix equation20

T= t+UOT. (2b)

It will be seen later that (ctpl T(ot) lo) has a pole corre-
sponding to the transition energy to= Et, where lnP) is
the dominant (1p-ih) con6guration of the 6nal state

l f); and the residue at that pole is related to the transi-
tion matrix element.

We state the 6rst assumption which goes into the
model and which we call the Landau quasiparticle
hypothesis. ""

(a) Near the Fermi surface, corresponding to low-
lying excitations, a single-particle Green s function can
be separated into two parts, i.e.,

Giv(~) =Gu. '(~)+Gatv~'(~),
Gxx. (to) =ZALto —ex+$8 slgneij bid,

where Z),& 1 is known as the Green's-function renormali-
zation, and Gii ~~(e) is a regular function of e near the
Fermi surface, but can have poles corresponding to
3-quasiparticle, S-quasiparticle, etc. excitations. Use of
Eq. (3) is a common practice in the usual shell-model
calculation. One example is the choice of unperturbed
particle or hole energies from neighboring odd-2 nuclei.
One more simplification is made at this stage by assum-
ing the state independence of Zq, i.e., Zq=Z. Then
it can be shown that this renormalization constant Z
appears only in the constants describing interactions
between quasiparticles l

see Eq. (8) belowj. There-
fore, everywhere else, we can set Z=1 without loss of
generality.

Now if we de6ne another (reducible) vertex part I'tt

which contains Z' as"
r'= U+ UDr&, D—=Q —A (4)

'0 The convention for matrix index is as follows: a ip-1h state is
labeled by (nP), which therefore makes up one index; T, A, t etc.
are to be considered as diagonal matrices or column matrices, and
&~, Q, and 9 are square matrices, since they involve two sets of
labels (aP) (vb)."L. D. Landau, Zh. Eksperim. i Teor. Fiz. 35, 97 (1958)
LEnglish transl: Soviet Phys. —JETP 38, '!0 (1959)j.

"The validity of Eq. (3) has been discussed extensively by V.
Gillet, B. Giraud, and M. Rho, Nucl. Phys. (to be published), and
a model in which the assumption apparently breaks down has
been studied by S. T. Belyaev and V. G. Zelvinskii, Soviet J.
Nucl. Phys. 2, 442 (1966). See also, E. Werner, D. Miiller, and
K. Emrich, Z. Physik 188, 385 (1965); E. Werner, tbNI , 191, .
38i (1966).

"We shall call A the "pole part" and D the "regular part" of
the Green's functions.
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or explicitly

&~III' Iv»=&~PI nfl~»+ & &~PI &I»)

xD,„..&~. li' l~», (5)
then we get

'f tB+ pRAT (6)

5 „5poA p(co)=
27ri

do G.,~( o+~)Gpo~(o)

n —np
— 5 ~Spy

6p

where A is a diagonal matrix whose elements are given
in terms of occupation probabilities n by

t"=t+UDt"=(I+p~D)t=e(t)t. (7)

Equation (7) with the neglect of possible energy de-
pendence defines the effective charge e(t) for an operator
t In. deriving Eq. (6), I'~ is assumed to be a slowly vary-
ing function of energy. Migdal has given a momentum-
space argument which seems to justify such an assump-
tion, but it is not clear how the same argument can be
applied to a finite system. As is implied in Eq. (5), I'"
includes contributions from all con6gurations which are
far away from Fermi surface, and it therefore may be
considered to be nearly the same for all nuclei except for
the very light ones. This and the above remarks are
implied in the following anastz of Migdal, Eq. (8).

(b) The matrix element of I'~ is given by the energy-
independent quantity

&a&I I' Iv&)= I'o « fo(4 *Apl'r*A)+fo'(4'a &4p) (4,*~A)+ J p'(r) J,o'(r)+ J p'(r) J 2'(r)
PF P2

gl gl
+go(+-*~~p) (+,*~so)+g'(~.*«~p) (~,*«+2)+ J, (.) J„.(r)+ J„,-(,).J„-(,)+.. .

pr pr
, (8)

J.pz(r) = (e.*»—A—A»4-*—),
2j (10)

The quantity t/'0 is a normalization factor which acts as
an over-all strength normalization of the interaction
(analogous to the force strength in an effective force)
and is usually taken to be

I o= dos'/dp,

where ep is the Fermi energy, p the nuclear-matter den-

sity. With this strength normalization, f, f', g, and g'

are dimensionless coupling constants of order unity
which also contain the information on the Green's-

function renormalization Z'.
The origin of the terms in Eq. (8) can be seen as fol-

lows: Consider the amplitude I"~ in momentum space;
I'~ can be related to the scattering amplitude. For quasi-

particle interactions with small momentum transfer
near the Fermi surface, the following expansion is as-

sumed to hold:

I o Z Lfc+gxo'1'o2+(fg +gg o'1'o2)21 22)

I, (12)

where pr is the Fermi momentum which we shall take
to be 1.36 F ', and g is a single-particle wave function
which in the j-j coupling scheme is of the form

4 (r) =R„1(r)g(„(n,o,)x(r,) (9)

(g=—radial wave function, P=—angular part including

spin, and x—= isospin wave function),

where I'„ is the Legendre polynomial. If the expansion
converges rapidly, one may restrict the sum to I(:=0 and
l. The validity of this remark can be tested only
phenomenologically. The Fourier transform of Eq. (12)
gives 5-function-type interaction in coordinate space
(r=0 part), and derivatives of 8 functions (r=1 part)
which give rise to the current-current type of interac-
tion. 24 Although it follows from the Fourier transform of
Eq. (12), Eq. (8) is not derived. Our attitude in this
paper is to take it as an ansatz. Once one takes Eq. (8),
then one sees immediate advantages. Suppose we con-
sider a system with good isospin quantum number T.
For T=1 states, only the amplitudes with v operator
(fo', go', f1',g1') survive, while T=O states involve the
fo, go, f1, and g1 amplitudes. That reduces the number
of constants by a factor of 2. Now if we further assume
that LS coupling is sufficiently valid, only the terms
with e remain for S=1, and the terms without e for
S=O. Hence, by analyzing different experiments, most
of the constants can be determined reliably. In a case
where spin-orbit coupling is important, of course, the
freedom with the S quantum number is lost.

We shall now express Eq. (8) in a j-j-coupledp-h
representation. For this, we need the notation for the
particle-hole state.

where, as before, la) =
I j 222 ) I 2222,.) and

I p ')=—(8
'4 The spin and isospin dependence follows from the rotationa1

invariance in spin and isospin space. Noncentral types of interac-
tion are neglected here. The Fourier transform of Eq. (12) can be
given, for example, as

fop(r& r2) p(r1 ri') &(ro —ro') (f—x/py') (vi—v1—')&(r~ r~') . — —
(Vg —Vr'}e(r, —ro')&{(r +1rg') 2/—(r,+r )/2). 2
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fo X Ysjgsr= Q(lti—kv
I JM)o„Ys„(Q),

where Y&,„(0) are the normalized spherical harmonics.
Here the reduced matrix element with respect to the
isospin has already been evaluated.

The «=1 terms (momentum-dependent amplitudes)
cannot be given in a compact form as in Eq. (15), be-
casue of the more complicated radial integrals. We write
them as

Vp
&np-'SII'ply' 'S)=

P p mampmimp2
(j.~.jpmp I J~)

X(j rid„jpmp
I
JM) dr

IP&=—xIP&=( —)'P'"'"""'Ijp ~p)l s
—rts. p& (14)

and X is the time-reversal operator. For convenience,
we shall lump JT together and call it S. For T=1, the
second and sixth terms in Eq. (8) (denoted by I"P) can
be given as

&ap 'Sl I'p~lyb 'S)=2(2J+1) 'Vs% P~pt)QJ

x((—) + fs'&j.jp
—

JIIY„llo&(oil

+go'& (—)'(j.jp 'JIII:ax Ys7~llo&

x&ollLax Ysl~llj. jp 'J)), (15)

& p„s= r'dr E (r)Rp(r)R„(r)Rp(r),

It is shown in Appendix 8 in a schematic notation how
one can go froin Eq. (18) to

(p(~) = &&(t&Dt+ t&AT))), (19)

where the double bracket means sum over all indices as
in Eqs. (17) and (18).The second term of Eq. (19) now
contains only the quantities t~, A, and T. It is well
known that 6'(to) has poles at co corresponding to the
excitation spectrum (collective and noncollective). "
Suppose we specialize to a state described by I f& and the
eigenenergy coy measured relative to

I
0+). We have

~f I &f I
t

I
0 ) I

'= L«»(to))-=r. (2o)

If
I f) is a low-lying excitation, it is easy to see that there

is no contribution from the first term of Kq. (19).Notice
that the pole at co=cof is found in the two-particle
Green s function in Eq. (17), while it is contained in T
in Eq. (19).

B. A Solution

We shall now determine the residue of (P(co) for co=oaf
corresponding to a definite state

I f&. Let us assume that
a particular configuration can be assigned to

I f& In our.

case, it would be a (1p-1h) configuration which has the
largest amplitude in

I f& (in other words, a dominant
configuration). We denote it by ID)=—lniipD).

A useful trick which Migdal has used is to introduce
the following quantities'~:

~ap=~ap(1 ~aan~ppn) p

X [fr'J p'(r) Jis'(r)+gt'J p"(r) J~p "(r)] (16) or in matrix form

in the notation of Kq. (10). The angular momentum
algebra is straightforward, and the explicit forms of
Eqs. (15) and (16) are given in Appendix A.

A. Polarization Operator

B=

. 0

0

(21)

The next thing to do is to express the transition ma-
trix element

I (f I tl 0&I+'—=3Ir' in terms of the interac-
tion amplitude F~, the pole parts of the Green's func-
tion A, and the renormalized quasiparticle operator P.
In order to do so, we return to the uncoupled represen-
tation and introduce a function called the "polarization
operator" (P(to)

(P(~)= P &oltI~P)g(~, P; ~,&; ~)6&ltlo), (17)

n —np

11=r~y r"BH,
T' = tir+ IIBtit .

Recalling that T satisles Lsee Eq. (6)j
T= tir+ r"AT,

(22)

where g is a particle-hole Green's function. "Now writ-
ing the integral equation satisfied by b and its expan- T=T'+II(A —B)T.
sion in a perturbation series, one obtains I by means of
Kq. (2)

(24)

) We consider the matrix element of Eq. (24) connecting

(p(~) = p &ol tlap)q. »,(~)heal T(~) lo). (18)
I0) and ID);

&Diplo)=&Dlr'lo&+&DIIIID&a (Dlrlo) (25
ss A particle-hole Green's function g(atlas; e) is defined by time

I'ourier transform of

8( tt»' t) = (—t)'((7'(a t(t)a-(t)a. '(o)a (o)))o
(ap (0)a (0)—)p+(a„ (0)ai(0))s+)

"See D. J. Thouless, Ref. Is.
~' The method given here is described in Ref. 13 and also in A.

3. Migdal, A. A. Lushnikov, and D. F. Zaretsky, Nucl. Phys. 66,
193 '(1965).
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from which we obtain

(DI TI o)=(DI T'lo)[1—(DIIIID)~nl ' (26)

The quantity
C.=—(DI III ~&~. (36)

u, =x(,)- I(DIr'Io&I
where

aII
X(cog)'= 1+(n n —npn) D D (28)

—Ol=O) f

and ~f is the solution of

In Appendix C it is shown how one can express (P(ao)

in terms of Eq. (26) and that the singularity (pole) of
(p(ce) coincides with that of Eq. (26).The resulting equa-
tion is

(27)

can be considered as the atlplitmde of the tpaee fltsctiots
(i.e., I f)=g„C„Its)). We need to evaluate the sum of
IC~I at &=roy~

Z IC.I'=Z (DIIIIN)~-'(~IIIID&

=(DI IIAsII ID)

= (D I
(1+iifi'll)

I D)

=(DI[1+r (1—ar )-as

y (1 PB+)—lPR1
I D&cer ——e.n—

epn
—(N. —np, )(DIII(otf) ID). (29)

Continuing in matrix notation, we have from Fqs. (22) ComParing Eqs. (28) and (33), we see that

and (23) g IC„I'=X((vg)s (37)

Noting that
8 =S—iBs

n= [1—r~BQ'r&= r~[1—Br']-',
I'= rrAt&.

(30)
which is what we desired to show. "

Now to make the connection to the diagonalization
procedure, let us return to the polarization operator
given by the second term of Eq. (19). Expanding the
series for T

where S p=e„—ep, we obtain

()II
= PitS-'B'I'ir(1 —BI"ii)-'

~( )=((t'A»)
=((t~A(tn+ rnAt&+ " )))
= ((t'(A+ArnA+ )t&))
= ((t'K't") &, (38)

= rsS—'B'(1—I itB) 'I "
= r'(1—Br')-'S-'B'(1—r'B)-'r'. (33)

where K' satisfies

Or more explicitly

K'= A(l+ rRK') . (39)

This is a matrix operator, the matrix element of which
is to be substituted into Eq. (28). Equation (27) to-
gether with Eqs. (28), (29), and (33) constitutes the
desired solution. To put these equations in the p-h
representation, the following substitutions are made

ID)= InnPn 'S), ts —Np
———1 (TDA). (34)

C. Connectioa with Other Methods

It is of interest to compare the solution Eq. (27) with
other, better-known methods of nuclear-structure cal-
culation such as the diagonalization"of a Hamiltonian
matrix in the Tamm-Dancoff approximation (TDA) or
random-phase approximation (RPA). For this purpose,
let us show 6rst that X(&of) ' defined in Eq. (28) can'be
related to a normalization constant of the wave function
with the eigenvalue co =orf. This we do in the representa-
tion of Eq. (34). Though the proof is quite simple, it
does not seem to have been pointed out explicitly in the
literature. Writing out explicitly the intermediate states
(denoting the complete set of 1p-1h states by In&),

(DI 2'10)=Z (D IIII ~&~.(~I&'I o) (35)

~l
&& apyl

fp —
CO

which is exactly the same as Eq. (5) of Thouless, 's ex-
cept that his I" divers from ours. Therefore the analysis
of Thouless on the RPA will be applicable to Eq. (40)
without modi6cation. We shall devote a little more time
to this problem in a future paper. Here we merely re-
mark that as long as we deal with particle-hole con-
6gurations, the approach of Migdal seems in spirit to be
the same as the RPA or TDA with the following notable
differences: (1) the appearance of the renormalized
operator t" in Eq. (38) as opposed to t in the Thouless's
equation (31); (2) the different nature of determining
the effective force F~; the matrix elements Eq. (8) are
essentially determined from experiments, while those of
usual shell-model forces cannot be uniquely determined.

'8 There seems to be an inconsistency in Migdal's analysis. In
his lecture notes, he points out that for a very low excitation, one
can take Ãs(cof) =1.That this is incorrect in general can be seen by
considering the low-lying collective 2+ states in spherical nuclei.
Since according to Eq. (23) the wave function is normalized so that
the dominant configuration has unit amplitude, large configuration
mixing in the 2+ states implies that Ns(a&y) )1.
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It should be noted that as far as the momentum-
independent terms are concerned, there is an apparent
connection between the matrix elements I'~ as defined
by Eqs. (8) and (15) and those of the usual shell-model
forces; i.e., the jr= 0 terms in Eq. (8) may be compared
to the direct or annihilation term of particle-hole
matrix elements taken with a zero-range (shell-inodel)
force. Equation (15) shows this manifestly. It is also
clear why the z-independent terms vanish for T=1
states; for instance, the term proportional to fs in Eq.
(g) is 9' 2'Ill'~II~= 2'=0)(J= &=011I'~ll~'»'»~ i=0
if T&0.

At 6rst sight it may appear that the Migdal matrix
elements of Eq. (8) do not contain terms corresponding
to the exchange (or scattering) terms of the shell-model
matrix elements. That this is not so can be seen as fol-
lows: For the zero-range interaction to which our ~=0
terms correspond, the exchange terms can be written in
terms of the direct terms, since the space exchange
operator P,=+1.Therefore the Migdal constants f, g,
f', and g' which exhibit explicitly the spin and isospin
dependence can be given in terms of the force param-
eters ao, a„u„and u„ for the operators 1, e1 e2, ~1 ~g,
and (rri rrs)(~r ~s) in the shell-model force. This shows
that Eq. (8) contains terms corresponding both to the
direct and to the exchange terms. Although the 0. and
v dependence can be shown in the same way for the ~= 1
case as for the &=0 case, the connection of these mo-
mentum-dependent terms with shell-model matrix ele-
ments is not quite clear. A counterpart of such terms
may be absent in the latter.

III. PARTIAL TRANSITIONS IN MUON CAPTURE

In this section, we apply the method presented above
to the particular situation where a muon is captured
into the ground state of the doubly closed-shell nucleus
0" and induces transitions to low lying (final) states
J (7=1) in Mrs. Before proceeding further, we describe
the weak-interaction (WI) part of the process.

A. Weak Interaction

The following assumptions are made for the WI
process:

1. The validity of the conserved-vector-current hy-
pothesis'; this provides the vector part of the coupling
constant, and the presence of the weak magnetism term.

2. The absence of G-parity irregular terms"; that is,
possible tensor and scalar couplings are ignored.

3. Time-reversal invariance; this implies that the
weak-coupling constants can be taken to be real.

We make one more assumption: That the effective
weak Hamiltonian obtained by Fujii and Primako6"

's S. Weinberg, Phys. Rev. 112, 1375 (1958).
'0 A. Fujii and H. Primako8, Nuovo Cimento 12, 327 (1959);

J. R. Luyten, H. P. C. Rood, and H. A. Tolhoek, Nucl. Phys. 41,
236 (1963).

TABLE I. Effective weak-coupling constants.

a Values obtained with v=90 MeV, Ca=8. The form factors (CVC,
P decay) are F1 =0.972, F& =3.602/2M, and Fz = —1.18 as given in the text.
The numbers are in unit of 62.

(up to linear in p/M) is suKciently reliable for the
process.

Summing over the magnetic quantum number of the
final states, averaging over the initial state, and inte-
grating over all directions of neutrino momentum,
one obtains for the capture transitionse I0 ) —&

I f)
(0=c=1)

A(f)=e. P n~. ,
n=l

(41)

where Q„(n=1, , 6) are combinations of effective
weak-coupling constants Gy, G~, G~, gy, g~ and are given
in Table I; and

vs/ 1

2' (1+v/AM)

v' ( 1 l (~um„)'f~.«l '

2m (1+v/AM) m k Z J
(42)

where the E-shell muon wave function has been taken
out as an average and Z, ff has been introduced following
Sens."The nuclear matrix elements 3f; evaluated with
the exact final state

I f) are

dp—5K, as=1, 2, ~ ~ ~ 6
4x

(43)

with

~i=I fll' OII's=l f&l' ~ =Iv' faI'

DII4——( f1)*(Ii fy/M) Ons ——(v frr)*( fe y/M)

SIIs sv ( frr) X ( f——y/M)*,

where

t= (f I P ~,—&
—

& exp( —iv r;)t,
I
0+),

t=(1, y, yrrrr), lvl =v=momentum carried away by
neutrino=m„— Ef—E~, E~ is the binding energy of
the muon in the atom, and Ef is the transition
energy.

3' J. C. Sens, Phys. Rev. 113, 679 (1958).

QI 02 Qg 04 05

Gv' Gg' Gv' —2GvG~ —2Gvgv —2'(Gg —Gv) —2G~gv
1.038' 1.957 —1.428 —1.980 —1.716 2.720
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For the weak-coupling constants, we follow the nota-
tion of Foldy and Walecka, 32 and de6ne

Gv/G=Fil 1+
2M)

Gg/G= Fg —(v/2M) (Fi+2MF s),

Gp/G =
CF g(Cp 1) —(Fi+—2MF s)$ (v/2M),

gv/G=Fi, gA/G FA Cp rrrpFp/FA,

and G is the fundamental weak constant equal to
1.02 X10 '/M'.

In accordance with the CVC, the vector coupling con-
stant F~ and the weak magnetism term F2 are taken to
be Fi ——gv/G=0. 972 and Fs (fsv fr——~)F—t/2M=3 602/.
2M. From neutron P decays comes the value for the
axial-vector coupling constant F~= —1.18.

The only coupling constant we consider unknown in
the WI part is the induced pseudoscalar coupling con-
stant FI, or equivalently, CJ. The theoretical estimate
for this based on the Goldberger-Treiman relation
ranges roughly" between the following limits:

in terms of the effective charge e(f) for T= 1. With the
definition C —= (Dl II

I ri&A„, we can now write Eq. (44)
as

(c)II l
h.(j)=6I 1+(I —Np ) D

(r)M I &y &yr

X Q 0;M, (45)

where

M, '=4~I P c„T. (1) I M, '=4~ P I g C.T„(~)I,

Ms' ——4a. lg i"(10Jollo)P C T ~'(e) I'

M4'= —4a Q i"+~ '(10—JOI lo)

XCg C„T„'(y)jCP C T (1)j,
Ms' ——4a. Q i"+~ '(10Jollo)

l

x CZ c T-"( )3*CZ c-T '( y)j,
6.5« Cg &&7.5. (44) Ms' ———4'(+6)P i'+'+'~+'(2l+1)'"(10lo

I Po)

XW(11l'i; 1J)CQ C„T„~'(o)jCQ C„T„~'(y))*.

T„(1)= &nIIP .,t-&j,(vr )I',(n;) Ilo&,

T„(.)=(ellg. -lj,(";)CI',x 7, llo),

The analyses based on the radiative muon capture'4 in
Ca" and the neutron asyrmnetry parameter" seem to
indicate a larger value of C~ (if one neglects the tensor
couphng). We have used the notations

In this paper, Cz will be determined by means of the
partial capture rates. Just to give an idea of the magni-
tude, we set C~——8 and v=90 MeV to obtain the nu-
merical values of the effective coupling constants given
in Table I.

p. Quasiyarticle Residual Interaction

To write the transition matrix elements in terms of
T' CEq. (23)j and II CEq. (22)j, we need the following
replacements.

(a) &jl &(~r)-' 2 -&Dl II IN&~-&~ I;

the normalization X(&v~) was defined in Eq. (28).

T„~'(y) =(Nlli g r;( l j&(vr;)CYiXy/Mjzsllo&

T '(o y) =&rslli & r" 'j~(vr~)I'~("~)( y/M) J"IIO).

The explicit forms of these reduced matrix elements can
be found in the paper by Rose and Osborn. "

(b) t=(i,~,y, y ~) ~ ts=e(f)t

'2L. L. Foldy and J. D. Walecka, Nuovo Cimento 34, 1206
(1964); Phys. Rev. 140, B1339 (1965)."J.C. Taylor, Phys. Letters 11, 77 (1964).

~4 It is difFicult to understand why improving the wave function
as Fearing did requires larger values of Cz (i.e., Cz ——16.5~3.1
compared with 13.3+2.7 of Conversi et al.). In view of the com-
patibility of other experiments (Ref. 35) with Cp between 6 and 10,
it is not unlikely that the basic mechanism of the radiative capture
is still not understood well.

"See, however, M. K. Akimova, L. D. Blokhintsev, and E. I.
Dolinsky, Nucl. Phys. 23, 369 (1961);these authors use the direct-
interaction picture for the neutron emission and an optical poten-
tial for the interaction between the neutron and the nucleus.

IV. CALCULATION

A. Available Exyerimental and Theoretical Results

Two measurements on the partial muon capture in
0" are available'.

1. The Columbia measurements by Cohen et a/. , who
looked at the processes N" ~ 0"*+e +v„0"*—+ 0"

'6 M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1326 (1954).
Note, however, that our definition for the reduced matrix element
divers from theirs by a statistical factor (2j +1)'".
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TAal.z II. Particle-hole energies in MeV. '

Conf.

6p —6h

I/I 3/2 (IPl /2)

11.52

2s1/g(1P1(~) ~

12.39

ld3/2(IP2/2) '

16.60

1/f3/2(IP3/2)

17.68

»2/2(IP3/2) '

18.55

1/I 3 /2 (1P3/2)

22.76

a These are neutron-particle-neutron-hole energies taken from Ref. 32.

+y. The results are"

A.(0 )= (1.10&0.20) X10' sec ', (46)

A. (1 )= (1.88&0.10)X103 sec ', (4/)

A.(2 )= (6.3+0.7)X10' sec '. (48)

2. The Berkeley measurements by Astbury et ul. ,
who studied directly the y transitions in N". Their
results differ disturbingly from the Columbia results:

A(0 )= (1.6~0.2) X10' sec ', (49)

A(1 )= (1.4+0.2)X10' sec '. (50)

There have been several calculations' ' with the aim
of deducing C~ from the experimental results. We make
a brief component on each.

1. Shapiro and Blokhintsev originally proposed that
A(0 )/A(1 ) is independent of the nuclear model, and
could be used to determine C~. The model-indepen-
dence argument is not correct, as was argued by Ericson
et ul.

2. Duck and Ericson et at. have used various nuclear
models and the Fujii-Primakoff Hamiltonian. Because
of their failure to fit the A. (1 ) and A.(2 ) (the latter by
more than a factor of 2), no conclusion can be reached
from their calculations. Their conclusion that the rela-
tivistic terms are dominant for A.(0 ) remains correct,
although they have treated them inconsistently by in-

cluding terms (p/M)2 in A. with a Hamiltonian valid up
to P/M.

3. Gillet and Jenkins have improved the nuclear wave
functions by means of the RPA and have also used the
Morita-Fujii Hamiltonian. "Their results do not show

any improvement over the previous calculations as far
as A (2 ) is concerned. A (1 ) is still too high by more than
25Fo

4. Ohtsubor has taken into account (p/3f)2 terms
correctly and has used various nuclear wave functions,
including Gillet's. He introduces further the tensor cou-
pling. Though he gets better results for A.(0 ), the tensor
coupling does not help for A.(1 ) and A. (2 ).

5. Kim" has used the Stanford data on the trans-
verse form factor Fs(/I) for the inelastic electron scat-
tering e +0"(0+) 3 e +0"'(2 ) (at 180 ), and the
elementary-particle method of Rim and PrimakoG. "He

"The 0+—+ 1 Columbia measurement is scaled as by Gillet
and Jenkins (Ref. 7). The originally reported value is 1.73~0.10.
The scaling factor used in Gillet and Jenldns (i.e., 0.75//0. 69) is
based on the 1 —+ 0 y branching ratio.

"M. Morita and A. Fujii, Phys. Rev. 118, 606 (1960)."C.W. Kim, Phys. Rev. 146, 692 (1966).
'3 G. J. Vanprat and W. C. Barber, Nucl. Phys. 79, 550 (1966).

has obtained (with the one-pion-pole dominance hy-
pothesis) reasonable agreement: A. (2 )= (5.8+23)X103
sec '. Despite the large error assigned to the calculation,
which is due to the limited experimental information on
the electron scattering itself, Rim's model-independent
calculation shows that the failure in the previous calcu-
lations stems indeed from the defect in the nuclear wave
function.

In the remainder of this section, we describe essential
points of our calculations. The questions we ask are: (1)
Can the nuclear-structure defect be eliminatedP (2) Can
the theoretical A. 's be used to determine C~P (3) Can
the process be used to determine some of Migdal's cou-
pling constants which have not been determined before'

3. The Method of Solution

The equations to be solved are Eqs. (29), (30), (31),
and (33). These are to be considered as matrix equa-
tions to be solved by successive matrix inversion in the
particle-hole representation of Eq. (34)."The specilc
forms of the "dominant" configuration ~D)= ~o/DpD 'S)
will be given below. We now need to determine the com-
plete set of the p-h configurations for J =0, 1,2, 3
and their p-h energies.

C. Particle-Hole Energies

The neutrino momentum de6ned above requires the
transition energy Ey which is the energy difference be-
tween the 6nal state of N' and the 0"ground state. The
unperturbed quasiparticle-quasihole energies (e —

e/3)

can be chosen to be the experimental neutron-particle-
proton-hole energies. In such a case, ~f—Ef For con-
venience, we use a somewhat different convention. We
choose (» —

e/r) to be the experimental neutron p-h en-

ergies obtained from 0"and 0', in which case coj corre-
sponds to the excitation energy of

~ f) in 0".Such a
procedure is equivalent to a rotation in isospin space,
and is valid for the system in consideration. " The
neutrino energy can then be given by

v =r/s„/d f Ef/+ (o/ f E—f) 108.0 MeV —o/f—, (51)

where o/f Ef= 2.56 M—eV is obtained from t E(2,023)
—E(2,N")jz t. &t should be noted that for more gen-
eral cases where T is not a good quantum number, one

4'This method of solution differs in appearance from that of
Migdal. He has obtained with some simplifying approximations
the exact operators for the magnetic moment calculation. Such a
technique does not seem to be feasible here unless one makes a
drastic approximation. Besides, the connection to other models is
more easily clarified in the method we use.
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TABLE III. Transition matrix elements M;, i=1, ~ ~, 6 defined
by Kq. (45). The numbers correspond to 10&M .

Jn' M2' 3l3' 314' kt5' M6'

0 (a) 0.0 0.608 0.608
(b) 0.0 0.412 0.412
(c) 0.0 0.415 0.415

1 (a) 0.751 1.216 0.0
(b) 0.499 0.650 0.0
(c) 0.661 0.582 0.0

2 (a) 0.0 9.425 3.622
(b) 0.0 3.257 1.230
(c) 0.0 3.266 1.232

3 (a) 0.0455 0.0491 0.0
(b) 0.0295 0.0312 0.0
(c) 0.0324 0.0315 0.0

0.0
0.0
0.0

—0.0680—0.0474—0.0614
0.0
0.0
0.0

—0.0040—0.0028—0.0030

—0.303—0.220—0.221
0.0
0.0
0.0
0,0325—0.0438—0.0439
0.0
0.0
0.0

0.0
0.0
0.0

—0.275—0.183—0.199
—0.118—0.109—0.108
—0.0077—0.0050—0.0053

& Vo =0 (Independent quasiparticle approximation).
b Vo/4'-=35 MeV Fg, fo'=0.35, go'=0.50, fo'=g1'=0.
~ Vo/4~=35 MeV Fg, fo'=0.35, go'=0.50, fi'= —0.40, g1'= -0.10.

should work directly with the neutron-particle —proton-
hole representation.

The particle-hole conlgurations and their energies are
given in Table II.The use of the experimental values of
~ —ep in the pole part of the Green's function may par-
tially justify the Landau hypothesis which has been
used $i.e., Eq. (3)).It is also believed most likely to be
valid near the doubly closed-shell nuclei.

From Table II, it is easy to see that the configura-
tions corresponding to

) D) are ~2st~slpr/2 ') for J =0
and 1, and ~1dstsiptts ') for J =2 and 3 . The
dimensionality S of the matrices II and c)II/cjco is 2 for
J=O, 5 for J=1 and 2, and 3 for J=3 .

D. Radial Wave Function

For convenience, we take the harmonic-oscillator
wave function for the radial part R (r). The error in

using such a function is minimized by tak.ing the oscil-
lator length parameter h= (h/&co)'I'=1. 75 F, consist-
ent with electron scattering data. The same value has
also been used by the authors in Ref. 7.

26f
P0~

dp 3p
(52)

Choosing of=40 MeV, r0=1.25 F, they have obtained
V0=4xX35 MeV F'. Since this has been used by

E. Couyling Constants for j. ~

For T=1, one has four nuclear constants fa', ga', ft',
and g1'. The corresponding constants for the case of free

space and of nuclear matter have been estimated. In
Gnite nuclei, because of the surface, one expects the con-

stants to lie in between the free-scattering and nuclear-

matter cases. The essential feature of the present model

is that those constants are to be taken from experi-
ments. Without going into the details of how to obtain
them (see Refs. 13 through 16), we give the results.

First we need to settle the strength constant Vp.

Migdal et a/. have taken

Bunatyan'6 for the total p, capture in 0" and Ca", we
shall take it for the strength normalization.

The comparison with the magnetic moments" yields
go'=0.50. This value is consistent with the Gamow-
Teller matrix element in P decay" and the axial-vector
matrix element in total p, capture. ""A rough estimate
of fa' may be obtained from the symmetry term in the
Weizsacker mass formula, but a somewhat more ac-
curate value may be obtained from the electric quadru-
pole moments. "So far, the estimate is 0.35 &~fa'~& 0.40.
Although there is some uncertainty here, the capture
rate is rather insensitive to fa', as we shall see later.

So far there is no information available on the con-
stants ft' and gt'. The reason for this is likely to be that
the static or even (nonrelativistic) transition moments
do not sensitively depend on these terms. Since, how-
ever, the partial muon capture, especially the 0+ —+ 0
transition, is sensitive to the p/M term in the weak
Hamiltonian, it seems necessary to include them. In the
absence of other information, we shall infer the signs and
magnitudes of those constants from the free-space
values; i.e., fr'(0 and

~

gt'
~
&&1. We choose

ft'= 0 40,—.

g1'——0.01,—0.1,0.01,0.1
(53)

and examine the consistency of these values with the
data (both the transition rate and transition energy).

F. Effective Charge

The eRective charge e(t) for an operator t has been
defined to take into account the renormalization due to
complicated quasiparticle configurations. This follows
from the Landau hypothesis LEq. (3)J, the constancy of
Zq, and conservation laws (i.e., the Ward identity). The
following discussion is based on the assumption that
e(t) does not depend on energy (nor, therefore, on the
state X). The validity of this assumption is certainly an
open question, and probably has to be considered to-
gether with the question whether the energy dependence
of I'~ can indeed be neglected.

With the operators t= (1, o,p, p o) which appear in h. ,
all except 1 undergo renormalization. The operator e
has no conservation law associated with it. Therefore
we introduce a parameter i such that

e(o') = 1—2| for T= 1. (54)

From magnetic moments, 4' Migdal deduces f =0.05.
We shall this tahe e(e) =0.90for all single particle tr-ansi

4' Bunatyan obtains two uncoupled equations corresponding to
Eq. (6), one for the r~ ~ operator (vector matrix element) and the
other for r& &o (axial-vector matrix element). Since he uses the j-j
coupling scheme in his second paper, the separation can at best
be approximate. It is not clear how he managed to uncouple them
without going to I-S coupling, in which case his equations are
correct.

"This comes from the paramagnetic susceptibility (or the con-
tribution to the magnetic moment from the 0 operator); see Ref. 14.
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TABLE IV. Capture rates in 10' sec ' with Vp=47l )(35 MeV F'.

Cy

—14—10—8

0
4
6
8

12
16

Expt. g
h

0
a

6.79
5.57

~ ~ ~

3.00
2.18
1.81
1.47
0.881
0.406
1.1&0.2
1.6+0.2

4.40
3.62
3.26
2.59
1.99
1.46
1.23
1.01
0.618
0.302

4.48
3.69
3.32
2.63
2.02
1.48
1.24
1.02
0.623
0.301

~ ~ ~

3.88
3.52
2.85
2.25
1.72
1.48
1.26
0.874
0.558

2
a

45.3
39.5

~ ~ ~

28.2
24.9
23.5
22.3
20.5
19.4
6.3+0.7

~ ~ ~

13.0
11.3
10.6
9.22
8.07
7.12
6.72
6.36
5.80
5.43

13.0
11.4
10.6
9.27
8.12
7.16
6.75
6.40
5.83
5.46

4.27~
2.18b
2 16e
1.96'
2.22e

1.88+0.10
1.4 +0.2

0.223$
0.126b
0 121e
0.119f
0.133e

a Noninteracting quasiparticle approximation (Vo =0).
b fo' =0.35, go' =0.50,fl' =g1' =0.
o fo' =0.35, go' =0.50, fl' = —0.40, gl' = —0.10.
d Same as (b) with (p/M)2 correction.

e fo'=O.4O, go'=O. 50, fl'=gl'=0.
f fo'=0.35, go'=0.50, fl'=0.10, gl'=0. 30.
& Columbia measurement.
h Berkeley measurement.

e(p) =1—l(f —f '), &=1 (56)

with fi and fi' defined in Eq. (12). Though an account
of e(p) can be important for the relativistic WI terms,
we have no estimate of (fi—fi'), and we shall assume
that e(p) =1. On this basis, we may also take

e(o p)—e(e) =0.90. (57)

A more correct treatment of this term would be impor-
tant for the 0+ —+ 0 transition.

-V. RESULTS

The transition matrix elements M„' (m= 1, 2, , 6)
are given in Table III, and the capture rates are sum-
marized in Table IV and in Figs. 3, 4, and 6. Table V
contains the transition energy Ey, and Table VI lists
II, A, BII/8~, which can be translated into the wave
function by means of Eqs. (36) and (37). Finally, Fig.
7 shows Fs(q) for e +0's(0+) ~ e +0's'(2 ) calculated
with the wave function in Table VI. We now discuss
each transition.

A. 0+~ 0—Transition.

Only the configurations 2sa&~1pi&s
' and Ids~21ps/s

contribute to II matrix. Since the particle-hole partners
involve a spin Qip, it is easy to see that the spin-inde-
pendent amplitudes fs' and fi' vanish. If one takes Eq.
(57), one finds that A. (0 ) is not sensitive to gi'. The
reliability of go determination, as discussed before, is
then expected to be important with this transition.

The rate (as shown in Table IV) is very sensitive to
C~ through the matrix elements 3f3' and 355'. Since
Ms'=Ms' (see Table III), the nonrelativistic contribu-

lions. This means that for T=1

&~l ~'I0) = (I—4-)&~ I o10)= (I—2t) &~ I ~I0) (55)

Since we have chosen the j-j coupling scheme, we may
drop, in &I

~

p"
~ 0), the term corresponding to the spin-

orbit correction and write

tion is
(Gg—Gp) 'Ms'. (58)

g~' e p/M (59)

The remaining terms turn out to contribute about
3'Pz for Ci =8. The results obtained with the addition
of Eq. (59) are given in Table IV and Fig. 3. We esti-
mate from the 6gure the following ranges of C~ com-
patible with experiments (see M' in Fig. 3):

3~& C~~& 7 for the Berkeley data,

7 ~& C~~& 12 for the Columbia data.

There is a definite need for more accurate measurement.
Although g1' may not play an important role for A,

there is evidence that g1'&0 helps to bring Ey in the
right direction (Table V). This possibility will be dis-
cussed further below in connection with the 1 state.

B. 0+ —+ I—Transition

This process which is independent of C~, has the im-
portant role in this calculation of verifying the consist-
ency of the constants fs' and gs'. It can also shed some
light on the sign and magnitude of fi' and gi'. We believe
that the relativistic terms of order (p/M)' can be re-
liably neglected for this transition and hence our equa-
tion for A. has a negligible error as far as the weak Hamil-
tonian is concerned.

We find from the calculations (Table IV) that (a)
A changes insignificantly from fs'=0.35 to f&' ——0.40; (b)

"J.L. Friar, Nucl. Phys. 87, 407 (1966).

For Ci ——8, Table II shows that (G~—Gi )s=0.53 while

2'(Gg —Gp) =1.72. In such a case the relativistic term
05M~' becomes dominant. For Cp suKciently large, say
Ci =20, both Qs and Qs approach zero, in which case,
the higher-order terms (in p/M) are obviously needed.

Friar44 has shown recently that in order to make the
result accurate to order (p/M)', it is sufficient to add
one more term,
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FIG. 3. The capture
rates in 10' sec ' versus
C~ for the transition

g -+O&&(0+) ~ v„
+N"(o ).

The shaded areas are ex-
perimental ranges: the
upper for the Berkeley
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for the Columbia mea-
surement. The curve jr/I

represents the Migdal
model with go'=0. 50,
g1'=0 correct to order
p/M, M' the same with
g1'=0 correct to order
(p/M)', and GJ stands
for the RPA calculation
of Gillet and Jenkins
(b=1.75 F) of Ref. 7.
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the result with fs'=0.35 or 0.40 and gs'=0.50 agrees
reasonably with the Columbia datum (though higher
than the Berkeley one). The capture rate is insensitive
to ft' and also to g&' within the range given by Eq. (53).
This feature is shown in Fig. 4.

Let us now examine the effect on the transition en-

ergy (Fig. 5 and Table V). Whereas h. (1 ) is not sensi-
tive to the /=1 amplitudes, Ey is; without those terms,
E~ is in general too high, as is the case with the 0 state.

Figure 5 shows that Ey can be brought into agreement
with experiment by taking ft'= —0.4 and gt'= —0.1.
These values are of course not unique; a larger negative
gt' and an fr') —0.4 will also give the right energy of the

state, and better transition energies for the 0, 2,
and 3 states. We leave the problem of the energy levels
to a future study which wi/1 include all other J states
in addition to the lowest ones. We merely mention here
that negative ft' and gt' seem to be necessary for the

transition energy to come olt correctly.

2.5 C. 0+ —+ 2 Transition

2.0-
O
LU
t/j

0
C

I

f+0

1.5

g,'=0. 1

g, «"0.4l 2.0

1.5

The fs' and fr' amplitudes can be shown to vanish in
the F~ matrix. Since the g&' amplitude is very small for
this transition, the major role is played by the go' term.
This is a consequence of the fact that the axial-vector
matrix element Ms' dominates the transition (Table

TABLE V. Eigenenergy Ef in MeV for 0"+p, —+ N" (lowest
states)+v„obtained' with fo'=0 35, go'=0. 5.0, and (1/4v) V0=35
MeV F3.

0

1.2-05 1.2
0.0-0.5 -0.1 0.1 "0.2

fI 9I

0.2 0.4

b
c
d

Expt.

12.15
12.19
11.74
10.53

11.88
11.32
10.93
10.80

10.86
10.86
10.84
10.41

11.21
11.11
11.07
10.70

FIG. 4. The capture rates in 103 sec ' versus f&' and g~' (with
fo' ~0.35 and go' =0.50) for pc +0"(0+) ~ v„+N"(1 ).The upper
shaded area is the Columbia experimental range, the lower one the
Berkeley range.

& Values given here are true excitation energies of N'8 ground and lovr
excited states relative to the O«ground state.

b f I g1I 0
e f1' ~ -0.40, g1' ~ +0.10.
& f1'= —0.40, gz'= -0.1.
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Fze. 5. The transition en-
ergy Ey versus f~' and g&'

for the process 0"(0+)~
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the excitation energy of the
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the ground state of 0".The
dashed line indicates the ex-
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III). The relativistic terms (Ms' and Ms') are small.
Since major cancellation does not occur between Mm'

and 3fs', the capture rate h. (2 ) is not as sensitive to
C~ near C~——8 as h.(0 ) is.

The crucial test of the nuclear model used here is to
see whether it succeds in predicting A(2 ) correctly.
This is the more so in that no other nuclear-model-
dependent calculation has made such a prediction con-

sistently with that of A(0 ).The result is given in Table
IV, and agrees with experiment for C~=8. In order to
see how this large reduction of h. from the IQP predic-
tion occurs, " it is instructive to examine the matrix
elements in Table III. Notice that the quasiparticle
interaction reduces the dominant matrix elements by
a factor of 3. This can be best illustrated in terms of a
wave function. Using Eqs. (36) and (37), and Table VI,

TABLE VI. EBective amplitude II, propagator A, and residue function a11/Bco for the lowest
J~=O, 1,2, and 3 states of N": V /4II=35 MeV F', fo'=0 35, go'=0.50..

Bs/Bcu. Idegs(IPgs) 2sqls(IP&gs) ~ Idgqs(IPgs) Id;~q(IP3~s) ' 2s&n(IP3&s) ' Ida~s(IPsgs)

0 —0.0047~—0.0046b

—0.0125$—0.0342b

—0.150.—0.147b

—0.0765~—0.0604b

1.90.
1.88b

A 0.529'
0.532b
2.26'
2.11b

A 0.442~
0.474b

2.32~
1 91b
0.431.
0 524b
2.05.
1.10b
0.488'
0.909b

—0.030
+0.0063—0.463—0.322—0.161—0.154—0.313—0.313

0.305
0.375—0.309—0.239—1.56—1.55—0.234—0.234
1.03
0.926—0.256—0.247

—0.225—0.812—0.243—0.198—0.287—0.309—0.195—0.194

—0.553—0.573—0.124—0.118
0.186
0.180—0.120—0.108—0.993—0.983—0.107—0.107
0.759
0.827—0.111—0.110

a Calculated with f1' gI' 0. b Calculated with f& ~ —0.40 gl ~ 0,1.
4~ We have checked the accuracy of taking the average value of p„by comparing the IPM value calculated by Gillet and Jenkins,

and our IQPM value with e(0) set equal to unity. They agree within a few percent.
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sec ' versus C~ for the transition
/i +0"(0+) ~ v„+N"(2 ). The
shaded area is the experimental
range of the Columbia measure-
ment. M represents the Migdal
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and Jenkins.
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we can easily construct the normalized wave function,
which for go' ——0.50. and g~'= ——0 is

l2 )=09321ds/sp»s ')+0 340ld»sps/s ')
+0.047[de/spt/2 )+0.057l st/sps/2 ')

+0.099lde/sps/s '). (60)

This is to be compared with the Gillet wave function,
the amplitudes of which are 0.983, 0.174, 0.007, 0.054,
().035 in the order of Eq. (60). Note that Eq. (60) has
the same sign as, but much more mixing than, the Gillet
wave function.

Consider M2' which involves the matrix element

IO-

e + d (o') ~o" (2 ) + e

/
/

/
/

/
/

/

~/
/

/
/

/

The squared transverse magnetic form factor Fs(q),
which can be related to inelastic electron scattering cross
section at 180, has been computed by de Forest" for

L/, (tr)—= (tsllP 7,' ' js(ir;)LI'iXo]sll0), &=1, 3 (61)

which also occurs in 3f3' and 3f5'. Evaluating for v =94.6
MeV, one finds the numerical values

Li(ds/spt/s ') = —0.271, Ls(ds//pl/Q ') = 0.0042,

Li(ds/sps/s ) = 0.254, Ls(ds/sps/s ) = 0.0045, (62)

Li(ds/sps/s ')= 0.111, Ls(ds/spe/s ')= —0.0103,

Li(ds/sp]/s )——0.0554, Ls(ds/Qpi/s ) 0.0205.

It is now clear from Eqs. (60) and (62) that a large
cancellation of the matrix elements occurs. The domi-
nant matrix elements in Eq. (62) being about equal in
magnitude but with opposite sign, the matrix elements
are expected to decrease with increasing mixing of the
first two configurations in Eq. (60).

0
0 20 40 60 80 IOO

MOMENTUM TRANSFER q(Me V/c)
I20 I 40

Fro. 7. The squared transverse form factor F'(q) for the inelastic
electron scattering e +0"(0+) ~ e +0"*(2 ). The experimental
points are from the Stanford data (Ref. 40); F was calculated by
de Forest; 3II& and M2 are results of the Migdal model, respectively,
without and with the renormalization of the operator e, for g1' ——0.

4e T. deForest, Jr., Phys. Rev. 139, 31217 (1965).



QUASIPARTICLE MODEL

the process 0"(0+)+e ~0""(2 )+e, and it was
found that the wave function computed in the ordinary
model gave too large values for F'(q) (roughly by a
factor of 2, although there are not enough experimental
points to be precise). We have computed F'(q) using
Eq. (60) with and without the renormalization of
the 0 operator. The result is consistent4' with the
experiment and also with Kim's model-independent
calculation. "

With a reasonable confidence in the nuclear model, we
can now estimate the range of C~. Because of the large
error in the experimental datum, we can at best obtain
two widely separated ranges, one for 5 ~& CI ~& 14 and the
other for 30&~Cr &&38

I
see Fig. 6]. The former is quite

consistent with that obtained for A(0 ). We tend to be-
lieve that the second range can be ruled out, as it does
not seem to be supported by any other information.

D. 0+~ 3 Transition

Since the transition is highly forbidden, the matrix
element may be too small to measure. However, if it
could be measured reliably, it would be useful in check-
ing the nuclear constants, since the C~-dependent terms
do not contribute. Notice that the quasiparticle inter-
action reduces A. (3 ) much more in our model than in
the others: While Gillet and Jenkins find less than 3%
reduction from IPM, we get over 40/z reduction due to
the interaction.

VI. SUMMARY

We have used the coupling constants for the quasi-
particle amplitudes and an effective charge e(e) which

give correctly the magnetic moments, the P-decay rates
and other nuclear properties; without unknown param-
eters, we obtain all three measured partial rates in 0"
within experimental accuracy. That the present model

predicts A(2 ) correctly is further supported by the
satisfactory fit of the transverse form factor for inelas-
tic electron scattering Oi6(0+)(e,e')Din(2 ), as can be
seen in Fig. '/.

The momentum-dependent Migdal amplitudes do
not affect the capture rates, but they seem to be re-
quired if the transition energies are to come out cor-
rectly and also if more correct treatment of the relativ-
istic Wl terms is desired.

We find that the ratio C~ based on the one-pion-pole-
dorninance hypothesis is quite compatible with the 0"
data, and there seems to be no necessity to introduce
G-parity irregular terms in the WI Hamiltonian.

Finally, the diRerence between the present model and
other models has been pointed out in the case of doubly
closed-shell nuclei; it is found to be in the matrix ele-
ment of the effective force and the effective charge of
the transition operators. The success of Migdal's cal-
culation lies most likely in how these quantities are
obtained. These last points are being studied further
and a report will be given at a later time.
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APPENDIX A: MATRIX EIEME5TS OF F~

I et us explicitly take the particle-hole configuration
as

I
e&= Ij ij 2 '~2'»

I no& =
Ij 3j 4 '~2').

Then Eq. (15) is given by

4x—(NIr, Im&=(—)'+'~'+'lilgl3l4giggjgj4X2
Vp

X fo'(2J'+ 1)—'(—)J2+&'+'(l20li0
I JO) (l40l30

I JO)W(lij il2j 2, 2~J)W(le 4/4j 4, -',J)+6go'( —)" "

For the momentum-dependent terms, we define

Tl2 2 j2 t t4 z j4

XQ (l20l]OI kO) (140l30
I
8)) /I g ji 13 2 j3 712/4 ~ (A1)

1 J. .k 1 J.

Hg'(12, 34)—= r'drL( —)"+'4+'hi, '(12)hi, '(34)—hi, '(12)hi, '(43)

+(—) iI+4+&/g~&(21)h~i(43) —( ) it+i2+4+4h &(21)/g~&(34)j (A2)
"The large reduction is also obtained in the photopion production process y+0"(0+) —+ m++N"(2 ); this is consistent with ex-

periment: V. Devanathan, M. Rho, K. S. Rao, and S. C. K. Nair, Nucl. Phys. (to be published).
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vrhere

kg~(12) =l(—)"+'- [(in+1)(2lg+3)]' '
(4s.)"'

XW(lilmk1; M~+1)(liol~+10I ko)Ri(r)

Recall that
r&= U+ UDr",
T= t+ UQT.

Using Eqs. (81) and (84), we have

T=t+ r.„Qt.

(83)

(84)

(85)

(d l
X I

——IR~(r) —[lu(212 —1)$'"W(lil, k1; )il~—1)
kyar r)

From Eqs. (1) and (3),

r,= r'+ r&Ar, .

X(li012—10lko)R, (r)l —+ IR&(r) . With Eqs. (83) and (84), we get( d i/+1)

&dr r i T= t&+ r"AT= t&+t'Ar...
(86)

Then we obtain for the fi' amplitude in Eq. (16)

52

&~l rP(fi') lm&=2 fi'(2J+1) '
Vp

where we have used

t'= t+ r~Dt. (88)

Using Eq. (87), we can write Eq. (18) of the text as

X ( )~i+~i+—'~'~~j ij &j,j4W(lij il2j 2, —,
'J) 6'= (&TQt))

= «(PQt+ t~Ar.„Qt))). (89)
XW(la j&14j4, —,'J)Q (—)'H~'(12, 34), (A3)

and for the g~' amplitude

p
&~lri (gi') l~&=12gi'( —)"+'~'~"jij2j~j4

Vp

l2 l g X l4 13

XQ (—)" —,
' —,

' 1 ~ —,
'

—,
' 1 ~

X

)~

XQ Hi~(12,34) . (A4)

Here we have used the notation j= (2j+1)'~', and { }
is a 9-j symbol. Equations (A2) through (A4) can be
straightforwardly obtained by means of gradient
formulas.

APPENDIX B: DERIVATION OF EQ. (19)

The derivation of this equation is given in Migdal's

paper, but since it is not familiar to many nuclear
physicists, we repeat it here.

For simplicity, we shall use the matrix notation
throughout. De6ne an exact (reducible) vertex I;„as

From Eq. (85), we have r, Qt= T t, which —we sub-
stitute into (89) to obtain

6 = «t&Dt+t~AT)&,

the desired equation.

APPENDIX C: RESIDUE OF tP(~)

We wish to show here that the pole of Eq. (26) co-
incides with the pole of P(~). Recalling the configuration

IaoPii&=—I D), we write explicitly

tp(~) = &0 I
t'ID&~~&D I

T
I
o)

+P (olt" l~»-&~ITlo). (c1)

Substituting Eq. (25) into (C1),

6'(~) =(olt~lD)~n&DI Tlo&

yE &ol t&IN&a„&~l T'I 0&

+2 &Olt'l~&8-&~l IIID&~n&DI TIO&

= &ol T'ID&~-&Dl T Io&

+Q &olPI~)a. &~l T'lo). (c2)

and write
r,= U+UQr. .

Q=A+D.

(81) The proof is completed by noting that the second term
does not have a pole at the transition energy ~= cof. The

(82) pole appears in (D I
T

I 0) in the first term.


